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Abstract. - We obtain a general formula for the distribution of sizes of “static avalanches”, or shocks, in
generic mean-field glasses with replica-symmetry-breaking saddle points. For the Sherrington-Kirkpatrick
(SK) spin-glass it yields the density ρ(∆M) of the sizes of magnetization jumps ∆M along the equilibrium
magnetization curve at zero temperature. Continuous replica-symmetry breaking allows for a power-law
behavior ρ(∆M) ∼ 1/(∆M)τ with exponent τ = 1 for SK, related to the criticality (marginal stability) of
the spin-glass phase. All scales of the ultrametric phase space are implicated in jump events. Similar results
are obtained for the sizes S of static jumps of pinned elastic systems, or of shocks in Burgers turbulence in
large dimension. In all cases with a one-step solution, ρ(S) ∼ Se−AS

2

. A simple interpretation relating
droplets to shocks, and a scaling theory for the equilibrium analog of Barkhausen noise in finite-dimensional
spin glasses are discussed.

Many disordered systems crackle when driven slowly, reacting
with abrupt responses over a broad range of scales [1]. These
avalanche phenomena occur in granular materials [2], earth-
quakes [3], fracture [4], liquid fronts [5], vortex lattices [6], and
other pinned elastic objects such as domain walls in disordered
ferromagnets [7], where jumps in magnetization are known as
Barkhausen noise [8]. In electronic glasses, the analogue of a
magnetic hysteresis experiment is gating, which exhibits strik-
ing memory effects [9]. Also in that context one expects crack-
ling upon increasing the carrier density.
The size S of these events is power-law distributed, i.e. scale-
free, ρ(S) ∼ S−τ . This property, often termed self-organized
criticality, emerges naturally in sandpile models, where analyt-
ical results were obtained [10]. But even there, ρ(S) is dif-
ficult to compute. Scale-free response also occurs in pinned
elastic systems, where quenched disorder leads to glassiness
and metastability at all scales. The distribution of avalanche
sizes for a single elastic interface was obtained from the func-
tional renormalization group (FRG) [11], and compared with
numerics [12, 13] and with wetting experiments at the depin-
ning transition [5]. The random-field Ising model with short-
range interactions, much studied in this context, exhibits a tran-
sition between non-critical and infinite avalanches as disorder
is varied [14, 15], with scale-free avalanche distributions only
at a special point in the phase diagram. While domain-wall
motion plays an important role in soft magnets, a description
without nucleation, long-range dipolar interactions and the en-

suing frustration between domains would be incomplete [8].
The situation is less explored in strongly frustrated spin-
glasses, whose complex energy landscape shares many features
with that of pinned elastic systems. In particular, the spin-glass
phase exhibits criticality with power-law spin correlations, as
predicted in mean-field theory [16] and in the droplet picture
[17]. This property is difficult to access by standard experimen-
tal protocols. However, the statistics of magnetization bursts in
a hysteresis experiment (the Barkhausen noise) should be sen-
sitive to the criticality of the glass state, and thus serve as a
probe of spin-glasses, both experimental and numerical.
The aim of this Letter is to compute the statistics of equi-
librium (i.e. static) magnetization jumps in the Sherrington-
Kirkpatrick (SK) mean-field spin-glass. We obtain a formula,
(7) below, which applies more generally to any mean-field
model described by a replica-symmetry breaking (RSB) sad-
dle point. The strategy is similar to Ref. [11] for elastic inter-
faces: A static avalanche, or shock, occurs when the system
jumps discontinuously between two degenerate global minima
as the energy landscape is tilted with an external force. This
phenomenon shows up as non-analytic cusps in all moments
of the effective (i.e. renormalized) force. Calculation of these
cusps allowed [11] to obtain the jump-size distribution in an ε
expansion around internal dimension d = 4. To lowest order,
it was found to be identical for dynamical avalanches (i.e. un-
der a driving force) and for static avalanches, or shocks, with
τ = 2 − 2

