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We study the motion of an elastic object driven in a disordered environment in presence of both
dissipation and inertia. We consider random forces with the statistics of random walks and reduce
the problem to a single degree of freedom. It is the extension of the mean field ABBM model
in presence of an inertial mass m. While the ABBM model can be solved exactly, its extension
to inertia exhibits complicated history dependence due to oscillations and backward motion. The
characteristic scales for avalanche motion are studied from numerics and qualitative arguments. To
make analytical progress we consider two variants which coincide with the original model whenever
the particle moves only forward. Using a combination of analytical and numerical methods together
with simulations, we characterize the distributions of instantaneous acceleration and velocity, and
compare them in these three models. We show that for large driving velocity, all three models share
the same large-deviation function for positive velocities, which is obtained analytically for small and
large m, as well as for m = 6/25. The effect of small additional thermal and quantum fluctuations
can be treated within an approximate method.

I. INTRODUCTION

The dynamics of a large class of classical and quan-
tum systems can be modeled within the description of
an elastic manifold driven by an applied external force
through a disordered medium [1–3]. Some examples are
domain walls in magnetic systems in the presence of time-
dependent magnetic fields [4], flux-line lattices in type-
II superconductors driven by an applied transport cur-
rent [5], charge-density waves in solids in an electric field
[6, 7], pinned or driven Wigner crystals [8–11], disloca-
tions in metals [12], interface between two fluids in a
porous medium [13], earthquakes [1], and crack fronts
in brittle materials [14]. In all these systems, the com-
petition between elastic forces, quenched disorder and
external driving shapes the dynamics. As a result, the
response is usually complicated.
If the driving force is sufficiently small, the system is

trapped due to disorder in a metastable state. When in-
creasing the external driving, some weakly pinned parts
will start moving. They will be stopped by elastic forces
that describe interactions between weakly and strongly
pinned regions of the manifold. Further increase of the
driving usually results in jumps of a segment of the sys-
tem, and avalanche motion.
One example occurs in soft magnets. When smoothly

increasing the magnetic field (H), the magnetization (M)
changes in an irregular way. This process can be ex-
plained by considering the motion of domain walls sepa-
rating regions of opposite magnetization. The derivative
of the magnetization with respect to the magnetic field,
∂M/∂H , is known as Barkhausen noise and can be re-
lated to avalanche motion [15, 16]. An important step to-
wards modeling the dynamics in these systems was made
by Alessandro, Beatrice, Bertotti and Montorsi (ABBM).
On a phenomenological basis they introduced [17, 18] a
Langevin equation for the velocity of a single degree of
freedom, i.e. a particle, which represents the center of

mass of the domain wall. It is simple enough to allow for
an exact solution. Their approach is known as ABBM
model. It was successful in explaining the distribution of
sizes and the duration of pulses in the Barkhausen signal,
both for an extremely small and for a finite increase-rate
of the external field [4, 19–21]. In the ABBM model, the
probability of the instantaneous domain-wall velocity is
found to be P (u̇) ∼ u̇−α exp(−u̇/u̇0), where α = 1 − v.
Here v is proportional to the rate of increase of the field
and u̇0 is some characteristic cutoff. The avalanche sizes
S are distributed according to P (S) ∼ S−τ up to some
large-scale cutoff, with τ = (3 − v)/2. For vanishing
rate v → 0+, different samples of different materials were
found to be characterized by universal exponents α and
τ , regardless of the specific microscopic details about the
sample structure.

In their phenomenological theory, ABBM assumed
that the random-force landscape seen by the particle has
the long-range correlations of a Brownian motion, while
the original disorder seen by the domain wall is of short-
ranged nature. This approximation, made in order to
explain experiments, turns out to be justified in some
cases. First, in the limit of an interface with infinite-
ranged interactions (i.e. a fully connected lattice model)
it was shown that the ABBM model becomes exact, i.e.
it describes exactly the center-of-mass motion [20]. It
is believed to provide a mean-field model, which should
be valid in particular to describe domain walls in situa-
tions where the long-ranged dipolar forces generate long-
ranged elasticity and puts the system at its upper critical
dimension [22].

Recently, two of us have developed a field theoretic
approach to describe and compute avalanche-size distri-
butions and velocity distributions for elastic interfaces of
internal dimension d in short-ranged disorder [23–25]. It
was shown that in the quasi-static limit v → 0+ the veloc-
ity of the center of mass is indeed described by the ABBM
model at and above the critical dimension dc, with cor-
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rections subdominant in the spring constant (parameter
µ below). Deviations become important for d < dc, and
were computed in a d = dc − ǫ expansion, where dc = 4
for short-range elasticity, and dc = 2 in case of dipolar
forces. The theory also allows to predict the spatial de-
pendence of avalanches [24, 25] which cannot be obtained
from the ABBM model. It also provides an independent
exact solution of the ABBMmodel at any driving velocity
[26] based on the Martin-Siggia-Rose (MSR) formalism
via the solution to a non-linear saddle point equation,
called the instanton equation.

The ABBMmodel, and the subsequent field theoretical
approach, provides a good descriptions of avalanche mo-
tion in classical systems evolving with the simplest over-
damped dynamics. One would like to extend these the-
ories to describe elastic systems with a more general dy-
namics, including inertial and retardation effects, and to
describe avalanche dynamics in quantum systems. Stud-
ies of classical models with stress overshoots [27, 28] has
shown that although the depinning transition may be
not too much affected in the thermodynamic limit, the
avalanche-size distributions can be quite different.

Retardation effects are important for instance in mag-
nets. Apart from universal power laws discussed above
(characterized by the exponents α and τ), pulses of dif-
ferent durations in Barkhausen noise are expected to col-
lapse on the same curve after proper rescaling [29]. How-
ever, in some experiments on ferromagnetic alloys the
pulse shape is found to be asymmetric [29–31]. This
asymmetry was explained to be a transient effect of eddy
currents [32, 33]. Namely, the domain wall motion gener-
ates eddy currents. The response is not immediate, but
instead finite-time delays exist after the corresponding
wall displacement is made. These effects of retardation
can be taken into account by introduction of a negative
mass of the domain wall [32, 33].

Although the above-mentioned effects are important
in some samples, inertial effects are always present in the
domain wall dynamics. A domain wall is characterized by
the so-called Döring mass, which is due to gyromagnetic
effects [34]. However, inertial effects are often neglected
with respect to a larger damping present in the system,
and simplified models excluding the mass are studied. In
many other systems the dynamics is only weakly dissipa-
tive and inertial effects can be important. Some examples
are geological faults, motion of contact lines of a droplet
on a dirty rough surface and crack fronts in brittle ma-
terials. Domain walls with an internal degree of freedom
also exhibit a non-trivial dynamics reminiscent of inertial
effects [35].

The description of avalanches in quantum systems with
quenched disorder is also a challenge. There is great cur-
rent interest in non-equilibrium quantum systems and
their full counting statistics [36–40]. Higher moments
of the noise have been measured in avalanche processes
and exhibit some resemblance to their classical counter-
parts [41]. Out of equilibrium elastic quantum systems
in presence of disorder and a bath have been studied in

the thermal, and quantum-creep regimes [42, 43] where
the driving force is small and the dynamics is slow and
governed by the time scales set by by thermal or quan-
tum tunneling over barriers. For a fixed driving force
above the depinning threshold however, there are no bar-
riers. To study avalanches, it is convenient to drive the
system with an external spring at fixed but small ve-
locity v [24]. Then the effective driving force changes
in time, and the spring provides a restoring force that
keeps the system near the depinning transition. In the
stationary state the system is temporarily pinned, then
unpins and jumps to the next metastable state, and so
on. In that situation, while thermal or quantum fluctu-
ations may help trigger an avalanche (see e.g. p. 319 in
Refs. [4] or [44]) they should be less important during
the avalanche process itself, which usually involves much
faster time scales than that of barrier crossing. During
the avalanche the system is rolling down the potential
hill, with possible overshoots and oscillations due to in-
ertia. Thus a semi-classical equation of motion keeping
only inertia and damping into account should be a rea-
sonable starting point.

Given these motivations, in this paper we study the
ABBM model in presence of inertia. We consider the
motion of a particle representing the center-of-mass po-
sition of an interface, that is driven by a spring at velocity
v > 0 in a Brownian-correlated random-force landscape.
The feature which makes the ABBM model solvable is
that the motion is always forward. In presence of inertia
this property is lost. The disorder thus generates non-
trivial correlations in time when the particle visits the
same positions several times. To make progress we thus
consider two variants of the model.

One variant is a model “on a tree”, i.e. such that
when the particle changes the direction of motion, it ex-
periences a different Brownian disorder. Although it may
seem artificial, it could in fact be of relevance for inter-
faces since different parts of an interface are exposed to
different disorder potentials, and in presence of inertia
the backward motion of the center-of-mass does not have
to involve the same segments of the system as the forward
one. The advantage of this model is that it can again be
studied using a Fokker-Planck equation, which however
does not appear to be exactly solvable. We determine
the joint distribution of velocity u̇ and acceleration a: (i)
in perturbation theory at small and large mass, (ii) for
large driving velocity v, and (iii) numerically. We then
compare with a numerical solution of the original model,
i.e. the ABBM model with inertia.

The second variant we call the
√
u̇ model. It is the

model for which the method developed in [24] naturally
extends. The non-linear instanton equation is now a dif-
ferential equation of second order in the time variable. It
is the saddle point equation of the MSR action for the
ABBM model with inertia under the assumption that
the particle moves in the direction of the drive only. We
are unable to solve it exactly for generic values of the
mass. We solve it: (i) in perturbation at small and large



3

mass, and (ii) for a magic value of the mass where ex-
act solutions exist, related to the Abel equation. It is
also easy to solve numerically and from it we obtain, for
that model, the Fourier-Laplace transform of the veloc-
ity distribution. Also, we calculate exactly the moments

characterizing the distribution function (aku̇n) for arbi-
trary v and mass. The only unpleasant feature of this
model is that due to backward motion, complex veloci-
ties appear. As long as they have a small probability, e.g.
for large v or small mass, it gives the correct physics. In
fact, by comparing with numerics, we find that this model
provides quite interesting approximations to the ABBM
model even for not so small values of mass and velocities.

Although the three models, namely the original one,
the tree model and the

√
u̇model, do correspond to differ-

ent ways to treat the negative velocities, it appears that
they share the same large-deviation function at positive
instantaneous velocity. The latter describes the large v
limit (i.e. driving velocity) of the probability distribution
of the (instantaneous) velocity and acceleration. Hence
we conjecture that we have obtained in this paper the
exact large-deviation function for the ABBM model with
inertia in the positive-velocity domain. This conjecture
is explained and argued for in details, and supported by
numerics. We find that the large-deviation function is
determined by the nonlinear instanton equation and we
obtain its analytical form: (i) in perturbation for small
m and for large m; (ii) for the magic value of the mass.
In addition we discuss for all three models the probabil-
ity that the particle, starting with given acceleration and
velocity, reaches zero velocity before or at time t . We
refer to the latter as the exit probability.

Although our calculation is performed at zero temper-
ature and ~, the distribution of velocities and accelera-
tions in an avalanche is expected to be robust, and should
survive at low temperatures, as well as in the presence
of quantum fluctuations. More precisely, from the above
discussion, it should be valid as as long avalanche du-
rations remain small compared to barrier-crossing time-
scales, which is the regime studied in this paper. A more
complete theory however, yet to be worked out, would
need to incorporate several additional effects: (i) the
renormalization of disorder by fluctuations; (ii) in the
under-damped limit the total avalanche duration may be
notably increased as the system oscillates before settling
into the next metastable state; (iii) the scale dependence
of these effects. Although the present approach is only a
first step, it is expected to capture some of the effects of
inertia in classical and quantum avalanches. In particular
at the end of the paper we show how to incorporate some
of the thermal and quantum effects in the moving system
by studying the

√
u̇ model in presence of an additional

thermal or quantum noise.

The paper is organized as follows. First, in Sec. II,
we rederive the distribution of velocities for the ABBM
model and make the connection with the MSR formalism
employed in Ref. [24]. Then we start analyzing inertial
effects. In Sec. III we introduce the ABBM model with

inertia and analyze the results of a numerical simulation.
Then, in Sec. IV we consider a particle on “the tree”.
The model is introduced in Sec. IVA. In Sec. IVB we
solve the corresponding Fokker-Planck equation pertur-
batively in the inertia, and determine the corresponding
probability distribution. The large-v limit is discussed
in Sec. IVC. In Sec. IVD we solve the Fokker-Planck
equation perturbatively in 1/m and give a solution for

the
√
u̇-model in the same limit. In Sec. IVE we solve

the Fokker-Planck equation numerically, and finally com-
pare analytical and numerical results in Sec. IVF. Then,
in Sec. VA we consider the

√
u̇-model. We start with

the definition and its basic properties in Sec. VB. Then
we connect the instanton and Fokker-Planck approaches
in Sec. VC. In Sec. VD, we calculate exactly the mo-
ments characterizing the distribution function. We solve
the instanton equation perturbatively in the mass and
from that we find a perturbative expansion of the distri-
bution function in Sec. VE, while in Sec. VG we solve
it exactly for the “magic” value of the mass. In Sec. VF
we analyze in more detail one fixed value of the mass.
In Sec. VI we introduce and discuss the large-deviation
function. Its perturbative expansion in small and large
m is given in Sec. VIC and in Sec. VID, respectively,
while in Sec. VIE we give its exact result for the magic
value of the mass. Supplementary material is relegated
to appendices A to I.

II. ABBM MODEL

Before we start considering inertial and dissipative ef-
fects together, we first review the ABBM model [17, 18]
that neglects inertia, rederive its velocity distribution,
and recall the connection to the saddle point (instanton
equation) approach of Ref. [24–26].
We study an elastic interface at zero temperature,

whose center-of-mass position is given by the equation
of motion

ηu̇(t) = F (u(t)) + µ2 [vt− u(t)] , (1)

where u̇ = du/dt and F is the disorder force. It is Gaus-
sian distributed with correlations

[F (u)− F (u′)]2 = 2σ|u− u′|. (2)

In Eq. (1), η measures dissipation and v is the driving
velocity. For the specific realization in magnetic sam-
ples, the interface describes a domain wall and the term
∼ µ2u models the demagnetizing field generated by free
magnetic charges on the boundary of the sample [4]. In
general, this term is a restoring force and µ2 the spring
constant by which the particle (representing the center-
of-mass) is driven.
For v > 0, the Middleton theorem [45] states that the

particle always moves forward in the steady state (and
for all t > 0 if its initial velocity at t = 0 is positive).
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The above equations can be solved via the Fokker-Planck
equation

∂P (u̇, t)

∂t
=− ∂

∂u̇
j(u̇, t). (3)

Here j(u̇, t) is the probability current

j(u̇, t) =

(

µ2v

η
− µ2u̇

η

)

P (u̇, t)− ∂

∂u̇

(

σu̇

η2
P (u̇, t)

)

.

(4)

The first term is the contribution from the drift and the
second one from the diffusion.
Before proceeding further let us recall the main scales

for the ABBM model, and introduce the appropriate di-
mensionless units to be used in this paper. Times will be
measured in units of the relaxation time of the quadratic
well,

τµ =
η

µ2
. (5)

Displacements (i.e. the u direction) will be measured in
units of:

Sµ = σ/µ4 (6)

where Sµ gives an estimate of the large-size cutoff for the
distribution of avalanche sizes, as defined in [23]. Veloci-
ties will be thus measured in terms of a velocity scale set
by the disorder,

vµ =
σ

ηµ2
=
Sµ

τµ
, (7)

With these units of time and space the ABBM model
contains only one parameter, the driving velocity v :=
v/vµ in dimensionless units. Below, we will mostly use
these units, keeping the freedom to restore dimensionfull
units when needed.
Let us now discuss the steady state of the ABBM

model. In that case ∂tP = 0 and j(u̇) = const. How-
ever, from the condition that the particle always moves
forward follows that j(u̇) = 0. Solving Eq. (4) with this
constraint, one obtains (in dimensionless units):

P (u̇) =
e−u̇u̇v−1

Γ(v)
θ(u̇). (8)

It is important to note the dramatically different behav-
ior of limu̇→0 P (u̇) for v < 1 and v > 1. In the former
it is divergent while in the latter it tends to zero. The
value v = 1 separates the regime of intermittent motion,
where the particle is most of the time at rest, from the
regime where it moves continuously.
Now we briefly discuss an alternative way of solving the

Fokker-Planck equation and make connection with the
approach introduced in Ref. [24] based on the instanton
equation, and further studied in [26]. After performing
the Laplace transform we find

−∂P̂
∂t

+ λ
µ2v

η
P̂ (λ) − µ2

η
λ∂λP̂ +

σ

η2
λ2∂λP̂ +BT = 0.

(9)

Here P̂ (λ) =
∫∞
0 P (u̇)eλu̇du̇ and the boundary terms

(BT) are

BT =−
[

j(u̇, t)eλu̇
]

∣

∣

∣

∞

0
− σλ

η2
[

u̇P (u̇)eλu̇
]

∣

∣

∣

∞

0
. (10)

We ignore for the moment the boundary terms and look
for a solution of the form

P̂ (λ, t) = evZ(λ,t) (11)

with Z(0, t) = 0 since P̂ (λ = 0, t) = 1. After introducing
dimensionless quantities λ′ = λσ/ηµ2, and Z ′ = Zσ/ηµ2

and omitting primes, we find [24]

∂Z(λ, t)

∂t
+
∂Z(λ, t)

∂λ
(λ− λ2) = λ. (12)

This equation admits a time-independent solution
Z(λ, t) = Z(λ) with Z(0) = 0:

Z(λ) = − ln(1− λ) (13)

Hence we recover the result of [24] for the steady state.

Doing the inverse Laplace transform of P̂ (λ) = (1−λ)−v

we obtain Eq. (8). Now, we can check that the boundary
terms indeed vanish for λ < 1, i.e. in the domain in which
Z(λ) is defined.
In addition one can make the connection to the instan-

ton equation as follows. The equation (12) can be solved
by the method of characteristics: Define a function λ(t)
which obeys the differential equation

dλ(t)

dt
= λ(t) − λ2(t) . (14)

Further define Z(t) := Z(λ(t), t). Then the total deriva-
tive, using (12) is

dZ(t)

dt
= λ(t). (15)

The equation (14) is nothing but the instanton equation
of Ref. [24], with here λ(t) = ũ(t) there. It admits the
solution

λ(t) =
λ

λ+ (1− λ)e−t
(16)

with boundary condition λ(−∞) = 0. In addition,

Z(t) =

∫ t

−∞
λ(t′) dt′, (17)

where we have defined λ(0) = λ. Hence if we express
Z(λ) := Z(t = 0) as a function of λ = λ(0) we obtain
precisely (13). In Ref. [24, 25] Eqs. (14) and (17) were ob-
tained not as the Laplace transform of the Fokker-Planck
equation, but by a completely different route using the
Martin-Siggia-Rose (MSR) dynamical action. This will
be explained in more details below in the case where in-
ertial terms are allowed.
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Eq. (12) is solved for any initial condition Z(λ, t =
0) = Z0(λ) as [25]

Z(λ, t) = − ln(1−λ+λe−t)+Z0

(

λ

λ+ (1− λ)et

)

. (18)

Hence,

P̂ (λ, t) = (1− λ+ λe−t)−vP̂0

(

λ

λ+ (1 − λ)et

)

. (19)

Using u̇n(t) = ∂nλ P̂ (λ, t)|λ=0, we obtain the decay to the
steady state after a change in the driving velocity, v =
v0 + θ(t)(v − v0):

u̇(t) = v(1 − e−t) + e−tu̇(0) (20)

u̇(t)2
c
= v(1 − e−t)2 + 2u̇(0)e−t(1 − e−t) + e−2tu̇(0)2

c
,

where the symbol c denotes connected correlation func-
tions. This is in agreement with the results of Ref. [26],
where it was obtained within the MSR approach. Note
that for any t > 0 Eq. (19) behaves as P̂ (λ, t) ∼
A(t)(−λ)v with A(t) = (1 − e−t)−vP̂0(− 1

et−1 ), hence

P (u̇, t) ∼ A(t)u̇v−1/Γ(v) and the current at the origin
vanishes, which justifies ignoring the boundary terms
above [46].

