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Self-sustained reaction fronts in a disordered medium subject to an external flow display self-affine
roughening, pinning and depinning transitions. We measure spatial and temporal fluctuations of
the front in 1 + 1 dimensions, controlled by a single parameter, the mean flow velocity. Three
distinct universality classes are observed, consistent with the Kardar-Parisi-Zhang (KPZ) class for
fast advancing or receding fronts, the quenched KPZ class (positive-qKPZ) when the mean flow
approximately cancels the reaction rate, and the negative-qKPZ class for slowly receding fronts.
Both quenched KPZ classes exhibit distinct depinning transitions, in agreement with the theory.

PACS numbers:

Growing interfaces are ubiquitous in nature, and ap-
pear in situations as different as proliferation of bacterial
colonies [1], solidification [2], deposition of atoms on a
surface [3, 4], liquid interfaces in porous media [5–7] or
crack propagation in heterogenous materials [8, 9]. These
systems have in common that they are driven out of equi-
librium, and form scale-free structures. Identifying the
subsequent universality classes is an important goal in
order to understand the emergence of these scaling laws.

Autocatalytic reaction fronts propagating in the het-
erogenous flow field of a porous medium [4, 8] provide
an example with a rich dynamics. In the absence of an
externally imposed flow, the chemical reaction produces
traveling waves with velocity V0 inside the medium. An
additional flow modifies this behavior according to its
strength and orientation as compared to the chemical
front velocity. The fronts become rough and can propa-
gate either downstream or upstream at constant velocity,
or remain frozen over a range of counter-flow rates, de-
limited by two distinct depinning transitions. Until now,
the universal behavior of reaction fronts in disordered
flows has not been characterized. In the present letter,
using both experimental and numerical approaches, we
investigate the spatial and temporal scaling properties of
this growing interface the whole range of the flow forc-
ing parameter F . We show that this is a well-controlled
system encompassing several universality classes.

Two important classes predicted by the theory are:

(i) non-linear stochastic growth governed by the (ther-
mal) Kardar-Parisi-Zhang (KPZ) equation,

(ii) growth where both the non-linearity and quenched
disorder are present, described by the quenched KPZ
(qKPZ) equation. It divides into two subclasses, posi-
tive qKPZ and negative qKPZ, depending on the sign
of the non-linearity λ. Indeed, the qKPZ equation can
be justified, as shown below, from the so-called eikonal
approximation, valid in the thin reaction-front limit.

Finding unambiguous experimental realizations has
been difficult, in part because of long-range effects,
quenched disorder and a mixing of (i) and (ii) [1, 13–
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Figure 1: Front velocity Vf versus the applied force F (resp.

F̂ ), in adverse flow configuration. a) experiments (black dots
with error bars). b) numerics (blue circles). Dashed lines
are linear extrapolation of the advancing branch. To put all
data on one plot, we rescaled the axes according to F →
F/|F |1/2, v → v/|v|1/2. Insert: Log-Log plot of the front

velocity versus F̂ − F̂c+ . The continuous line corresponds to
v(F̂ ) ∝ (F̂ − F̂c+)0.8±0.05

15]. Recently, remarkable experiments on turbulent liq-
uid crystals (see [16] for a review) made a precise contact
with the theory of the KPZ class which experienced a
revolution of its own [17]. Some experiments also stud-
ied the (positive) qKPZ class [5, 18] and both KPZ and
qKPZ classes were observed in evaporating colloidal sus-
pensions [15]. Remarkably, in the present system, by
tuning a single parameter F , one can observe all three
classes.

The KPZ equation [19] was proposed as a generic
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model for an interface growing along its local normal,

∂h(x, t)

∂t
= ν∇2h(x, t) +

λ

2
[∇h(x, t)]

2
+ η(x, t) + f . (1)

The height h(x, t) of the interface is along the vertical
axis, ν an effective stiffness due to diffusion, λ the non-
linearity, and η(x, t) a Gaussian white noise with correla-
tions η(x, t) = 0 and η(x, t)η(x′, t′) = 2Dδ(x−x′)δ(t−t′).
f is a constant applied force, and up to a shift, pro-
portional to the experimental applied force F as shown
below. The surface can be characterized by two scal-
ing exponents, the roughness α, and the growth expo-
nent β, defined via [h(x, t)− h(x′, t)]2 ∼ |x − x′|2α and
[h(x, t)− h(x, t′)]2 ∼ |t− t′|2β . In d = 1 + 1 dimensions,
the exponents are αKPZ = 1/2 and βKPZ = 1/3 [19]. In
a heterogeneous medium, the “noise” acquires a static
quenched component, described by the qKPZ equation
[20]:

∂h(x, t)

∂t
= ν∇2h(x, t)+

λ

2
[∇h(x, t)]

2
+ η̄
(
x, h(x, t)

)
+f .