d+ζ + O(ε2), ζ being the roughness exponent. Here,
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we extend previous mean-field studies of the second moment
of the equilibrium effective force [18–20] to all moments. The
resulting formula (7) allows for a simple interpretation. We
suggest an extension as a scaling theory for finite-dimensional
spin glasses. It is based on a relation between shock and droplet
distributions, which extends an identity obtained for a particle
[21]. Similar shocks occur in many systems, and we consider
elastic manifolds [22] as well as decaying Burgers turbulence
[23], embedded in large dimensionN , the mean-field limit. We
find that one-step RSB always results in ρ(S) ∼ Se−AS , sim-
ilar to the shock-size distribution obtained by Kida in Burgers
turbulence [24, 25]. In contrast, we show that continuous RSB
results in novel and interesting scale-free avalanche distribu-
tions.
Mean-field spin glasses and the SK model - Out of equilibrium
avalanches in the SK model at T = 0 were studied numeri-
cally [26], and found to exhibit criticality, i.e. power-law size
distributions. The system self-organizes to remain always at
the brink of stability. Upon increasing the external field by
typically ∼ 1/

√
N , a first spin flips, and with finite probabil-

ity entails O(N) spin flips, with a change in magnetization of
O(
√
N). The thermodynamic criticality of the spin-glass phase

suggests similar avalanche phenomena at equilibrium. Indeed,
it has long been known [27] that the total equilibrium magne-
tization M(h) of the SK model undergoes a sequence of small
jumps, akin to mesoscopic first-order transitions, as the field h
is increased. These jumps are of size N1/2 and lead to non-
selfaveraging spikes in the susceptibility. However, the ana-
lytical understanding of avalanches in spin-glasses, and their
relation to thermodynamics, has remained scarce.
As a first step [28], the equilibrium magnetization of mean-
field systems with p-spin interactions (p > 2) was analyzed
and compared to a toy model of a large set of states with ran-
dom energies E and magnetizations M [29]. When the free
energies E1,2− hM1,2 of the two lowest states cross as h is in-
creased, a jump |M1−M2| in magnetization occurs. This basic
picture, with metastable states replacing the random states, re-
mains a good qualitative guide, both in the p-spin model and in
the SK model of spin glasses, as we see below. In Ref. [28],
the presence of large avalanches in the equilibrium magnetiza-
tion was proved by exhibiting a non-analyticity in the second
moment [M(h2)−M(h1)]2 for h2 − h1 ∼ N−1/2, in close
analogy to the force correlator of elastic systems [20]. Such
shocks are sharply defined only at T = 0. Thermal smearing of
the magnetization curve buries the presence of rounded jumps
as soon as T & 1/

√
N , as the calculation confirms. Thus, in

mean-field spin models, including SK, very low temperatures
must be considered.
Consider now specifically the SK model, described by (p = 2):

H = −
N∑

i,j=1

Jijσiσj − h
N∑
i=1

σi, (1)

where the Jij are i.i.d. centered Gaussian random variables of
variance J2/N , that couple all N Ising spins, and h is the ex-
ternal field which will be varied adiabatically. This problem is
more involved than the p-spin model with p > 2, since its glass

phase involves infinite-step RSB with marginally stable states,
unlike p > 2, which has a 1-step solution. It is reflected in
crucial differences in the avalanche statistics. The equilibrium
solution of (1) at N → ∞ is given by Parisi’s full replica-
symmetry breaking ansatz for the saddle point of the overlap
matrix Qab = 〈σaσb〉. The order parameter is a monotonous
function q(x) on the interval 0 < x < 1 which parametrizes the
hierarchically organized matrix Qab, reflecting the ultramet-
ric structure of the low-energy phase-space [31]. In general,
q(x) exhibits a plateau at large and small x, q(x > xc) = qc,
q(x < xm) = qm.
Jumps in the equilibrium configuration as a function of h are
closely related to chaos in a field. Equilibrium configurations
in different fields have minimum overlap as soon as the differ-
ence in fields significantly exceeds 1/

√
N [30], which sets a

typical scale for large shocks. Interestingly, the same scale is
also suggested by a dynamical consideration of local stability.
The distribution of the local field hi =