III. ABBM MODEL WITH INERTIA

A. Definition of the model

In this section, we consider the generalization of the
ABBM model to include the effect of inertia. The equa-
tions of motion in the laboratory frame are

du̇(t)

dt
= a(t), (21)

m
da(t)

dt
= µ2[v − u̇(t)]− ηa(t) + ∂tF

(

u(t)
)

, (22)

where F (u) is a function of u, and as for the ABBM
model (2)

[F (u)− F (u′)]2 = 2σ|u− u′|. (23)

In the limit m → 0 the model simplifies to the ABBM
model considered in the previous section.
For later use we note that if u(t) is monotonously

increasing, then the correlator of the random force
∂tF

(

u(t)
)

in eq. (22) is

∂tF
(

u(t)
)

∂t′F
(

u(t′)
)

= 2σu̇(t)δ(t− t′)

= 2σ|u̇(t)|δ(t− t′) (24)

Note that if u̇(t) ≥ 0, both versions with and without the
absolute value are equivalent. Under this assumption an
alternative way to model (23) is to replace

∂tF
(

u(t)
)

→
√

u̇(t) ξ(t)

=
√

|u̇(t)| ξ(t) (25)

with

〈ξ(t)ξ(t′)〉 = 2σδ(t− t′). (26)

We will get back to these formulations shortly. First, let
us discuss the units. Keeping the same units for time
and velocity (and space) as given by (5) and (7), the in-

ertial model depends on two dimensionless parameters,
the driving velocity v := v/vµ as before, and the dimen-
sionless mass

m :=
mµ2

η2
=
τm
τµ

=
τ20
τ2µ

(27)

Indeed two new time scales can be defined:

τm = m/η , τ0 =
√
τmτµ =

√
m/µ (28)

where τm is the damping time beyond which damping
overcomes inertia and τ0 is the characteristic oscillation
time of the harmonic oscillator in the absence of damping.
These time scales are not independent, so there is really
only one new time scale. The units of acceleration are
Sµ/τ

2
µ = σ/η2.

Below we study the model as a function of these two
parameters m and v. Note that there are various limits
of interest. We will in particular study the limit of small
and large m, as well as the limit of large v. The large-m
limit can be rephrased as the limit where disorder σ and
damping η are both small. Note that the weak-disorder
limit is more general since it is such that only σ is small.
Note a remarkable property of the ABBM model with-

out inertia: while the space unit (6) depends on disor-
der the characteristic relaxation time (5) remains inde-

pendent of the disorder. Although at small v there is a
broad distribution of time scales, the characteristic time
remains τµ. In the language of RG it means that the
friction η is not corrected by disorder [24, 26]: it is a
consequence of the Brownian force landscape which can
be proved using the Middleton theorem. In presence of
inertia the oscillation and damping time scales τ0 and
τm given in (28) are the bare ones (i.e. in the absence of
disorder) and it remains to be understood whether char-
acteristic oscillation and damping times are affected by
disorder.

B. Phenomenology of the inertia model

The model defined by Eqs. (21)-(23) is difficult to ana-
lyze analytically, since the particle may change its direc-
tion of motion. Let us therefore start with a numerical
simulation and some qualitative considerations. We first
describe how the typical trajectories change as m is in-
creased, and then we show some numerical results for the
distribution of instantaneous velocities.

1. Qualitative features of trajectories

Let us start with a numerical simulation of Eqs. (21)-
(23). We show in Fig. 1 some examples of typical tra-
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v=0.01
m=0
m=1

v=0.1
m=0
m=1

v=0.01
m=0
m=10

v=0.1
m=0
m=10

v=0.01
m=0
m=100

v=0.1
m=0
m=100

FIG. 1. Each figure shows two trajectories in the same disorder realization and for the same driving velocity, but different
values of the mass, as denoted.

jectories u(t), for different values of the mass and the
driving velocity in the same realization of disorder, such
that we can see how the trajectories are correlated with
the disorder. In the first set we choose a small driving
velocity v = 0.01 and in the second a larger one v = 0.1,
so we can see the evolution from the avalanche regime
(at small v) to the faster driven regime (at larger v).

For small v we see that upon increasing the mass (up

to moderate values): (i) time windows where the particle
is pinned in a metastable state at position ui (at zero or
almost zero velocity) still exist but are shorter since the
particle oscillates before coming to rest [47]. (ii) Hence
avalanches (from one metastable state to another one)
can still be defined. (iii) Due to inertia, the avalanche
starts more slowly, however the particle overshoots and
may not settle in the next metastable state (as form = 0)
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but in one farther away. These metastable states ui are a
subset of the metastable states form = 0. As the mass in-
creases, more and more of the metastable states atm = 0
get eliminated. Thus as the mass increases the smaller
m = 0 avalanches (i.e. with smaller barriers to the next
metastable state) are “eaten up” or merge. The larger
m = 0 avalanches, with larger barriers, remain, although
the dynamics is quite different. One notes that the fre-
quency of oscillation increases as the particle settles to
the new metastable state under the action of damping.
For larger v asm increases the avalanche structure dis-

appears and one enters into a regime better described by
oscillations in the co-moving frame, see Fig. 1. However
there remains some correlation with the m = 0 avalanche
structure, the largerm = 0 avalanches seem to induce the
largest oscillations (Fig. 1).
While for small mass the motion remains under-

damped and the time scale remains O(τµ), in the larger-
mass regime τm ≫ τµ (m ≫ 1 in dimensionless units)
the motion occurs on larger time scales. Let us describe
qualitatively the avalanches in that regime. For that it
is useful to rewrite the equation of motion as:

d

dt
E = µ2vtu̇− ηu̇2 (29)

E =
1

2
mu̇2 + V (u) +

µ2

2
u2 , (30)

where F (u) = −V ′(u) and the disorder-potential fluctua-
tions typically grow as V (u)−V (0) ≈ √

σu3/2. Balancing
disorder with the quadratic well gives the avalanche cut-
off size u ∼ Sµ. Hence for u ≪ Sµ the disorder term
dominates. Consider an avalanche starting at t = 0.
For small v and η, as the previous metastable state
u(t = 0) = ui becomes unstable, the particle will first
oscillate with amplitude ∆u between ui and the smallest

root of V (u)−V (ui)+
µ2

2 (u2−u2i ), and the total energy E
can be considered constant during a period [48]. There is
clearly a distribution of amplitude ∆u from the disorder,
but we can estimate the typical oscillation time τosc as a
function of the amplitude ∆u as

τosc ∼ m1/2(∆u)1/4/σ1/4 , (31)

by balancing the kinetic energy with the disorder. The
quadratic well controls the scale of the largest ampli-
tudes ∆u ∼ Sµ, which correspond to a time scale τ0.
The total energy E will decay on much larger time scale
τm ≫ τ0, and the particle will settle in one of the avail-
able metastable states within the range of the first oscil-
lation. From the above estimate (31) one sees that the
frequency of oscillation will indeed increase as ∆u de-
creases to zero. This picture requires that the quadratic
well has moved by less than Sµ during the avalanche time
hence v < vm := Sµ/τm (in dimensionless units this is
v < 1/m). If v > vm the particle has no time to converge
to a metastable state and the definition of an avalanche
becomes less clear. In the regime vm < v < v0 = Sµ/τ0
the motion still remains quite correlated to the disorder

and plateaus would still be visible by averaging over os-
cillations. Finally for v > v0 (in dimensionless units this
is v > 1/

√
m) multiple oscillations are not visible and

the trajectory becomes smoother.
Note that V (u) is a random acceleration process, since

V ′′(u) is a white noise. Hence in the large inertial mass
limit, ∆u can be seen as the first return to the origin of
a random acceleration process. This leads to P (∆u) ∼
∆u−5/4 for small ∆u≪ Sµ, the distribution being cutoff
around Sµ. Similar arguments, although for a slightly
different model, were made in [28, 49] using earlier results
[50, 51].
It is also interesting to note that in any time window

[ti, tf ] where u̇(t) > 0 one can parametrize trajectories

as function of the position u(t) =
∫ t

ti
dt′u̇(t′) and rewrite

either model as a stochastic equation for u̇(u) as

d2

du2

(

1

2
mu̇2

)

+
d

du
(ηu̇) = µ2

( v

u̇
− 1
)

+ F ′(u) . (32)

In the limit of m → 0 one recovers the standard ABBM
stochastic equation [17, 18] and u̇(u) can be mapped to
the radial coordinate of a Brownian motion in dimension
d = 1 + v/vµ (see e.g. Section VI B in [52]) leading
to the distribution of avalanches sizes P (S) ∼ S−τ with
τ = 3

2 − v
2vµ

for v < vµ, for avalanches much smaller than

the cutoff, S ≪ Sµ, for which the quadratic well does
not play a role. In presence of inertia the above equation
can be used between two zeroes of the velocity and for
small η, µ leads again to an exit time for the random
acceleration problem. Some considerations about exit
times are given in App. H.

2. Velocity distributions

Consider on figure 2 the histograms of the distribution
of the instantaneous velocity u̇. We see that for driv-
ing velocity v = 1, by increasing the mass m from 1/16
to 16, the distribution becomes more and more symmet-
ric, and peaked around v = 1. The same happens for
larger driving velocities, v = 5/2, see figure 3. Note that
all histograms have a non-vanishing tail for negative u̇,
but that this tail gets smaller when decreasing the mass.
(Attention: the axis on the figures is shifted from u̇ = 0
to the left). By comparing Figs. 2 and 3, we see that
when increasing the driving velocity v for a fixed mass,
the probability for negative velocities decreases. This is
clearly seen on the plots of Fig. 18, page 23, for mass
m = 1/4, and v = 1/10, v = 1/2, and v = 5. The red
lines (solid on Figs. 2, 3, and dashed on Fig. 18) represent
different approximations to be discussed later.
This negative tail renders the analytical analysis diffi-

cult, not per se due to the negative velocities, but since
the particle moves backwards through the same disor-
der, thus the disorder it sees becomes correlated in time,
and the system has memory. Since we possess currently
no powerful tool to tackle this situation, we will treat
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FIG. 2. Probability density distribution of the instantaneous
velocity u̇ for the ABBM model with inertia in the form of a
histogram for v = 1 and different masses. The red full line
denotes the probability density obtained in Sec. IVE for the
tree model. Note that the axis is vertical axis is shifted from
u̇ = 0 to the left.

two different local, memory-free variants as explained in
the introduction: (i) the particle on the tree model that
can be formulated by using for the random-force correla-
tor the second line of Eqs. (24) or (25); and (ii) the

√
u̇

model given by the first line of Eqs. (24) or (25).

There is a strong motivation to consider these two vari-
ants. Let us look at Figs. 2 and 3. The red full lines rep-
resent the numerical solution for a particle on the tree.
We see that when increasing v or decreasingm, the “par-
ticle on the tree” becomes a good approximation of the
ABBM model with inertia. The same holds (not shown

here) for the
√
u̇ model. The physical reason is simple:

At higher and higher driving velocities or smaller and
smaller mass, the particle will less and less often move
backward, thus these events will lose their importance
for P (u̇).

We will indeed prove a much stronger statement. Con-
sider the large-deviation function, defined (supposing the
limit exists) by

F (x) := − lim
v→∞

ln[P (xv)]

v
. (33)

We will show that F (x) indeed exists for all three models,
and that for x > 0 all three large-deviation functions
coincide. We expect, but cannot prove, that for x < 0
these functions will differ.

In the next section IV, we start with the particle on
the tree, which may be expected to be the most physical
one. We then continue with the

√
u̇model in section VA,

for which we have the most analytical results.
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FIG. 3. Histogram of the probability density distribution
for the ABBM model with inertia for v = 5/2 and differ-
ent masses. in units The red full line denotes the probability
density obtained in Sec. IVE for the tree model. Note that
the axis is vertical axis is shifted from u̇ = 0 to the left.

IV. TREE MODEL

A. Definition of the model

In this section we examine the motion of a particle,
with finite mass m, in a Brownian-correlated disorder
force. Since the Middleton theorem does not hold, we
assume that when the particle changes direction, it expe-
riences a different disorder potential, uncorrelated with
that experienced previously. The model describes the
motion on a tree with constraint that the particle always
chooses a different branch when changing its direction of
motion. On each branch the disorder satisfies Eq. (2).
As mentioned in the introduction, the model may be rel-
evant to describe systems which do not visit the same
microscopic configuration twice, while the center of mass
is oscillating back and forth, i.e. systems with large de-
viations from the Middleton theorem. Note that the tree
is not defined from the start, but is generated dynami-
cally, thus there is one tree associated to each trajectory
or history. This may however be captured by the limit
of a fixed tree with high branching rate.
The equation of motion in the laboratory frame is:

du̇

dt
= a, (34)

m
da

dt
= µ2 [v − u̇(t)]− ηa+ ∂tFt[u], (35)

where F is a functional of u(t). Then, the effective dis-
order correlator becomes

∂t∂t′(Ft[u]− Ft′ [u])2 = −4σ|u̇(t)|δ(t− t′). (36)

∂tFt[u]∂t′Ft′ [u] = 2σ|u̇(t)|δ(t− t′). (37)

In the limit of m→ 0, the model simplifies to the ABBM
model considered in the previous section. Note that this
tree model has the pecularity, that the system reaches
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a stationary state without being pinned, even in the ab-

sence of driving. The reason is that every time it changes
the direction the disorder is renewed. Only if the system
starts at a = u̇ = 0 or arrives there “by accident”, it
remains there for ever.
Now the probability distribution depends on two vari-

ables, velocity u̇ and acceleration a. The corresponding
Fokker-Planck equation is a parabolic differential equa-
tion and has the form

∂P (u̇, a, t)

∂t
=− a

∂P

∂u̇
+

∂2

∂a2

(

σ|u̇|P (u̇, a, t)
m2

)

− ∂

∂a

{(

−µ
2

m
u̇− η

m
a+

µ2

m
v

)

P (u̇, a, t)

}

(38)

In the following two sections we analyze this equation
both analytically and numerically. There are several lim-
its which can be studied analytically, namely small or
large m at fixed v, and large v at fixed m.

B. Perturbation expansion in small m

Equation (38) is complicated and an exact analytic so-
lution is not known. There are many systems [4] where
the mass term is small and could be treated as pertur-
bation with respect to the other terms. Therefore, we
start with perturbation theory in m, i.e. mµ2/η2 ≪ 1 in
dimensionfull units.
In dimensionless units the Fokker-Planck equation sim-

plifies, and effectively depends only on the two parame-
ters, m and v:

∂P (u̇, a, t)

∂t
= − a

∂P

∂u̇
+

∂2

∂a2

( |u̇|P (u̇, a, t)
m2

)

− ∂

∂a

{(

− u̇(t)
m

− a

m
+
v

m

)

P (u̇, a, t)

}

.

(39)

We are interested in the stationary situation
∂tP (u̇, a, t) = 0.
In the limit m→ 0+ the acceleration is divergent since

in the ABBM model the disorder generates a white noise
with no small-scale cutoff (see Section IVC below). An-
alyzing the structure of the Fourier-transformed Fokker-
Planck equation and the moments that follow from it
(similarly to Sec. VD), we conclude that one has to in-
troduce a reduced acceleration ã =

√
ma in order to be

able to organize the perturbation theory in m. Then in
the region |ã| & √

m and u̇ & m > 0 (we will refer to it
as the region 1) we find:

P (1)(u̇, a) =
√
me−

ã2

2u̇−u̇
∞
∑

n=0

Fn(ã, u̇)

Γ(v)
√
2π
u̇v−

3+4n
2 mn/2.

(40)

The index (1) denotes that the expression is valid in re-
gion 1. Here Fn satisfies the recursion for n ≥ 0 (and
F−1 = 0):

ã∂ãFn − u̇∂2ãFn + u̇2(v − u̇)∂ãFn−1 + ãu̇2∂u̇Fn−1

+
1

2
(ã3 − (4n− 1)ãu̇)Fn−1 = 0. (41)

We start solving Eq. (41) from the smallest n = 0. Then,
using the solution for F0 we solve the next equation for
n = 1 and find F1. The procedure develops further in the
same way. However, if we want to determine Fi we have
to solve all the differential equations (41) with n ≤ i+2.
The reason is that we are interested in a distribution that
has all finite moments aku̇j , and therefore decays faster
than algebraically for large u̇ and a. This condition has
to be satisfied for any mass, hence for any order in the
expansion. Taking this into account when analyzing the
solution in (i+2)nd order allows to discard some solutions
to the equation appearing in the ith order, i.e. in Fi. The
details of the calculation and some intermediate results
are given in App. A.
For brevity we state her only the first three terms; the

further terms are lengthy, and given in App. A.

F0 = 1, (42)

F1 =
1

2

(

ãu̇− ã3

3

)

+ c3u̇
2, (43)

F2 =
ã6

72
− 5ã4u̇

48
− 1

6
ã3c3u̇

2 − 1

4
ã2u̇2(u̇− v) +

1

2
ãc3u̇

3

+ c5u̇
4 − 1

48
u̇3
[

24u̇2 − 48u̇v ln(u̇)− 24v2 + 36v − 5
]

.

(44)

There still remain undetermined constants c3 and c5.
They have to be fixed such that

∫

da du̇ P (u̇, a) = 1 for
all m. This task can not be done now, since region 2 may
also contribute. It is further complicated by the fact that
also negative velocities may contribute, and our expan-
sion does not give a result for those. We discuss this issue
in the next section, see Eqs. (91) and (92), when com-
paring the analytical results with the numerical solution
of Eq. (38).
Integrating out velocities from P (1)(u̇, a) one obtains

the conditional probability distribution of acceleration
when u̇ > m. Leading two contributions in the region
1 are

P (1)(a)da =dã

[

2
3
4− v

2

√
πΓ(v)

|ã|v−
1
2 K 1

2−v

(√
2 |ã|

)

+
√
m

2−
1
4− v

2

3
√
πΓ(v)

|ã|v−
3
2

×
(

3
√
2 (ã+ c3(2v − 3))K 3

2−v

(√
2 |ã|

)

− 2 |ã| (ã− 3c3)K 5
2−v

(√
2 |ã|

))

]

(45)

Here Kn(z) is the modified Bessel function of the second
kind. Similarly, by integrating out a from P (1)(u̇, a) we
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obtain the conditional probability distribution of veloci-
ties in region 1, for |ã| > √

m, of which we state the first
terms. Higher order terms are discussed in App. A.

P (1)(u̇) =
e−u̇u̇v−1

Γ(v)
+
c3
√
me−u̇u̇v−1

Γ(v)
+
me−u̇u̇v−2

4Γ(v)

×
[

(4c5 − 1) u̇− 2u̇2 + 4u̇v ln(u̇) + 2(v − 1)v
]

.

(46)

In the limit of m→ 0 only the first term survives and we
recover the result given by Eq. (8). A note of caution con-
cerning the distributions (45) and (46) is in order: They
have been obtained by integrating the joint distribution
(40) over all values of a, and over positive u̇, while (40)
is valid in a more restricted range. These distributions
may acquire some correction from other regions, which
should be small (and maybe even subdominant to the
correction given above but we cannot prove it). In any
case, it cannot affect the leading-order result, i.e. the first
line in (45), which is the (normalized) distribution of (re-
duced) acceleration ã in the presence of a small inertia,
and which is a novel exact result.
Next we discuss region 2, defined as |ã| .

√
m and

0 < u̇ . m. If one naively assumes that the results
obtained in region 1 are valid in region 2, one finds non-
integrable divergences in P for small velocities u̇. In order
to organize the perturbation theory in region 2, we have
to introduce ˜̇u = u̇/m and use a = ã/

√
m. Then,

P (2)(u̇, a) = f(m, v)

∞
∑

n=0

˜̃P (2)
n (a, ˜̇u)mn, (47)

where f is an undetermined function. Plugging this equa-
tion into the Fokker-Planck Eq. (39), we obtain the equa-

tions that determine ˜̃P
(2)
n [53]. Unfortunately, these equa-

tions are as difficult to solve as the full Fokker-Planck
equation, and we did not succeeded in solving them
analytically. However, in App.B we demonstrate that
Eq. (47) has the correct form and that the perturbation
theory is properly organized. We show that P (2)(u̇, a)
matches at the boundary between regions 1 and 2 the
distribution function found in region 1.

C. Large driving velocity v ≫ vµ

A naive argument is that in that limit the noise
√

|u̇|ξ(t) can be replaced by
√
vξ(t), hence becomes

Gaussian. One can then directly solve the Langevin equa-
tion (in dimensionless units) in frequency space,

u̇ω =

√
vξω + 2πvδ(ω)

−mω2 + 1 + iω
. (48)

This leads to a Gaussian distribution for u̇ and ã with
equal-time correlations in the steady state:

(u̇(t)− v)2 =

∫

ω

2v

(1 −mω2)2 + ω2
= v (49)

ã(t)2 = −
∫

ω

2vmω2

(1−mω2)2 + ω2
= v , (50)

with u̇(t)ã(t) = 0 and
∫

ω =
∫

dω
2π . We used ξω = 0. Thus

we find

Pv≫1(ã, u̇) ≈
1

2πv
exp

(

− 1

2v

[

ã2 + (u̇− v)2
]

)

. (51)

Note that since the dynamics being the same for positive
u̇ this large v result should hold for all three models.
Integrating over the acceleration, this can be identified

with a Boltzmann distribution

Pv≫1(u̇) ∼
√

m

2πTeff
e
−m(u̇−v)2

2Teff (52)

in the moving frame for the Hamiltonian of a free particle
of mass m. The effective temperature (in dimensionfull
units) is

Teff = mvµv = mv
σ

ηµ2
. (53)

Hence at large driving velocity the disorder, the quadratic
well, and the damping act together in the moving frame
as a thermal noise [54].
From the above result we could guess that the proba-

bility of a negative velocity decays as e−v/(2vµ) at large
v. We will see below that this is not quite accurate. In-
deed, we will go beyond the above argument and show
that there is a large-deviation function which describes
the deviations from the Gaussian at large driving veloc-
ity. These deviations appear in the far tails at |u̇−v| ∼ v,
see Sec. VID.

