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Abstract. We reconsider the functional renormalization-group (FRG) approach
to decaying Burgers turbulence, and extend it to decaying Navier–Stokes and
surface quasi-geostrophic turbulence. The method is based on a renormalized
small-time expansion, equivalent to a loop expansion, and naturally produces a
dissipative anomaly and a cascade after a finite time. We explicitly calculate and
analyze the one-loop FRG equations in the zero-viscosity limit as a function
of the dimension. For Burgers turbulence they reproduce the FRG equation
obtained in the context of random manifolds, extending previous results of one
of us. Breakdown of energy conservation due to shocks and the appearance of
a direct energy cascade corresponds to failure of dimensional reduction in the
context of disordered systems. For Navier–Stokes turbulence in three dimensions,
the velocity–velocity correlation function acquires a linear dependence on the
distance, ⇣

2

= 1, in the inertial range, instead of Kolmogorov’s ⇣
2

= 2/3;
however, the possibility remains for corrections at two- or higher-loop order.
In two dimensions, we obtain a numerical solution which conserves energy and
exhibits an inverse cascade, with explicit analytical results for both large and
small distances, in agreement with the scaling proposed by Batchelor. In large
dimensions, the one-loop FRG equation for Navier–Stokes turbulence converges
to that of Burgers turbulence.
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1. Introduction

Describing Navier–Stokes (NS) turbulence with the tools of statistical physics has
remained a major challenge since Kolmogorov’s dimensional arguments leading to the
E(k) ⇠ ✏̄2/3k�5/3 energy spectrum for the three-dimensional (3D) energy cascade [1]–[4].
The simplest analytical method, Kraichnan’s direct interaction approximation closure
scheme [5] (equivalent to mode coupling) failed to recover Kolmogorov’s prediction.
There have been numerous attempts to overcome these di�culties using a variety of
methods, e.g. more refined closure schemes [6], large numbers of components [7, 8],
perturbative [9]–[15] and non-perturbative [16, 17] renormalization-group (RG) schemes,
conjectures for short-distance expansions [18]–[20], study of short-time singularities [21],
tetrad models [22] and shell models [23], with various degrees of success. At the heart of the
cascade phenomenon is that non-smooth velocity fields do not conserve energy. The main
physics challenge, i.e. to describe the statistics of the energy transfer via singular or almost
singular structures, is only partially captured. Predicting the multi-fractal corrections for
velocity moments Sp(u, t) = h[(vut � v

0t) · u/|u|]pi ' Cp|u|⇣p to Kolmogorov’s prediction
(⇣K

p = p/3) remains a challenge, despite the analytical progress in the simpler passive scalar
problem [24]–[42]. More is known for the inverse cascade in two dimensions (2D) [43], due
to an infinity of conserved quantities and a simpler numerical modeling; the most recent
analysis unveils a tempting connection to conformal field theory and Schramm–Loewner
evolution (SLE) [44], but remains based on numerics or speculative [45]. Also relations
between NS and the membrane dynamics of black holes have been discussed in the context
of the anti-de Sitter/conformal field theory (AdS/CFT) correspondence [46]–[48] as well
as relations to the physics of graphene [49].

The problem of N -dimensional Burgers turbulence, i.e. of a potential flow without
pressure, exhibits similarities with NS turbulence, such as the existence of an inertial
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range which supports an energy cascade and the multi-scaling of the velocity moments.
Although, like NS, it lacks a small control parameter and hence is non-trivial, it is simpler,
since the Burgers equation can be integrated explicitly via the Cole–Hopf transformation3,
hence it has allowed for some progress [52, 50]. A remarkable mapping to an elastic object
in a quenched random potential maps the shocks in both a decaying or stirred Burgers
velocity field to the jumps of the equilibrium position of the pinned elastic object (which
is a point for decaying Burgers or a line for stirred Burgers) upon variation of an external
field. This mapping was used to study the large-dimension N limit of stirred Burgers
turbulence using replica-symmetry breaking [53, 54] and, more recently, of decaying

Burgers turbulence [55, 56]. The detailed statistics of shock cells which is obtained from
these works is consistent with the physical expectation, and important open questions
are now: (i) whether this is a good starting point to perform an expansion towards finite
N ; (ii) whether it can inspire an approach to NS in large dimensions, a notably di�cult
problem [57]. A RG-inspired method bypassing the Cole–Hopf transformation as well as
a non-perturbative RG have been proposed very recently for the Khardar–Parisi–Zhang
(KPZ) equation which is closely related to the Burgers equation [58, 59].

Another powerful method able to handle singularities such as shocks and avalanches
in disordered systems, which does not rely on large N , is the functional renormalization

group (FRG) method [60, 61] (for an introduction and review see [62, 63]). The connection
between the FRG method and decaying Burgers turbulence was elucidated in [64, 65]
(see [66] for an earlier attempt). It turns out that the force felt by an elastic manifold
of internal dimension d submitted to a random potential plus a quadratic well can be
seen as a generalized velocity field: it satisfies an exact evolution equation which is a
functional generalization of the decaying Burgers equation, where the role of time is
played by the (inverse) curvature of the well. For d = 0 the manifold is a point and one
recovers the standard Cole–Hopf representation of the Burgers equation. The hierarchy of
equations relating n-point equal-time velocity correlation functions identifies with the
(exact) hierarchy of FRG flow equations, and the loop expansion in the field theory
corresponds to the (renormalized) small-time expansion in the (generalized) Burgers
problem, as will be detailed below. The amazing property is that this hierarchy becomes

controlled in an expansion in ✏ = 4 � d around d = 4, which is the crucial property of
the FRG approach to disordered systems. Hence Burgers turbulence, i.e. d = 0, becomes
accessible via this expansion. Furthermore the physics of the generalized Burgers problem
(i.e. of the manifold) has features which are independent of the parameter d. For instance,
energy conservation for smooth flows is obtained as well as an infinite number of conserved
quantities (the first property being called ‘dimension reduction’ in the context of manifold,
and the second corresponds to the non-renormalization of the moments of the so-called
Larkin random force). Non-conservation of energy via shocks occurs for any d, and the
dissipative anomaly at the heart of the energy cascade, i.e. the non-vanishing limit of the
energy flux �@tE = ✏̄ = ⌫h(rv)2i as ⌫ ! 0, is naturally captured by the FRG [64, 65].
Finally the FRG allows us to compute shock-size distributions in the controlled expansion

3 It is often said [50] that it lacks an essential property of NS turbulence, namely the sensitivity to small
perturbations in the initial data, and thus the spontaneous appearance of randomness by the chaotic dynamics.
However, there is, in some cases (denoted SR below), decorrelation in time of two slightly di↵erent initial conditions,
a property sometimes termed chaos in the community of disordered systems [51].

doi:10.1088/1742-5468/2013/04/P04014 4
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around d = 4 [67, 68]. Most of these studies focused on N = 1, but recently we also
investigated N > 1 [69].