∑
j 6=i Jijσj+h, i.e., the

energy cost to flip only spin i, displays a linear pseudogap [32],
marginally satisfying the minimal requirement for metastabil-
ity. The smallest local field thus scales as 1/

√
N , setting the

scale for δh required to trigger a (dynamical) avalanche, as ar-
gued and confirmed numerically in [26]. Accordingly, in both
cases, the average size of an avalanche (total magnetization
change) should scale as ∆M ∼ Nχδh ∼

√
N , where χ is

the average susceptibility. This is confirmed below.
Although we now outline the main steps of the calculation on
the SK model, the technique immediately extends to any mean-
field system described by replica-symmetry breaking saddle
points. Details will be presented in [33]. The probability for
a shock in the interval [h, h + δh̃/

√
N ] is proportional to δh̃

if δh̃ � 1; its fingerprint are non-analyticities in the moments
of magnetization differences, [M(h)−M(h+ δh̃/

√
N)]k ∼

Nk/2|δh̃|. Calculating the prefactor of |δh̃| for all k allows us
to infer the avalanche-size density per unit field for ∆m > 0:

ρh(∆m) = lim
δh̃↓0

1

δh̃
δ

∆m−
M(h+ δh̃√

N
)−M(h)

√
N

, (2)

where we have introduced the suitably rescaled magnetization
m = M/N1/2, which jumps by ∆m = O(1) in typical shocks.
To calculate correlators of magnetization in different fields,

M(h1) . . .M(hk) = (−1)k∂h1
. . . ∂hkF (h1) . . . F (hk), (3)

we consider the generating function of a = 1, ..., n replica

exp
[
W [{ha}]

]
:= exp

[
− β

n∑
a=1

F (ha)
]J

(4)

= exp
[ ∞∑
k=1

(−β)k

k!

n∑
a1,...,ak=1

F (ha1) · · ·F (hak)
J,c
]

=

∫ ∏
a 6=b

dQabe
N
2 β

2J2(n−
∑
a 6=bQ

2
ab)+NA(Q,{ha}),

eA(Q,{ha}) :=
∑

σa=±1

exp
(
β2J2

∑
a6=b

Qabσaσb +
∑
a

βhaσa

)
.
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Organizing the n replica into k groups subject to the same field
hi=1,...,k = h + h̃i/

√
N , with

∑
a h̃a = 0, and analyzing the

cumulant expansion of the potential W [{hi}], the k-point cor-
relator (3) can be extracted in the limit n → 0. Expanding
A(Q, {ha}) to second order in h̃i, the potential is evaluated at
the saddle point where Qab assumes Parisi’s equilibrium so-
lution qh̄(x). However, due to the explicit breaking of replica
symmetry by the external fields ha, a sum over inequivalent
saddle points differing by replica permutations of Qab has to
be performed. Generalizing techniques introduced in [34], we
find a compact integral representation for the k’th cumulant

m(h1)...m(hk)
J,c

=
−k

(−β)k

∫
dky δ(

k∑
i=1

yi)∂h̃1
...∂h̃kφ(0, y),

where φ(x, y) solves the differential equation

∂φ

∂x
= −β

2

2

k∑
i,j=1

h̃ih̃j
dqh(x)

dx

(
∂2φ

∂yi∂yj
+ x

∂φ

∂yi

∂φ

∂yj

)
,

φ(x = 1; {yi}) = log

(
k∑
i=1

exp(yi)

)
. (5)

In order to unambiguously identify shocks we need to take the
limit N−1/2 � T → 0. It is known [18, 20] that the non-
analyticities ∝ |h̃i| in the cumulants are obtained by an expan-
sion of the diffusion-type equation (5) to first order in the last,
non-linear term. For k ≥ 2, the result encapsulates the full
statistical information about jumps [33],

(mh1
−mh2

)k = h̃12

∫ ∞
0

ρh(∆m)(∆m)k d∆m+O(h̃2
12),

(6)
where h1,2 = h + h̃1,2/

√
N , and h̃12 = h̃1−h̃2 > 0 and a

density (per unit of δh̃) of jumps of size ∆m > 0, cf. Eq. (2)1:

ρh(∆m) = ∆m

∫ qc

q−m

dq νh(q)
exp[− (∆m)2

4(qc−q) ]√
4π(qc − q)

θ(∆m). (7)

The weight νh(q) ≡ limT→0[Tdqh/dx]
−1 can be interpreted as

the probability density, per unit energy, of finding a metastable
state at overlap within [q, q + dq] with energy close to the
ground state [31]. The density of shocks receives contribu-
tions from the largest (q . qc(T = 0) = 1) to the small-

est overlaps qm(h) ≈ h
2/3

. Jumps in overlap of order O(1)
are indeed expected due to field chaos [30]. A useful check of
Eq. (7) is provided by the average magnetization jump which
turns out to equal the thermodynamic (field cooled) susceptibil-
ity,
∫
ρh(∆m)∆md∆m = limT→0 T

−1
∫ 1

0
dx(qc − q(x)) =

χFC(T = 0). This is expected since the intra-state (zero-field
cooled) susceptibility vanishes as T → 0, the susceptibility re-
sponse being entirely due to interstate transitions.
The formula (7) has a very natural interpretation. If we take
h̃12 � 1 in (6) we only need to consider the possibility that

1It contains a piece δ(q − qm)xm/T when q(x) exhibits a plateau at x ≤
xm (if h̄ 6= 0), hence the notation q−m in the integral. The integral measure can
also be written as

∫ xc/T
0 d(x/T ).

the ground state and the lowest-lying metastable state cross as
we tune h from h̃1 to h̃2, corrections being of order O(h̃2

12).
The disorder-averaged density of states of this two-level sys-
tem is described by νh(q)dq dE. The two states differ in Nfl =
N(1−q)/2 flipped spins. In the SK model the magnetization is
uncorrelated with the energy, and one thus expects the magne-
tization difference between the states to be a Gaussian variable
of zero mean and variance 〈∆m2〉q = 4Nfl/N = 2(1 − q). If
∆m > 0, a jump at equilibrium occurs once h̃12 = E/∆m.
For the shock probability per unit h̃ one thus expects

∫ qc

q−m

dq

∫ ∞
0

dE νh(q)
exp[− (∆m)2

2〈∆m2〉q ]√
2π〈∆m2〉q

δ

(
h̃12 −

E

∆m

)
, (8)

reproducing precisely Eq. (7). The above result (7) is generally
valid for models described by RSB. It thus applies to p-spin
models, where there is only one step of RSB, qh=0(x) = q0 +
(q1 − q0)θ(x − x1). The avalanche distribution then simplifies
with

∫
dq ν(q)→ x̂1

∫
dqδ(q − q0), x̂1 = x1/T , into the form

ρ
(p>2)

h
(∆m) = x̂1∆m

exp[− (∆m)2

4(q1−q0) ]√
4π(q1 − q0)

θ(∆m). (9)

One verifies that its second moment agrees with Ref. [28]. The
distribution (9) is non-critical, peaking around a typical size
∆m ∼ 2

√
q1 − q0, with ρ(∆m) ∼ ∆m at small ∆m (similar

to one of the lower curves in Fig. 1). The case of SK with full
replica-symmetry breaking is much richer, as there is a T = 0
limit function q(x̂). The weight with which events at overlap
distance 1− q contribute is a power-law [35],

νh(q|1� 1− q � T 2) = C(1− q)−3/2 , (10)

with C = 0.32047 [36]. This holds independently of the exter-
nal field h, and of additional random-field disorder [37]. From
(10) and (7) it leads to a robust scale-invariant jump density:

ρ(∆m) ≈ 2C√
π

1

(∆m)τ
, ∆m� 1 (11)

with τ = 1. The universal exponent τ = 1 for jump sizes
N−1/2 � ∆m � 1 results from superimposed contributions
from all overlaps, i.e. all scales, illustrated in Fig. 1. The cutoff
function for larger jumps ∆m & 1 depends on the applied field.
In zero field, q(x̂) is linear at x̂ � 1. The resulting density
ν(0) = 1.34523 at q = 0 leads to the asymptotics