D. Large mass m ≫ 1

At large mass the oscillation time τ0 =
√
m/µ increases

but becomes much smaller than the damping time τm =
m/η (necessary for damping to overcome inertia). Hence
the system is in the underdamped limit and the particle
oscillates many times before it comes to rest. It can be
seen by rewriting the Langevin equation in dimensionless
units:

du̇

dt′
= ã (54)

dã

dt′
= −u̇+ v +

√

|u̇|
m1/4

ξ(t′)− ã√
m

, (55)

where we have used the reduced acceleration and defined
the reduced time as t =

√
mt′ in units of the oscillation

time. At large m we see that to leading order we have
a Hamiltonian system with p = ã and q = u̇ − v and
H(p, q) = 1

2 (p
2 + q2), i.e. a harmonic oscillator, weakly

perturbed by (i) a noise, and (ii) the damping. Although
these terms are small they will select the steady state as
we show now.
For large m the Fokker-Planck equation has a well-

defined limit if one scales the probability as

P (u̇, a, t) =
√
mP̃ (u̇, ã = a

√
m, t′ = t/

√
m) . (56)
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The scaling function P̃ satisfies

∂t′ P̃ = [(u̇ − v)∂ã − a∂u̇]P̃ +
1

m1/2
[1 + ã∂ã +D(u̇)∂2ã]P̃ ,

(57)
where we have allowed for a general noise function D(u̇).
It is equal to D(u̇) = |u̇| for the tree model that we study

now, and D(u̇) = u̇ for the
√
u̇ model studied below.

This equation is well suited to analyze the time regime
t ∼ τ0, i.e. t

′ = O(1), when the system oscillates. How-
ever at even larger times it will be damped and will reach
a steady state. For the latter we are interested in the limit

lim
m→∞

lim
t′→∞

P̃ (u̇, ã, t′) . (58)

We start by searching for the steady state as a time-
independent solution in the form

P̃ (r, θ) =

∞
∑

n=0

m−n/2Pn(r, θ) . (59)

It is convenient to use the action-angle variables of the
harmonic oscillator,

u̇ = v + r sin θ (60)

ã = r cos θ . (61)

In these variables the Fokker-Planck equation becomes

∂θP̃ =
1√
m
[1 + r cos θO +D(v + r sin θ)O2]P̃ (62)

O := cos θ∂r −
sin θ

r
∂θ . (63)

This yields the recursion

∂θP0 = 0 (64)

∂θPn+1 = [1 + r cos(θ)O +D(v + r sin θ)O2]Pn, n ≥ 0

Note that the operators O and D(v + r sin θ) commute.
To leading order the general solution is

P0(r, θ) = P0(r) , (65)

where P0 it to be normalized as
∫ ∞

0

2πrP0(r) dr = 1 . (66)

The higher-order terms satisfy
∫ ∞

0

rdr

∫ 2π

0

dθ Pn(r, θ) = 0, n ≥ 1 . (67)

The function P0 is selected by the next order equation,
as we now discuss:

∂θP1(r, θ, t) = φ(r, θ) (68)

with

φ(r, θ) = P0(r) + a(r, θ)P ′
0(r) + b(r, θ)P ′′

0 (r) (69)

a(r, θ) = r cos2(θ) +
1

r
D(v + r sin θ) sin2(θ)

b(r, θ) = cos2(θ)D(v + r sin θ) .

The general solution of (68) is

P1(r, θ) =

∫ θ

0

dθ′φ(r, θ′) + P1(r, 0) (70)

Now, we observe that one can integrate (68),
∫ 2π

0 dθ and
obtain a condition which must be satisfied, in order for
P1 to be meaningful, i.e. a single-valued function in eiθ,

P1(r, 2π)− P1(r, 0) = 0 =

∫ 2π

0

dθφ(r, θ) . (71)

This leads to a condition which determines the steady
state P0(r) to leading order as

P0(r) + a(r)P ′
0(r) + b(r)P ′′

0 (r) = 0 . (72)

We have defined

a(r) =
r

2
+

1

r

∫ 2π

0

dθ

2π
D(v + r sin θ) sin2(θ) (73)

b(r) =

∫ 2π

0

dθ

2π
D(v + r sin θ) cos2(θ) . (74)

The first-order correction reads

P1(r, θ) =

∫ θ

0

dθ′ [a(r, θ′)− a(r)]P ′
0(r) (75)

+

∫ θ

0

dθ′ [b(r, θ′)− b(r)]P ′′
0 (r) + P1(r, 0) ,

where P1(r, 0) is determined from the next-order equa-
tion using again that P2 should be single valued and the
normalization condition. Let us now analyze this equa-
tion for the various models.

1. D(u̇) = u̇ model

Consider now the simpler choice D(u̇) = u̇, which, an-

ticipating a bit, is the
√
u̇ model defined below. In that

case

a(r) =
r

2
+

v

2r
(76)

b(r) =
v

2
. (77)

Solving the differential equation (72) we find two solu-
tions. One is the Gaussian

P0(r) =
1

2πv
e−r2/(2v) . (78)

The other one decays as 1/r2 at large r and thus cannot
satisfy the normalization condition (66). Going back to
variables u̇,ã, this identifies with the Gaussian distribu-
tion (51) also found in the large-velocity limit.
The analysis can be continued to higher orders. Writ-

ing

Pn =
e−r2/(2v)

2πv
Qn(r, θ) , (79)
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where the Qn are polynomials in r, cos θ, and sin θ, which
satisfy the recursion

Q0 = 1 (80)

∂θQn+1 = [1 + r cos θÔ + (v + r sin θ)Ô2]Qn , n ≥ 0.

We have defined

Ô = er
2/(2v)Oe−r2/(2v) = cos θ

(

− r
v
+ ∂r

)

− sin θ

r
∂θ .

One finds

Q1 = −r cos(θ)
(

r2 cos(2θ) + r2 − 6v
)

6v2
= −a

3 − 3av

3v2

(81)

The second order Q2 is given in Appendix G. The mo-
ments u̇nam of the

√
u̇ model are computed below in

Sec. VD by another method and we have checked that
they agree with the ones obtained here from P to the
considered order (1/m).

2. Tree model D(u̇) = |u̇|

For the tree model one finds

a(r) =
r

2
+

∫ 2π

0

dθ

2π

∣

∣

∣

v

r
+ sin θ

∣

∣

∣
sin2(θ) (82)

b(r) = r

∫ 2π

0

dθ

2π

∣

∣

∣

v

r
+ sin θ

∣

∣

∣
cos2(θ) . (83)

Explicit calculations give

a(r) =
r

2
+
1

π

v

r
arcsin

(v

r

)

− 1

3π

(v2

r2
−4
)

√

1−v
2

r2
, r > v

a(r) =
r

2
+

v

2r
, r < v (84)

b(r) =
v

π
arcsin

(v

r

)

+
r

3π

(

2 +
v2

r2

)

√

1− v2

r2
, r > v

b(r) =
v

2
, r < v (85)

We see that for large v one recovers the result of the
√
u̇

model, namely the Gaussian. For v of order one, the solu-
tion P0 of (72) can be computed numerically (see Fig. 10).
For v = 0 one can obtain an analytical expression using
a(r) = r/2 + 4/(3π) and b(r) = 2r/(3π):

P0(r) =
9π

32
e−

3π
4 r . (86)

The other solution is excluded, since it decays as 1/r2 at
large r. For the leading correction in m at v = 0 we find

P1(r, θ) = P0(r)Q
+
1 (r, |θ|)sgn(θ) , −π < θ < π (87)

Q+
1 (r, θ) =

1

64

[

4(π − 2θ)(3πr − 8) (88)

−2π cos(θ)
(

12r sin(θ) + (3πr + 4) cos(2θ) + 3πr − 20
)]
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FIG. 4. Numerical simulation of the tree model for v = 0.1,
m = 100, µ = η = 1, and 5 × 107 data points. In order to
eliminate the small asymmetry coming from nonzero velocity,
we show symmetrized P̂ in λ, i.e. [P̂ (λ) + P̂ (−λ)]/2. These
are the data shown (blue dots), together with a 1σ estimate
of their statistical errors (green, dashed) and the analytical
curve (90) (red/solid). Note that there is no adjustable pa-
rameter. For larger values of |λ| (not shown) the statistical
errors grow and one observe small deviations whose origin
could be corrections from 1/m or small but finite v.

We can check that it has zero angular integral and van-
ishes at all θ = nπ/2. The moments are

ã2 = u̇2 =
16

3π2
+O(1/m) , (89)

whereas they would vanish in the limit of v = 0 for the√
u̇ model, where the Gaussian (78) is valid at zeroth

order in 1/m.

The Laplace-transform of Eq. (86) gives, to leading
order in 1/m

P̂ (λ) = eλu̇ ≈
∫ 2π

0

dθ

∫ ∞

0

dr rP0(r) e
λr sin θ

=
27π3

(9π2 − 16λ2)
3/2

(90)

This function has a branch-cut singularity starting at
λ±c = ± 3π

4 = ±2.35619. It is interesting to note that
from (72) and (84) one can conclude directly that for

any v, P0(r) ∼ e−
3π
4 r at large r ≫ v. Hence the tree

model has λ±c = ± 3π
4 at m = ∞ independent of v. Sim-

ilar branch cut singularities for the
√
u̇ model will be

discussed in Sec. VB.

In figure 4, we show a numerical simulation of the
equation of motion given by Eqs. (34), (35), and (36)
for v = 0.1, m = 100, µ = η = 1, and 5 × 107 data
points. The agreement of the simulations with the ana-
lytical result (90) is excellent.
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FIG. 5. (color online) Velocity probability distribution for a
fixed driving velocity v = 5/2. Different curves correspond to
different masses, see the explanation in the main text.

E. Numerical solution of the Fokker-Planck

equation

In this section we solve Eq. (39) numerically using the
discretization scheme proposed by Scharfetter and Gum-
mel [55] and analyze the probability distribution for dif-
ferent values of the driving velocity v and mass m.

The probability distribution of velocities for different
masses and fixed driving velocity v = 5/2 is shown in
Fig. 5. For m = 0 there are no negative velocities u̇ and
the probability reaches its maximum at a higher value
than all other curves shown in Fig. 5. The general ten-
dency is an increase of the probability for negative u̇ when
increasing the mass as well as a decrease of the maximum
of the probability. At the same time the maximum gets
shifted towards higher velocities. We see that for m = 32
and m = 128 there is only a small difference in the prob-
ability distribution, and for large mass the probability
converges to a master curve at m = ∞, whose behaviour
we discuss in more detail in the next section. Also note
that there are two remarkable points where all curves
intersect, a feature which remains to be understood.

Fig. 6 shows P (u̇) for v = 1/2 and different masses.
We see that the divergence for m = 0 seems to disappear
in the presence of a small mass, and that at the same
time the probability for negative u̇ < 0 becomes finite.
A small mass changes the positive tail of the distribution
only slightly. Inertia has the tendency to decrease the
maximum of P (u̇) as was noticed in Fig: 5 where v > 1.
This is also manifest for v < 1.

Next we analyze the probability distribution of accel-
erations. Fig. 7 shows P (a) for v = 1/2 and different
masses. The larger the mass is, the more symmetric
the distribution becomes, in agreement with results from
Sec. IVD. Decreasing the mass the maximum of P (a)
gets lowered, while the distribution broadens and the av-
erage of a2 increases. A similar behavior is observed for
v > 1.
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FIG. 6. (color online) Velocity probability distribution for a
fixed driving velocity v = 1/2. Different curves correspond to
different masses, see the explanation in the main text.

Apart from similarities between the ABBM model and
the tree model (discussed in Sec. III) there are also dif-
ferences. By looking at Figs. 2 and 3, we see that when
the probability for negative velocities becomes consider-
able, a difference between the tree model and the ABBM
model with inertia becomes visible. The probability dis-
tribution for the tree model is characterized by a smaller
peak and larger tails than the ABBM model with inertia.

F. Comparison of the numerical solution of the

Fokker-Planck equation with perturbation expansion

in m and 1/m

Here we compare numerical and analytical results from
the two previous sections focusing on the behaviour at
small and large m. We start with small m. We now
have to determine the currently undetermined constants
entering the distribution function, Eqs. (42)–(44). For
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P
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FIG. 7. (color online) Probability distribution of accelerations
for a fixed driving velocity v = 1/2. Different curves corre-
spond to different masses, see the explanation in the main
text.



14

sufficiently small m and sufficiently large v, negative ve-
locities appear with small probability. Then, we can ne-
glect their contribution to

∫

da du̇ P = 1 as well as the
contribution from the narrow region 2, since the main
contribution comes form region 1. We find

c3 =0, (91)

c5 =
1

4
− vψ(v), (92)

where ψ(x) is the digamma function. In this region of pa-
rameters, in App. A we state higher-order terms in P (u̇)
and additionally we calculate exactly moments charac-
terizing the distribution function and some other corre-
lations in Secs. VD, VG and App. D.
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FIG. 8. (color online) The full green line represents the nu-
merical solution for the joint probability distribution of ac-
celeration and velocity, integrated over positive velocities for
m = 1/8 and v = 5/2. The dashed red line is the result of
the second order perturbation theory (45), while the dotted
blue line is the first order of perturbation theory.

The numerical solution for the joint probability distri-
bution of acceleration and velocity, integrated over posi-
tive velocities for m = 1/8 and v = 5/2 is shown in Fig. 8
by the full line. The dotted line is the first-order, and the
dashed line the second-order perturbation theory result
of Eq. (45). We see good agreement between analytical
and numerical solutions. Also, the agreement increases
with increasing order of perturbation theory. The small
remaining difference may come from the approximation
made when fixing c3 and c5, i.e. due to neglecting the
contributions from negative velocities and from the re-
gion 2.
Let us now compare the distribution of velocities.

Fig. 9 presents P (u̇) for m = 1/4 and v = 5/2. The full
line is the numerical solution, the dotted line is m = 0,
and the dashed line is the perturbation theory result of
Eq. (A6). For P (u̇) in the region 1 there is very good
agreement between perturbation theory and numerical
solution.
Next we compare the perturbation expansion in 1/m

studied in Sec. IVD with the numerical solution. The
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FIG. 9. (color online) The full green line represents numerical
solution for velocity distribution for m = 1/4 and v = 5/2.
Dashed red line is the result of perturbation theory, Eq. (A6).
Dotted blue line is m = 0 curve.

distribution function becomes rotationally invariant in
the u̇ − ã plane around the point (v, 0) in the limit
m → ∞, see Eq. (65). Therefore, in Fig. 10 is shown

P̃ (u̇+v, ã = 0) for fixed massm = 100 and different driv-

ing velocities. The definition of P̃ is given by Eq. (56).
Numerical solutions are shown by full lines, while dotted
lines denote the zeroth order in the expansion given by
solutions of the differential Eq. (72) for the tree model.
We see good agreement, especially for larger v.
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FIG. 10. (color online) The full lines represent the numerical

solution for P̃ (u̇+ v, ã = 0) for m = 100 and different values
of v. The dotted lines are the zeroth order of perturbation
theory, Eq. (72).

V.
√
u̇ MODEL

A. Strategy

In this section, we define a model which

(i) is equivalent to the ABBMmodel for all trajectories



15

such that the particle only moves forward;

(ii) is an exact saddle point of the MSR dynamical ac-
tion hence allows for some analytical results. In
particular the generating function of the one-time
velocity distribution is given by

P̂ (λ) := eλu̇(t0) = evZ(λ) , (93)

where Z(λ) does not depend on v.

(iii) on the down-side u̇ may become complex.

Although the MSR saddle point method for the ABBM
model is exact only for m = 0, its extension to m > 0
provides a natural approximation of the ABBM model in
presence of inertia. For instance let us define Papprox(u̇)

as the inverse Laplace transform of P̂ (λ), on the real u̇
axis as:

P̂ (λ) =

∫ ∞

−∞
du̇ Papprox(u̇) e

λu̇ . (94)

since Z(λ)∗ = Z(λ∗), the function P v
approx(u̇) is real and

since Z(0) = 0 (see below) it integrates to unity. As ve-
locities can become complex, using this function as an ap-
proximation of a probability distribution (for the ABBM
model) makes senses if, and only if

(iv) the function Papprox(u̇) is positive.

Although not an obvious fact, we have strong numerical
evidence that this is indeed the case. Finally, we will
show in Section VI that the approximation becomes exact
for large v.

B. Definition and basic properties

We define the model in the laboratory frame,

du̇(t)

dt
= a(t), (95)

m
da(t)

dt
= µ2[v − u̇(t)]− ηa(t) +

√

u̇(t) ξ(t) (96)

〈ξ(t)ξ(t′)〉 = 2σ δ(t− t′) (97)

As long as the velocity is positive, the noise
√

u̇(t) ξ(t)
is real, and the velocity remains real. However when u̇
becomes negative, complex velocities arise. This can be
seen on figure 11, for one given disorder realization, and
driving velocity v = 0.5 and m = 1/4. Increasing the
driving velocity, the trajectories at the bottom of figure
11 get closer to the real axis, and less negative events
arise. In addition, one sees from (95) that near the pos-
itive real velocity axis a small imaginary part imu̇ = ǫ

experiences a linear force −(µ2 − ξ(t)

2
√
u̇
)ǫ which on aver-

age brings it back towards the real axis except for small
velocities.
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t

1

2

3

4

u 

1 2 3 4
u  x

-0.5

0.5

u  y

FIG. 11. Top: Real (blue) and imaginary (red) part of the
velocity for one realization of the disorder, and v = 0.5. Bot-
tom: phase portrait, i.e. trajectories in the complex plane
u̇ = u̇x + iu̇y . Note the different scale in real and imaginary
directions.

Therefore, this model is expected to be a reasonable
approximation to the ABBM model with inertia for large
v and smallm, see section VI. Moreover, in the same limit
of parameters this model works also well for the particle
on the tree studied in the previous section. It will be dis-
cussed below in section VF6 how good an approximation
it can provide beyond this range of parameters.

While the velocities in this model can become com-
plex, as we will show now, the generating function for
the velocities is given by a single, v-independent function
Z(λ)

eλu̇(t0) = evZ(λ). (98)

The proof is based on the MSR formalism. Replacing
a(t) in the second line of the above Langevin equation
by ü(t), the expectation (98) can be written as [24–26]

eλu̇(t0) =

∫

D[u̇]D[ũ]eλu̇(t0)−S[u̇,ũ] (99)
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with the dynamical action

S[u̇, ũ] =
∫

t

ũ(t)
[

m∂2t u̇(t) + η∂tu̇(t) + µ2(u̇(t)− v)
]

− σu̇(t)ũ(t)2.

(100)

In the square-brackets, we recognize the equation of mo-
tion without disorder, enforced by the response field ũ(t).
The last term results from the average over the disorder,
using (97).
Since the action is linear in u̇, the saddle-point w.r.t.

this variable is exact, leading to the instanton equation

m∂2t ũ(t)− η∂tũ(t) + µ2ũ(t)− σũ(t)2 = λδ(t− t0) (101)

This has to be supplemented with the boundary condi-
tions ũ(±∞) = 0. For the case m > 0 studied here it
turns out to be equivalent to requesting,

ũ(t) = 0 ∀ t ≥ t0 , (102)

which implies ∂tũ(t) = 0 for all t > t0. [56]. Supposing
that (101) holds, the only term which survives in (99) is
the term of order v in (100), which yields (98) with

Z(λ) = µ2

∫

t

ũ(t). (103)

While analytical results for equations (101) and (103)
are difficult to obtain, it is quite easy to solve the instan-
ton equation (101) numerically. We do this now in our
dimensionless units, i.e. setting η = µ2 = σ = 1. On
figure 12, we show Z(λ) for different masses. For real λ,
Z(λ) diverges at two singularities, one at λ = λ+c > 0,
the other at λ = λ−c < 0. Their values, as a function
of m is plotted on figure 13. Examination of Pv(λ) for
complex λ show that they are branch-cut singularities.
The branch-cut singularities determine the behavior of
the function P v

approx(u̇) defined in (94) at large u̇, up to
possible power-law pre-exponential factors as

Papprox(u̇) ∼
{

e−u̇λ+
c for u̇→ +∞

eu̇λ
−

c for u̇→ −∞ . (104)

It is important to note that this asymptotic behavior
holds at any driving velocity: Were P v

approx(u̇) to decay
faster (e.g. with a larger constant in front of, or a higher

power of u̇ in the exponential), then P̂ (λc) = evZ(λc)

would be finite, which it is not. Similarly, if it would
decay slower, then P̂ (λc) = evZ(λc) would not exist up
to λ = λc. Note that (101) also implies that Z(λ) is real
for real λ, at least as long as the solution ũ(t) decays to
zero at large times, which is the case for λ−c < λ < λ+c
(see below).
As shown in Fig. 13, increasing the mass beyond the

special value m∗ = 3.95402, the value of λ−c decreases
again, i.e. the tail for negative u̇ becomes again shorter.
For m → ∞ both λ+c and λ−c become infinitely large,
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FIG. 12. The generating function Z(λ) for masses m = 0
(thin, solid, black), m = 1/4 (thick orange), m = 1 (blue,
dashed), m = 4 (green, dotted), m = 16 (red, dot-dashed,
thick), m = 64 (black, dotted, thick), m = 256 (green, dotted,
thick). All functions diverge at λ = λ+

c and λ = λ−
c .

meaning that Z(λ) becomes an analytic function for all λ.
This in agrement with the result found in Sec. IVD where
we demonstrate that in the limitm→ ∞ the distribution
function becomes Gaussian (78).
Beyond allowing to define the function Papprox(u̇),

Z(λ) contains information on the probability distribution
P (u̇x, u̇u) of the process u̇(t) = u̇x + iu̇y in the complex
plane (see e.g. Fig. 11) through

P̂ (λ) =

∫ ∞

−∞
du̇x

∫ ∞

−∞
du̇y e

λ[u̇x+iu̇y ]P (u̇x, u̇y) . (105)

It does not allow however to determine P (u̇x, u̇y) since
we would need a more general generating function for
the moments of u̇∗ = u̇x − iu̇y. A question is what
information can be extracted, and how does it relate
to Papprox(u̇). For illustration we can consider a sim-
ple toy example such that the probability factorizes
P (u̇x, u̇y) = Px(u̇x)Py(u̇y) so that P̂ (λ) can be writ-

ten as P̂ (λ) = P̂x(λ)P̂y(iλ) where P̂x(λ) and P̂y(λ) are
the Laplace-transforms of Px(u̇) and Py(u̇) respectively.
From our numerical studies we find that P (u̇x, u̇y) is nar-
rowly distributed in the y-direction, with a width which
decreases with increasing v. For large v, P (u̇x, u̇y) will
converge against Papprox(u̇x)δ(u̇y), at least for u̇x > 0.
For finite v consider the simplest example, i.e. a Gaus-
sian for Py(u̇y) which leads to

P̂v(λ) = P̂x(λ)e
−αλ2

2 . (106)

As discussed above, we found that P̂ (λ) has two branch-
cut singularities starting at a finite real λ+c and λ−c . Since
the latter control the behavior at large u̇ and u̇x, both
Papprox(u̇) and Px(u̇x) have the same behavior at large
(positive or negative) arguments for this toy example.
We will not pursue further here the study of P (u̇x, u̇y).
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C. Connection between instanton approach and

Fokker-Planck approach

We saw in Section II that the ABBM model without
inertia can be solved either using the Fokker-Planck equa-
tion, or the MSR method based on the non-linear saddle-
point equation (the instanton). We recalled their equiv-
alence based on the method of characteristics. The same
property holds for the

√
u̇ model, with a small caveat.