(2)
The case λ = 0 models a number of systems, and is a
distinct universality class (quenched Edwards-Wilkinson)
[21] but does not seem to be relevant here (it predicts
β ≈ 0.87 and α > 1.)

In the KPZ equation (1) one can eliminate the driv-
ing term by the transformation h(x, t) = ft + h̃(x, t).
Changing then h̃(x, t) → −h̃(x, t) reverses the sign of
the non-linear term λ, which is thus unimportant. By
contrast, the qKPZ equation (2) does not allow for the
change h(x, t) = ft + h̃(x, t) since the term η̄(x, h(x, t))
is not invariant. The driving force f is thus a new pa-
rameter of the problem, and its sign (relative to the sign
of λ) matters: If the disorder is statistically invariant by
parity, i.e. if η̄(x,−h) has the same properties as η̄(x, h),
Eq. (2) is invariant under f → −f , h(x, t) → −h(x, t),
and λ → −λ. Hence there are two distinct situations:
Positive qKPZ when λ and f have the same sign, and
negative qKPZ when they have opposite signs.

It is important to recall that in the moving phase qKPZ
(of either sign) crosses over to KPZ at large scales. This
is easily seen e.g. in the limit of large mean interface
velocity v = ∂th(x, t): Consider Eq. (2) with white noise
η̄(x, h)η̄(x′, h′) = 2D̄δ(x − x′)δ(h − h′) and perform the
change h(x, t)→ vt+ h̃(x, t). The disorder then becomes

η̄
(
x, vt+ h̃(x, t)

)
≈ η̄(x, vt) , (3)

i.e. the same noise as in the KPZ equation (1), identifying
D = D̄/v. As v is decreased, the crossover from qKPZ
at short scales to KPZ occurs at larger and larger scales.

The positive qKPZ equation exhibits a depinning tran-
sition [20, 22] which is well characterized in d = 1 + 1.
The mean interface velocity vanishes below a threshold
f < f+

c ; for f > f+
c the interface moves with velocity

v ∼ (f − f+
c )θ. At fc the pinned interface outlines a
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Figure 2: Height fluctuations of the front. Left column:
roughness w(∆x, t) and right column: temporal fluctuations
w(x,∆t). (a) and (b) for |F | > 2.5; (c) and (d) for |F | < 2.5.

transversal path on a directed percolation (DP) cluster
[5, 18, 23] characterized by a roughness αDP ' 0.63, and
a growth exponent βDP ' 0.63. As discussed above the
quenched nature of the noise is relevant only when f is
close to its critical value.

The predictions for the negative qKPZ class are quite
different [24]. In the pinned phase, λ > 0 and negative
f > f−c , the interface forms sawtooth configurations (see
Fig. 4, bottom) with alternating non-zero local average
slopes |∇h| which help the system to remain pinned. As
f is decreased, the sawtooth slopes increase, until there
are discontinuous jumps at f−c of both the average slope
(back to zero) and the velocity v, well evident in our
experiment, see Fig. 1 a). The transitory dynamics inside
the pinned phase is similar to positive qKPZ [25], and the
depinning near the jump was analyzed via a mapping to
the first layer PNG model [6], a close cousin of KPZ.