ρ(∆m) ≈ 2ν(0)√
π

e−(∆m)2/4

(∆m)τ ′
, ∆m� 1 (12)

with τ ′ = 1. Plots at intermediate ∆m = O(1) are shown in
Fig. 1 using approximations to q(x̂). A small field produces a

plateau at qmin(h) = 1.0 × h
2/3

and while (11) remains un-
changed, the asymptotics (12) for ∆m � ∆mh ∼ h̄−1/3 now
decays with τ ′ = −1, as for the one-step RSB case, replacing
in (9) x̂1 → x̂h ≈ ν(0)qmin(h) and q1 → qmin(h).
Accepting Eq. (8) to represent the joint distribution of q and
∆m, we can integrate it over ∆m instead of q, which gives
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Fig. 1: Power-law distribution of jumps for the SK model, from con-
tributions from all overlap 1 − q. The curves in the lower part show
the one-step like contributions for (1− q) = 2−k, k = 1, ..., 12. The
three nearly coinciding lines on the top show ρ(∆m) from Eq. (7),
for h = 0, 0.25 and 0.5, respectively. We use the approximation
x̂(q) = (aq + bq2)/

√
1− q with a = 1.28 and b = −0.64, and a

sharp lower cutoff at qmin(h) = 1.0h
2/3

[35, 38, 40]. The increase of
h decreases the cutoff at large ∆m, while the avalanche distribution
for ∆m� 1 is a universal power law.

the probability distribution D(Nfl)dNfl to flip Nfl spins when
increasing the magnetic field by δh:

D
(
Nfl =

(1− q)N
2

)
=

2
√
qc − q
N
√
π

νh(q)
SK−→ C√

π

1

Nρ
fl

(13)

with ρ = 1. A very similar density of avalanches with the
same exponents τ = ρ = 1 was observed in the T = 0 hys-
teresis curve of [26]2. In both cases, the number of spin flips
scales as Nfl ∼ Nσ , with σ = 1, whereas the magnetization
changes as ∆m ∼ Nβ , with β = 1/2. This coincidence be-
tween equilibrium and driven dynamics is presumably related
to the marginality of the spin glass. It may also be due to the
fact that the system is in a mean field limit, which, in the case
of elastic manifolds atN = 1, indeed gives the same exponents
[11]. Similar coincidences were reported in other models [39].
At T = O(N−1/2) > 0, non-analyticities in the moments are
rounded [19, 28]. An exact calculation for the second moment
in the expansion of Eq. (5) shows [33] that the shock-related
cusp∼ |h| turns into an analytic crossover function f(x) of the
scaling variable x = h̃12/T , with f(x)→ |x| for large x.
We calculate the distribution of shock sizes as an average over
samples for a fixed small interval δh̃� 1, a priori not the same
as varying h in a given sample. Such kind of self-averaging is
expected for finite-dimensional glasses, whereas in the mean-
field case it may be more problematic. It could be tested by
computing correlations between subsequent shocks, extending
our calculation to δh̃ = O(1), or by analyzing the joint distri-
bution of energies and magnetizations of low-lying states [40].
Finite-dimensional spin glasses - What aspects of our mean-
field analysis are expected to survive in finite d-dimensional

2A comparison of the numerical prefactor is unfortunately not possible, be-
cause the avalanche density in [26] has been normalized by a factor∼ log(N).

spin glasses? We argue that independently of whether replica-
symmetry breaking [31] or the droplet picture [17] describes
the glass state, at low fields the distribution of equilibrium
avalanches is expected to be a power law. Indeed, let us assume
that the dominant low-energy excitations are droplet-like spin
clusters that flip simultaneously. These droplets are clusters
that cannot be decomposed into a set of independent smaller
excitations with lower energies. For droplets of typical linear
size L we assume a typical energy cost Lθ and a non-vanishing
density of states (per unit volume) down to E = 0: νL(E =
0)dE = ν0L