The caveat is that the correspondence is simple only
between the instanton equation and the Fokker-Planck

equation in its Laplace transformed version Eq. (108) be-
low. In real space it corresponds formally to the FP equa-
tion (39) where the replacement |u̇| → u̇ is made in the
diffusion term. This would indeed be the FP equation as-
sociated to the Langevin process (95), (96) if one forgets
that u̇ can become negative, and consequently complex.
Writing an adequate FP equation for such a process re-
quires an extension of P (u̇, a, t) with arguments in the
complex plane, a route which we do not follow here.

Instead, consider the evolution equation for the follow-
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FIG. 13. Top: Location of the branch-cut singularity in Z(λ),
as function of m. Lower curve (red, dotted) is λ−

c , upper
curve (blue) is λ+

c . The maximum of λ−
c is at m = 3.9540,

λ−
c = −3.5124, marked by a dot. Bottom: Blow-up of the

same curve.

ing average over trajectories

P̂ (λ, κ, t) = eλu̇(t)+κa(t) . (107)

It is in principle an integral
∫

du̇da eλu̇+κaP (u̇, a, t) over
the complex u̇ and a plane. The average (107) satisfies
the Laplace version of the FP equation,

∂P̂

∂t
− ∂P̂

∂κ

(

λ− κ

m

)

− ∂P̂

∂λ

(

− κ

m
+
κ2

m2

)

=
κ

m
vP̂ ,

(108)

in dimensionless variables. As mentioned above it is for-
mally the Laplace transform (over the real axis) of the FP
equation with a u̇ diffusion term. Eq. (108) is easily de-
rived from the Langevin equation (95), (96) by consider-
ing the variation of the observable in an infinitesimal time
interval dt. The only subtlety arises when expanding the

variation e
κ
m

√
u̇(t)dξ(t) = 1+ 1

2 (
κ
m)2u̇(t)dξ(t)2+O(dt2) to

second order, with dξ(t)2 = 2σdt, using stochastic calcu-

lus (Itô). This leads to the term (κ2/m2)∂λP̂ in (108).
We now show the connection to the MSR method and

the instanton equation. The solution of (108) can be
written in the form

P̂ (λ, κ, t) = evZ(λ,κ,t) , (109)

where Z is independent of v and satisfies

∂Z

∂t
− ∂Z

∂κ

(

λ− κ

m

)

− ∂Z

∂λ

(

− κ

m
+
κ2

m2

)

=
κ

m
. (110)

To solve this equation we again apply the method of char-
acteristics, and reduce the partial differential equation to
a family of ordinary differential equations,

κ̇(t) = −λ(t) + κ(t)

m
, (111)

λ̇(t) =
κ(t)

m
− κ(t)2

m2
, (112)

dZ(t) =
κ(t)

m
dt. (113)

We have defined Z(t) = Z(λ(t), κ(t), t), as well as κ̇(t) =

dκ(t)/dt and λ̇(t) = dλ(t)/dt.
Let us now introduce

ũ(t) = κ(t)/m (114)

Eliminating λ(t) in (111) and (112) we find that it satis-
fies

m¨̃u(t)− ˙̃u(t) + ũ(t)− ũ2(t) = 0. (115)

If we impose ũ(t) = 0 and ˙̃u(t) = 0 for t > t0 and as-
sume λ(t0) = λ and κ(t0) = 0, this equation becomes
the instanton equation (101) in dimensionless units. To
obtain the stationary solution Z(λ, κ) of (110) we can
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solve (115) on the interval t ∈] −∞, t∗], with boundary
conditions at t = t∗:

ũ(t∗) =
κ

m
, (116)

˙̃u(t∗) = − λ

m
+

κ

m2
, (117)

and ũ(−∞) = 0, ˙̃u(−∞) = 0. Then we compute

Z(t∗) =

∫ t∗

−∞
ũ(t) dt := Z(λ, κ) , (118)

which is precisely Z(λ, κ) if expressed as a function of
the boundary condition. Since it does not depend on t∗,
we have found the stationary solution.

Hence we have shown, via Eq. (108), that the observ-
able (107) can be obtained from the solution of the in-
stanton equation, although with a slightly more general
boundary condition than in (101). This is because we
now want the joint distribution of velocity and accelera-
tion (at a given time t∗). We can rewrite the observable
(107) as

P̂ (λ, κ, t) = e
∫
dt[λδ(t−t∗)−κδ′(t−t∗)]u̇(t) . (119)

Performing the same manipulations using the dynamical
MSR action as in Refs. [24–26] as sketched above in
Section VB, we arrive at the instanton equation with a
source on the right-hand-side λδ(t−t∗)−κδ′(t−t∗) which
is equivalent to the boundary conditions (116), (117).

To summarize, for the
√
u̇ model the equation (108)

describes the time evolution of the observable (107) un-
der the Langevin equation (95)–(97), even though u̇ and
a take values in the complex plane. Solving it is equiv-
alent to solving the instanton equation as a function of
λ and κ that determine its boundary conditions (116)
and (117). Neither equation admits solutions in closed
analytical form for generic values of m, but each has his
advantages for numerical or perturbative studies. For
instance, from Eq. (108) we can easily obtain the mo-
ments for this model, as we now show. Also, note that
the Laplace transform of the Fokker-Planck equation for
the tree model can also be studied although it is more
involved, see App. C.

D. Moments of the distribution function

In the stationary case, taking the derivatives ∂nλ∂
m
κ

of Eq. (108) where m and n are positive integers and
afterwards setting κ and λ to zero, one obtains a set of
linear equations for ∂nλ∂

m
κ P̂ (λ, κ)|(0,0). By solving them

and using ∂nλ∂
m
κ P̂ (λ, κ)|(0,0) = u̇nam and P̂ (0, 0) = 1

one finds [57] the moments characterizing the distribution
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FIG. 14. Average value of u̇2 for the ABBM model with iner-
tia as a function of mass m is shown for two driving velocities
v = 1/2 and v = 5/2. Dashed line represents the value v(v+1)
while the points are the numerical results.

function for the
√
u̇ model:

u̇0a1 = 0, (120)

u̇0a2 =
v

m
, (121)

u̇0a3 = − 2v

m(m+ 2)
, (122)

u̇0a4 =
3v2

m2
+

6(5m+ 3)v

m2(m+ 2)(4m+ 3)
(123)

u̇1a0 = v, (124)

u̇1a1 = 0, (125)

u̇1a2 =
v2

m
+

2v

m(m+ 2)
, (126)

u̇1a3 = − 2v2

m(m+ 2)
− 6v

m(m+ 2)(4m+ 3)
, (127)

u̇2a0 = v(v + 1), (128)

u̇2a1 = 0, (129)

u̇2a2 =
1

m(m+ 2)(4m+ 3)
(4m2v3 + 4m2v2

+ 11mv3 + 27mv2 + 10mv + 6v3 + 18v2 + 12v), (130)

u̇3a0 =
4v

m+ 2
+ v3 + 3v2, (131)

u̇3a1 = 0. (132)

For brevity we stated only the first few moments, but
the procedure can be easily extended to higher moments.
Some of them are given in App. D.

While these results are exact for the
√
u̇ model we can

compare them with the ABBM model with inertia and
for the particle on the tree model. In Fig. 14 we show
〈u̇2〉 as a function of mass for two different driving ve-
locities for the ABBM model with inertia. For v = 1/2
we see disagreement between the above obtained v(v+1)
value and the numerical result for m = 1, while for the
larger velocity the deviation appears at larger values of
the mass. Similar behavior is observed for the tree model.

In the App. D the moments of the velocity are com-
puted using an iterative solution of the instanton equa-
tion instead of Fokker-Planck equation.
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E. Perturbation at small m for P (u̇)

In this section we obtain the perturbative expansion in
small m of the generating function Z(λ) = Z(λ, κ = 0)
for the steady state velocity distribution function of the√
u̇ model. To this aim we will solve perturbatively in m

the non linear instanton equation (115) and use (118) to
obtain Z(λ) from the solution.
The solution ũ(t) of (115) at m = 0 is given in (16). It

is non-zero for t < 0, zero for t > 0 with a jump at t = 0.
In presence of inertia m > 0 we are now looking for a
solution non-zero for t < 0, zero for t > 0, but which
vanishes at t = 0, i.e. ũ(0) = 0 since we have set κ = 0,

and with ˙̃u(0) = −λ/m. For small m it is then clear that
there is a boundary layer for t = O(m) < 0 where the
function varies rapidly from values of order 0 to values of
order λ. In addition there is a bulk region t = O(1) < 0.
We now study both regions and how they match.
As will become clear below, in the boundary layer re-

gion 0 < −t . m we can write

ũ(t) =

∞
∑

n=0

mnfn

(

t

m

)

(133)

with ũ(0) = 0 and ˙̃u(0) = −λ/m. Inserting into the
instanton equation (115) we then find the following re-
cursion:

f0(t) = λ(1 − et), (134)

f̈k+1(t)− ḟk+1(t) + fk(t)−
k
∑

ℓ=0

fℓ(t)fk−ℓ(t) = 0, (135)

for k ≥ 0. Note that the term f0(t) already exists in
absence of disorder and describes the rounding of the
disorder-free response function by the mass. We assume
fn(0) = 0 and ḟn(0) = 0 for n > 0. Then we find

f1(t) =
λ

2

[

4− 2t(λ− 1)− 5λ
]

+
λ2

2
e2t

+ etλ
[

2λ− 2− t(2λ− 1)
]

. (136)

Higher-order terms can be found, but for brevity are not
state here. In the App. E we give f2. In general fn
is a sum of exponentials and a polynomial, of the form

fn(t) =
∑n+1

k=1 e
ktC(n)

k (t, λ) +
∑n

k=0 A
(n)
k (λ)(−t)k further

discussed in App. E.
In the region −t = O(1) ≫ m the solution can be

written as

ũ(t) =

∞
∑

n=0

mnyn(t) (137)

where yn satisfy the following differential equations

− ẏ0 + y0 − y20 = 0, (138)

ÿk−1(t)− ẏk(t) + yk(t)−
k
∑

ℓ=0

yℓ(t)yk−ℓ(t) = 0. (139)

The last line is for k > 0. The boundary condition is
yn(−∞) = 0. Eqs. (138) and (139) can be solved recur-
sively. This gives for each yn(t) a first-order differential
equation, for which we need to fix yn(0) by the condi-
tion that solutions in different regions (133,137) match
at −t small but −t/m large. We discuss this in detail in
App. E. Here we state the solution

y0(t) =
λ

λ+ (1− λ)e−t
, (140)

y1(t) =− e−tλ

2(−e−t(−1 + λ) + λ)2
[

− 4− 2t(−1 + λ)

+ 5λ− 4(−1 + λ) ln (e−t + λ− e−tλ)
]

. (141)

Additionally, in App. E we give y2(t). Now we can de-
termine

Z(λ, 0) =
∑

n

mnZn(λ) (142)

given by Eq. (118) with t∗ = 0. We find Z0 =
∫ 0

−∞ dt y0(t) and Zn =
∫ 0

−∞ dt
∑n

k=1 e
ktC(n−1)

k (t, λ) +
∫ 0

−∞ dtyn(t). Hence there is a contribution from both

regions. The contribution of the A
(n)
k terms is already

taken into account through the contribution of the yn(t)
at small t. Calculating the integrals we obtain:

Z0 = − ln (1− λ), (143)

Z1 = −λ− 1

2
λ

(

λ

1− λ
+

2 ln (1− λ)

λ

)

, (144)

Z2 =
λ(λ(5λ(λ + 2)− 36) + 24)

24(λ− 1)2
+ ln(1− λ). (145)

Now P̂ (λ, 0) = eλu̇ = evZ(λ,0) and from that follows the

perturbative expansion of the moments u̇k in agreement
with the results in Sec. VD. Assuming that for small
mass we can ignore contribution in P̂ coming from com-
plex velocities we perform the inverse Fourier transform
of P̂ and find the distribution function

Papprox(u̇) =
e−u̇u̇v−1

Γ(v)
θ(u̇)− me−u̇u̇v−2

2Γ(v)

×
(

−2u̇v ln (u̇) + 2u̇vψ(v) + u̇2 − v2 + v
)

θ(u̇),

+O(m2) (146)

where θ(x) is the Heaviside theta function, and ψ(v) is
the digamma function. The result to this order is thus a
probability normalized to unity (to this order) for v > 1.
The correctionO(m2) is given in appendix A by Eq. (A6)
and is a bona-fide distribution for v > 2. It also gives
nonzero contribution for u̇ > 0 only and it is normalized
to zero. Note that there is no a priori reason why at a
fixedm > 0 the inverse Laplace transform of Z(λ) should
exist, and furthermore with support on u̇ > 0 since the
present model leads to complex velocities. However, it
appears that (i) for large enough driving velocity v > n
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the perturbative result can be trusted up to orderO(mn),
i.e. the negative velocity events are sufficiently rare not
to spoil the result to that order; (ii) the perturbative
result seems to be correct for any v provided u̇ & m.
These findings are consistent with the analysis for the
tree model, for which we found the same result (46) in
the region u̇ & m although with unknown constants c3
and c5 while for the

√
u̇ model they are fixed by Eqs.

(91,92).

F. Critical case m = 1/4

Here we analyze the specific case of m = 1/4, and
work in our dimensionless units. For the system with-

out disorder this is the critical case which separates the
over-damped to under-damped regime where the particle
starts to oscillate. It is also the mass which brings the
particle back to the origin of the parabola in the shortest
time. In presence of disorder there is a priori nothing spe-
cial to this case. Since, however, perturbative formulas
simplify for m = 1/4 our aim in this Section is to obtain
to high numerical accuracy the behaviour of Z(λ) and of
Papprox(u̇). While the results are specific to m = 1/4,
they are representative of other masses.

Since neither Z(λ) nor Papprox(u̇) can be obtained ex-
actly, we consider several schemes to compute them to
excellent precision (i) a perturbative expansion in λ; (ii)
an analysis of Z close to the branch-cuts, and (iii) the be-
havior of Z for λ → ∞. Each of these schemes gives an
estimates of Papprox(u̇), (the latter two are are denoted
PBC(u̇) and Pasymp(u̇) below) depending on which region
of the complex plane dominates in the Laplace inversion.
They are valid for different values of v and u̇, as discussed
below. In addition we use numerical solution of the in-
stanton equation. At the end we compare our results to
the numerical simulations on the ABBM model.

1. Perturbative expansion for Z(λ)

The response function is

R(t) = 4te−2tΘ(t) ,

(

∂t
2

+ 1

)2

R(t) = δ(t) (147)

The instanton equation (101) becomes

(

1− ∂t
2

)2

ũt − ũ2t = λδ(t) (148)

The boundary conditions are given by Eq. (102). Eq.
(148) can be solved iteratively in λ, as shown in App. D.
Integrating over time yields a perturbative expansion of
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FIG. 15. Z(λ) in the critical case m = 1/4, together with its
Taylor expansion (149).

Z(λ),

Z(λ) = λ+
λ2

2
+

8λ3

27
+

29λ4

144
+

4094λ5

28125
+

599431λ6

5467500

+
650366396λ7

7657689375
+

4815122286049λ8

71693475840000

+
289088854220889511λ9

5357932381952640000

+
16329405133190713144717λ10

372078637635600000000000

+
47848267999001244408297501187913λ11

1326979721280974188091895000000000

+
896706256659993152146362777072877141λ12

30017728909617033561025674240000000000

+O
(

λ13
)

(149)

The branch cuts described in Section VB are at

λ+c = 1.10647 , λ−c = −8.58563 . (150)

2. Perturbative expansion for the critical instanton and λ+
c

The value of the branch cuts can either be obtained
from the numerical solution of the instanton equation,
or via the following observation: The critical instanton,
ũ+c (t) := ũλ+

c
(t) converges for t → −∞ rapidly against

1, see figure 16. Thus while Z(λ+c ) = ∞, the solution of
the instanton equation is still defined at this point. This
allows for a series expansion, making the ansatz

ũ+c (t+ t∗) = 1− eαt +

∞
∑

n=2

bne
nαt . (151)

The parameters α > 0 and bn have to be determined,
such that (151) satisfies the instanton equation (101),
and finally t∗ is chosen such that u+c (t

∗) = 0. To find
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FIG. 16. The function ũt is increasing with increasing λ, as
seen by numerically integrating the instanton solution: λ =
1/2 (green, dashed, smallest curve), λ = 1 (blue, dashed),
λ = 1.106 (black, dashed), λ = λ+

c (red/blue, thick). The
last curve shows superimposed the numerical solution of the
instanton equation, and of the expansion (152).

the parameters, expand (151) inserted into the instanton
equation (101) in a series in y := eαt. At first order
in y, the condition is 4 + 4α − α2 = 0, leading to α =
2(1 +

√
2). Then solve order by order in y, determining

the bn. Finally, find t∗, such that ũ+c (t = 0) = 0. (This
is necessary since the higher orders shift the origin.) The
result for the critical instanton is

ũ+c (t) = 1− 1.08835y+ 0.0935856y2 − 0.00550998y3

+0.000284501y4 − 0.00001369y5

+6.30567× 10−7y6 − 2.81909× 10−8y7

+1.23335× 10−9y8 − 5.30802× 10−11y9

+2.25516× 10−12y10 − 9.48217× 10−14y11

+3.95296× 10−15y12 +O(y13) (152)

This determines λ+c = 1.10647. Of course, all coefficients
could be given explicitly. Also note that already for n = 2
one gets λ+c within an error of 0.01. Each further order
in n improves the accuracy of λ+c by about one order
of magnitude. Thus one could use this algorithm as an
efficient estimator for λ+c , as a function of m.
A similar solution could be constructed for λ−c .