Our experiments are made with the Iodate Arsenous
Acid reaction, autocatalytic in iodide with the arsenous
acid in excess [27, 28]. Resulting from the balance be-
tween the molecular diffusion Dm and the reaction rate
α̃, this system develops a traveling reaction front, which
propagates with a constant velocity Vχ =

√
Dmα̃/2, and

a stationary concentration profile of width lχ = Dm/Vχ.
Its position is visualized with polyvinyl alcohol colored by
transient iodine production during the reaction [29]. The
disordered flow is generated with a 50% mixture of 1.5
and 2 mm diameters packed glass beads inside a trans-
parent (300× 100× 4 mm3) rectangular cell. Once filled
with reactant solution, a range of injectors at the top of
the cell can either suck out or inject the fluid parallel
to the vertical. The chemical reaction is initiated at the
bottom of the cell and forms initially a flat horizontal
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Figure 3: Experimental exponents versus F . Blue squares,
roughness α and red triangles, growth exponent β for moving
fronts. Black circles, roughness of the pinned fronts. Hatched
region corresponds to weak noise when U → 0.

front. In the absence of the flow, the front propagates
upwards at the chemical velocity Vχ ' 11.2µm/s and
width lχ ' 200µm; once the desired vertical position is
reached, the hydrodynamic flow is switched on.

The flow is characterized by its mean velocity U and,

as a control parameter, we define F =
Ū+Vχ
Vχ

+ f0, with

f0 ' 0.38 [30] an ad-hoc parameter, introduced such
that the front advances when F > 0 or recedes when
F < 0. Fig. 1 a) displays the normalized front velocity,
v = Vf/Vχ as function of the control parameter F . In the
absence of the flow, corresponding to F = 1+f0, the reac-
tion fronts are uniformly moving through the glass beads
with a constant velocity Vf = V0 = 0.8Vχ ± 0.5 µm/s
and exhibit a smooth shape [30]. On the contrary, when
the flow is turned on, the front is distorted. Examples
of the resulting front shapes with supportive (F > 1.38)
and adverse flow (F < 1.38) are given in [30]. Depend-
ing on F , these fronts exhibit distinct self-affine scalings,
quantified by the front width w(∆x, t) ∼ (∆x)α, and the
standard deviation of the temporal height fluctuations
w(x,∆t) ∼ (∆t)β [31].

We first consider a large flow rate where Vf is a linear
function of F , see Fig. 1. For |F | > 2.5, the front propa-
gates downstream, for both orientation of the mean flow
Fig. 2(a) shows the width w(∆x, t) of saturated fronts,
i.e such that `∗(t) ∼ L [31], determined in several experi-
ments realized at opposite mean-flow orientations. They
display both similar roughnesses with α = 0.47 ± 0.03,
and α = 0.53±0.04, and growth exponents while t∗ ≈ T ,
with β = 0.32±0.04 and β = 0.37±0.05. As can be seen
on Fig. 3 a), this suggests that for a large front velocity of
either orientation, the front exhibits scale-invariant fluc-
tuations with statistical properties consistent with the
KPZ class, in agreement with the theoretical discussion
around Eq. (3). In addition, since in the experiment
D̄ ∼ Vf the expected KPZ noise D ' D̄/Vf is almost
independent of Vf . This shows why the amplitude of
w(∆x, t) does not vary significantly with F for a given
flow orientation [30], as can be seen in Fig. 2(a).

When F → 0, some regions of the front pin to the flow

heterogeneities. In this configuration, the front propa-
gates mainly upstream, from the bottom to the top of
the cell, while locally the front exhibits transiently static
regions, as can be seen in Fig. 4(a). Note that the moving
parts exhibit a larger slope than the arrested or slowly
propagating ones, which leads to a lateral growth of the
fronts in this regime.When the opposite flow is ampli-
fied, the pinned portions become larger. The value Fc+
for which the front eventually stops and remains static
is Fc+ = 0.56 ± 0.05. Visible on Fig. 2 c) and d) for
F = 0.58, α = 0.66 ± 0.04 and β = 0.61 ± 0.05 are now
consistent with the exponents of positive qKPZ model,
α = β = 0.63 (see [30] for additional measurements),
and suggest here that the front undergoes a depinning
transition when F → 0.56.

Finally, when F decreases below Fc+ , the transient
front propagation becomes very short. For F ≈ 0, the
front is static almost instantaneously after the flow is
turned on.When F becomes negative, the front prop-
agates backwards, i.e. in the direction opposite to the
chemical reaction. For sufficiently small F , −2.22 .
F . 0, the front becomes static after a transient prop-
agation and displays a particular sawtooth pattern [8].
One notes in Fig. 4(b) that the front is slowed down or
arrested when it reaches a certain slope, resulting in the
facet formation. Another depinning transition occurs at
Fc− ≈ −2.22± 0.05, below which triangular static states
become unstable and the front goes back to a phase mov-
ing from the top to the bottom of the cell.

