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Super-rough glassy phase of the random field XY model in two dimensions
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We study both analytically, using the Renormalization Group (RG) to two loop order, and numer-
ically, using an exact polynomial algorithm, the disorder-induced glass phase of the two-dimensional
XY model with quenched random symmetry-breaking fields and without vortices. In the super-
rough glassy phase, i.e. below the critical temperature 7., the disorder and thermally averaged
correlation function B(r) of the phase field 0(x), B(r) = ([0(x) — 6(x + r)]?) behaves, for r > a, as
B(r) ~ A(t) log?(r/a) where r = |r| and a is a microscopic length scale. We derive the RG equations
up to cubic order in 7 = (T. — T)/T. and predict the universal amplitude A(7) = 27% — 273+ O(74).
Using an exact polynomial algorithm on an equivalent dimer version of the model we compute A(T)
numerically and obtain a remarkable agreement with our analytical prediction, up to 7 = 0.5.

Disordered elastic systems are relevant to describe var-
ious experimental situations ranging, for interfaces, from
domain walls in ferromagnetic ﬂf or ferroelectric E] sys-
tems, contact lines in wetting ﬁ] to propagating cracks
M] and, for periodic structures, from vortex lattices in
type-1I superconductors ﬂﬂ] and Wigner crystals ﬂa], to
electronic crystals displaying charge or spin density waves
ﬂ] In most of these systems, the large scale properties
are described by a zero temperature fixed point, which
can be described analytically using the tools of the Func-
tional Renormalization Group (FRG) [§]. This latter has
led to very accurate predictions, e.g. concerning various
exponents, which could be, in some cases, successfully
confronted to experiments or numerical simulations ﬂg]

In some cases, however, thermal fluctuations play an
important role: this is the case of systems such that the
exponent describing the scale dependence of the fluctua-
tions of the free energy AF ~ L% is § = 0. It is then cru-
cial to study the interplay between disorder and thermal
fluctuations. While at zero temperature Monte-Carlo
(MC) simulations, which are hampered by extremely long
equilibration times, could be circumvented by the use
of powerful algorithms to compute directly the ground
states using combinatorial optimization algorithms, the
latter are of little use to study finite temperature prop-
erties. Here we consider a prototype of such situations,
namely the classical 2D XY model with quenched ran-
dom fields, known as the Cardy-Ostlund (CO) model
]. It describes a wide class of systems that include 2D
periodic disordered elastic systems, such as a randomly
pinned planar array of vortex lines ﬂﬂ, ], surfaces of
crystals with quenched disorder ﬂﬁ], random bond dimer
models ﬂﬁ] and noninteracting fermions in 2D with disor-
der [17] (as discussed in [11]). The CO model is defined,
in terms of a real phase field 6(x) € (—o0, 00), by the par-
tition function Z = [ DOe /T where the Hamiltonian
H is given by

H = /d% [g (V) —f£-V6 — 2 (¢ +he)| . (1)
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FIG. 1. The amplitude A(7), characterizing the super-rough
phase of the CO model (), as a function of 7. The red points
correspond to the numerical estimates obtained here using
an exact polynomial algorithm Im] The curve indexed by
"one loop’ indicates the one loop result A(7) = 272 while the
‘two loop’ curve shows the two loop result (Bl) obtained in
the present paper [we also show a Padé re-summation of our
two loop result (as explained in the text)]. We also show the
result Ag obtained in [11] from translating to this model the
free fermion calculation of Ref. [12]. We have also indicated
the values obtained at 7' = 0 in the corresponding references.