The aim of this paper is thus to investigate whether FRG-inspired methods can be
developed to describe NS turbulence as well. Here, our scope is relatively modest and it
should be seen as a first exploration of the FRG method into the domain of non-linear
physics. We focus on the decaying Burgers and NS equations; however, the stirred case can
also be studied within the same framework. We derive the one-loop FRG equations, first
for Burgers in N -dimension (since most explicit calculations in [64, 65] were for N = 1),
and then for NS. We discuss some features of the fixed-point solutions which correspond
to a decaying turbulent state, leaving a detailed analysis for the future. Within the one-
loop approximation the FRG yields a two-point velocity correlation function which grows
linearly with distance within the inertial range, that is also applicable to the N = 3 case.
This can be attributed to failure of the one-loop FRG to capture properly the singularities
resulting from the higher order cumulants in the cumulant expansion. However, it is
possible that at second (two-loop) or higher order, new non-trivial fixed points emerge.
On the contrary, in N = 2 we find a NS fixed point, which is consistent with Batchelor’s
scaling for the inverse energy and direct enstrophy cascades expected for the 2D decaying
turbulence [6]. At this stage, the method for NS is not a controlled perturbative expansion
scheme, since there is no equivalent of the Cole–Hopf mapping. The method, however, does
capture some of the physics of the singularities. We analyze the nature of the singularities
at small distance. While our analysis is restricted to one loop, we discuss at the end
possible extensions to higher loops.

Let us stress that in the so-called inertial range of length and time scales, it is widely
expected that the statistics of 3D decaying turbulence is rather similar to the forced one.
Indeed, due to strong separation of the large and small time scales, the eddies in the
inertial range have enough time to reach an equilibrium for the energy flux before the
larger eddies will significantly decay. The scaling behavior of decaying turbulence in the
inertial range is thus indistinguishable from the forced case, while di↵erences will occur at
the scales of the large eddies. This is the universality assumption entering most theories
of turbulence (see, e.g., [70] for a detailed discussion). The question of similarity between
decaying and forced 2D turbulence is more subtle. For 2D forced turbulence with injection
of the energy at a fixed length scale there is an inverse energy cascade towards larger scales
which leads to the energy spectrum k�5/3, which is non-existent in the decaying case.
Moreover, the spontaneous appearance of large-scale coherent structures can di↵erently
a↵ect the enstrophy cascade in decaying and forced 2D turbulence [71].

The paper is organized as follows: in section 2, we introduce the model and notation.
In section 3, we review known results, both for Burgers and NS turbulence. The FRG
equations are derived in section 4. We start with the general scheme, before giving results
for Burgers and NS turbulence; finally we discuss conserved quantities. In section 5, we
discuss the short-distance singularity of the FRG equations: are there solutions with other
power laws than a cusp? In section 6 we focus on the analysis of the FRG equations for NS
turbulence in two dimensions. In section 7 we discuss the limit of large N and in section 8
we give the FRG equations for surface quasi-geostrophic turbulence.

Finally note that this work was started a while ago. For an early exposition see [72].

doi:10.1088/1742-5468/2013/04/P04014 5
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2. Model and notations

We study here two models:

(i) the N -dimensional decaying Burgers equation for a N -component velocity field vut at
point u and time t,

@tv
↵
ut = ⌫r2

uv
↵
ut � 1

2

@↵
u(vut)

2. (1)

The velocity is assumed to be vorticity-free so it can be expressed as gradient of a
potential function, v↵

ut = @↵
u V̂ (u, t), that implies 1

2

@↵(v)2 = (v · r)v↵. Note that to
streamline notations we attach space and time indices to the fields, which are never

to be understood as derivatives. We use boldface to indicate vectors and normal font
for scalars, so k := |k|.

(ii) the incompressible N -dimensional NS equation

@tv
↵
ut = ⌫r2

uv
↵
ut � PT

↵�(@u)@�
u(v�

utv
�
ut), PT

↵�(@u) = �↵� � @↵
u@

�
u

r2

(2)

with the pressure eliminated using the transverse projection operator PT

↵�(@u). The
latter implies the divergence free constraint (incompressibility) r ·v = 0 at all times.
In Fourier space, both equations can be written as

@tv
↵
kt = �⌫k2v↵

kt � 1

2

P↵;��(k)
X

p+q=k

v�
qtv

�
pt, (3)

with

P↵;��(k) =

(

ik↵��� (Burgers),

ik�PT

↵�(k) + ik�PT

↵�(k) (NS).
(4)

The transverse and longitudinal projection operators written in Fourier space read

PT

↵�(k) = �↵� � k↵k�

k2

, P L

↵�(k) =
k↵k�

k2

. (5)

In both cases we are interested in the small-viscosity (large Reynolds number) limit ⌫ ! 0,
in which case a broad inertial range develops. In that limit the NS equation formally
becomes the Euler equation, and in both cases weak solutions exist [73]–[75] (for review
see [76]).

We study homogeneous turbulence with random initial conditions, i.e. we chose an
initial condition at time t = 0 which is statistically translational invariant. Everywhere we
denote h· · ·i as the average over initial conditions. We assume that the initial velocity
field is Gaussian distributed and that its spectral support is around a characteristic
wavenumber k

0

. The averaged squared initial velocity is v̄
0

= hv2

00

i1/2. The initial Reynolds
number is R = v̄

0

/(⌫k
0

) which we assume to satisfy R � 1. The initial range (where
viscosity is subdominant), given by k

0

⌧ k ⌧ v̄
0

/⌫, has no particular structure, but will
develop, as time increases, into a self-similar inertial range where the energy cascade (in
three dimensions) will take place.

To stress the similarity with the FRG, we denote the equal-time velocity two-point
function as

hv↵
utv

�
0ti = �t,↵�(u), hv↵

ktv
�
k0ti = �k�k0 �t,↵�(k). (6)

doi:10.1088/1742-5468/2013/04/P04014 6
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We denote �k := (2⇡)N�N(k), and in Fourier space �t,↵�(k) = P L,T
↵� (k)�t(k) for Burgers

and NS turbulence respectively. By definition, �↵�(u) = ��↵(�u), while symmetry is only
assured for isotropic turbulence. We study a system in a periodic cube (torus) of volume
LN with mostly two distinct cases:

(A) fixed t and L ! 1 in which case we further restrict to isotropic (homogeneous)
turbulence where �t(k) depends only on |k|.

(B) fixed L, which becomes periodic turbulence. In case (B) we use discrete Fourier modes
P

q, which implicitly become
P

q !
R

q ⌘
R

dNq/(2⇡)N in all formula below in case
(A).