3. A good approximation for Z(λ) from the branch cuts

There is an astonishingly good approximation for Z(λ),
which is dominated by the branch cuts:

ZBC(λ) = −1.20711 ln

(

(λ− λ−c )(λ− λ+c )

λ−c λ
+
c

)

(153)

It is obtained by starting from the massless case,
Zm=0(λ) = − ln(1−λ/λ+c ) with λ+c |m=0 = 1, and adding
a similar term − ln(1 − λ/λ−c ) for the negative tail. The

prefactor was then determined by asking that the highest
known moment, in (149) of order λ12 be given exactly.
Then

Z(λ)− ZBC(λ) = 0.0496465λ− 0.00117287λ2

−0.0000986924λ3− 2.769730882007382× 10−6λ4

+2.48119× 10−8λ5 − 5.57763× 10−11λ6

−2.96177× 10−9λ7 − 1.82040× 10−9λ8

−1.04881× 10−9λ9 − 5.56368× 10−10λ10

−2.25950× 10−10λ11 +O
(

λ13
)

(154)

What is remarkable about this approximation, besides its
accuracy in reproducing higher moments, is that both ex-
pected terms, ln(1−λ/λ+c ) and ln(1−λ/λ−c ) appear with
the same amplitude. Performing the inverse-Laplace
transform for v > 0 one finds, defining ṽ = 1.20711v:

PBC(u̇) =
e−

1
2 u̇(λ

−

c +λ+
c )(−λ−c λ+c )ṽ

(

u̇
λ+
c −λ−

c

)ṽ− 1
2

√
πΓ(ṽ)

×Kṽ− 1
2

(

1

2
u̇[λ+c − λ−c ]

)

θ(u̇ > 0)

+
e−

1
2 u̇(λ

−

c +λ+
c )(−λ−c λ+c )ṽ

(

u̇
λ−
c −λ+

c

)ṽ− 1
2

√
πΓ(ṽ)

×Kṽ− 1
2

(

1

2
u̇[λ−c − λ+c ]

)

θ(u̇ < 0) . (155)

K is the Bessel-K function. The function PBC(u̇) decays

as e−λ+
c u̇ for u̇ to ∞, and as e−λ−

c u̇ for u̇ to −∞. When
compared to the numerical inverse-Laplace transform, we
find that this is a good approximation for all but small
u̇.
In the limit of v = 0+, we know (see [24] for more

details) that one can expand P̂ (λ) = evZ(λ) = 1+vZ(λ)+
O(v2), and that upon Laplace inversion one obtains

P (u̇) = (1 − vp′)δ(u̇) + vp′P̃ (u̇) +O(v2) . (156)

The first term represents events when the particle is
pinned, and the second one yields the velocity distribu-
tion in an avalanche P̃ (u̇) via Z(λ) = vp′

∫

du̇(eλu̇ −
1)P̃ (u̇) where vp′ is the probability that t = t0 belongs
to an avalanche. From the form (153) for ZBC(λ) we get

p′P̃BC(u̇) = 1.20711

[

e−u̇λ+
c

u̇
θ(u̇ > 0) +

e−u̇λ−

c

|u̇| θ(u̇ < 0)

]

(157)
Note that for u̇ > 0 it is very similar to the result for
the ABBM model with m = 0 [24] up to the different
value for λ+c . More interestingly, it also gives a non-trivial
prediction for the tail on the negative-velocity side in the
avalanche regime.

4. Large λ-behavior

In order to obtain the small-u̇ behavior of Papprox(u̇),
one has to analyze Z(λ) for |λ| → ∞. For real λ this
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is impossible since branch-cuts appear at λ = λ±c . As
we show in appendix F, the behavior for λ → ±i∞ on

the imaginary axis can be calculated analytically, and is
given by

Zasymp(λ) = −15 3
√
6
√
π Γ
(

5
6

)

Γ
(

1
6

)2 (|λ|m)
2/3

= −1.76006 (|λ|m)
2/3

. (158)

The contribution of expression (158) to Pasymp(u̇) at fi-
nite driving velocity v is

Pasymp(u̇) =

∫ ∞

0

dλ

π
cos(λ|u̇|)evZ(λi)

≈
∫ ∞

0

dλ

π
cos(λ|u̇|)e−1.76006λ2/3vm2/3

= −
m2/3v exp

(

0.403877m2v3

u̇2

)

|u̇|7/3

×
[

1.43193m2/3vAi

(

0.715967m4/3v2

|u̇|4/3
)

+1.6923|u̇|2/3Ai′
(

0.715967m4/3v2

|u̇|4/3
)]

(159)

Ai is the Airy function, and the result (159) a positive
function, peaked around zero, even for relatively large
driving velocities, see figure 17. Its value at u̇ = 0 is

Pasymp(0) =
0.181215

mv3/2
. (160)

Note that while (159) is relevant at finite v, it does not
contribute to the large-deviation function discussed be-
low. We will discuss below its domain of applicability.

5. From Z(λ) to Papprox(u̇)

The instanton equation can be solved numerically for
any complex λ away from the branch cuts on the real axis
at λ > λ+c or λ < λ−c . This yields Z(λ) for complex λ. We
have performed the numerical inverse Laplace transform
for Z(λ). A convenient choice of the contour is λ =
α(1 ± i), α > 0 for u̇ > 0 and λ = −α(1 ± i), α > 0
for u̇ < 0. This gives an excellent numerical accuracy,
except when u̇ and v are both very small (< 0.1).
We can now compare with the asymptotic estimates

of Papprox(u̇) discussed above (see Figure 18). Why the
different approximations work or fail, can be traced to
an analysis of the inverse Laplace transform. Depending
on u̇ and v, it is dominated by one of the three special
points: λ = 0 for the perturbative approximation, valid
for v → ∞, λ = λ±c for the tails, and λ→ ±i∞, for small
u̇, as long as v is not large enough s.t. λ = 0 dominates.
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FIG. 17. The contribution of the large-λ behavior (158) to
Pasymp(u̇) at v = 2, m = 1/4, as given in Eq. (159).

First the perturbative expansion in λ works well for
large v. This will be quantified in section VI, where we
discuss the large-deviation function.

Second, the branch-cut approximation (155) is a rea-
sonable approximation to Papprox(u̇) for all v and all u̇,
and becomes a good approximation in the tails. The lat-
ter can be expected since it uses the knowledge about the
branch-cut singularities at λ+c and λ−c .

Third, the approximation Pasymp(u̇), given in (159).
It is a reasonable approximation at small u̇, as long as
v is small enough. For v = 1/2 e.g. it predicts, with
relative precision of 10−3, the value of [Papprox(0

+) +
Papprox(0

−)]/2, where we note that Papprox(u̇) jumps at 0,
from 1.68172 for u̇ = 0− to 2.42249 at u̇ = 0+. The worse
disagreement at v = 0.1 is probably due to problems in
the numerical inverse Laplace-transform (P̂ (λ) oscillates
strongly on the chosen contour). For v = 5, it does not
work.

6. The
√
u̇-model as an approximation for ABBM

On Figure 18, we show the data obtained for the prob-
ability distribution P (u̇) from a numerical simulation of
the ABBM model at m = 1/4 (green shaded area), com-
pared to results obtained in this section. The driving ve-
locities are v = 1/10, v = 1/2 and v = 5 (from top to bot-
tom). First compare with the result for Papprox(u̇), ob-

tained by numerically inverse-Laplace transforming P̂ (λ)
(thick red dashed line). The agreement is excellent for
v = 5, and reasonable for v = 1/2 (it does not give well
the peak for u̇ close to 0, but quite well the tails, even
on the negative side. For v = 0.1 only the tails are rea-
sonably well approximated. (We cannot however exclude
numerical problems in the inverse-Laplace transform for
u̇ < 0.01.)
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FIG. 18. Comparison of Papprox(u̇) obtained by numerically

inverse-Laplace transforming evZ(λ) (thick red dashed lines)
with a simulation of the ABBM model (green shaded his-
togram plot), the approximation (155) (black dotted lines),
and Pasymp(u̇) given by . The mass is m = 1/4, and the driv-
ing velocities are from top to bottom: v = 1/10, v = 1/2, and
v = 5.

G. Exact results for m = 6/25

While Eq. (115) cannot be solved in closed form for
generic m, and one had to resort to expansions or nu-
merical solutions, there exists a magic value of the mass

m = 6/25 for which there exist analytic solutions in
closed form. These are known in the context of the
Fisher-Kolmogorov equation and Abel equations, which
is intimately linked to our problem as we now explain.

1. Fisher-Kolmogorov equation

Eq. (115) is a second order differential equation and it
has many solutions that are characterized by different set
of values (κ0, λ0) define by Eqs. (116,117) where t∗ is an
arbitrary time. One solution for m = 6/25 reads as[58]:

ũ(t) =
1

(1 +De−5t/6)2
, (161)

where D is an arbitrary parameter. Here we used that
traveling wave solutions of the Fisher-Kolmogorov equa-
tion satisfy Eq. (115), and that for a special value of the
speed of the propagating wave it has the analytic solution
Eq. (161) that corresponds to the special value m = 6/25
in our case.

ForD > 0 it follows that 0 < ũ < 1 and using Eq. (118)
we get

Z(λ(κ), κ) = −6

5

(

ln (1−
√

25κ/6) +
√

25κ/6
)

, (162)

we determine below which values λ takes as a function
of κ. For D < 0 solution ũ(t) (given by Eq. (161)) takes
some value that is greater than 1 at two different times. If

one chooses t∗ = −6 ln
((

1 +
√

6/(25κ)
)

/(−D)
)

/5 then

Z(λ(κ), κ) = −6

5

(

ln (1 +
√

25κ/6)−
√

25κ/6
)

. (163)

Here ũ takes all values greater than zero. If one takes

t∗ = −6 ln
((

1−
√

6/25κ
)

(−D)
)

/5, then Z(λ(κ), κ) =

∞ because the integration in Eq. (118) is over the di-
vergence that happens at t = 6 ln (|D|)/5. Taking into
account these results one finds the following correlation
functions

eλ(κ)u̇+κa = evZ(λ(κ),κ), (164)

λ(κ) =

{

5κ/2 + 50κ3/2/63/2 D > 0 and 0 ≤ κ < 6/25

5κ/2− 50κ3/2/63/2 D < 0 and κ ≥ 0.
.

(165)

In Eq. (164), the first and the second line of Eq. (165)
correspond to Z(κ) given by Eq. (162) and (163), respec-
tively. Hence the Laplace transform of the joint distri-
bution of velocities and acceleration is known exactly on
the curve λ = λ(κ), which, upon expanding in κ can be
translated into non-trivial relations between moments of
this distribution.
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2. Abel differential equation of the second kind

Next, we find more general solution of Eq. (115) than
in the previous section. Then using it we obtain an exact
result for Z(λ, 0) for some range of λ values. Addition-
ally, we obtain an analytic expression for λ+c that tell us
about behavior of the tails of P (u̇) for positive velocities,
see Eq. (107).
Introducing A = λ/m − κ/m2 and B = κ/m, the set

of Eqs. (111,112,113) can be rewritten as:

dA

dB
=
B2 −B −A

mA
, (166)

dZ

dB
= −B

A
. (167)

Eq. (166) is the so-called Abel differential equation of the
second kind. Its parametric solution reads as [59]

BC(s) =
1

4
E2(s, C)s, (168)

AC(s) = − 5

24
E2(s, C)

(

√

1 + s3E(s, C) + 2s
)

, (169)

E(s, C) =

∫ s

0

dτ(1 + τ3)−1/2 + C, (170)

where C is an arbitrary constant. We see that BC(0) =
0 while AC(0) = −C35/24 can be arbitrary, meaning
that we have found the family of solutions determined
by parameter C. Then

Z(λC(s), κC(s)) = −
∫

ds
BC(s)

AC(s)

dBC(s)

ds
+ const,

(171)

where the constant is to be determined by knowing that
Z(0, 0) = 0.
For example, if we want to calculate

exp (−C3u̇/20) = exp
(

vZ(−C3/20, 0)
)

, (172)

we need to find first

Z(− 1

20
C3, 0) = −

∫ 0

tC0

ds
BC(s)

AC(s)

dBC(s)

ds

=
3

10

∫ 0

tC0

ds
s√

1 + s3
E(s, C), (173)

where tC0 is defined as E(tC0, C) = 0. We find analytic
expression for

Z(− 1

20
C3, 0) =

1

15

(

t3C0 + 1
)

3F2

(

5

6
, 1, 1;

3

2
, 2; t3C0 + 1

)

− 3

5
√
π
Γ

(

7

6

)

Γ

(

4

3

)

×
√

t3C0 + 1 2F1

(

1

3
,
1

2
;
3

2
; t3C0 + 1

)

− 3

20
Ct2C0 2F1

(

1

2
,
2

3
;
5

3
;−t3C0

)

− 1

30

(

−
√
3π − 3 ln

(

27

16

))

. (174)
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FIG. 19. Numerical result for Z(λ, 0) is shown for m = 6/25.

Here 2F1 is the hypergeometric function and 3F2 is gen-
eralized hypergeometric function. tC0 is implicitly given
by E(tC0, C) = 0 that could be rewritten as

E(tC0, 0) = −C. (175)

We find that E(s, C) = C + s 2F1

(

1/3, 1/2; 4/3;−s3
)

.
The function E(s, 0) becomes complex for s < −1. For
s > −1 it is increasing function of s, and satisfies:

−Γ(16 )Γ(
4
3 )

2
√
π

≤ E(s, 0) ≤ Γ
(

1
6

)

Γ
(

4
3

)

√
π

. (176)

We see that for λmin ≤ λ = −C3/20 < λmax, where

λmin = − 1

20

[

Γ
(

1
6

)

Γ
(

4
3

)

2
√
π

]3

= −0.137843, (177)

λmax =
1

20

[

Γ
(

1
6

)

Γ
(

4
3

)

√
π

]3

= 1.10274, (178)

there exist a solution of Eq. (175) and one can find tC0.
Since at s = tC0 both λ(s) and κ(s) are zero, this con-
straint on λ might mean that a solution of Eq. (115)
with boundary conditions κ(t = 0) = 0 and κ̇(t = 0) = λ
reaches (κ̇(t), κ(t)) = (0, 0), i.e. it is convergent meaning
that at large times it goes to zero. By considering nu-
merically this instanton solution of Eq. (115) with given
boundary conditions, one indeed sees that it starts to
diverge for this value of λ and λ+c = λmax. However,
for λmin the instanton solution is still convergent. The
numerics gives λ−c = −8.8219 < λmin = −0.1378. In
Fig. 19 we show the numerical result for Z(λ, 0). We
conclude that the parametric solution (168,169,170) does
not ”catch” whole κ(t) dependence on time with given
boundary conditions κ(t = 0) = 0 and κ̇(t = 0) = λ for
λ < λmin.

Next, we solve E(tC0, C) = 0 perturbatively in C and



25

find

tC0 = −C +
C4

8
− C7

112
+
C10

1792
− 3C13

93184

+
37C16

20873216
− 75C19

793182208
+O(C20), (179)

Z(λ, 0) = λ+
λ2

2
+

25λ3

84
+

125λ4

616

+
375λ5

2548
+

115625λ6

1039584
+O(λ7). (180)

Now, expanding Eq. (172) in λ = −C3/20 one can find

the moments u̇k in agreement with Sec. VD and App. D.

VI. LARGE-DEVIATION FUNCTION

A. Definitions and numerical determination

It is suggestive that we “do a good job for large driv-
ing velocities”, since when the particle does not move
backward, all three models considered here are indistin-
guishable. We actually show below that the so-called
large-deviation function coincides for all three models for
x > 0. The large-deviation function is defined as the
leading behaviour for large driving velocity v of the dis-
tribution of instantaneous velocity P (u̇) as follows:

Fv(x) := − ln [P (xv)]

v
(181)

F (x) := lim
v→∞

Fv(x). (182)

Analogously, one defines, if that limit exists,

Zv(λ) :=
ln eλu̇

v
(183)

Z(λ) := lim
v→∞

Zv(λ) . (184)

If the limits exist, then for large v the Laplace-transform

eλu̇ = evZv(λ) = v

∫

dx e−vFv(x)eλxv (185)

can be approximated by its saddle point, and Z(λ) and
F (x) are related via a Legendre transform:

Z(λ) + F (x) = λx (186)

d

dx
F (x) = λ (187)

d

dλ
Z(λ) = x . (188)

It is assumed that F ′′(x) > 0. Note that Z(λ) is easier
to measure numerically than F (x), since the former does
not need binning.
Let us now review our numerical results and how they

are consistent with the following scenario:
(i) Zv(λ) becomes v-independant at large v for each

model in some range of λ.

(ii) the asymptotic curves coincide for λ > λ∗,

Z(λ) = Z√
u̇(λ) = ZABBM(λ) = Ztree(λ) , (189)

where

Z ′(λ∗) = 0 (190)

i.e. the minimum of Z(λ) is at λ∗. This corresponds to
the point of zero velocity since Eq. (188) implies x(λ∗) =
0. Another way to state Eq. (189) is to say that for x > 0

F (x) = F√
u̇(x) = FABBM(x) = Ftree(x) . (191)

We assumed that Z ′(λ) > 0 for λ > λ∗. A simple argu-
ment, which shows that (189) and (191) holds, is given
below. For λ < λ∗ the Z(λ) for each model is dominated
by negative velocities. Since the models differ for these
velocities, there is no reason why their Z(λ) should be
the same, and consequently F (x) for x < 0 is expected
to be different for the different models.
Our numerical data for Zv(λ) are presented on the left

of Fig. 20 for m = 1/4. First of all, we have checked
through large-scale simulations (5×107 data points) that

for the
√
u̇-model Zv(λ) = Z(λ) is velocity-independent,

and given by the numerical solution of the instanton
equation (101), using (103) (thick orange line). Only
data for v = 0.1 are presented on the plot (dark grey-
blue line, with error bars given by the dashed lines of the
same color). Relative errors are ≤ 10% for −4.2 < λ < 1.
We have then checked that Zv(λ) for the tree-model

converges, for v → ∞, towards the numerical solution
of the instanton equation (103) from above, while the
ABBM model converges from below. (This fact is con-
sistent with Figs. 2 and 3, where one observes that the
probability distribution for the tree model has larger tails
than for the ABBMmodel with inertia.) On Fig. 20, data
for v = 0.5 and v = 2 are shown for the tree model, and
for v = 5 for the ABBM model. Simulations for other
velocities (not shown) confirm this picture. Note, how-
ever, that we have found convergence of the simulations
of Zv(λ) for both ABBM and the tree model to Z(λ) of

the
√
u̇-model only in some domain λ > λ∗ and certainly

not for λ < λ∗, corresponding to negative velocity, con-
sistent with the above scenario. For m = 1/4 we find
λ∗ = −4.26953.
Once the Z(λ) curves have been measured for each

model, one can obtain the corresponding large-deviation
functions via a numerical Legendre transform. On fig-
ure 20 we have plotted the large-deviation function,
Legendre-transform of Z(λ) for the

√
u̇ model. Its min-

imum is at x = 1, and for large positive x it grows like
F (x) ≈ λ+c x + const, with λ+c given by equation (150).
For large negative x, the growth is F (x) ≈ λ−c x + const
with λ−c also given by equation (150). These slopes are
indicated by the dashed curves in figure 20 (right).

B. Convergence of the large-deviation functions

We now show the main result of this section, namely
that the three models have the same large-deviation func-
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ABBM Hv=5L

tree sim Hv=2L

-8 -6 -4 -2
Λ

-2

-1

1

2

3

4
Z

2 4 6 8
x

1

2

3

4

5

6
F

FIG. 20. Left: Different curves for Z(λ), m = 1/4: The numerical solution of the instanton equation (101) is used to obtain Z

(see (103)) denoted as
√
u̇ inst and shown by a thick orange line. Numerical simulation of this

√
u̇-model for driving velocity

v = 0.1 (grey-blue line), with an estimate of the numerical error bars, (one-σ error, dashed curves of the same color). Within

error-bars, the simulation has converged to the orange curve
√
u̇ inst; errors are small for −4 ≤ λ ≤ 1 . The simulations for

the tree model at v = 2 (dark green) and v = 0.5 (bright green), both with error bars (dashed) show clear deviations from
instanton solution at small v, but get closer to the latter for larger v. The last curve is a simulation of the ABBM model at
v = 5 (red). It has also converged to the orange curve within error bars. This is not the case for smaller driving velocities (not
shown). All simulations are for 5× 107 data points, apart from the one for ABBM, which has 93.000 data points. Due to the
small number, the error bars in that case are underestimated.

Right: The large-deviation function F (x), obtained by performing a numerical Legendre transform of Z(λ) given by the
numerical solution of the instanton equation (101), and (103). We note F (0) = F (3.47268) = 1.30459. The thick red part is the
domain for which F (x) ≤ F (0), which can be obtained with arbitrary precision from a simulation with negligible probability of
negative velocity as explained in the text, hence must coincide for the three models. The dashed curves show the asymptotic
behavior λ±

c x+ const.

tion in the region 0 < x < x+:

F (x) = F√
u̇(x) = Ftree(x) = FABBM(x)

for all 0 < x < x+ , (192)

F (x+) = F (0) (193)

The argument is simple and in fact much more general:
Two models, which have the exact same dynamics for
positive velocities, have the same large-deviation function
in that interval. The idea is the following. Consider a
simulation with a set of Nv = edv data points. If d >
F (0) there will be negative velocities in a typical such
set (with probability one at large v). But if d < F (0)
there will be none, again with probability one at large
v. Consider any x such that F (x) < F (0). We can then
measure the value of F (x) with arbitrary accuracy (as v
becomes large) if we use edv data points with F (x) < d <
F (0) (in fact d = F (x)+ is sufficient). As stated above,
this set almost surely does not contain negative velocities.
Since the dynamics for the three models exactly coincides

for trajectories with positive velocities, this shows the
above property (192), provided at least for one of the
models the large-deviation function exists. However the
latter is true for the

√
u̇-model, since there Z(λ) is v-

independent, which completes the argument.