Here k is the elastic constant, a is the short-length-scale
cutoff, and f and £ are quenched Gaussian random fields.
Their nonzero correlations are given by

TGOF(y) = T 5=676(x ~ y) (2)
§H0E M) =175 0~ y) | (3)

where i,7 € {1,2} denotes the components of f, T is
the temperature and . . . denotes the disorder aver-
age. The disorder f must be introduced in the model
as it is generated by the symmetry-breaking field under
coarse graining ] The CO model exhibits a transi-
tion at a critical temperature T, = 47k between a high-
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temperature phase, where disorder is irrelevant, and a
low-temperature glass phase, induced by disorder. This
glass phase is described by a line of fixed points indexed
by T', which, thanks to the so-called statistical tilt sym-
metry (STS), is not renormalized (§ = 0 to all orders in
perturbation theory). It displays many interesting fea-
tures of glassy systems, e.g. universal sample to sample
susceptibility fluctuations [18], and non-equilibrium ag-
ing dynamics [19, 20)].

The most striking effect of disorder on the static
properties concerns the two-point correlation function
(CF) B(r) = ([0(x) — 0(x +r)]?), with r = |r|. While
for T > T. the interface is logarithmically (thermally)
rough, B(r) =~ 4T /T.log(r/a), it becomes superrough
for T < T, where we have

= A(7) log*(r/a) + O(log(r/a)) , (4)

where 7 = (T.—T')/T,. The temperature 7T is determined
by the connected CF B.(r) = ([0(x) — 0(x +1)]?)c ~
(4T/T,)log r/ a). Although the amplitude A(7) of this
intriguin has been the subject of numerous stud-
ies ﬂ% i none of them was able to establish a
quantitative comparison between analytical results on
one hand and numerical simulations on the other, and
there are several reasons for this gap. The first one is
that A(7) was, analytically, only known, at lowest order
in 7, A(t) = 272 + O(r®) [25): its domain of validity
is thus restricted to a narrow region close to T, where
the amplitude of the log?(r) term is small and thus ex-
tremely hard to isolate accurately from the sub-leading
logarithmic correction in (@l). The second reason is that
numerical simulations are very delicate, given that stan-
dard MC simulations are quite inefficient for T' < T.,.
Fortunately, there exists an exact polynomial algorithm,
called the domino shuffling algorithm (DSA), which al-
lows to sample directly the related random bond dimer
model, without running MC simulations. This algorithm
was used in Ref. [1§], which showed that A(7) o« 72,
without estimating the prefactor. Notice also that, in its
original formulation as used in Ref. HE], the DSA suf-
fers from strong finite size effects, which are reminiscent
of the arctic circle phenomenon HE] in the pure dimer
covering model.

In this Letter, we perform a quantitative comparison,
in a wide temperature range, between analytical and nu-
merical predictions. Such a quantitative comparison is
rendered possible (i) thanks to a precise calculation of
A(7), using various RG schemes, yielding the following
expression to two loop order:

B(r)

A(r) =272 =218 + O(1%) | (5)

and (ii) thanks to a careful Fourier analysis of the 2-
point correlation function. It is computed here using an
improvement of the DSA, proposed in Ref. ﬂﬂ], where
finite size effects are significantly reduced. The result

of this comparison is shown in Fig. [ and we see a re-
markable agreement between both approaches, even far
beyond T, down to 7 ~ 0.5.

Our analytical study is based on the replica method to
treat the disorder @] and obtain the replicated Hamil-
tonian H"? = HyY + H{*", with the harmonic part

-3 [ s [(V0a () +
- EVGQ(X) VO, (x)}. (6)

rep

m?(0a(x))?]

The mass m is introduced in the model as an infrared
cutoff and is sent to zero at the end. « and 5 denote
replica indices and the number of replicas n is taken to
be zero at the end. The system size is infinite. The
anharmonic part reads

2
27ra2 Z/d x cos(f

Our aim is to compute the two CFs:

G(x) = (0(x)0(0))r — (0(x)) 1 (0(0)) 1, (8)
Go(x) = (0(x))u (0(0)) 1, 9)

where the former measures the (disorder averaged) ther-
mal fluctuation while the latter measures the fluctua-
tions due to disorder of the (thermally averaged) phase
field. These disorder averaged CFs can be obtained
from CFs of replicated fields by decomposing G,g(x) :=
((0a(x)05(0))) = 0apG(x) + Go(x), where G(x) is also
called the connected part and Go(x) the off-diagonal part.
To compute them we use the harmonic part Hy” as the
"free” theory and treat H;“ in perturbation theory in
g. Here we denote by ({..)) averages over the complete
Hamiltonian H"®? and by (..) averages over the free part
Hy".