As indicated in Fig. 3, these triangular shapes lead to
a different roughness exponent of the transiently moving
parts compared to the final static front as F → Fc− [30].
The roughness and growth exponents of propagating re-
gions exhibit 0.62 . α . 0.7 and 0.63 . β . 0.69, con-
sistent with the observations in [25]. However, the final
static fronts exhibit a larger roughness 0.73 . α . 0.9,
which increases as the sawtooth slope rises when F →
Fc− . Interestingly, a crossover from β ≈ 0.65 to β ≈ 0.33
for larger scales is visible in Fig. 2(d), underlining the
second depinning transition at Fc− . Close to Fc− , the
front pins to point-like regions, while close to Fc+ the
pinning regions extend horizontally. This shows that re-
ceding fronts are consistent with negative qKPZ, known
for similar pinning processes and interface morphologies
[6, 24]. This model also predicts a first-order depinning
transition, observed here as a jump in the Vf (F ) curve.

In order to better understand the behavior close to the
transitions, we have performed lattice Boltzmann simula-
tions in a 2D disordered porous medium (2048×2048 grid
size) which solves the convection-diffusion-reaction and
Darcy-Brinkman equations [2, 4, 30]. Fig. 1 b) displays

the numerical front velocity versus F̂ = (U+Vχ)/Vχ+f̂0,
where hatted quantities denote parameters in the sim-
ulations with f̂0 = 0.256. Experiments and simula-
tions are in good agreement. Two transitions occur at
F̂c− = −2.2 ± 0.2 and F̂c+ = 0.095 ± 0.015. While
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Figure 5: Roughness exponents in the simulations. Same sym-
bols as in Fig. 3

the transition at F̂c− is very abrupt, the second one
at F̂c+ is more continuous. Moreover, the critical be-
havior can be fitted (Fig. 1.b, insert) with a power-law
Vf (F̂ ) ∼ (F̂ − F̂c+)0.8±0.05, with an exponent slightly
larger than the theory. This is consistent with a first-
order transition at F̂c− and a second-order one at F̂c+ .
Below the first transition, F̂ < F̂c− , and beyond the sec-
ond one, F̂ > F̂c+ , the velocity Vf (F̂ ) is almost linear in

F̂ . Fig. 5 shows the roughness and growth exponents:
for large |F̂ |, the scaling exponents of the numerics are
in good agreement with experiments and the theory of
the thermal KPZ class. Near the depinning transitions
at F̂c+ and F̂c− , the roughness exponents of the front
α = 0.65 ± 0.05 and α = 0.9 ± 0.05 are consistent both
with experiments and the positive and negative q-KPZ
prediction respectively. The remaining differences in the

q-KPZ pinned phase are due to different initial condi-
tions: In the experiment, the fronts propagate without
flow (with their own roughness exponent at U = 0) and
then the flow is switched on, whereas in the simulation
the initial front is almost flat (see [30] for details).

The good agreement between experiments, numerical
simulations, and theory for the different KPZ universality
classes can be understood through the eikonal approxi-
mation. For a thin front, the local front velocity follows
the eikonal equation: ~Vf ·~n = Vχ+Dmκ+ ~U(~r) ·~n, where

~n is the normal of the front, κ the curvature and ~U(~r)
the local flow velocity. Indeed, this equation is similar
to the “flux-line model” of Kardar [12] where the chem-
ical velocity plays the role of the Lorentz force, and the
disordered flow that of the random force. After projec-
tion and neglecting higher-order terms [30], the eikonal
approximation yields

∂h

∂t
' Vχ

√
1 + (∇h)2 +

Dm∇2h

1 + (∇h)2
+ U + δUy(~r). (4)

Assuming small gradients, and normalizing by Vχ, leads
to equation (2) where η̄ ≡ δUy and with the parameters
ν = lχ = Dm/Vχ, λ = 1, and f = (U + Vχ)/Vχ, whose
small renormalization due to the neglected terms can be
estimated [34]. The difference F−f = f0 is related to the
space average of the KPZ term f0 ∼ λ

2

〈
(∇h)2

〉
L

. Note
that λ = 1 is independent of the front propagation direc-
tion, and fixed by the initial condition of the experiment.
The reason why negative qKPZ describes the backward
moving fronts, i.e. ∂h/∂t < 0, can be understood by
performing h → −h, which is equivalent to measuring
the front position along the −ŷ axis, as discussed above.
Finally, near the transition at Fc− , the slope of the saw-
tooths may be large. Although it correctly predicts the
first-order transition, small-gradient qKPZ may not be
quantitatively accurate. A more precise scenario for the
transition has been proposed in [7], based on the PNG
model [6] and extreme-value statistics [36].