The argument is based on considerations of under-
sampling of rare events, and is reminiscent of similar con-
siderations used for the multi-fractal spectrum of wave-
functions, e.g. when comparing the size-dependence-
exponents of participation ratios for a typical sample or
disorder-averaged ones [60, 61]. Here, the additional in-
put is the identification of the dynamics for positive ve-
locities. Note the restriction that x < x+, which means
that rare events with positive velocities but as rare as
the negative velocity can not be controlled neither. In
the present case we do not see a reason why the various
functions F (x) would not coincide for x > x+. The re-
striction comes from the generality of the argument: One
could for instance imagine a dynamics such that the par-
ticle jumps discontinuously from large positive velocities
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to negative ones. The above estimates are made more
precise in appendix I.

C. Large deviation function in perturbation theory

for small m

1. Expression obtained from previous results

In this section we compute the large-deviation function
for the

√
u̇ model in a perturbative expansion at small

m. For x > 0, as argued above, it gives the result for all
three models. A further discussion of this equivalence is
given in App. C.
We slightly generalize the discussion of the previous

Section by considering the large-deviation function for
both velocity and acceleration defined as

F (x, y) = − lim
v→∞

ln [P (xv, yv)]

v
, (194)

where x = u̇/v and y = a/v. The connection to the
generating function introduced in (107, 109) is through
a Legendre transform in both variables, namely

Z(λ, κ) = max
x,y

{−F (x, y) + λx + κy} . (195)

To compute F (x, y) from Z(λ, κ), one looks for (x0, y0)
that satisfy ∂xF |x0,y0 = λ and ∂yF |x0,y0 = κ, to get

F (x0, y0) = −Z(λ, κ) + λx0 + κy0, (196)

These formula assume somehow the convexity of F (x, y)
and Z(λ, κ) which we did not attempt to prove but seems
to hold.
Now let us use our results from Sec.IVB to obtain

F (x, y) perturbatively inm. To this aim we use Eq. (194)
with P (u̇, a) given by Eqs. (40) and (42)-(44) where c3
and c5 are determined by Eqs. (91) and (92), and u̇ is
restricted to positive values. We find

F (x, y) =

(

ỹ2

2x
+ x− ln(x)− 1

)

+

√
mỹ3

6x2

+m

(

ỹ4

48x3
− ỹ2

4x2
+
ỹ2

4x
+
x

2
− 1

2x
− ln(x)

)

+m3/2

(

− ỹ5

240x4
− ỹ3

36x3
− ỹ3

18x2

)

+O(m2),

(197)

where ỹ =
√
my.

Similarly we obtain the large-deviation function for the
velocity only, defined in Eq. (182). Legendre transform-
ing the results of Sec. VE for Z(λ) for small m, using
(186) , we get

F (x) = x− ln(x) − 1 +m

(

x

2
− 1

2x
− ln(x)

)

+m2

(

− 1

12x2
− 5x

12
+

3

4x
+ ln(x)− 1

4

)

+O(m3). (198)

We note that F (x) = F (x, y = 0), which presumably
holds to all orders.

One can check that convexity F ′′(x) > 0 holds for x >
m/(1 +m) for the two first orders in m. This indicates
that the expansion is valid at smallm only for x≫ O(m).
We will see below, on the example of m = 1/4, that
indeed the small-m expansion is accurate for large enough
x and breaks down for small x, see figure 21.

2. Equation from Fokker-Planck

From the Fokker-Planck equation it is possible to ob-
tain a differential equation for the large-deviation func-

tion. Inserting the form P (u̇, a) = e−vFv(x=
u̇
v ,y=a

v ) in the
Fokker-Planck equation (39) we find that F (x, y) satis-
fies, to dominant order at large v,

m2y∂xF −m(x+ y − 1)∂yF +D(x)(∂yF )
2 = 0 . (199)

Here D(x) = x for the
√
u̇ model and D(x) = |x| for the

tree model. If we study this equation for x > 0, the two
equations are the same. While the equation for the tree
model can be studied for all x, the meaning of the one
for the

√
u̇ model for x < 0 requires further analysis due

to possible complex velocities.

We now use equation (199), and the emerging struc-
ture of the above perturbative results (197) and (198), to
construct the expansion in m to higher orders. One way
to analyze (199) is to perform a Taylor expansion around
y = 0,

F (x, y) = F0(x) +
∑

n≥2

Fn(x)y
n, (200)

where we assume F (x) = F (x, y = 0). Then the
Fn(x) obey the recursion relations F1(x) = 0, F2(x) =
F ′
0(x)/[2(x − 1)], and for k ≥ 2

Fk+1(x) =
1√

m(x− 1)(k + 1)

[

− kFk(x) +
√
mF ′

k−1(x)

+x

k−1
∑

p=1

(p+ 1)(k − p+ 1)Fp+1(x)Fk−p+1(x)

]

.

(201)

If we assume that the structure of (197) holds to higher
orders, in particular that there are no poles in 1/(x− 1),
we find that the conditions for their cancelations order
by order in m give enough conditions to determine F0(x)
entirely. The form which we find by inspection is

Fk(x) =

∞
∑

n=0

mn+ k−2
2

p=n+k−1
∑

p=k−1

aknp
xp

(202)

for k > 0. One checks that the previous result (197)
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satisfies equation (199). One finally obtains

F (x) = F0(x) = (x− ln(x) − 1)

+
1

2
m

(

x− 1

x
− 2 ln(x)

)

+m2

(

ln(x) − 5x3 − 9x+ 1

12x2
− 1

4

)

+m3

(

x
(

107x3 − 240x+ 22
)

+ 5

144x3
− 2 ln(x) +

53

72

)

+m4
(669− x(x(14809x3 − 38610x+ 2090) + 2905)

8640x4

+ 5 ln(x)− 3895

1728

)

+O(m5) . (203)

We have fixed the integration constant by requiring that
F (1) = 0, a consequence of u̇ = v. Note that the above
result satisfies F ′(1) = 0 and F ′′(1) = 1, which is consis-
tent with our analysis in Section IVC, namely that the
bulk of the distribution is the Gaussian (51) in the scaling
region |u̇−v| ∼ √

v. The first corrections to the Gaussian
arise from F ′′′(1) = −4/(2+m) and may already be visi-
ble in the tail |u̇−v| ∼ v2/3. This can be compared to the
perturbative expansion of F (x) around x = 1, given in
Eq. (207) below. The complete large-deviation function
describes the far tails |u̇ − v| ∼ v. Another interesting
feature is that one obtains an expansion for λ+c (m) as

λ+c (m) = lim
x→∞

F (x)

x
(204)

= 1 +
m

2
− 5m2

12
+

107m3

144
− 14809m4

8640
+O(m5).

Finally note that for large x, y the large deviation func-
tion takes the form:

F (x, y) ≈ xg(y/x) (205)

and that an ordinary differential equation can be written
from (199) for g(z).

D. Large deviation function for large m and

matching of small and large m

In App. C it is explained how to calculate the pertur-
bative solution of Z(λ) in powers of λ. Examining the
results in powers of λ keeping the complete m depen-
dence of the coefficients shows that it actually turns into
a large-m expansion. Indeed one finds

Z(λ) = λ+
λ2

2
+

2λ3

3m+ 6
+

λ4(5m+ 6)

16m2 + 44m+ 24

+
2λ5(103m2 + 198m+ 72)

5(m+ 2)(m+ 6)(4m+ 3)(9m+ 4)

+
λ6(695m4 + 4396m3 + 7666m2 + 4284m+ 720)

3(m+ 2)2(m+ 6)(4m+ 3)(9m+ 4)(16m+ 5)

+O(λ7) , (206)

and each two orders more in λ come with an additional
factor of 1/m at large m. We have obtained two more
orders, which are not displayed here due to their length.
Legendre transforming yields

F (x) =
1

2
(x− 1)2 − 2(x− 1)3

3m+ 6

+
(12 + 16m− 5m2)(x − 1)4

4(m+ 2)2(4m+ 3)

+
4(61m4 + 420m3 − 338m2 − 540m− 144)(x− 1)5

5(m+ 2)3(m+ 6)(4m+ 3)(9m+ 4)

+
(x− 1)6

6(m+ 2)4(m+ 6)(4m+ 3)2(9m+ 4)(16m+ 5)
×

×
[

(17280 + 143136m+ 386448m2 + 239312m3

− 488936m4 − 556346m5 − 3195m6 + 5240m7)
]

+O(x− 1)7 (207)

which is actually an expansion in x−1 at fixedm, in other
words deviations from the Gaussian solution of Sec. IVC
at large velocity. Again, we have obtained two more or-
ders, which are not displayed here due to their length.
Since it yields the derivatives F (n)(1) for any m, one can
check that at small m they match the result obtained
from (203) above.
From the above expansion one can now obtain a good

approximation for F (0), which gives an estimate of the
probability

p ∼ e−vF (0) (208)

for negative velocities at large v, and improves on the
estimate of Sec. IVC.
As a test, we can compare the small-m expansion (203)

and the large-m expansion (207) with the numerical so-
lution of the instanton equation, followed by a Legendre
transform (in the form of a parametric representation).
The result for m = 1/4 is shown on figure 21. One sees
that the small-m expansion works well for large x, but
breaks down for x→ 0, while the large-m expansion con-
verges for x = 0, but may have a finite radius of conver-
gence in x−1. Taking both expansions together, we have
an analytical approximation for the range 0 < x < x+
drawn in red in Fig. 20 in its right part of Sec. VIA
where the large-deviation functions for the three models
have been argued to coincide.

E. Large-deviation function for m = 6/25

Here we determine exactly, in a parametric form, the
large-deviation function for the special value of the mass
m = 6/25 and for a certain range of values for x, using
the results obtained in Sec. VG2.
One finds F (x > 0), using Eq. (186), where Z(λ =

−C3/20) is determined by Eq. (174). In Eq. (187), x
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FIG. 21. F (x) for m = 1/4 as obtained by the numerical
solution of the instanton equation (dashed line). Large-m
expansion (207) to order 1/m3, thus two more orders in (1−x)
as given in Eq. (207) (blue solid line); this approximation
substantially deviates for x > 2. Small m expansion (203),
which works well at large x, but breaks down at about x = 1/4
(red solid line).

takes the values

x

(

−C
3

20

)

=
1

3C2tC0

[

4
√

t3C0 + 1t3C0 2F1

(

5

6
, 1;

3

2
; t3C0 + 1

)

− 6Ct2C0 + 3t3C0 2F1

(

1

2
,
2

3
;
5

3
;−t3C0

)

+
18Γ

(

7
6

)

Γ
(

4
3

) (

−t3C0

)

2/3

√
π

]

(209)

where tC0 is given by Eq. (175). This expression is real
as long as tC0 > −1.

VII. THERMAL AND QUANTUM

FLUCTUATIONS

As long as we neglect backward trajectories, it is pos-
sible to include thermal and quantum fluctuations. Here
we obtain some new results within that approximation.
We then discuss its expected range of validity.

A. Classical systems: Thermal fluctuations

For a classical system in presence of a thermal noise, we
can generalize the equation of motion in the laboratory
frame (21), (22) as

mü(t)+ ηu̇(t) = µ2[v− u̇(t)]+∂tF
(

u(t)
)

+ ξT (t) . (210)

To remain slightly more general, and cover the case of a
colored noise, we define the correlations of the noise as

〈ξT (t)ξT (t′)〉 = B(t− t′) . (211)

The standard thermal white noise is

B(t) = BT (t) = 2ηT δ(t) . (212)

Hence when we can neglect the backward motion, and for
F (u) a Brownian landscape, the problem reduces again
to a Langevin equation for the velocity,

m
...
u (t) + ηü(t) = µ2[v − u̇(t)] +

√
u̇ξ(t) + ξ̇T (t) (213)

in presence of both a thermal noise and a noise generated
by the quenched disorder. It still describes the equation
of motion for the center-of-mass velocity of an elastic
manifold moving in a Brownian force landscape in pres-
ence of a thermal noise, under the same (but more strin-
gent) approximation of neglecting any backward move-
ment of the interface (i.e. even of a piece of it). Indeed
for forward motion, the general argument given in Refs.
[24, 25] and [26] (section IV.A) still applies.
Also note that the Langevin equation (213) defines a

noisy version of the
√
u̇ model, as a legitimate model

provided one accepts complex velocities which arise from
backward trajectories.
It turns out that (213) can be solved exactly for an

arbitrary noise correlator B(t). This is remarkable, since

except when ξ̇(t) is a white noise itself (see below) no
simple Fokker-Planck version seems to exist. However,
within the MSR formalism the problem is much simpler.
The Laplace transform of the velocity distribution can
be written as in Eq. (99), where the dynamical action
S[u̇, ũ] contains the additional term

−1

2

∫

tt′
ũ(t)ũ(t′)∂t∂t′B(t− t′) (214)

= −1

2

∫

tt′
∂tũ(t)∂t′ ũ(t

′)B(t − t′) . (215)

The derivation follows the same steps as in Section VB.
The action is still linear in u̇, hence the instanton equa-
tion (101) is unchanged and inserting this equation in the
action gives

〈e
∫
λu̇(t0)〉 = evZ(λ)+ 1

2

∫
tt′

∂tũ(t)∂t′ ũ(t
′)B(t−t′) (216)

using that ũ(t) vanishes at t = ±∞, with the same
Z(λ) = µ2

∫

t ũ(t) as in (103). For a thermal noise it
gives

〈e
∫
λu̇(t0)〉 = evZ(λ)+ηT

∫
t
[∂tũ(t)]

2

. (217)

Note that a double average is performed over thermal
fluctuations and disorder realizations [62]. Note also that
these results can be obtained from the general expression
given in Ref. [26] (see Eq. (6) there), valid for an arbitrary
forward driving and a forward motion w(t), by substitut-
ing w(t) → vt + ξT (t)/µ

2 and performing the Gaussian
average over ξT [63].
The calculation of the contribution of the noise requires

a small-time cutoff. For standard thermal white noise
with no intrinsic cutoff, (217) can be evaluated only for
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a non-zero inertial mass, which provides the small-time
cutoff. Its evaluation turns out to be remarkably sim-
ple, as we now show: Multiplying the instanton equation
(101) by ∂tũ, it can be rewritten, for t < t0, as

−∂t
[m

2
(∂tũ(t))

2 +W (ũ(t))
]

= −η[∂tũ(t)]2 (218)

W (ũ) =
µ2

2
ũ2 − σ

3
ũ3 . (219)

This can be interpreted as a classical particle of position
variable ũ(t), undergoing (backward in time) a damped
motion in a potential W (ũ). Integrating over time we
find

η

∫ t0

−∞
dt(∂tũ)

2 =
[m

2
(∂tũ(t))

2 +W (ũ(t))
]0

−∞

=
λ2

2m
, (220)

using that ũ(t0) = 0 and ũ′(t0) = λ/m, as well as that
ũ(t) decays to zero at t = −∞. In other words, the
total dissipated energy is the total initial energy since
the fictitious particle settles to rest at t = −∞. Hence,
we find the exact result for any m and v,

〈e
∫
λu̇(t0)〉 = evZ(λ)+ T

2mλ2

. (221)

The new term corresponds to the thermal broadening
(i.e. u̇→ u̇ + δu̇) of the T = 0 velocity distribution by a
Gaussian of variance 〈δu̇2〉c = T

2m . It can be interpreted
as the system reaching kinetic-energy equipartition, as
in the system without disorder. Keeping only the terms
of O(λ) and O(λ2) in (221) leads to the large-v Gaus-
sian distribution (46) with Teff → Teff +T , and indicates
that at large v negative velocities are negligible when
T + Teff ≪ mv2. More precisely, a new large-deviation
function at large v can be defined if one scales T ∼ v,
i.e in the high-temperature, high-driving-velocity limit.
The Legendre transform of Z(λ)+ θλ2/2 yields to Fθ(x).
Defining θ = T/(mvv2µ) we have

P (u̇) ∼ e−vFθ(x=
u̇
v ) (222)

F ′(x) = F ′
θ(x+ θF ′(x)). (223)

For the case m = 0 (ABBM model without inertia) we
find using Fθ(1) = 0

Fθ(x) = (x − 1)

[

1

2
+

x− θ

x+ θ +
√

4θ + (x − θ)2

]

− ln

(

1

2

(

x− θ +
√

4θ + (x− θ)2
)

)

. (224)

The second solution that follows from (223) is not ap-
plicable since it does not give Gaussian distribution ex-
pected at large v, Sec. IVC. This formula should, fol-
lowing the general argument given in Section VI also
hold in the positive velocity region x > 0 for the orig-
inal ABBM model (without inertia) and with tempera-
ture, even though it cannot be solved exactly because of

possible backward motion due to thermal fluctuations.
Extension of (224) in presence of inertia can be studied
using the array of methods introduced in this paper, but
we refrain from doing so here.
The result (221) is remarkable since the effect of ther-

mal fluctuations is exactly Gaussian, despite the presence
of quenched randomness which is highly non-linear. This
property can be generalized and traced to the fact that
the noise-dissipation satisfies the fluctuation dissipation
relation (FDR), i.e. for an equilibrium thermal bath. To
see that consider a slightly more general bath and re-
sponse function, in frequency space,

R−1(ω) = −mω2 + µ2 + η(ω)iω , (225)

where η(ω) is an even function in ω. The classical FDR
reads

2Tη(ω) = B(ω) . (226)

Since the response function is changed, the instanton
equation becomes different. It involves the transpose of
the inverse response and reads

(m∂2t + µ)ũ− σũ2 +

∫

ω

eiωtη(ω)iωũ(ω) = 0 . (227)

Again, multiplying with ∂tũ(t) and integrating over time
yields

λ2

2m
=

∫

ω

η(ω)ω2ũ(ω)ũ(−ω) . (228)

Hence

1

2

∫

tt′
∂tũ(t)∂t′ ũ(t

′)B(t− t′) =
λ2

2m
(229)

if the FDR holds. Eq. (216) again implies Eq. (217).

Formula (216) also allows to compute eλu̇+κa, and the
joint distribution of velocity and acceleration, replacing
Z(λ) by Z(λ, κ) and ũ(t) by the solution of the instan-
ton equation with boundary conditions (116,117). The
formula (217) however cannot be used, as it contains a
divergent integral since ũ(t) has a jump of κ/m at t0.
This is because the distribution of acceleration is not well
defined, unless we add an intrinsic small-time cutoff to
the thermal bath, i.e. the mass is not sufficient to act
as a cutoff. It can be seen within the large-v analysis of
Section IVC since 〈a2〉 is defined by the same integral
with an additional ω2 in the numerator.
A non-Gaussian contribution to the velocity distri-

bution can arise from a Gaussian noise if it is a non-

equilibrium one, such as, for instance colored noise with a
frequency-independent constant-friction dissipation term
η. We mention here one simple example, when ξ̇(t) is a

white noise, 〈ξ̇(t)ξ̇(t)〉 = 2Dδ(t− t′), i.e. ξ(t) is a Brow-
nian. Then it is easy to see that for m = 0 one recovers
the result for the ABBM model without inertia (8) for
P (u̇) with the replacement

Pv,D(u̇) = APv+D,D=0(u̇ +D) (230)
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This is the only case which is amenable to a Fokker-
Planck equation (with u̇→ u̇+D in the diffusion term).
Not of course, that negative velocities are simply ne-
glected, hence the normalization factor A.

B. Quantum system

The extension to the quantum system in presence of
a bath is straightforward. It can be done by generaliz-
ing the MSR methods of Ref. [24, 26] to the Keldysh
path integral. Let us write the Keldysh action for a
quantum particle in a Brownian-force landscape. The
Keldysh path-integral over the fields u(t), û(t) between
an initial and a final time involves e−SK with Keldysh
action SK = S0

K + S1
K and

S0
K =

∫

tt′

∫

t′
iû(t)G−1

0 (t− t′)u(t′)

−1

2

∫

tt′
iû(t)B(t− t′)iû(t′) (231)

S1
K =

i

~

∫

t

∑

ǫ=±1

ǫV (u(t) + ǫ
~

2
û(t)) (232)

S2
K =

iµ2

2~

∫

t

∑

ǫ=±1

ǫ(u(t) + ǫ
~

2
û(t)− w(t))2 (233)

=

∫

t

iû(t)µ2(u(t)− w(t)) (234)

The path integral can be expressed alternatively in terms
of the upper and lower Keldysh fields u±(t) = u(t) ±
~

2 û(t). The form of the functions G−1
0 (t) and B(t) de-

pends on the details of the bath. One convenient choice
is

S0
K + S2

K =

∫

t

iût(m∂
2
t + η∂t − µ2)ut (235)

−1

2

∫

tt′
iûtB(t− t′)iût′ +

∫

t

iûtµ
2wt

with

B(ω) = η~ωcoth(β~ω/2) , (236)

which for η > 0 represents an Ohmic bath. A realistic
bath has a large-frequency cutoff ωc.
After averaging over disorder the system is described

by the same Keldysh action with S1
K replaced by

S1
K =

1

2~2

∫

tt′

∑

ǫ,ǫ′=±1

ǫǫ′R
(

ut − ut′ +
~

2
(ǫût − ǫ′ût′)

)

.