We start by computing the CF for g = 0 and we find

rep
H1 _

—05(x). (7)

T 5a5 O'T2 q2
as(q) = = G
Gas() k@2 +m?2  2mk2 (¢2 +m?)? +0(n). (10)
Going to real space one obtains Gos(x) = (04(x)05(0)) =

908G (x) + Go(x). The connected part has the following
behavior at small distances |z| < (em)~!
G(x)=—(1—7)In[®m*(2® + a*)], (11)
with the constant ¢ = €77 /2 and g is the Euler constant.
In ([[I) we have introduced the ultraviolet regularization
by the parameter a m The off diagonal part of the CF
at small distances |x| < (em)~! reads Go(x) = —20(1 —
7)%In [ec?m?(2? + a?)] + O(n).
The STS of the model manifests itself by the in-
variance of the non-linear part H;“’ under the change
0o (x) = 04 (x) + ¢(x) for an arbitrary function ¢(x). As



discussed in Refs. m, 21, @] this implies two important
properties: (i) Go(x) does not appear to any order in
perturbation theory in ¢ in the calculation and (ii) the
disorder-averaged thermal CF is uncorrected to all orders
G(x) = G(x) i.e. independent of g. This implies that T
can be measured from the amplitude of the logarithm in
G(x) ~ 2(1 — 7)Inz at large x. Because of property (i)
Go(x) only receives additive corrections, e.g. corrections
to o which, in the present model, change its above log-
arithmic behavior into a squared-logarithm behavior for
Go(x), obtained below.

In order to obtain the scaling equations beyond low-
est order one computes the effective action up to (’)(93)
terms, which takes the form

r=>. / A% { 3005 [(V0a)? + m?(0)’]
ap
_9r . _9R 2,2 -
47TV9a Vs 5 ¢ cos(f, 95)} (12)

in terms of renormalized couplings gr and or. Their ex-
plicit dependence on the bare parameters leads to the fol-

lowing scaling equations in terms of the scale £ = — Inm:
d
dij = 27gr — Ag% — Brg% + Cg¥, (13)
dO’R
- Dy + ETgy, — Fgi, (14)

and d7/df = 0. Here A ... F are non-universal constants
(A,C, D > 0) which satisfy the universal ratios
A*/D=8, A?/C=4, F+BD- AE/2=0. (15)
We have obtained these values through three different
regularization schemes, the details are presented in M]
These equations generalize to two-loop order the one-
loop equations obtained in Refs. ﬂE, @, E, |2_1|] The
T-equation encodes the exact result G(x) = G(x) from
STS. From (I3) we see that the model has a transition at
7=0,ie. T =T, ForT > T, the renormalized coupling
gr(£) flows to zero, while for T' < T, it flows to a finite
value g}, which continuously depends on 7: g5 = 27/A+
(4C — 2AB)712 /A% + O(73). The asymptotic solution of
@) is or({) =~ oo + [do(gy)/d€]¢: while o¢ depends on
all details of the initial condition and leads only to a
subdominant single logarithmic growth of the CF, from
the second term we obtain the coefficient of the squared
logarithmic growth of the CF by a simple argument HE]
To estimate the off-diagonal CF at a given wave-vector
q, one considers the small-mass limit m < ¢ and argues
that ¢ sets the scale £* = In[1/(aq)] at which one stops the
RG flow. Replacing o by its effective value at that scale,
ie. 0 = og(f) we get, from (I0) the small ¢ behavior
Go(q) ~ 8n(1 — 7)2%1“[12%, which directly leads
to @) and (). One should notice that the amplitude
@) is universal value due to the remarkable combination

of non-universal constants in do(gy)/d¢. Eq. @) can
be obtained more rigorously by calculating the two-point
function directly [31].