The total kinetic energy per unit volume, and the kinetic energy spectrum are denoted
as in [6]

E (t) = 1

2

hv2i =
Z 1

0

dk E (k, t). (7)

However for convenience we also use a non-standard normalization for the energy and
energy spectrum and denote (SN is the area of the unit sphere in dimension N):

E(t) :=
(2⇡)N

SN

hv2i =
Z 1

0

dk E(k, t) , (8)

E(k, t) :=
Z

dNk

SN

�(k � |k|)�t,↵↵(k), (9)

which for isotropic turbulence becomes

E(k, t) = kN�1�t,↵↵(k). (10)

Hence E (k, t) = 1

2

(SN/(2⇡)N)E(k, t). The decay of turbulence depends on the initial
spatial behavior of the energy spectrum at large scales, hence we denote (in the isotropic
case)

E(k, t = 0)⇠k!0

c kn, �
0,↵↵(k)⇠k!0

c kn�N+1, �
0,↵↵(u)⇠u!1c0u�n�1. (11)

The total (kinetic) energy (per unit volume) E(t) =
R1
0

dk E(k, t) ⇠ �t,↵↵(u = 0) must
be finite (it grows as Ln+1 for n < �1) and the initial velocity field is usually assumed to
be smooth, i.e. �

0,↵�(u) is an analytic function in each of its components u near |u| = 0.
In all cases below, when the system reaches a statistically scale invariant decaying

state, we denote by

`(t) = t⇣/2 (12)

the characteristic length scale, which usually separates the inertial range from the large-
scale region (i.e. `(t = 0) ⇠ 1/k

0

). The notation is motivated by the relation, in the Burgers
case, to the roughness exponent ⇣ for random manifolds. We distinguish it from the
exponent ⇣

2

, which describes the leading short-distance singular behavior of the two-point
equal-time velocity correlator in the inviscid limit. We will also assume a dissipation scale

`
d

(t) ⌧ `(t) which is the lower boundary of the inertial range, and is often set to zero in
the following, corresponding to the inviscid limit.

doi:10.1088/1742-5468/2013/04/P04014 7
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3. Known results and phenomenology

3.1. Decaying Burgers turbulence

In the following we use the mapping of the Burgers equation onto the problem of a particle
in the N -dimensional potential W = V (u

0

) + (1/2t)(u � u
0

)2, where V (u) is the random
potential which parameterizes the initial condition, i.e. vut=0

= ruV (u). Denoting by Z
the canonical partition function of the particle at temperature T = 2⌫, the velocity at
all times is vut = ruV̂ (u, t), where V̂ (u, t) = �T ln Z is the free energy. In the inviscid
limit it becomes V̂ (u, t) = minu0W . Let us summarize what is expected for Burgers (most
results are shown for N = 1, and conjectured for N > 1); for more details see e.g. [50] and
the discussion in section E of [65] including connections to the FRG. We assume a smooth
Gaussian initial velocity field with the correlator (11), i.e. with a spectrum proportional
to |k|n at small k and decreasing quickly at large k. For isotropic turbulence (A) there are
two cases:

(1) Long-range initial condition (LR) n < 1. The correlator of the random potential
h[V (u) � V (0)]2i grows as u1�n at large u and the particle is always in a glass
phase, i.e. the e↵ective viscosity scales to zero (see below). The evolution is expected
to reach an asymptotic statistically scale invariant form vut = `(t)t�1ṽ(u/`(t)) (in
law) with `(t) = t⇣/2, where ⇣ = 4/(3 + n) and with energy decay E(t) ⇠ t�2+⇣ =
t�2(n+1)/(n+3). Shocks, i.e. codimension-one manifolds (together with some additional
lower-dimensional singularities for N > 1), where the velocity is discontinuous (at
⌫ = 0+) or nearly discontinuous (at small ⌫ > 0), form in finite time and, convected
by the flow, keep merging when they meet. The growing scale of this coarsening process
(quite complicated for N > 1) is expected to scale as `(t) ⇠ t⇣/2. This is clear at least
for N = 14. While the width of an isolated shock grows as Ld(t) ⇠ ⌫t, the width
of the surviving shocks grows as L0d(t) ⇠ ⌫t1�⇣/2 [64, 65], hence the rescaled width
L0d(t)/`(t) ⇠ ⌫t1�⇣ ⌘ ⌫

e↵

scales to zero for n < 1. This corresponds in the FRG to an
attractive zero-viscosity (i.e. zero-temperature) fixed point (describing a glass phase
for the particle): one can write ⌫

e↵

= ⌫t✓/2, i.e. T
e↵

= Tt✓/2. For a random manifold,
the glass exponent is ✓ = d � 2+2⇣ > 0, with here d = 0. This is a LR fixed point, with
exponents given by their dimensional values (also called Flory values in the context
of elastic manifolds), i.e. they are fixed by the initial condition. This property, called
the persistence of large eddies in turbulence, means that the energy spectrum for
k ⌧ 1/`(t) retains its original form (11) with an amplitude c independent of time.

(2) Short-range initial condition (SR) n > n
c

= 1. This is the Kida regime [50, 77] with
an asymptotic statistically scale invariant form (see, however, below) with a scale
`(t) = [t/(ln t)]1/2 and a decay of the energy E(t) ⇠ 1/[t(ln t)1/2] (for Gaussian initial
conditions). The (rescaled) shock width now grows (there is no glass phase); hence
it exists only for ⌫ ! 0 before t ! 1 (see [78, 79] for a more refined analysis of the
double limit).

There is an additional crossover region (e.g. for 1 < n < 2 for N = 1) where the
persistence of large eddies (i.e. of the tail of the FRG function) still holds, but the system
flows to the SR (Kida) fixed point: this is known as the Gurbatov phenomenon [80], i.e. the

4 At least for dilute shocks n < �1; shocks are dense for n = 2 and the analysis is more di�cult.

doi:10.1088/1742-5468/2013/04/P04014 8
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velocity statistics is not scale invariant. The resulting energy spectrum then consists
of three regions: (i) the ‘outer region’, 0 < k < k

s

(t) ⇠ t�1/[2(2�n)], where the velocity
correlations preserve its initial form (11); (ii) the ‘inner region’, k

s

(t) < k < `(t)�1 ⇠ t�1/2

(⇣ = 1), with spectrum k2, and (iii) the shock-dominated region with spectrum k�2 for
k > `(t)�1. All scales are given up to logarithmic corrections and for N = 1. More details
can be found in [80]. Within the FRG analysis, this crossover region can be seen as
crossover from the LR to the SR FRG fixed point5. In the FRG analysis of random
manifolds a similar crossover was described in [81].