In conclusion, chemical-wave propagation coupled with
the disordered flow in a porous medium, can develop self-
affine structures, with scaling exponents consistent with
either KPZ or qKPZ classes. Remarkably, by tuning a
single parameter, this system passes through three uni-
versality classes, providing a rich experimental setting to
study growth phenomena. Slowly backward propagat-
ing fronts consititute beautiful experimental evidence of
a chemical interface described by negative qKPZ. This
opens the door for further investigations on frozen pat-
tern formation in out of equilibrium systems [37]. Part of
this phenomenology has been recently observed in mag-
netic domain walls [38]: it would be interesting to reach
the thermal KPZ class there by increasing the driving.

This work was supported by Project Procathet RTRA
Triangle de la Physique and PSL grant ANR-10-IDEX-
0001-02-PSL.
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Supplemental Material for Three universality classes for reaction fronts in disordered flows

1) Experimental and numerical details

a) Experimental statistics

Depending on the front mean velocity, different temporal resolutions between 200 and 2000 photos are recorded for
each experiment. To enhance the statistics in the transient propagation regimes, for −2.22 . F . 0.58, we performed
between 3 and 6 different realizations for each value of F . A total of 30 different values of F have been investigated,
spanning from −6 to 8.

b) Numerical methods

The heterogeneous permeability field K(x, y) is generated according to a log-normal distribution, which is Gaussian
correlated over a length lK , as commonly assume to model groundwater flow [1]. The flow is computed by solving the
Darcy-Brinkman equation:

~0 = fb~ex −
µ

K(x, y)
~U(x, y) + µ∆~U(x, y) , (5)

where µ is the fluid viscosity and fb is the body force driving the flow (e.g buoyancy). The boundary conditions is
periodic in the lateral direction. A convection-diffusion-reaction equation is then solved for the concentration (C) of
the auto-catalytic reactant (iodide), normalized by the initial concentration of iodate:

∂C

∂t
+ ~U(x, y).~∇C = Dm∆C + α̃C2(1− C) , (6)

where Dm and α̃ are respectively the molecular diffusion and the reaction rate. Both equations are solved using Lattice
Boltzmann schemes (see [2–4] for details). In the numerical study, the parameters α̃ and Dm have been chosen to

keep constant the ratio lχ/lK =
√

2Dm
lK
√
α̃

= 0.126, and the standard deviation of the log-normal distribution has been

kept constant σlnK = 0.5. As in the experiments, the control parameter F is determined from the relative velocity
between the reaction velocity Vχ and the mean flow velocity U . The grid size is 2048× 2048 and the computational
cost is around 10 hours using 16 CPUs on a standard workstation.

For each value of F , around four different realizations is performed, and over 800 fronts are computed for each
simulation. A total of hundred different values of F have been numerically generated, with thirty points close to the
transition point at Fc+ .

2) Experimental fronts aspects

In the absence of the flow, the reaction fronts are uniformly moving through the glass beads with a constant
velocity Vf = V0 = 0.8Vχ ± 0.5 µm/s. As can be seen on Fig. 6 center, if the interface is initially rough, it gradually
relaxes towards a smooth front shape [see movie 1]. On the contrary, when the flow is turned on, the front is
distorted. Examples of the resulting front shapes with supportive (F > 1.38) and adverse flow (F < 1.38) are shown
on Fig. 6 left and right for high flow strength (|F | & 2.5) [see movie 2 and 3].