We have performed simulations to estimate numeri-
cally the amplitude A(7) and compare it with our two-
loop result (B). For that purpose, we take advantage
of the mapping between the CO model and a weighted
dimer model defined on a two-dimensional lattice ﬂﬁ, @],
for which there exists a polynomial algorithm, called the
”domino shuffling algorithm” m] For a technical reason,
this algorithm is designed for a special lattice Ay, called
the Aztec diamond of size L (see Fig. Rlfor a diamond of
size 4). To each bond between nearest neighbors (r,r’)
on Ay, we assign a quenched random variable €, ,: here
we consider independent Gaussian random variables, of
zero mean and unit variance. The dimer model consists
of all complete dimer coverings of Ay, where the weight
W (C) of a given dimer covering C is given by

1
W(C) = Z—Lexp(—Hd/Td), Hi= Y ey, (16)
(r,r")eC

where Zp, = Zp(€) is the partition function. Hence the
limit Ty — 0 corresponds to a ”strong” disorder regime
while the limit T; — oo corresponds to dimer coverings
with uniform weights. The DSA is based on a recursive
procedure which generates a covering of a diamond of
size L, Ap, from the covering of a diamond of size L — 1,
Ar_1. It generates uncorrelated dimer configurations, di-
rectly sampled with the equilibrium weight (I6]), without
the need to run a slow MC algorithm. In addition, this
is a polynomial algorithm (with a computational time
growing like L3). The dimer covering of the Aztec dia-
mond is however known to suffer from very strong finite
size effects, known under the name of the arctic circle
phenomenon HE] Here we minimize significantly these
effects by using a recent improvement of the DSA which
allows for the existence of bonds with zero weight ﬂﬁ]
We use it to study the random dimer model directly on a
square lattice, which exhibits less pronounced finite-size
effects [32).

From a given dimer covering C, it is possible to assign a
discrete two-dimensional height field, defined on the cen-
ter of the squares (see Fig.[2)), i.e. on the dual AP of Aj,
as follows ﬂﬁ] The bonds of AP are oriented such that
the unit cells of AP that enclose the blue sites of Ay, (see
Fig. B)) are circled counterclockwise. Assign —3 to the
difference of neighboring heights along the oriented bonds
if a dimer is crossed and +1 otherwise. This yields single-
valued heights up to an overall constant, the heights on
the boundaries of Ay being then fixed as in Fig. Bl This
defines a height field H, = H;;, with r = iux + juy and
the relative height h = H— < H > where < H = isa spa-
tial average of H over the whole diamond. For uniform
dimer coverings, corresponding to €, = 0 or Ty — oo,
one can show that the fluctuations of h in the continuum



limit (and in the bulk of the diamond, see below) are
described by a Gaussian free field ﬂﬁ, @], i. e. by the
Hamiltonian in Eq. () without disorder (f = 0, & = 0)
at 7 =1—T/T. = 0. In the presence of inhomogeneous
random bond variables €., one expects instead that in
the continuum limit (and in the bulk of the diamond, see
below), the fluctuations of h are described by the CO
model (@) with the substitution § — h x 27/4 [17, [19)].
This factor 27/4 is required because one can check that
the energy associated to the height configurations (LG is
invariant under a global shift h — h + 4.
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FIG. 2. Dimer covering of an Aztec diamond of size 4, A4.
On each bond there is a random variable ¢, ,» which deter-
mines the weights assigned to each dimer covering (6. As
explained in the text, the blue points are useful to define the
height field, which are the integer numbers in the squares and
form the dual lattice AP.

The temperature Ty of the dimer model does not co-
incide with the temperature of the CO model in Eq. ().
To compute the dimensionless temperature 7 = 1—-T/T,
we use the STS which allows to measure this parameter
from the connected CF (®). Indeed we compute

W = 2 S T2~ () () =~ 21~ 7)log L, (17)

which provides a precise estimate of the parameter .
We have also checked that our numerical estimate is in
good agreement with the analytic results, not only for
this parameter but also for other thermodynamical ob-
servables like the entropy or the internal energy, obtained
in Ref. [11).