(237)
This is because the Keldysh path integral is normalized
to unity.
In the classical limit ~ → 0, one recovers the classical

MSR functional with the thermal white noise B(ω) =
2ηT and the usual disorder part

Sclassical
1 = −1

2

∫

tt′
iûtiût′∆(uxt − uxt′) . (238)

∆(u) = −R′′(u) is the correlator of the pinning force.
Note that iû is sometimes denoted by û in the MSR for-
malism.
Now we can treat the case of a Brownian force land-

scape choosing

R(u) = R(0)−∆(0)
u2

2
+ σ

|u|3
6

. (239)

This corresponds to ∆(u) = ∆(0)−σu. Inserting this into
Eq. (237), we obtain a complicated expression. However,
if we make the replacement

sgn(uǫ(t)− uǫ
′

(t′)) → sgn(t− t′) (240)

for all four couples (ǫ, ǫ′) = (±1,±1), then it simplifies
into

S1
K =

1

2

∫

tt′
ûtût′

[

∆(0)− σ(ut − ut′)sign(t− t′)
]

.

The observable we are computing is the following average
over the Keldysh action

P̂ [λ] = 〈e
∫
t
λtu̇t〉SK . (241)

The study of more general observable is left for the future.
To recover the velocity theory we define

iût = −∂tũt , (242)

and consider ũt vanishing at t = ±∞. It is very similar
to what is done in [26], and to which we refer for details.
It yields, after integration by parts

S1
K = −σ

∫

tt′
ũtũt′ u̇t (243)

S0
K + S2

K =

∫

t

ũt(m∂
2
t + η∂t − µ2)u̇t (244)

−1

2

∫

tt′
∂tũtB(t− t′)∂t′ ũt′ −

∫

t

iũtẇt .

Integration over u̇t leads to the instanton equation (101),
and inserting its solution into the action, we find again
for w(t) = vt the same result (216). Note however that
for any non zero ~ the bath cutoff time is needed to get
a finite result - the mass only cutoff leads to a logarith-
mic divergence when inserting into (216). Since they re-
quire the corresponding dissipation related by FRD, we
leave explicit calculations to future studies. To summa-
rize however, one can say that everything works as if the
quantum system is described by a semi-classical equation
of motion with the noise correlator (236).
Of course, there are two crucial ingredients here:

(i) the Brownian disorder-force landscape; (ii) the ap-
proximation (240). For ǫ′ = ǫ it amounts to neglecting
any trajectory with backward motion. We see however
that for ǫ′ = −ǫ the approximation cannot be correct at
short time differences t − t′, even for forward-only tra-
jectories. This should be valid if this time scale is much
smaller than the other ones considered here. A more de-
tailed discussion of the validity of this approach is left for
the future.
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VIII. CONCLUSIONS AND DISCUSSION

In this paper we studied an extension of the ABBM
model including inertia, i.e. the motion of a particle of
inertial mass m driven at externally imposed average ve-
locity v > 0 in a 1D Brownian random-force landscape in
presence of damping. Its main interest, besides modeling
a particle, is that in some cases it describes the center-of-
mass dynamics of an interface in a Brownian correlated
disorder. When all the segments of the interface move
forward it is certainly true, and in more general situa-
tions it remains to be understood. For any m this model
can also be derived for the center of mass of a manifold
with inertia in a short-range disorder potential, in the
limit of a fully connected model (infinite-ranged interac-
tions). In that sense it is a mean-field approximation.
Whether that property also extends to finite range in-
teractions in high enough internal space dimension d, as
is the case for m = 0 for d > dc, remains to be under-
stood. Our aim here was to calculate exactly, or using
approximate methods, the distribution of the instanta-
neous velocity, and of the acceleration for this particle
model.

We started by recalling the m = 0 limit which is ex-
actly solvable (standard ABBM model). It is charac-
terized by a relaxation time scale τµ, a spatial scale Sµ

and a velocity scale vµ = Sµ/τµ, see Sec. II. For v < vµ
the motion proceeds via avalanches, while for v > vµ
the motion becomes smoother. In presence of inertia
m > 0, the ABBM model cannot easily be solved be-
cause backward motion occurs and induces memory ef-
fects. Numerical simulations and qualitative arguments
showed new characteristic time scales for oscillations τ0,
and damping τm, and new velocity scales v0 = Sµ/τ0 and
vm = Sµ/τm (Sec. III). An avalanche regime survives for
v < min(vm, vµ) similar to the one for m = 0 except that
the smallest avalanches have merged into bigger ones. As
the mass increases, overshoots and oscillations become
more pronounced before the damping allows relaxation
into a metastable state. As v increases further the mo-
tion becomes smoother, but oscillations persist. As a
general rule the inertia tends to make the motion less
jerky and to smoothen the abrupt jumps of a center-of-
mass position in time. At the same time, the distribution
of velocities evolves from being strictly positive but with
a divergent limit P (u̇ = 0+) = ∞ for m = 0 and v < 1,
corresponding to intermittent motion where the particle
is part of the time at rest, to developing a finite weight for
negative velocities and a finite P (u̇ = 0), corresponding
to oscillatory motion.

To make quantitative progress we introduced two vari-
ants of the model which share the exact same dynamics
with the ABBM model for all forward trajectories, and
are analytically more tractable. The analysis of the first,
the tree model, is based on a Fokker-Planck equation.
The study of the second one, the

√
u̇ model, is based

on a saddle-point equation of the dynamical action. For
both of them we calculated the joint distribution of ac-

celeration and velocity perturbatively in small and large
mass. The

√
u̇ model could also be solved exactly for

a magic value of the mass in terms of hypergeometric
functions, and was studied with very high precision for
other values of the mass. From these variant models we
obtained two sets of results for the ABBM model:

(i) at large driving velocity: Since by increasing v the
probability distribution for negative velocities decreases,
all the considered models become more and more similar.
The bulk of the velocity distribution, i.e. for velocities
|u̇ − v| = O(v), then tends to the same Gaussian. To
characterize more accurately the tails we defined for each
model the large-deviation function which describes the
rare events when the instantaneous velocity u̇ deviates
from the average v. We proved that these large-deviation
functions become identical for positive u̇ at large v for
the three models, and obtained analytical expressions at
small and large m and for the magic value of the mass.

(ii) at any driving velocity: We compared the three
models and discuss differences and similarities. Although
agreement is not exact anymore, some features of the
ABBM model are, in some cases, quite well reproduced.

Finally we showed how thermal and quantum fluctua-
tions can also be treated within the approximation of ne-
glecting backward trajectories. For thermal fluctuations
it is expected to be a reasonable approximation at fixed
v only for small T or for any T at large v. For quantum
fluctuations, the discussion is more subtle but basically
it should hold within a semi-classical approximation.

In conclusion this paper proposes a first step to the de-
scription of classical and quantum avalanches of pinned
elastic systems in presence of inertia, and the effect of
driving. A more elaborate theory should incorporate bar-
rier crossing by thermal and quantum fluctuations, and
a treatment of memory and oscillation effects. However
we believe that we have introduced a useful framework.
For instance a key observable is Z(λ) = 1

v ln e
λu̇ which

in the
√
u̇ model is independent of v, and is well charac-

terized by branch-cut singularities describing the tails of
the velocity distribution. At the same time, as v → 0+ it
describes the avalanche dynamics. Hence, numerical or
experimental determination of this quantity in realistic
systems could help developing further understanding.

It would be interesting to extend the current analysis
to different time-dependent and space-dependent driv-
ing, as well as to analyze the spatial correlations of the
probability distribution taking into account the spatial
extension of the interface and not just its center-of-mass
position. Additionally, due to retardation effects appear-
ing in soft magnets [4] there is a need to generalize the
current approaches and to use a more general equation of
motion, with a more general response function. Finally
in quantum systems where velocity translates into cur-
rent, developing a more general connection with the full
counting-statistics problem would be very interesting.
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Appendix A: Perturbation theory at small m for

P (u̇) for the tree model

In this appendix we give details on the perturbation
theory discussed in the Sec. IVB. We start with the dif-
ferential equation (41) with n = 0. It has the solution

F0(a, u) =

√

π

2

√
u̇c1(u̇)erfi

(

a√
2
√
u̇

)

+ c2(u̇), (A1)

where erfi denotes the imaginary error function erfi(z) =
erf(iz)/i. In order to have properly defined moments

aiu̇j, the distribution function has to decay exponentially
fast at large a and u̇. This implies that c1(u̇) = 0. Next,

F1(a, u̇) = c4(u̇)

+
1

2

[

−1

3
a3c2(u̇) + au̇c2(u̇)− 2au̇2c′2(u̇)

]

,

(A2)

F2(a, u̇) =
1

2
a2u̇3 [−vc′2(u̇) + u̇c′2(u̇)− u̇c′′2(u̇)]

× 2F2

(

1, 1;
3

2
, 2;

a2

2u̇

)

+
1

72
a6c2(u̇) +

1

48
a4u̇ [8u̇c′2(u̇)− 5c2(u̇)]

− 1

6
a3c4(u̇)

+
1

4
a2u̇2

[

2u̇2c′′2(u̇) + vc2(u̇)− u̇c2(u̇)
]

+

√

π

2

√
u̇c5(u̇)erfi

(

a√
2
√
u̇

)

− 1

2
au̇ [2u̇c′4(u̇)− 5c4(u̇)] + c6(u̇), (A3)

where 2F2(a; b; z) is a generalized hypergeometric func-
tion. The first line of Eq. (A3) has to vanish due to its
large-a behavior, which gives us a differential equation
for c2(u̇). Solving it, we obtain

c2(u̇) = c3(−1)vΓ(1− v,−u̇) + c4 . (A4)

Analyzing it, we conclude that c3 = 0. Then, finally we
obtain that F0(a, u̇) = c4. Since the distribution has to

be normalized by
∫

da du̇ P (u̇, a) = 1 for every m, we
conclude that F0(a, u̇) = 1.

Also, c5(u̇) appearing in F2, has to be zero. We proceed
further in a similar way. In order to find c4(u̇) entering
F1(a, u̇), we have to solve Eq. (41) for n = 3, and the
procedure continues for higher-order terms in m. To be
able to find Fi we have to solve the differential equations
(41) for all n ≤ i+ 2.

Apart from the already stated Eqs. (43) and (44) we
give the final expressions for

F3(a, u̇) =
1

6
u̇4v ln(u̇)

(

−ã3 + 3ãu̇+ 6c3u̇
2
)

+
−10ã9 + 135ã7u̇+ 180ã6c3u̇

2

12960

+
27ã5u̇2(20u̇− 20v − 3)− 1350ã4c3u̇

3

12960

+
45ã3u̇3

(

−4 (12c5 + 5) u̇+ 24u̇2 − 24v2 + 80v − 17
)

12960

− 3240ã2c3u̇
4(u̇− v)

12960

− 135ãu̇4
(

−8 (6c5 − 5) u̇+ 24u̇2 − 24v2 + 20v + 9
)

12960

− 270u̇5
(

c3
(

24u̇2 − 24v2 + 36v − 5
)

− 48c7u̇
)

12960
. (A5)

Higher orders can be calculated in the same manner.

As an approximation for the tree model that seems
justified for small enough mass, and large enough driv-
ing velocity, one can write 1 =

∫∞
−∞ da

∫∞
−∞ duP ≈

∫∞
−∞ da

∫∞
0 duP (1). From this condition follow Eqs. (91),

(92), and we find

Papprox(u̇) =
e−u̇u̇v−1

Γ(v)
− me−u̇u̇v−2

2Γ(v)

×
(

−2u̇v ln (u̇) + 2u̇vψ(0)(v) + u̇2 − v2 + v
)

+
m2e−u̇u̇v−3

24Γ(v)

×
(

− 12u̇v ln (u̇)
(

−u̇v ln (u̇) + u̇ (u̇+ 2)− v2 + v
)

+ 12u̇v
(

ψ(v)

× (−2u̇v ln (u̇) + u̇vψ(v) + u̇ (u̇+ 2)− v2 + v)

− u̇vψ(1)(v)
)

− 6u̇2(v − 4)v + 6u̇(5− 3v)v + 3u̇4 + 10u̇3

+ (v − 2)(v − 1)v(3v + 5))
)

(A6)

A similar analysis can be done for the
√
u̇ model, and

there Eq. (A6) is obtained for small mass after neglecting
complex velocities, as shown using the instanton solution
in Sec. VE.



34

Appendix B: Matching of u̇ ∼ m and u̇ ≫ m at small

mass

Next we discuss some remaining details of the pertur-
bation theory presented in Sec. IVB. Although we could
not solve analytically the equations that determine the
solution in region 2, in this appendix we demonstrate that
we properly organized the perturbation theory in region
2. We will prove the matching between the distribution
function in regions 1 and 2, without explicitly solving the
equations in region 2.
The matching condition at the boundary reads

P (1)(u̇, a) ≈ P (2)(u̇, a). From that follows

P (2)(u̇, a) =mv−1
∞
∑

n=0

P̃ (2)
n (a, ˜̇u)mn

+ ln (m)mv−1
∞
∑

n=0

P̃(2)
n (a, ˜̇u)mn + . . . ,

(B1)

where . . . denotes that there are other terms ∼ (lnm)i

where i > 1, as well as ∼ mv−1/2. Note that ln (m) terms
come from the ln(u) dependence in P (1), while ∼ mv−1/2

comes from terms like ∼ c3 in P
(1). Note, that P̃(2)

n satis-

fies the same equations as P̃
(2)
n , but with different bound-

ary conditions, i.e. it contains only some terms from P̃
(2)
n

(see below). The same holds for the omitted terms which
can be analyzed in the same manner.
For large enough a, ˜̇u

P̃
(2)
0 (a, ˜̇u) ≈ e−

a2

2˜̇u

∞
∑

n=0

˜̇uv−
3
2−2n

Γ(v)
√
2π
F̃n(a, ˜̇u), (B2)

F̃n(a, ˜̇u) = limm→0
Fn(a

√
m, ˜̇um)

m
3n
2

, (B3)

where Fn are determined by Eq. (41). Analyzing expres-
sions for Fn, we find

F̃n(a, ˜̇u) =

[3n/2]
∑

i=0

a3n−2i ˜̇uicni , (B4)

where [x] rounds x to an integer such that [x] ≤ x and cni
are numbers. Strictly speaking Eq. (B4) holds for n < 7
and for n ≥ 7 there might be some additional (lnu)i

terms, but in that case the discussion would be similar.
By plugging Eq. (B1) into Fokker-Planck Eq. (39) one

finds

a
∂P̃

(2)
0

∂ ˜̇u
+

∂

∂a
{(−a+ v)P̃

(2)
0 } − ∂2

∂a2

(

˜̇uP̃
(2)
0

)

= 0 .

(B5)

In order that both Eqs. (B2) and (B5) hold,

cni (3n− 2i)− cni−1(3n− 2i+ 2)(3n− 2i+ 1)

+ cn−1
i−1 (−

1

2
− 2n+ i) +

1

2
cn−1
i

+ cn−1
i−2 v(3n− 2i+ 1) = 0 , (B6)

where cni = 0 for i < 0 as well as for i > [3n/2]. Indeed,
our results satisfy this structure.
Note that for i = 0 we obtain cn0 3n+ cn−1

0 /2 = 0. To
conclude, using Eq. (B6) and knowing c00 = 1 we can
find all others coefficients cni . Then the distribution of
velocities has for large enough velocities the form

P̃
(2)
0 (˜̇u) =

∞
∑

k=0

˜̇uv−k−1

Γ[v]
√
2π

3k
∑

i=0

23k−i+1/2c2ki Γ(3k − i+ 1/2).

(B7)

Now we consider the next term in the expansion P̃
(2)
1 .

Knowing P (1), from the matching condition follows that

P̃
(2)
1 (a, ˜̇u) ≈e−a2

2˜̇u

∞
∑

n=0

˜̇uv−
3
2−2n

Γ(v)
√
2π
Q̃n(a, ˜̇u), (B8)

Q̃n(a, ˜̇u) =− ˜̇uF̃n(a, ˜̇u) + ˜̇u

[3n/2]
∑

i=2

a3n−2i ˜̇uipni

+ ˜̇u ln ˜̇u

[3n/2]
∑

i=3

a3n−2i ˜̇uidni , (B9)

for large enough velocities. On the other hand, the equa-

tion for P̃
(2)
1 (a, ˜̇u) reads

a
∂P̃

(2)
1

∂ ˜̇u
+

∂

∂a

[

(v − a)P̃
(2)
1

]

− ∂2

∂a2

(

˜̇uP̃
(2)
1

)

− ˜̇u
∂

∂a
P̃

(2)
0 = 0. (B10)

From Eqs. (B8) and (B10) one obtains

pni (3n− 2i)− pni−1(3n− 2i+ 2)(3n− 2i+ 1)

+ pn−1
i−1 (

1

2
− 2n+ i) +

1

2
pn−1
i + pn−1

i−2 v(3n− 2i+ 1)

− cn−1
i−2 (3n− 2i+ 1) + dn−1

i−1 = 0, (B11)

dni (3n− 2i)− dni−1(3n− 2i+ 2)(3n− 2i+ 1)

+ dn−1
i−1 (

1

2
− 2n+ i) +

1

2
dn−1
i + dn−1

i−2 v(3n− 2i+ 1) = 0,

(B12)

where pni = 0 for i < 2 or i > [3n/2], and dni = 0 for i < 3
or i > [3n/2]. Note that knowing d23 = v we can find all

other coefficients. By examining the expressions for Q̃n

that follow from Fn, we found that both Eqs. (B11) and
(B12) hold. One can repeat the procedure for higher-
order terms in the same way.
Similarly, we find that in region 1

P(2)
0 = 0, (B13)

P(2)
1 = e−

a2

2˜̇u

˜̇uv−
1
2−2n

Γ(v)
√
2π

[3n/2]
∑

i=3

a3n−2i ˜̇uidni . (B14)

The analysis presented in this appendix confirms that
perturbation theory in region 2 is properly organized and
matching between the distributions in regions 1 and 2
holds.
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Appendix C: Large-deviation function

Here we comment shortly on the Laplace transformed
Fokker-Planck equation for the tree model and then
present a calculation of its large deviation function. It
allows to show that the equivalence of the large-deviation
function for the tree and

√
u̇ model for positive velocities

holds self-consistently. It may allow to obtain a complete
proof of the equivalence if one subcase (see below) could
be ruled out, but we have not succeeded at this stage in
doing so.
The Laplace-transformed Fokker-Planck equation

reads

∂P̂+

∂t
− ∂P̂+

∂κ

(

λ− κ

m

)

− ∂P̂+

∂λ

(

− κ

m
+
κ2

m2

)

=
κ

m
vP̂+ +Φ(κ), (C1)

∂P̂−
∂t

− ∂P̂−
∂κ

(

λ− κ

m

)

− ∂P̂−
∂λ

(

− κ

m
− κ2

m2

)

=
κ

m
vP̂− − Φ(κ), (C2)

where

Φ(κ) =
∂

∂κ

∫ ∞

−∞
daeκaP (u̇ = 0, a) (C3)

Here we kept only the one boundary term at u̇ = 0,
assuming that other terms at “infinity” vanish. Here
P̂+(λ, κ) =

∫∞
0

du̇
∫∞
−∞ daeλu̇+κaP (u̇, a). We define P̂−

similarly, with the difference that the integration is over
negative velocities.
Eq. (C1) (which describes the contribution coming

from positive velocities) can be compared with the cor-

responding equation for the
√
u̇ model (108). One sees

that the main difference is the additional boundary term
Φ(κ). When this boundary term vanishes, the two mod-
els become equivalent.
In the stationary case, introducing the time parame-

terization as in Eqs. (111) and (112) we obtain

dP̂+

dt
− κ(t)

m
vP̂+ − Φ(κ(t)) = 0. (C4)

The solution of this equation is

P̂+(λ0, κ0) =P̂+(0, 0)e
vZ(λ0,κ0)

+

∫ t

−∞
ev[Z(λ0,κ0)−Z(λ(s),κ(s))]Φ(κ(s))ds,

(C5)

where Z is given by Eq. (118) with κ(t) = κ0 and λ(t) =
λ0.
Introducing F (x, y) as in Eq. (194), we find Φ(κ) =

a0e
v[G(κ)−f0], where P̂+(0, 0) = e−vf0 = e−vminx,yF (x,y).

Here

G(κ)− f0 = −miny{F (0, y)− κy}, (C6)

and a0 is the corresponding value of the acceleration
when the minimum is reached. If we assume that the
first term in Eq. (C5) gives the main contribution in the
limit v → ∞, we obtain

−f0 + Z(λ, κ) = −minx,y{F (x, y)− κy − λx}. (C7)

Then indeed the second term is smaller than the first one
in Eq. (C5), since it reads

e−vf0evZ(λ,κ)

∫ t

−∞
e−v[Z(λ(s),κ(s))−G(κ(s))]ds =

e−vf0evZ(λ,κ)e−vmins∈(−∞,t){Z(λ(s),κ(s))−G(κ(s))}, (C8)

and using (C6) and (C7) it follows that φ(λ0, κ0) =
mins∈(−∞,t){Z(λ(s), κ(s))−G(κ(s))} ≥ 0.
However, if we assume that the second term gives the

main contribution, then (C8) implies that

− f0 + Z(λ, κ)− φ(λ, κ)

= −minx,y{F (x, y)− κy − λx}. (C9)

From this equation and Eq. (C6) follows that φ(λ0, κ0) ≤
Z(λ0, κ0)−G(κ0). This statement is not in contradiction
with the assumption, but on the other hand it does not
follow from (C9) that φ(λ0, κ0) ≤ 0, as it should be if
the second term is the dominant one. It would be nice
to show that this possibility is ruled out, which would
provide a proof of the equivalence of large deviation func-
tions, independent of the one given in the main text.
Note, that f0 is expected to be zero and then (C7) is

equivalent to Eq. (195).