3) Separation of the scalings between the static sawtooth shapes and the propagating regions
of the fronts

The width of he front w(∆x, t) is characterized by the standard deviation of the front height over a length scale
∆x at a time t:

w(∆x, t) =
〈√
〈[h(x, t)− 〈h〉∆x]2〉

∆x

〉
L

, (7)

where 〈〉∆x represents an average over the length ∆x, and 〈〉L a translational average along the front of length L.
Temporal fluctuations are quantified by w(x,∆t), corresponding to the standard deviation of the front height over a
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time scale ∆t at a given position x on the front:

w(x,∆t) =
〈√
〈[h(x, t)− 〈h〉∆t]2〉∆t

〉
T

, (8)

where ∆t is a time window, and T the duration of the experiment.
Both quantities exhibit power laws:

w(∆x, t) ∼ ∆xα for ∆x� `∗(t), (9)

w(x,∆t) ∼ ∆tβ for ∆t� t∗(L), (10)

with `∗(t) and t∗(L) the spatial and temporal correlation lengths.
In the negative qKPZ regime when F becomes close to Fc− , the front displays static sawtooth shapes at large

scales, and one has to make a distinction between the scaling properties of the fronts before and after the formation
of these patterns. Once the final static state is reached, the large scale sawtooth shape leads to a higher roughness ex-
ponent than the one determined during the transient propagation of the fronts, excluding these inclined static regions.

a) Experimental additional scalings

Figure 7 shows the roughness and growth exponents measured on the experimental fronts. In the blue region,
corresponding to the pinned phase with negative F , the front exhibits a higher roughness exponent once the final
static state is reached. Fig. 8 shows the corresponding w(∆x, t) functions: left, determined from those sawtooth shape
fronts, and center, during the transient propagation, excluding the inclined static regions under formation. The height
temporal fluctuations determined during the transient regime for the same values of F are displayed on Fig. 9 left
end center respectively.

When F becomes less negative, i.e. F & −1, both the sawtooth size and inclination become smaller, and no more
distinction is necessary between the scalings of the static state and the transiently moving state. For the positive
qKPZ regime, one can note on Fig 8 right and 9 right, that the thermal KPZ exponents are recovered for F = 0.64.

For higher value of F , when F → 1 + f0 = 1.38, the mean flow velocity becomes nil and the noise is no more
consistent enough to generate height fluctuations. This area corresponds to the hatched area on Fig. 7, and shows
that the temporal fluctuations become uncorrelated: β → 0, and the roughness of the front stays constant at α ' 0.8.

b) Numerical additional scaling

As the two depinning transitions take place in the adverse flow regimes, only this configuration has been numerically
investigated in this work. As can be seen on the Fig. 10, the numerical fronts scalings are quantitatively in good
agreement with the experimental ones for both transitions points and at high values of F̂ . Similarly to the experimental
fronts, the evolution of the roughness of the static front is quite more complex, and the same distinction between the
static fronts and the moving fronts is necessary. As indicated on Fig.11, when F̂ → F̂c− , the roughness of the static
front α = 0.87± 0.05 becomes close to one and corresponds to the characteristic sawtooth shape.

Fig. 11 also shows the roughness of the front close to F̂c+ , with the value α = 0.68 ± 0.05 in agreement with the
positive qKPZ equation. In this regime, it is interesting to note that there is a discrepancy on Fig. 10, between the

0

20

40

60

80

100

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

h 
(x

,t)
 (m

m
)

x (mm) x (mm) x (mm)

Figure 6: Successive experimental fronts at constant time intervals (red: starting front). Left: F = 6.01, upward front
propagation with supportive flow. Center: F = 1.38: relaxation pattern in the absence of flow. Right: F = −2.66, backward
propagating front in adverse flow.
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Figure 7: Roughness exponent α for moving fronts (blue squares), roughness in the pinned phase (black circles) and growth
exponent β (red triangles); versus F in the experiments. Hatched area corresponds to weak noise region when U → 0.
Green region: moving phase, blue region: negative qKPZ configuration (F < 0 and Vχ > 0), and red region: positive qKPZ
configuration (F > 0 and Vχ > 0).
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Figure 8: Left and center: roughness of the fronts in the negative qKPZ regime. Left: determined for the final sawtooth static
fronts, center: determined during the transient propagation and excluding the frozen portions of the front. Right: roughness
of the fronts in the positive qKPZ regime for upstream propagating fronts.
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Figure 10: Roughness exponent α for moving fronts (blue squares), roughness in the pinned phase (black circles) and growth

exponent β (red triangles); versus F̂ in the simulations. Green region: moving phase, blue region: negative qKPZ configuration

(F̂ < 0 and Vχ > 0), and red region: positive qKPZ configuration (F̂ > 0 and Vχ > 0).
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Figure 11: Numerical front roughness of the final static fronts at F̂ ' F̂c+ , blue, and F̂ ' F̂c− , red.

roughness measured in the moving regime (α = 0.75± 0.05) and the one measured in the static regime, which should
be compared to the Directed Percolation (as notified by Amaral et al. [5]).