We want to compute numerically the amplitude of the
log?(r) term in Eq. @). Extracting this amplitude pre-
cisely from the two-point correlation function is however
difficult, since the subleading corrections are of order
O(logr). The calculation is more accurate in Fourier
space [22, [35], defining hq = L2 >, hee'@*. The CF
C(q) of these Fourier components is expected, from Eq.
@), to behave for small g as

Cla) = Tra)-g) = 240 ED L 0(g?) 19

where ¢ = |q|. In Fig. B we show a plot of ¢>C(q) as
a function of ¢ in linear-logarithmic scales for 7 ~ 0.33
(Ty = 0.25). These data have been obtained for a sys-
tem size L = 384 and by averaging over 10° indepen-
dent realizations of the random bonds €, ,/’s. These data
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FIG. 3. Plot of ¢>C(q) as a function of log g. The red symbols
correspond to our numerical data obtained for a lattice of size
L = 384. The slope of the straight line indexed by ’one loop’
and ’two loop’ is given respectively by the one loop A(7) =
272 and the two loop estimate in Eq. @), while the slope of
the straight line indexed by Ag is the one corresponding to

Ref. [12].

support the expected behavior in Eq. (I8) for small ¢,

< 1: they are indeed well described by a straight line,
¢?C(q) = —8A(7)/mlog q+ by. Note that the downwards
bending of the numerical data observed in Fig. for
the smallest ¢’s is a finite size effect. In this figure we
also show four different straight lines corresponding to
four such different couples (A(7),bp). The line indexed
by 'Best fit’ corresponds to the best fit of these data by
a straight line: the value of A(7) obtained in this way
allows us to compute A(7) for different values of 7, as
shown on Fig. Il In the three other cases, the slope of
this straight line is evaluated from the one-loop and two-
loop (@) results respectively, while the straight line in-
dexed by ’Ag’ corresponds to the slope computed in ]
from the result in Ref. [12], with Ag(7) = 272(1 — 7)2.
In all cases the constant by is a fitting parameter. One
clearly sees that the two loop result is a significant im-
provement over the one loop result and describes very
well our numerical data. In addition, we also see that
Ag clearly underestimates our numerical data.

Let us now discuss the numerical results for A(7) plot-
ted as a function of 7 in Fig. [ As compared to Ref. [18],
here we can discuss a much broader range of values of 7
which extends deep into the glass phase. First we observe
that our two loop result is in very good agreement with
our numerics up to 7 & 0.5. In contrast, the curve Ag(7)
is significantly smaller than our numerical values and can
be ruled out. For smaller temperature, 7 2 0.5 the dis-
crepancy between our two loop result and the numerical
value increases, as expected. In Fig. [ we have also



quoted the numerical values which were obtained inde-
pendently at zero temperature by an exact ground state
calculation for the SOS model on a disordered substrate
in Refs. @, , @] This model is also believed to be
described, in the continuum limit, by the CO model ().
In particular, our data match smoothly with the most
recent, and probably the most accurate, numerical esti-
mate obtained in Ref. [35], yielding A(T = 0) = 0.39. We
also show an estimate based on a one-loop FRG calcula-
tion at 7' = 0 [11]. The fact that the two loop formula
@) vanishes at T = 0 is of course an unphysical fea-
ture, which can be cured by considering various guesses or
Padé (i.e. rational functions in 7) approximations which
have the same expansion as (B to order 73. One such
formula A(7) = 272(1 — 7/2)% is plotted in Fig. [I} in
addition to being simple it has a reasonable structure to
correct the result of Ref. ﬂﬂ]

In conclusion, we have obtained an accurate descrip-
tion of the low temperature glass phase of the Cardy-
Ostlund model (without vortices) down to temperatures
T./2 ST, with excellent agreement for the amplitude of
the square logarithm between theory and numerics. Un-
derstanding the glass phase below 7./2 is an important
challenge for the future.
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