−dfL−θdE with a constant ν0 independent of L.
Empirically θ is always very small, and df is the (possibly frac-
tal) dimension of the droplets. We assume the total magnetiza-
tion of droplets of sizeL to be uncorrelated with the energy, and
distributed as3 PL(∆M) = L−dmψM (∆M/Ldm). In a vanish-
ing field, low energy droplets are believed to exist at all length
scales, while recent numerical results [41] point towards the ab-
sence of a thermodynamic glass phase in a finite field h. This
implies a finite lengthscale Lh ∼ 1/h

γ
beyond which droplets

are suppressed. We make the standard assumption that droplets
at scale L are uncorrelated with droplets at scales ≥ 2L. With
a reasoning analogous to the one leading to Eq. (8), we expect
a power-law density of avalanche sizes ∆M (per unit volume
and unit field, with δh→ 0):

ρh(∆M) ≈
∫ Lh

1

dL

L

∫ ∞
0

ν0dE

Ldf+θ
δ

(
δh− E

∆M

)
PL(∆M)

=
1

(∆M)τ
ν0

dm

∫ ∆M

∆ML−dmh

dz ψM (z)zτ , (14)

with exponent τ = df+θ
dm

and a cut-off ∆M ∼ Ldmh
4. Nu-

merical investigation of avalanches at small fields could yield
insight into the various exponents entering (14). Further-
more, experimental measurements of power-law Barkhausen
noise in spin glasses (e.g., by directly monitoring magnetiza-
tion bursts [8,42]) could provide complementary insight to ear-
lier investigations of equilibrium noise [43].
Elastic manifolds - The above calculation directly applies to the
N -component elastic manifold with coordinate u(x) of internal
dimension d in a random potential, in presence of a harmonic
well of curvature m2, which forces 〈u〉 = v. It has energy

H =

∫
ddx

1

2
(∇u)2 + V (u(x), x) +

m2

2
(u(x)− v)2. (15)

As v is increased at T = 0 along a straight line, i.e. vi = vδi1,
the minimum-energy configuration jumps and static avalanches
occur, of size S =

∫
x
δu1(x). We study models with Gaussian

bare disorder V (u, x)V (0, 0) = δd(x)R0(u) with correlator
R0(u) = NB(u2/N) and B′(z) = −(1 + z

γ )−γ , γ > 0, in
the large-N limit. Notations are as in [20], except here the
Parisi variable is denoted x = T x̂ (u = T û there). In [20] the

3We note that the numerical study [44] found that most likely neither of the
assumptions dm = df/2 = d/2, made by Fisher and Huse [17], holds.

4The mean-field case τ = 1 is formally recovered replacingLd → (1−q),
dm/d → 1/2 and (df + θ)/d → 1/2. The latter reflects the typical gap at
distance 1− q, ∆q = (1− q)1/2 [40].
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second moment of the renormalized disorder correlator, R(v)
was computed. Here we are interested in the shock-size density
ρ(S) = ρ0P (S), the total shock density ρ0 and the normalized
size distribution (

∫
dSP (S) = 1). We define its moments as

〈Sp〉 =
∫
dSSpP (S). The dictionary is as follows: h̃ → v1,

∆m → m2S, q(x̂) → m4LdG(x̂) with G(x̂) = G(k = 0, x =

T x̂), where 〈ua−kubk〉 = Gab(k). This gives the shock density

ρ(S) = m2L−d/2S

∫ x̂c

0

dx̂
exp
(
− L−dS2

4[G(x̂+c )−G(x̂)]

)
√

4π[G(x̂+
c )−G(x̂)]

. (16)

Two exact relations hold in all cases:∫
dSSρ(S) ≡ ρ0〈S〉 = Ld

(
1− m2

m2
c

)
, (17)(

1− m2

m2
c

)
〈S2〉
2〈S〉

=
∂3

1R(v)|v1=0+

m4
. (18)