In the marginal case n = 1, a LR fixed point exists where the potential retains
logarithmic correlations, with a phase transition as a function of ⌫ [79].

Note that originally Burgers [82] distinguished only two cases (for N = 1), assuming
that J = �(k = 0) =

R

du�(u) exists. The case J > 0 then corresponds to the LR case
n = 0, hence `(t) ⇠ t2/3 (⇣ = 4/3) and is usually called ‘random-field’ fixed point in the
language of random manifolds. The case J = 0 was solved by Kida [77], and corresponds
here to the SR case n > 1 (for instance for n = 2, �(k) is analytic and the random potential
has �-correlations). This is usually called the ‘random-bond’ fixed point in the language
of random manifolds. The summary presented above contains many more cases, i.e. the
LR models form a line of fixed points, continuously parameterized by n, and the SR case
can also be modified by the Gurbatov LR–SR crossover.

Finally for the periodic case, the system converges, for N = 1, to a single random
shock per period with E(t) ⇠ t�2. This corresponds to the FRG random-periodic fixed
point ⇣ = 0 (i.e. n = 1), and a similar picture should hold for any N .

3.2. Decaying NS turbulence

A similar discussion can be given for decaying NS, though on a much less firm basis,
mostly phenomenology, scaling arguments, closure calculations and some support from
experiments. Again since Von Karman and Howarth [83] one assumes a decaying state
vut = `(t)t�1ṽ(u/`(t)) (in law). Then ṽ satisfies an equation where ⌫ ! ⌫t/`(t)2, which
flows to zero if ⇣ > 1. In Fourier space this can be written vkt = `(t)2t�1v̂(k`(t)) (in
law) and the energy spectrum takes the form E(k, t) = `(t)3/t2Ẽ(k`(t)) with `(t) = t⇣/2

and a total kinetic energy decay E(t) ⇠ t�2+⇣ . The persistence of large eddies, i.e. the
invariance of E(k, t) ' ckn, implies ⇣ = 4/(3+n). This corresponds to a LR initial condition
(i.e. regime (1) in section 3.1). The energy spectrum can then be divided into a low-
wavenumber range k`(t) ⌧ 1 with E(k, t) ' ckn, and the inertial range k`(t) � 1, with,
in 3D (N = 3), E (k, t) ' CK ✏̄(t)2/3k�5/3 (assuming the Kolmogorov spectrum) where ✏̄(t) =
�dE /dt is the energy dissipation rate, and in 2D (N = 3), E(k, t) ⇠ ✏̄2/3

! k�3 (assuming
the Batchelor–Kraichnan enstrophy cascade), where ✏! is the enstrophy dissipation rate.
For more details see [6] VII-10 and VIII-4 [84], for RG arguments, and also [85].

There is agreement that this LR regime cannot hold for n � 4 because of the C(t)k4

backtransfer in the energy spectrum discovered by Proudman and Reid [86] for the 3D
NS equation, and found in eddy damped quasi-normal approximation (EDQNM) closure
calculations [6] (analogous to the k2 backtransfer for the Burgers dynamics). In other
words, the low-k energy spectrum cannot be softer than k4. For n > 4 it is argued that the

5 For instance the value n = 2 corresponds to the Flory exponent ⇣ = 4/5, and at short scale the SR correlator
of the random potential behaves e↵ectively as �(x) ⇠ 1/x, while at large scale it flows to the SR Kida fixed point.

doi:10.1088/1742-5468/2013/04/P04014 9
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small-k part of the spectrum is replaced by E(k, t) ⇠ C(t)k4 at small k, with the inertial
range at large k. Because of the Gurbatov phenomenon (analogous to the situation in
Burgers turbulence discussed above) it is then argued [87] that the LR regime cannot
hold for n < n

c

with 3 < n
c

< 4. In the range n
c

< n < 4 there are three spectral regions
E(k, t) ' ckn for k < 1/`⇤(t) (outer region), E(k, t) ' C(t)k4 for 1/`⇤(t) < k < 1/`(t)
(inner region) and finally the inertial range for k > 1/`(t), leading to a breakdown of
global self-similarity. This global picture seems compatible with experiments [88, 89].

Note that in 3D NS there is another conserved quantity, the helicity h = ✏↵��v↵@�v�.
It is locally fluctuating even if its average is zero. If its average is non-zero, as in
magnetohydrodynamics, then we need to consider �↵�(u) 6= ��↵(u) = �↵�(�u). Its
presence makes possible a joint cascade with two fluxes, one of energy and one of helicity,
both to small length scales [90].

4. FRG equations

4.1. Loop expansion: general strategy

We now write FRG-like equations that are able to access directly the strong-coupling
regime (i.e. finite non-linearity) using either a graphical method or, equivalently, starting
from the exact infinite hierarchy obeyed by the equal-time n-point correlation functions
denoted here hv↵1

u1tv
↵2
u2t · · · v↵n

unti = C(n)

↵1···↵n(u
1

,u
2

, . . . ,un). They obey, for n � 2,

@tC
(n)

↵1···↵n
(u

1

,u
2

, . . . ,un) = n⌫ Sym
h

r2

u1
C(n)

↵1···↵n
(u

1

,u
2

, . . . ,un)
i

� n

2
Sym

h

P↵1;��(ru1)C
(n+1)

��↵2···↵n
(u

1

,u
1

,u
2

, . . . ,un)
i

. (13)

The time dependence is implicit, and P↵;��(r) is given by equations (4) and (5) rewritten
in real space using ik $ r; symmetrization with respect to the n pairs (ui,↵i) for
i = 1, . . . , n is denoted by Sym[· · ·]. We recall that C(2)

↵1↵2
(u

1

,u
2

) = �t,↵1↵2(u1

� u
2

). In
Fourier space the hierarchy reads

@tC
(n)

↵1···↵n
(k

1

,k
2

, . . . ,kn) = �n⌫ Sym
h

k2

1

C(n)

↵1···↵n
(k

1

,k
2

, . . . ,kn)
i

� n

2
Sym

2

4P↵1;��(k1

)
X

p+q=k1

C(n+1)

��↵2···↵n
(p,q,k

2

, . . . ,kn)

3

5 (14)

for the correlations hv↵1
k1t · · · v↵n

knti = C(n)

↵1···↵n(k
1

, . . . ,kn) = Ĉ(n)

↵1···↵n(k
1

, . . . ,kn)�k1+···+kn ,

and we also define Ĉ↵1↵2(k, �k) = C↵1↵2(k).
If equation (13) is considered in the inertial range, i.e. all |uij | � `d, it is expected

(and for Burgers turbulence in some cases shown) that one can neglect the viscosity
term in the hierarchy. To study the inertial range it is thus tempting to consider the
limit ⌫ = 0+ of these equations. To argue that this can be done, and that the result
is still given by equation (13) setting ⌫ = 0, we need two conditions: (i) the physical
requirement that the n-point velocity correlations C(n) are continuous functions, i.e. that
limits exist at coinciding arguments; (ii) the property that the ⌫ ! 0 limit of averages
such as h�(ui)PT

↵�(@u)@�
u(v�

utv
�
ut)i where � is any product of velocities with ui 6= u is equal

to PT

↵�(@u)@�
uh�(ui)v

�
utv

�
uti. This appears to be related to the existence of weak solutions

doi:10.1088/1742-5468/2013/04/P04014 10
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of the Euler equation, which is discussed in [73]–[76]. In some cases, e.g. for the inviscid
Burgers equation and N = 1, it can be justified [64, 65] from the dilute shock picture
of [91].