Far from the two transitions when F̂ < F̂c− or F̂ > F̂c+ , the two exponents become quite close to the “thermal”
KPZ ones. Indeed one have at F̂ = −6, α = 0.55± 0.05 and β = 0.32± 0.05 and at F̂ = 1, one have : α = 0.45± 0.05
and β = 0.32± 0.05.

3) Region of low F

As F̂ is decreased further on Fig. 10, the roughness of the numerical fronts drops to zero at F̂ ' −0.5 and
then increases again as F approaches the second transition at F̂c− . We can note here that, deep inside the pinned
phase, we expect the final front’s shape to depend on the initial conditions. Both in the experiments and numerics,
when F̂ → 0, the front moves only by a small amount before getting pinned. In fact, it is worth noting that the
Poisson point disorder models (first layer PNG as in [6] or in a more realistic form in [7]) predict that the final,
pinned configuration, will have the same roughness as the initial one. Hence in the numerics, it is expected that the
roughness drop to zero as the initial conditions is flat, whereas in the experiments the initial fronts are never perfectly
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Figure 12: Front mean velocity versus the relative mean flow rate: (U + Vχ)/Vχ. Dashed red lines indicate the linear fit with
the right moving branch and its intersection with the x axis determines the value of f0. Left: f0 = 0.38 in experiments, and
right: f0 = 0.256 in simulations.
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Figure 13: Numerical front velocity versus F̂ − F̂c+ .

flat as they have already travel through the glass beads before the flow is switched on. When we get closer to
F̂c− , the front moves for longer distance before getting pinned, and thus recover a more universal behavior as F̂ → F̂c− .

4) Control parameter definition

As a control parameter, we define F =
Ū+Vχ
Vχ

+ f0 in the experiments and F̂ =
Ū+Vχ
Vχ

+ f̂0 in the simulations.

One can note that, in the porous medium, it is quite unclear if one should use Vχ or V0 = 0.8Vχ ± 0.5µm/s (i.e.
including or not the effect of tortuosity/porosity) to determine F . Here, we are using Vχ to define F as for the eikonal
approximation. Indeed, this parameter Vχ has shown to lead to the right estimation of the sawtooths angle when the
fronts are static [8]. In the simulations however, porosity and tortuosity are both equal to one, the problem is then
not present as V0 = Vχ.

By analogy with the qKPZ behaviour, the constant f0 is determined by fitting the right velocity branch far from its
pinning threshold (see Figs. 12). As described below, we attribute this constant value to the average roughness of the
front. A closer inspection of the Fig. 12 right, shows that it can be fitted with a power-law Vf (F̂ ) ∼ (F̂ − F̂c+)0.8±0.05,

with F̂c+ ' 0.095± 0.015 as shown on Fig. 13. One can note that, the value F = 1 + f0 is quite singular since then
the noise is nil, but not the driving force.

In the numerics, below the first transition, F̂ < F̂c− , and beyond the second one, F̂ > F̂c+ , the velocity Vf (F̂ )

is almost linear with Vf = 0.9F̂ + 0.52 and Vf = 0.8F̂ , respectively. Both branches have different slopes and differ
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from the prediction of the KPZ equation (v/f ∼ 1 at large f). Similarly, in the experiments, we note that both
negative F < Fc− and positive Fc+ < F < 1.38 linear branches have a different slope than one: Vf = 0.55F − 0.15
and Vf = 0.56F respectively. In addition, for the supportive flow regime in the experiments, this slope becomes
Vf = 1.12F − 0.85. We attribute this behavior to a nonlinear interaction between the chemical reaction and the flow
field, which enhances mixing and front velocity as studied in [9–11]. Indeed, since flow heterogeneities necessarily
enhanced the mixing and thus the reaction rate, one can expect at first order in ε = Ū/vχ to have an effective
chemical velocity: Vχ → Vχ(1 + a|ε|) leading to an average front velocity Vf = (1− a)Ū + Vχ for adverse flow (ε < 0)
and Vf = (1 + a)Ū + Vχ for supportive flow (ε > 0).