The first one is the total susceptibility ∂v1
∫
x
u1(x) = Ld minus

the intra-state susceptibility. The factor (1 − m2

m2
c
) thus gives

the fraction of motion which occurs in jumps, which vanishes
at m > m0

c ≡ mc(m
0
c). Here mc = mc(m) is the running

Larkin mass, defined as m2
c = m2 + [σ](u+

c ) in the notations
of [20]. Eq. (18) extends the relation obtained in [11] between
size moments and the cusp of the force correlator to the case of
a finite fraction of motion in shocks. The size of the cusp is the
same as in [20]. We define the large-size cutoff scale Sm via,

G(x̂+
c )−G(0) = S2

mL
−d . (19)

For d < 4 and m < m0
c = ( 4Ad

ε )1/ε, where ε = 4 − d and

Ad =
2Γ(3− d2 )

(4π)d/2
, the T = 0+ saddle point equations admit a

RSB solution [20, 22]. We now discuss various cases, depend-
ing on the energy exponent θ = 2+γ(d−2)

1+γ :
(i) one-step RSB: it occurs for θ ≤ 0, i.e. d ≤ 2 and γ ≥ 2

2−d .
The shock-size distribution depends on the single scale Sm:

P (S) =
1

Sm
p
( S
Sm

)
, p(s) =

1

2
s e−s

2/4 . (20)

Hence 〈S〉 =
√
πSm which yields ρ0 from (17). Here

S2
mL
−d = 1

x̂c
(m−2 − m−2

c ) depends on the details of the one-
step solution. In the critical limit m � mc, for d > 0 (d = 0
is treated below), one finds Sm = m−1

c (mL)d/2m−d−ζ with
mc =

[ 8Ad(γ−1)
εdγ

]1/ε
, and a roughness exponent ζ = (2− d)/2

(defined by u ∼ xζ).
(ii) continuous RSB: it occurs for θ > 0, with mc(m) = m0

c ,

AG(x̂) =
8

(4− θ2)

1

m2+θ
− 2

2 + θ

(A
x̂

)1+2/θ

, x̂m ≤ x̂ ≤ x̂c

(21)
and G(x̂) = G(x̂m) for x̂ ≤ x̂m with x̂c = Amθ

c , x̂m = Amθ,
A = 1+γ

γε ( 4Ad
ε )

γ
1+γ [20]. The total shock density is

ρ0 =
m2Ld/2√

π

√
2A

2 + θ
m
θ
2−1
c f

( m

mc

)
, (22)

with f(x) = xθ(x−2−θ − 1)1/2 +
∫ 1

xθ
dy(y−1− 2

θ − 1)1/2. For
m� mc, the size distribution becomes P (S) ≈ 1

Sm
p( SSm

) with

typical size Sm ≈
√

2
A(2+θ) (mL)d/2m−(d+ζ), roughness ex-

ponent ζ = 4−d
2(1+γ) , avalanche-size exponent τ = 2θ

2+θ , and

p(s) =
1−τ

2

[
se−

s2

4 + τ
(2

s

)τ
Γ
(1+τ

2
,
s2

4

)]
∼ 1

sτ
, s� 1

(23)
where Γ(a, z) =

∫∞
z
dt ta−1e−t. One has 〈S〉 =

√
π 2−θ

2 Sm

and ρ0 = Ld/〈S〉 from (17), consistent with (22) at small m.
Note that for S � Sm, the first term, hence the one-step form,
dominates in (23). There is however a distinct small-size cutoff
scale, Sc = ( m

mc
)

1+θ
2 Sm such that P (S) is a pure power law,

P (S) ∼ S−τ for Sc � S � Sm. Since
∫∞

0
ds p(s) = 1, the

region S ∼ Sm contains all the weight, consistent with τ < 1
(θ < 2). For sizes S ∼ Sc , the probability P (S) vanishes as
P (S) ∼ S with a peak around Sc.
Interestingly, the droplet argument (14) can be adapted to the
interface, i.e. N = 1. The correspondence ∆M → S and
standard interface scaling implies dm → d + ζ and df → d.
Together with θ = d− 2 + 2ζ it yields τ = τζ = 2− 2/(d+ ζ)
and provides, for static avalanches, a basis for the conjecture
made previously at depinning, i.e. out of equilibrium [45]. By
contrast, the above large-N limit gives τ = 2 − 2/(d2 + ζ).
In d = 4, this gives τ = 1, which is different from the usual
mean field exponent τ = 3/2 at N = 1 [11], and expected
to hold at finite N . There are indications that this is due to a
non-commutativity of the limits N,L → ∞, also reflected by
the unusual L-dependence of the maximal avalanche size Sm.