Assuming that the ⌫ = 0 hierarchy holds, let us describe the strategy of the loop
expansion as it was constructed in the case of Burgers [64, 65]. It amounts to looking for
a solution of the hierarchy in the schematic form (complicated convolutions are indicated
by ⇤):

@t� = t� ⇤ � + t3� ⇤ � ⇤ � + · · · (15)

C(3) = t� ⇤ � + t3� ⇤ � ⇤ � + · · · , C(4) = � ⇤ � + t2� ⇤ � ⇤ � + · · · (16)

C(5) = t� ⇤ � ⇤ � + · · · , C(6) = � ⇤ � ⇤ � + · · · . (17)

It is illustrated here or two loops, and more generally C(n) =
P

q�0

t2q+✏qC(n)

q [�] with
✏q = 0, 1 for n � 3 respectively even and odd. We impose that at t = 0 the distribution

is Gaussian, hence the functionals C(2k)

0

[�], k � 1, are given by the Wick decomposition.
This allows us to compute iteratively all the terms in the beta function (15): e.g. to
one loop we start from C4

0

= 3[��], and use (13) with successively n = 3 and 2, first to
get C3

0

, then to get the one-loop �2 term in (15). Thus, the beta function appropriate to
the rescaling � = t�2�̃ is obtained directly. Counter-terms are produced automatically by
successive corrections, due to consistent evaluations of @t� terms at each step. Higher-loop
calculations will be presented elsewhere [92]. The first corrections to each cumulant, i.e. the

C(2k)

1

[�] and C(2k+1)

0

[�] are the tree approximation. For calculations per se, an equivalent
procedure, which we also performed to one loop using a graphical method directly on the
Burgers and NS equations, is to compute �t = �t=0

+
P

qt
2q�⇤(q+1)

t=0

as a direct small-time
expansion, then compute @t�t and re-express the result in terms of �t itself as given
in (15) by inverting the series. The information contained in the beta function can thus
be described as a renormalized small-time expansion (for a direct small-time expansions
see [57, 21]).

Note that the present FRG is di↵erent from the usual RG for turbulence as developed
in [9]–[17]. Here we keep the complete crucial information about �(k) (in Fourier) while
the usual RG integrates out shells in k. In particular, the information in the small-u
behavior of �(u) ⇠ u⇣2 determines the exponent ⇣

2

.

4.2. FRG equation for Burgers

We now display the resulting one-loop �-function for Burgers. Calculations in real space
are given in appendix A and in Fourier space in appendix B. A graphical derivation can
be found in appendix D. The result reads6

@t�↵�(u) = �t@↵@� [���(u) � ���(0)]2 . (18)

It has the usual form of the N -component one-loop FRG equation [81, 93]. To study the
evolution from the initial condition (11), it is more convenient to introduce the rescaled
velocity correlation �̃t,↵�(u) defined through

�t,↵�(u) = 1

4

t⇣�✏/2�̃t,↵�(u/t⇣/2). (19)

6 Note that we have assumed that �ab;b(�) � �ba;b(�) is continuous and vanishes at � = 0.

doi:10.1088/1742-5468/2013/04/P04014 11
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Everywhere in this section we introduce

✏ = 4 (20)

for Burgers, while for an elastic d-dimensional manifold one has ✏ = 4 � d, which allows
perturbative control. The rescaled velocity correlation satisfies

t@t�̃↵�(u) =

✓

✏

2
� ⇣ +

⇣

2
u · ru

◆

�̃↵�(u) � 1

4
@↵@�

h

�̃��(u) � �̃��(0)
i

2

. (21)

Using �̃↵�(u) = �@↵@�R̃(u) =: �R̃00↵�(u), it can be recast as an equation for the correlator
of the random potential of the particle problem

t@tR̃(u) =

✓

✏

2
� 2⇣ +

⇣

2
u · ru

◆

R̃(u) +
1

4

h

R̃00↵�(u)2 � 2R̃00↵�(0)R00↵�(u)
i

. (22)

One recovers the familiar zero-temperature FRG equation for manifolds, derived here
directly for the inviscid Burgers problem in N dimension, i.e. for d = 0, by identifying
t@t = � 1

2

m@m (for N = 1 it was obtained to four loops in [64, 65]).
Let us focus on isotropic turbulence and denote R(u) = h(u), the general case being

very similar. The first property of the above FRG equations is that as long as the velocity
flow is smooth, ���(u) � ���(0) ' � 1

3!

h
0000

(0)(u2��� + 2u�u�), hence from equation (18)
the energy is conserved,

@tE (t) = 1

2

@t�↵↵(0) = 0, (23)

in agreement with standard knowledge for Burgers flows. However, it is known (since
Larkin; for review see, e.g., [94] in the context of elastic manifolds) that h0000(0) diverges
in a finite time t

c

. Furthermore it is known since [60, 81, 95] that the solution of
the one-loop equation �t,↵�(u) develops a cusp at the origin, more precisely h(u) =
h(0) + h00(0)(u2/2) + h000(0)(u3/6) + · · ·, a property which was found to hold also to next
order (two loop) [93] and, from the physics of shocks, is believed to hold to any order.
Hence in the present context of Burgers turbulence it implies non-conservation, and decay,
of the kinetic energy,

@tE (t) =
1

2
@t�↵↵(0) = �t

N(N + 3)

4
h000(0)2 ' � N(N + 3)

43

h̃000(0)2t⇣�3, (24)

using that now ���(u)����(0) ' � 1

2

h000(0)u(���+û�û�) where in the last equation we have

substituted the scaling form (19) valid at large t. In the large-time regime, �̃t,↵�(u) flows
to a fixed-point function �̃⇤↵�(u), which represents an asymptotic self-similar decaying
solution. The energy decay can also be written as

E (t) = 1

8

�̃⇤↵↵(0)t⇣�2, (25)

an exact relation for the amplitude if one knows the fixed point to all orders. To one-loop
accuracy this is equivalent to (24). Equation (25) generalizes the result (324), or (325), in
[65] to any dimension N .