5) From the eikonal approximation to the qKPZ equation

For a thin front, the local front velocity follows the eikonal equation:

~Vf · ~n = Vχ +Dmκ+ ~U(~r) · ~n , (11)

where ~n is the normal of the front, κ the curvature and ~U(~r) the local flow velocity. Indeed, this equation is similar to
the “flux-line model” of Kardar [12] where the chemical velocity plays the role of the Lorentz force and the disordered
flow of the random force. After projection the eikonal approximation yields to:

∂h

∂t
=
√

1 + s2
[
Dm∂

2
xh/(1 + s2)3/2 + Vχ +

(
U + δUy(~r)− sδUx(~r)

)
/
√

1 + s2
]

,

with s = ∇h and ~U(~r) = Ū~ey + δ~U(~r) ,

which, considering that the flow is highly anisotropic δUx � δUy, gives:

∂h

∂t
' Dm∇2h

1 + (∇h)2
+ Vχ

√
1 + (∇h)2 + U + δUy(~r). (12)

Finally, assuming small gradients and neglecting higher order terms, leads to the qKPZ equation:

∂h

∂t
' Dm∇2h+

Vχ
2

(∇h)2 + δUy(~r) + U + Vχ . (13)

After normalizing by Vχ, we can write the qKPZ equation with the folowing parameters:

ν = lχ = Dm/Vχ

λ = 1

η̄ ≡ δUy

f =
U + Vχ
Vχ

,

6) Disorder measurements

In the experiment D̄ ∼ Vf and Vf is proportional to F for large mean flow velocities , i.e. |F | > 2.5. The expected
KPZ noise D ' D̄/Vf ∼ D̄/F becomes then almost independent F . D̄ can be deduced experimentally from the flow
local velocity fluctuations. The width σ(F ) ∼ D̄ of the corresponding flow velocity PDF, at a given value of F , can
be estimated with tracer transport experiments [8]. Fig. 14 a) shows the value of σ(F ) determined from tracer front
dispersion experiments, and show that σ is proportional to F for both signs of F and |F | > 2. The dependence of σ/F
with F is shown on Fig. 14 b). One can note that, σ/F ∼ D̄/F ' cste for F > 2, with a different value depending
on the the sign of F .

Supplemental movie 1

Reaction front propagation in the absence of flow, i.e. at F = 1 + f0 = 1.38.
http://www.fast.u-psud.fr/~atis/Movie1_Q0.avi

http://www.fast.u-psud.fr/~atis/Movie1_Q0.avi
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Figure 14: a) The dependence to F of the width σ of the flow velocity fluctuations PDF determined from tracer transport
experiments. b) σ/F ∼ D̄/F ' D, the estimated KPZ noise dependence on F .

Supplemental movie 2

Upward propagating reaction front at large flow rate, for positive mean flow orientation at F = 3.16. In this
configuration both the chemical wave velocity and the mean flow velocity are oriented toward the top.
http://www.fast.u-psud.fr/~atis/Movie2_Q025_up.avi

Supplemental movie 3

Downward propagating reaction front at large flow rate, for negative mean flow orientation at F = −4.34. In this
configuration the chemical wave velocity is oriented toward the top and the mean flow velocity toward the bottom.
http://www.fast.u-psud.fr/~atis/Movie3_Q08_down.avi

Supplemental movie 4

Upward propagating reaction front at low flow rate, for negative mean flow orientation at F = 0.58. In this
configuration the chemical wave velocity is oriented toward the top and the mean flow velocity toward the bottom.
http://www.fast.u-psud.fr/~atis/Movie4_Q011_down.avi

Supplemental movie 5

Downward propagating reaction front at low flow rate, for negative mean flow orientation at F = −1.25. In this
configuration the chemical wave velocity is oriented toward the top and the mean flow velocity toward the bottom.
http://www.fast.u-psud.fr/~atis/Movie5_20_down_SSB.avi
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