Decaying Burgers - We now consider the decaying Burgers ve-
locity field u(r, t) in dimension N , satisfying

∂tu +
1

2
∂ru

2 = ν∇2u , (24)

with Gaussian, power-law correlated, initial condition

ui(r, t = 0)uj(r′, t = 0) = −∂i∂jR0(r − r′) ∼ |r − r′|−2γ ,
(25)

R0(r) = NB(r2/N). From the Cole-Hopf transformation, the
velocity at time t = 1/m2 is obtained from the d = 0 version
of the model (15) with v ≡ r and T ≡ 2ν as tui(r, t) = ri −
〈ui〉H. In the large-dimension limit N →∞ and for LR corre-
lations 0 < γ < 1, i.e. 0 < θ = 2 1−γ

1+γ < 2, the above results for
the manifold immediately apply, setting d = 0. In the inviscid
limit, ν → 0, the velocity field develops discontinuities along
codimension-one manifolds, i.e. shocks, for t > tc = (m0

c)
−2.

Consider a line, say ri = r1δi1, and the velocity field along
this line i.e. u1(r) jumps by ∆u = u1(r+

1 ) − u1(r−1 ). From
the identification ∆u ≡ m2S, the shock-size density along this
line is given by Eqs. (16) and (21) as ρ(∆u) ≡ m−2ρ(S) with
m2 = 1/t. At large time t � tc, the size probability takes the
form P (∆u) = (∆ut)

−1p(∆u/∆ut) where p(s) is given by
(23) and the shock-size exponent is τ = 1 − γ. The typical
shock size is ∆ut ≡ m2Sm ∼ t−1+ ζ

2 , with ζ = 2/(1 + γ),
consistent with the standard asymptotic scaling of the decay-
ing velocity field: u(r, t) in law−−→ t−1+ ζ

2 ũ(r̃ = rt−ζ/2). The
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total shock density ρ0 given by (22) vanishes for t < tc, ex-
hibits a maximum near tc, then decays as ∼ t−ζ/2, as the
shock separation grows as tζ/2 from usual scaling. For shorter-
ranged initial correlations, γ ≥ 1, the solution is one-step RSB
and the reduced size distribution is p(s) = 1

2se
−s2/4 with

ρ0 = 1√
πt∆ut

(1 − tc
t ) and (i) ∆ut = t−1/2(1 − 1

2t )
1/2 for

the γ = 1 LR class; (ii) ∆ut ≈ t−1/2(γ−1
γ ln t)−1/4 at large t,

for the short-range class, very similar to the Kida result [24] for
N = 1.
Conclusion - Systems whose thermodynamics is described
by full RSB exhibit a power-law distribution of equilibrium-
avalanche sizes, which can be traced back to their marginal sta-
bility. Even though dynamic avalanches are different from our
static analysis, the exponents turn out to be the same τ = ρ = 1
in the SK model, and in both cases the scale-free response is
a consequence of criticality and marginal stability [26]. We
expect a similar critical response upon slow changes of sys-
tem parameters in many other systems with full RSB. This
is of interest for optimization problems on dilute graphs such
as minimal vertex cover [46], coloring or Potts glass [47], k-
satisfiability [48] around the satisfiability threshold, and even
in the whole UNSAT region at large k. Likewise, in models
of complex economic systems one expects a power-law dis-
tributed market response to changes in prices and stocks [49].
Finally, avalanches are expected in electron glasses with un-
screened 1/r interactions. A stability argument shows that the
number of rearrangements upon adding a new electron at T = 0
diverges with system size at least as Ld−2, presumably with
a wide distribution of dynamic responses. Since mean field
yields a full RSB phase [37], we speculate that static avalanches
are power-law distributed as well.
We thank S. Franz and M. B. Weissman for useful discussions.
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