As is well known from studies of the FRG equations [60, 81, 95], there are two types of
fixed points. First a family of LR fixed points, such that at large u, �↵�(u) ⇠ 1/un+1, and
R(u) ⇠ u1�n can be obtained by neglecting the non-linear terms (which are subdominant
at large u) and considering only the linear part (rescaling) of the FRG equation (21).

doi:10.1088/1742-5468/2013/04/P04014 12
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This easily recovers ⇣ = ⇣
LR

(n) = ✏/(3 + n), the result discussed in section 3, and the
so-called persistence of large eddies. Second, the SR fixed point, for which only one value
of ⇣ is possible, and which is obtained by shooting in the fixed-point equations (21),
(22) from u = 0, asking for a fast decay of R(u) at infinity. This gives a non-trivial
⇣ = ⇣

SR

= ✏/(4 + N) + �N , where �N decreases exponentially at large N [81]. The LR
behavior holds up to ⇣(n

c

) = ⇣
SR

, hence for small ✏ and large N it suggests n
c

⇡ N + 1.
On the other hand, we know that for d = 0 and any N , the analog of the SR fixed

point should be the one given by Kida, i.e. ⇣ = 1, and (up to the Gurbatov LR–SR
crossover) that n

c

= 1 separates LR from SR. Hence, we see that while the LR regime is
well captured by the FRG, i.e. the loop expansion in powers of ✏, the SR exponent ⇣

SR

and the SR fixed point of decaying Burgers is not well approximated. One reason seems
to be that Kida physics is controlled by rare events and extremal statistics, and seems to
be better captured by the replica-symmetry breaking (RSB) method, which even leads to
some exact results for the Kida fixed point [78, 79] (these can be extended to any N). In
fact even the n = 1 marginal case also involves some replica-symmetry breaking physics
(as well as a connection to random matrix theory) [79].

Of course the above discussion concerns scales larger than `(t). For u < t⇣/2, i.e. in
the inertial range, the FRG gives the correct physics of shocks and energy transfer, with
a cusp in �. To what extent the agreement (shock-size distributions, etc.) can be made
quantitative remains to be worked out in detail.

4.3. FRG equation for NS in momentum space

For NS the one-loop beta function is non-local in real space and thus easier to display
in Fourier space (for a real-space expression see appendix A). While the general case
is displayed in appendix B, we give here an expression valid for the subspace of
flows such that �↵�(k) = PT

↵�(k)�(k). For later use we introduce the potential R(k)
such that �(k) = k2R(k). In real space we can also write �↵�(u) = PT

↵�(@u)�(u) =
�(�↵� r2

u � @↵
u@

�
u)R(u). The function �(k) is then the Fourier transform of the trace

�↵↵(u)/(N � 1) = �(u), and the potential function R(k) is the Fourier transform of
R(u).

For N = 2 all incompressible tensors can be written in this form, and this is not a
restriction; we can even use discrete Fourier sums. For N > 2, this requires �(k) = �(k),
i.e. isotropic turbulence, and the k-continuum limit, i.e. an infinite box; the sums below
thus become momentum integrals, as explained in appendix B. The FRG equations are

@t�(k) =
2t

N � 1

X

q

b̃k,k�q,q [�(q)�(k � q) � �(q)�(k)] , (26)

b̃k,k�q,q =
k2q2 � (k · q)2

k2q2(k � q)2

�

(k2 � q2)
⇥

(k � q)2 � q2

⇤

+ (N � 2)k2(k � q)2

 

. (27)

Note that b̃k,k�q,q := �P
cjm

(k)Pjbc(k � q)PT

mb(q) is not invariant under q ! k � q, hence
the first term can also be written in a symmetrized form, given in appendix B. We now
use the rescaled variables

�t,↵�(k) = t⇣�2+N(⇣/2)�̃t,↵�(kt⇣/2) (28)
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to obtain

t@t�̃(k) =

✓

2 � ⇣ � N
⇣

2
� ⇣

2
k · rk

◆

�̃(k)

+
2

N � 1

X

q

b̃k,k�q,q

h

�̃(q)�̃(k � q) � �̃(q)�̃(k)
i

. (29)

Let us point out that this one-loop FRG equation, i.e. the unrescaled form (26), is very
similar to the so-called quasi-normal approximation (QN). For N = 3, one can check that
one recovers here the direct ⌫ = 0 limit of equation (VII-2-9) of [6]. However, let us point
out that the spirit here is a bit di↵erent. First, we are looking at ⌫ = 0 directly. Second,
we are searching for a fixed point valid for all k, with the appropriate choice of ⇣. Third,
we use these equations as a first step in a systematic renormalized small-time (i.e. loop)
expansion, which must be analyzed before carrying out the loop-expansion program. In
addition we have kept N , the dimension of space, arbitrary.

In the turbulence ‘closure’ literature one often sees quoted the EDQNM, which is
believed to improve on the QN. It amounts to replacing in the above FRG equation b̃k,k�q,q

by b̃k,k�q,q✓k,p,q, where ✓k,p,q = 1/µk,p,q are the ‘eddy damping rates’, phenomenological
parameters of the theory, a standard choice being µk,p,q = µk + µp + µq; there are two

choices for µk either [6] µ2

k = k3E(k) or µ2

k = a
1

(
R k

0

dp p2E(p))1/2. An interesting question,
left for the future, is to understand how the next order in the systematic (renormalized)
small-time expansion would compare with these phenomenological extensions.

4.4. FRG equation for NS in real space: isotropic turbulence

The flow equation (29) for an isotropic solution can be rewritten in real space. As for
Burgers we introduce the rescaled correlators via

R(u) = t2⇣�2R̃(ut�⇣/2), �(u) = t⇣�2�̃(ut�⇣/2). (30)

For isotropic turbulence, R(u) = R(u) and �(u) = �(u) (no numerical factor is introduced
for NS). The flow equation is simpler in terms of the function R̃(u), since a large part of
equation (29) is almost local as a function of R̃(u). We parameterize the solution as

R̃(u) = r(y = u2/2), �̃(u) = �r2

uR̃(u) = � [Nr0(y) + 2yr00(y)] . (31)

Then equation (29) turns into

t@t�̃(u) = (2 � ⇣)�̃(u) +
⇣

2
u · @u�̃(u) + ��̃

L

(u) + ��̃
NL

(u). (32)

The Laplacian of the first non-linear term in equation (29) is local in real space and reads

r2

u��̃L

(u) = 2 (3 � N) N (2 + N)2 r00(y)2 � 8 y2 r(3)(y)

⇥
h

�

5N2 + 3N � 40
�

r(3)(y) + (8N � 20) y r(4)(y)
i

� 4yr00(y)
h

(2 + N)
�

7N2 + 3N � 44
�

r(3)(y)