Appendix D: Moments of the distribution function

for
√
u̇ model

Using the equations derived in Sec. VC we find the
moments characterizing the distribution function of the√
u̇ model discussed in Sec. VC. Choosing t∗ = 0 with

a constraint ũ(t ≥ 0) = 0 and ˙̃u(0) = −λ/m, we can
rewrite Eq. (115) as

(m∂2t − ∂t + 1)ũ− ũ2 = λδ(t). (D1)

Then Z(0, λ) =
∫ 0

−∞ ũ(t)dt.

One can write ũ =
∑∞

n=0 ũnλ
n, where

(m∂2t − ∂t + 1)ũn(t)−
n
∑

ℓ=0

ũℓ(t)ũn−ℓ(t) = δn,1δ(t).

(D2)

A solution of this set of equations is

ũ0 = 0, (D3)

ũ1(t) = R(t), (D4)

ũn(t) =

∫

dτR(t − τ)

n
∑

ℓ=1

ũℓ(τ)ũn−ℓ(τ) for n > 1,

(D5)
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with

(m∂2t − ∂t + 1)Rt−t′ = δ(t− t′), (D6)

Rt =

{

2θ(t)√
4m−1

et/(2m) sin( t
2m

√
4m− 1), m > 1/4

2θ(t)√
1−4m

et/(2m) sinh ( t
2m

√
1− 4m), m < 1/4.

.

(D7)

The case m = 1/4 was treated in equation (147). Using

that P̂ (λ, κ) = evZ(λ,κ) and ∂nλ∂
m
κ P̂ (λ, κ)|(0,0) = u̇nam,

we obtain the first few moments exactly:

u̇ = v, (D8)

u̇2 = v(σ + v), (D9)

u̇3 = v

(

4σ2

m′ + 2
+ 3σv + v2

)

, (D10)

u̇4 = v

(

6σ3(5m′ + 6)

(m′ + 2)(4m′ + 3)
+
σ2(3m′ + 22)v

m′ + 2
+ 6σv2 + v3

)

, (D11)

u̇5 = v

(

48σ4(m′(103m′ + 198) + 72)

(m′ + 2)(m′ + 6)(4m′ + 3)(9m′ + 4)
+

10σ3(31m′ + 30)v

(m′ + 2)(4m′ + 3)
+

5σ2(3m′ + 14)v2

m′ + 2
+ 10σv3 + v4

)

, (D12)

u̇6 = v
(240σ5(m′(m′(m′(695m′ + 4396) + 7666) + 4284) + 720)

(m′ + 2)2(m′ + 6)(4m′ + 3)(9m′ + 4)(16m′ + 5)

+
2σ4(m′(m′(9m′(225m′ + 4138) + 130916)+ 137592) + 39456)v

(m′ + 2)2(m′ + 6)(4m′ + 3)(9m′ + 4)

+
15σ3(m′(4m′ + 105) + 90)v2

(m′ + 2)(4m′ + 3)
+

5σ2(9m′ + 34)v3

m′ + 2
+ 15σv4 + v5

)

, (D13)

u̇7 = v
(2880σ6(m′(m′(m′(m′(22015m′ + 190244) + 521534) + 594996) + 277920) + 43200)

(m′ + 2)2(m′ + 6)(m′ + 12)(4m′ + 3)(9m′ + 4)(9m′ + 10)(16m′ + 5)

+
168σ5(m′(m′(m′(20438m′ + 114479) + 179748) + 93924) + 15120)v

(m′ + 2)2(m′ + 6)(4m′ + 3)(9m′ + 4)(16m′ + 5)

+
14σ4

(

m′ (m′ (3105m′2 + 39756m′ + 125468
)

+ 122256
)

+ 33408
)

v2

(m′ + 2)2(m′ + 6)(4m′ + 3)(9m′ + 4)
+

105σ3(m′(4m′ + 53) + 42)v3

(m′ + 2)(4m′ + 3)
+

35σ2(3m′ + 10)v4

m′ + 2
+ 21σv5 + v6

)

, (D14)

where m′ = mµ2/η2, σ = |∆′(0+)|
(ηµ2) . Here we used

dimension-full quantities. These results are in agreement
with the results from Section VD.

Appendix E: Perturbation theory for the instanton

solution

Here we give more details on the derivation of the per-
turbative solution of Eq. (115) considered in Sec. VE. We
analyze the matching of the expansions in the different
regions (133) and (137) at t ∼ −m, in order to find yn
appearing in (137).

After determining fn (see Sec. VE) we notice that for
n ≥ 0 it has the structure

fn(x) =

n+1
∑

k=1

ekxC(n)
k (x, λ) +

n
∑

k=0

A(n)
k (λ)(−x)k . (E1)

From Eq. (135), and by comparing the coefficient in front
of xk we obtain

(k + 1)A(k+1)
k+1 +A(k)

k −
k
∑

ℓ=0

A(k−ℓ)
k−ℓ A(ℓ)

ℓ = 0. (E2)
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We find that

A(k)
k (λ) =

Sk(
λ−1
λ )

k!
, (E3)

Sk(x) =

∞
∑

n=0

xnnk. (E4)

This comes from

k
∑

ℓ=0

k!

ℓ!(k − ℓ)!
Sk−ℓ(x)Sℓ(x) =

k
∑

ℓ=0

(

k

ℓ

) ∞
∑

a=0

xaak−ℓ
∞
∑

b=0

xbbℓ

=

∞
∑

a,b=0

(a+ b)kxa+b =

∞
∑

t=0

tkxt(t+ 1) = Sk+1(x) + Sk(x)

(E5)

By multiplying Eq. (E5) with 1/k!, we obtain Eq. (E2),

if A(k)
k (λ) = Sk(x)/k!. Using the “boundary condition”

S0(x) = 1/(1− x) = A(0)
0 = λ, we find Eq. (E3).

It follows that the matching condition holds in zeroth
order in m if

y0(x) =

∞
∑

n=0

Sn

(

λ− 1

λ

)

(−x)n
n!

=
λ

λ+ (1 − λ)e−x
. (E6)

In order to have a smooth function ũ(t) at t ∼ −m in
each order n ≥ 0 in m, it should hold

yn(x) =

∞
∑

k=0

A(n+k)
k (λ)(−x)k. (E7)

Then, yn>0(0) = A(n)
0 and we find Eq. (141). Higher-

order terms yn can be found easily. We state here:

f2(t) = −1

6
e3tλ3

+
1

12
e2tλ

(

39λ− 12tλ− 54λ2 + 24tλ2
)

+

1

12
etλ
(

− 72 + 36t− 6t2 + 192λ− 144tλ+ 12t2λ

− 126λ2 + 132tλ2 − 12t2λ2
)

+
1

12
λ(72 + 36t+ 6t2 − 231λ− 114tλ− 18t2λ+ 182λ2

+ 84tλ2 + 12t2λ2), (E8)

y2(t) = − e−tλ

12(e−t(−1 + λ)− λ)3

×
(

λ
(

− 96 + 6t2(−1 + λ) + 141λ− 25λ2

− 6t(−8 + 9λ)
)

+ e−t(72 + 6t2(−1 + λ)2 − 135λ+ 41λ2 + 25λ3

− 6t(4− 9λ+ 5λ2))

− 12(e−t(−1 + λ) + λ)(−6 − 2t(−1 + λ) + 7λ)

× ln [e−t + λ− e−tλ] + 24(−1 + λ)×

× (e−t(−1 + λ) + λ) ln [e−t + λ− e−tλ]
2
)

. (E9)

Appendix F: The behavior of Z(λ) for λ → ±i∞ in

the
√
u̇-model

In this appendix, we derive the large-λ behavior of
Z(λ) for the

√
u̇-model.

In order to facilitate our thinking, we denote τ := −t,
such that the time τ of the instanton goes from zero to∞.
The behavior for λ→ ∞ is complicated. Analyzing Z(λ)
for real λ, one finds that there is a branch-cut singular-
ity. On the diagonal in the complex plane, λ ∼ 1+ i, the
instanton solution of (101) looks rather chaotic. For com-
plex λ with vanishing real part, the behavior is slightly
simpler: In the complex plane, ũ(τ), its derivative ˙̃u(τ),
and the energy

E(τ) :=
m

2
[∂τ ũ(τ)]

2
+
µ2

2
ũ(τ)2 − σ

ũ3(τ)

3
(F1)

are behaving as indicated on Fig. 22 (blue solid lines).
The energy is dissipated as

d

dτ
E(τ) = −η[∂τ ũ(τ)]2 . (F2)

We are interested in the case when λ is equal to the imag-
inary unit times a large positive number. We start by ne-
glecting dissipation and the term ∼ µ2 . One can check
later on the trajectories we find that this approximation
is justified.
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FIG. 22. (Color online) Evolution in the complex plane of ũ(τ ) (top left), ˙̃u(τ ) (top right), Ekin(τ ) (bottom right), and∫ t

0
ds ũ(s)ds (bottom left), for λ = 50 000i, m = 1/4. The movement of ũ(τ ) starts at 0, moving in counterclockwise circles

inwards. The kinetic energy evolves from left to right, and
∫ τ

0
ds ũ(t)ds from zero to the left. The dashed lines are the solution

for µ = η = 0, given in (F6) and (F7).

We will be working in dimensionless units σ = η = µ =
1. We have to solve

m∂2τ ũ(t) = ũ(τ)2, (F3)

∂τ ũ(0) = λ/m, (F4)

ũ(0) = 0. (F5)

The solution for ∂τ ũ ≡ ˙̃u can be parameterized by φ,

˙̃u(φ) =
(

2eiφ − 1
) λ

m
. (F6)

While this is of course always possible, we claim and
check in Eq. (F8) below, that φ is real, and thus has the
natural interpretation of an angle. Using energy conser-

vation, E(0) = λ2

2m , and E(τ) = m
2 [∂τ ũ(τ)]

2− ũ3(τ)
3 , this

yields

ũ(φ) =
3

√

−6λ2

m
e

iφ
3 + 2iπ

3
3
√

1− eiφ . (F7)

This allows to obtain the “angular velocity” (attention:
the prime indicates the derivative w.r.t. the argument φ)

φ̇(φ) =
˙̃u(φ)

ũ′(φ)
=

3

√

9

2

λ

im2
e

i(5π/2−φ)
3

(

1− eiφ
)2/3

. (F8)

Note that for φ ∈ [0, 2π], expression (F8) is real, thus the
curves are indeed parameterized by a real angle φ.

Noting the differential dt,

dt =
dφ

φ̇(φ)
, (F9)

this allows to calculate the period as

T =

∫ 2π

0

1

φ̇(φ)
dφ =

22/335/6Γ
(

1
3

)

Γ
(

7
6

)

√
π

3

√

im2

λ

= 5.56022
3

√

im2

λ
. (F10)

Next we switch on dissipation. It leads to a change in
energy, for a time T or the equivalent phase Φ,

E(Φ)− E(0) = E(T )− E(0) =

∫ T

0

Ė(τ)dτ

= −
∫ T

0

˙̃u(τ)2dτ = −
∫ Φ

0

˙̃u(φ)2
dφ

φ̇(φ)
, (F11)
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In principle, the exact trajectory has to be put. Using
the dissipation-less one, we find for one period

E(2π)− E(0) ≈ − Γ
(

− 5
6

)

Γ
(

1
3

)

2 3
√
2 6
√
3
√
π
√
m

(

λ

i
√
m

)5/3

=
3.33613√

m

(

λ

i
√
m

)5/3

. (F12)

If we call n the number of periods, then

− E(0) = − λ2

2m
> 0 (F13)

d

dn
[−E(2πn)] ≈ Γ

(

− 5
6

)

Γ
(

1
3

)

2 3
√
2 6
√
3
√
π
√
m

[

− 2E(2πn)
]5/6

=
−3.33613√

m

[

− 2E(2πn)
]5/6

(F14)

where we have re-expressed λ by the energy itself, in
order to allow for an iteration. Defining λeff by

E(2πn) =:
λeff(2πn)

2

2m
, (F15)

we get

d

dn

λeff(2πn)

i
=

d

dn

√

−2mE(2πn)

≈ Γ
(

− 5
6

)

Γ
(

1
3

)

2 3
√
2 6
√
3
√
π

[

− 2E(2πn)
]1/3

=
Γ
(

− 5
6

)

Γ
(

1
3

)

2 3
√
2 6
√
3
√
π

[

λeff(2πn)

i
√
m

]2/3

= −3.33613

[

λeff(2πn)

i
√
m

]2/3

(F16)

The integral over one period of
∫ T

0 dt ũ(t), which con-
tributes to Z(λ) is

∫ T

0

dτ ũ(t) =

∫ 2π

0

dφ

φ̇(φ)
ũ(φ)

=
6
√
3 Γ(− 1

6 )Γ(
2
3 )

22/3
√
π

(

λm

i

)1/3

= −3.91452

(

λm

i

)1/3

(F17)

Therefore, using that Z(λ) =
∫∞
0 ũ(τ)dτ we have the

following relations:

d

dn
Z(λ) =

6
√
3 Γ(− 1

6 )Γ(
2
3 )

22/3
√
π

(

λm

i

)1/3

(F18)

This yields

d

d(λ/i)
Z(λ) = −

dZ(λ)
dn
dλ/i
dn

= −2 3
√
6
√
πΓ
(

− 1
6

)

Γ
(

− 5
6

)

Γ
(

1
6

)

(

λ

im2

)−1/3

= −1.17337

(

λ

im2

)−1/3

(F19)

where the additional minus sign has been introduced due
to the fact that we now integrate in the opposite direc-
tion. Integrating over λ, and using that Z(0) = 0, we
find the asymptotic behavior

Zasymp(λ) = −15 3
√
6
√
π Γ
(

5
6

)

Γ
(

1
6

)2

(

λm

i

)2/3

= −1.76006

(

λm

i

)2/3

(F20)

As an example, for λ = 107i, m = 1/4, our formula
give Zasymp(10

7i) = −150483.0 whereas numerics gives
Z(107i) = −150483.6+ 330.444i. The subleading imagi-
nary part is consistent with

Zguess(λ) = −1.76006

(

λm

i

)2/3

+ 1.13i

(

λm

i

)1/3

.

(F21)
On the negative imaginary axis, the result is the same,
i.e. on the whole imaginary axis

Zasymp(λ) = −15 3
√
6
√
π Γ
(

5
6

)

Γ
(

1
6

)2 (|λ|m)
2/3

. (F22)

Appendix G: Large m expansion to second order

Here we state the second order of large m expansion
of the distribution function for

√
u̇ model, see Sec. IVD:

Q2 =
1

576v4
(

r6 cos(6θ) + 48r3v2 sin(3θ) (G1)

+432rv2 sin(θ)
(

r2 − 4v
)

+15r2 cos(2θ)
(

r2 − 12v
) (

r2 − 4v
)

+10
(

r6 − 72r2v2 + 96v3
)

+ 6r4 cos(4θ)
(

r2 − 10v
) )

.

It can be rewritten as:

Q2 =
1

144v4
(

8ã6 − 75ã4v + 18ã2v(u̇− v)(5u̇+ 3v)

+3v(15u̇4 − 28u̇3v − 6u̇2v(v + 20) + 12u̇v2(3v + 8)

+v2((24− 17v)v + 80))
)

. (G2)

Integrating out ã, we find the distribution for the veloc-
ity:

P (u̇) =
1√
2πv

e
−(u̇−v)2

2v

(

1 +
1

48mv3
(

15u̇4 − 28u̇3v (G3)

−6u̇2v(v + 15) + 12u̇v2(3v + 7) + v2((6 − 17v)v + 45)
)

+O

(

1

m2

)

)

.

Appendix H: Exit probability

In this section we calculate the probability E(a, u̇, t)
that a particle starting at t = 0 with acceleration a and
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velocity u̇ > 0 had a negative velocity at some moment
before or at time t. We call it the exit probability. The
calculation is valid for all the models studied in the pre-
vious sections.
The equation for the exit probability reads as:

∂E

∂t
= a

∂E

∂u̇
+

u̇

m2

∂2E

∂2a
+

1

m
(−u̇− a+ v)

∂E

∂a
(H1)

with the boundary conditions:

E(a < 0, 0, t) = 1, (H2)

E(a, u̇ > 0, 0) = 0. (H3)

We assume that the particle starts with a finite accel-
eration and velocity. Then, introducing Ê(κ, λ, t) =
∫∞
−∞ da

∫∞
0

du̇E(a, u̇, t) exp (κa+ λu̇), we obtain

∂Ê

∂t
=
∂Ê

∂λ

(

κ2

m2
+
κ

m

)

+
∂Ê

∂κ

(

−λ+
κ

m

)

+
Ê

m
(1− vκ) +

1

κ2
+ f(κ), (H4)

for we used that κ > 0. The last term 1/κ2+ f(κ) comes
from the boundary term at u̇ = 0 obtained by performing
the Laplace transform with respect to u̇. Here f(κ) =
−
∫∞
0 daa exp (κa)E(a, u̇ = 0, t).
Using the method of characteristics we find:

λ̇ = − κ2

m2
− κ

m
, (H5)

κ̇ = λ− κ

m
, (H6)

dÊ

dt
− Ê(t)

m
(1 − vκ(t))− 1

κ2(t)
− f (κ(t)) = 0, (H7)

where we used κ(t) > 0. Then, we obtain:

Ê(κ0 > 0, λ0, t0 > 0) =

∫ t0

0

ds

[

1

κ2(s)
+ f (κ(s))

]

× exp

(

1

m

∫ t0

s

(1− vκ(s′))ds′
)

,

(H8)

where κ(t) satisfies the following equation

κ̈(t) +
κ̇

m
+
κ2

m2
+
κ

m
= 0 (H9)

with conditions κ(t0) = κ0 and κ̇(t0) = λ0 − κ0/m. If we
introduce ũ(s) = −κ(−s)/m, then ũ(s) satisfies Eq. (115)
where in Eqs. (116,117) it has to be made a change κ0− >
−κ0 and λ0− > −λ0. The equation should be solved self-
consistently, since f(κ) is determined by E(a > 0, 0, t).
Increasing the driving velocity v and decreasing the mass,
the boundary term f(κ) decreases. It is expected that
the approximation f(κ) = 0 becomes reasonable good
for sufficiently large driving velocity and small mass.

Appendix I: Sketch of a proof for convergence of

large-deviation function

Suppose that we have a numerical simulation of one of
the models discussed in this work, at driving velocity v,
which gives N data points. This allows to estimate Fv(x)
in a certain domain x− < x < x+, with F (x−) = F (x+).
Let us first estimate the probability p that there are

data points left of x−:

p ≤ N

∫ x−

−∞
dx ve−vFv(x) ≈ N

e−vFv(x−)

F ′(x−)
≈ Ne−vFv(x−)

(I1)
This means that the simulation has to be done at veloc-
ities large or equal to vc in order to satisfy (I1), with

vc ≈
ln(N/p)

F (x−)
, (I2)

where we have replaced Fv(x) by the limiting function
F (x). (For N = 1010, and p = 10−4, this would give

vc ≈ 21.5, using for Fv(0) the function for the
√
u̇-model.)

Let us now estimate which domain of the function
Fv(x) we can estimate with relative statistical error
smaller than ǫ, at this velocity vc. The number n of
events in the bin around x of size δ is

n ≈ e−vcF (x)δN ≥ 1

ǫ2
, (I3)

and must as written be larger than 1/ǫ2. Solving for F (x)
yields

F (x) ≤ ln(ǫ2δN)

vc
= F (x0)

ln(ǫ2δN)

ln(N/p)

≈ F (x−)

[

1 +
ln(ǫ2δp)

lnN

]

, (I4)

where in the last line we have supposed that N is large.
This is probably a rather crude estimate, but shows that
for N → ∞ one can estimate F (x) for all x for which
F (x) < F (x−).
Let us now consider the

√
u̇-model, for which Zv(λ)

does not depend on v, and for which Fv(x) converges
against the large-deviation function F (x). The above
shows that there exists a simulation, which can estimate,
with any given precision, F (x) for all x with F (x) < F (0)
(see plot 20). For further reference set x− = 0, and
x+ = 3.47268 the other root for which F (x+) = F (0).
We remind that with probability 1 − p ≈ 1, the sim-

ulation has never encountered a negative velocity. Now
repeat the simulation with the same parameters, with one
of the other models. With the same probability 1 − p,
these simulations have no negative velocities, and since
then the particle will only move forward, give the same
trajectory, and thus the same large-deviation function,
within the (small) error-bars estimated above. We have
thus proven Eq. (192) of the main text.
The only circumstances where the above argument

might go wrong, is if there are strong correlations in the
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tails. If e.g. rare events are correlated such that when-
ever one gets one rare event (of negative velocity) then

one gets with higher probability another one (clustering
of rare events). In this case even the existence of a large-
deviation function may be questionable.
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