+ 4 y
⇣

�

4N2 + 6N � 26
�

r(4)(y) + (3N � 5) y r(5)(y)
⌘i

� 2 (N � 1) r0(y)
h

(4 + N)
⇣

(2 + N)
⇣

N r(3)(y) + 6 y r(4)(y)
⌘

+ 12 y2 r(5)(y)
⌘

+ 8 y3 r(6)(y)
i

. (33)
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The second non-linear term in the sum in equation (29) is strongly non-local in real space.
Performing the angular average we obtain

��̃
NL

(u) = �
X

k

eik·uR̃(k)
X

p

A(k, p)p2R̃(p), (34)

where

A(k, p) =
k4(4 + N(4N � 9)) � 4k2(N � 1)p2 + Np4

2N(N � 1)

+
(k2 � p2)3

2(N � 1)(k2 + p2)
2

F
1

✓

1

2
, 1,

N

2
,

4k2p2

(k2 + p2)2

◆

. (35)

This expression considerably simplifies for N = 3, with

2

F
1

✓

1

2
, 1,

3

2
,

4k2p2

(k2 + p2)2

◆

=
k2 + p2

2kp
atanh

✓

2kp

k2 + p2

◆

, (36)

and especially for N = 2 with

2

F
1

✓

1

2
, 1, 1,

4k2p2

(k2 + p2)2

◆

=
k2 + p2

k2 � p2

⇥(p < k) (37)

(see equation (67) below).

4.5. Energy conservation and energy anomaly.

Let us note some properties of the FRG equation for NS. First, as long as �↵�(u) is
analytic at u = 0 one has @t�↵�(0) = 0, which implies energy conservation. It can be seen
by integrating equation (26) over k, and relabeling p = k � q in the first integral and
p = k in the second (also changing q ! �q there), that

@t

X

k

�(k) =
2t

N � 1

X

p,q

b̃p+q,p,q � b̃p,p+q,�q

p2q2(p + q)2

�(q)�(p) = 0, (38)

since the integrand vanishes by symmetrization of p,q. Since each integral contains terms
of the form

P

qq
↵1 · · · q↵i�(q), with i = 0, . . . , 4 (38) holds if �↵�(u) is smooth enough.

Let us now recall where the energy anomaly comes from. The exact equation for n = 2
in the NS hierarchy implies the exact relation

1

2

@thvu0t · vuti = ⌫r2

uhvu0t · vuti + 1

4

r↵
u0 h(v↵

u0t � v↵
ut)(vu0t � vut)

2i. (39)

In the limit ⌫ ! 0 it can be read either in the dissipative region u0 = u (where the velocity
is su�ciently smooth and the cubic term can be set to zero) or in the inertial range with
u0 ! u, where the first term is negligible. This expresses the energy decay rate as

@tE = �✏̄ = lim
⌫!0

⌫hvut · r2

uvuti = lim
u0!u

1

4

r↵
u0
⌦

(v↵
u0t � v↵

ut)(vu0t � vut)
2

↵

, (40)

with E = 1

2

�↵↵(u = 0). The relation (39) can be derived from equation (A.2) in the
appendix which leads to

@t�↵↵(u) = �2r�
uC

(3)

���(u,u, 0) = �2r�
uhv�

utvut · v
0ti, (41)
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noting that r↵
u0 hv↵

utvu0t ·vu0ti = 0 using translational invariance and incompressibility and
that C(3) vanishes at coinciding points.

Hence if there is an energy anomaly ✏̄ > 0, the above implies C(3)

���(u,u, 0) ' (✏̄/N)u�

at small u. In the case of isotropic turbulence, using incompressibility, the third-order
tensor can be parameterized by a single function of the distance h

3

(u), with h
3

(0) = 0
as [83, 96]

hv↵
uv

�
0

v�
0

i =
h

3

(u)

u
u↵��� � 1

2



(N � 1)
h

3

(u)

u
+ h0

3

(u)

�

(u��↵� + u��↵�)

+ u↵u�u�
uh0

3

(u) � h
3

(u)

u3

. (42)

In the small-distance limit

C(3)

↵��(u, 0, 0) ' h0
3

(0)u↵��� � N

2
h0

3

(0)(u��↵� + u��↵�), h0
3

(0) =
2✏̄

N(N+2)(N �1)
.

(43)

This is often expressed as
D

(v↵
u � v↵

0

)(v�
u � v�

0

)(v�
u � v�

0

)
E

=
�4✏̄

N(N + 2)
(�↵�u� + �↵�u� + ���u↵), (44)

and in particular leads to Kolmogorov’s 4/5 law (for N = 3),
⌧

h

(v↵
u � v↵

0

) · u

u

i

3

�

' �12✏̄

N(N + 2)
u. (45)

Note that for isotropic turbulence the two-point velocity correlation can be written [83]
as

�↵�(u) =



f(u) +
uf 0(u)

N � 1

�

�↵� � uf 0(u)

N � 1
û↵û�, (46)

where the function f(u) defined in [83] is related to the potential function R(u) = h(u),
as f(u) = �(N � 1)h0(u)/u. Using equation (A.2), one obtains the exact relation between
the flow of f(u), and the third-moment function h

3

(u) [83],

@tf(u) = �


(N � 1)h0
3

(u) +
N2 � 1

u
h

3

(u)

�

, (47)

generalized to any N , which recovers the above value for ✏̄ using @tE = (N/2)@tf(0) =
� 1

2

N(N � 1)(N + 2)h0
3

(0) = �✏̄. Now, in principle, from equation (A.13) we have an
expression for the third-order tensor (42) to lowest order in the (renormalized) small-time
expansion, hence we can in principle relate the function h

3

(u) to �(u) (within our lowest-
order FRG). The expression, however, is highly non-local and the dissipation rate ⇠h0

3

(0)
is not easy to calculate in general (while in Burgers it is, to one loop, simply proportional
to �0(0)2).

4.6. Enstrophy conservation and enstrophy anomaly in dimension 2

As is well known in dimension 2, N = 2, the velocity field is su�ciently regular so that the
energy is conserved (no dissipative anomaly), and the energy flows to large scales (inverse
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cascade). There is no energy cascade towards small scale. We will show below that the
solutions of the FRG equation satisfy these properties.

In dimension N = 2 one also considers the vorticity field !ut = ✏↵�@↵v
�
ut. Taking the

curl of the unforced NS equation (2), one gets

@t!ut + vut · ru !ut = ⌫r2

u!ut � µ!ut. (48)

We have temporarily added a friction term µ, which is often used to model dissipation at
large scales. This implies that

@t

Z

u
f(!ut) =

Z

u
f 0(!ut)(⌫r2

u!ut � µ!ut), (49)

since the convection term integrates to a surface term, using compressibility, which is
discarded. Hence there is conservation of any power, or function, of the local vorticity in
the limit ⌫ ! 0, provided the right-hand-side has a vanishing limit. In particular

(@t + 2µ)h!2

uti = 2⌫h!utr2

u!uti, (50)

hence under regularity conditions in the inviscid limit (existence of R(6)(0) is su�cient)
one finds that the enstrophy D(t) = 1

2

h!2

0ti is conserved (setting friction to zero),

@tD(t) = � 1

2

@tr2

u�(0) = 0. (51)

Note that (50) is the limit u0 ! u of the more general relation for the decaying NS equation

(@t + 2µ)h!ut!u0ti = 2⌫r2

uh!ut!u0ti + 1

2

r↵
uh(v↵

ut � v↵
u0t)(!u0t � !ut)

2i, (52)

which allows us to relate enstrophy non-conservation (the enstrophy anomaly) to the
non-smoothness of the flow. The argument leading to (49) can be generalized to show
that

@the�!ut i = �µ�@�he�!ut i + ⌫hr2

u!ute
�!ut i. (53)

In the absence of an enstrophy anomaly the limit ⌫ ! 0 of the last term vanishes, and
the solution is

Zt(�) = Zt=0

(�e�µt); (54)

hence for µ = 0 the full probability distribution of local vorticities is conserved.
Until now these relations were exact. One now checks that the FRG equation does

conserve enstrophy; indeed for a su�ciently smooth �(~u) one has

@t

X

k

k2�(k) = 0. (55)

This is shown as above from Symp,q[(p + q)2b̃p+q,p,q � p2b̃p,p+q,�q] = 0, and is valid for
N = 2 only.

5. Short-distance analysis, cusp or no cusp?

Here we study the behavior of the velocity correlation �↵�(u) � �↵�(0) ⇠ |u|⇣2 at small
u, i.e. in the inertial range predicted by the FRG equation. To prepare for NS we first
analyze Burgers, where we already know that the singularity is a linear cusp, i.e. ⇣

2

= 1,

doi:10.1088/1742-5468/2013/04/P04014 17
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and we study it in Fourier space, since NS is easier to express in Fourier space. Note
that the analysis below can only exclude a range of values of ⇣

2

, but to confirm that the
selected values do occur in the solution one must solve the fixed-point equation.

5.1. Burgers

For decaying Burgers, the FRG equation reads, in Fourier space

t@t�̃(k) =

✓

2 � ⇣ � N
⇣

2
� ⇣

2
k · rk

◆

�̃(k)

+
X

q6=0,k�q6=0

k2[q · (k � q)]2

2q2(k � q)2

�̃(q)�̃(k � q) �
X

q6=0

(q · k)2

q2

�̃(q)�̃(k). (56)

It is true for any N and any symmetry (periodic sums, etc· · ·). Note that while this
equation seems to be non-local in real space, if one expresses it first using �↵�(k) =
P L

↵�(k)�(k), then performs the Fourier transform, it becomes local as a function of �↵�(u).
We want to understand why there is a linear cusp, and why there can be nothing but

a linear cusp. For that we start with the isotropic case and look for a solution which at
large k takes the form

�̃(k) ⇠ AG(k), G(k) = k�N�⇣2g(m2/k2) (57)

with g(0) = 1, and in appendix F we note b = N + ⇣
2

. A further assumption is that
g(p) admits an expansion of the form 1 � (N + ⇣

2

/2)p2 + · · ·; the mass m2 parameterizes
the amplitude of the leading subdominant term, and its value is unimportant for the
following7. A convenient heuristic form in that case is G(k) = (k2 + m2)�(N+⇣2)/2. One
first notes that (57) implies that for ⇣

2

> 0, both integrals in (56) are UV convergent, thus
�(u = 0) exists. The cusp corresponds to ⇣

2

= 1. In principle we can start by restricting
our search to ⇣

2

< 2, i.e. �(u) has no second derivative. If one tries to expand the first
part of the non-linear term in equation (56) for q ⌧ k, one finds that it cancels half of the
second term, and that corrections are of the order of

P

qq
2�(q), which is a divergent series.

The second half of the second term comes from the region q � k ⌧ k. Hence the integral
in (56) is dominated by large q. One can thus insert the ansatz (57) into equation (56),
which shows that, up to the global factor of A2, the non-linear term behaves as
Z

q



1

2
k2

[q · (k � q)]2

q2(k � q)2

G(q)G(|k � q|) � (q · k)2

q2

G(q)G(k)

�

= Bk2�⇣2�N + Ck2�2⇣2�N + Dk�⇣2�N + · · · . (58)

It is easy to see that B cancels between the two non-linear terms (see section F.1) and that
for the ansatz (57) to be a solution for ⇣

2

< 2 we need that the amplitude C = C(N, ⇣
2

)
vanishes. The latter is computed in section F.1, equation (F.6) as

C = 2�1�N+⇣2⇡1/2�N/2

[N + ⇣
2

(2 + ⇣
2

)] �(�⇣
2

/2)�(N/2 + ⇣
2

)

�((1 � ⇣
2

)/2)�((2 + N + ⇣
2

)/2)2

= 0. (59)

7 Functions g(p) = 1 + p

a can also be tried but they lead to additional conditions hence do not change the main
point of the discussion
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It has a unique solution ⇣
2

= 1 in the interval ⇣
2

2 [0, 2], and thus there only is a solution
with a cusp8.

5.2. Navier–Stokes

Inserting the ansatz (57) in the NS FRG equation (29), since b̃k,k�q,q ⇠ k · q at large q,
the second integral is UV convergent for ⇣

2

> 0. An analysis similar to section 5.1 yields

2

N � 1

X

q

b̃k,k�q,q [G(q)G(|k � q|) � G(q)G(k)]

= Bk2�⇣2�N + Ck2�2⇣2�N + Dk�⇣2�N + · · · . (60)

The contributions to the amplitude B again cancel between the two integrals, hence B = 0.
The amplitude C = C(N, ⇣

2

) is computed in section F.2:

C =
�

p
⇡

4(4⇡)N/2



2⇣2 [(N � 2)⇣
2

� (N � 1)](N + ⇣
2

)�(�⇣
2

/2)�(N/2 + ⇣
2

)

�(3 � ⇣
2

/2)�((2 + N + ⇣
2

)/2)2

� 4
p
⇡N�(N/2)

sin(⇡⇣
2

/2)�((4 + N � ⇣
2

)/2)�((N + ⇣
2

)/2)

�

= 0. (61)

Solutions of this equation are plotted on figure 1. First, one can check that for any
N , the function C(N, ⇣

2

) vanishes for ⇣
2

= 1: C(N, 1) = 0. Next one finds that for
N > N

2

= 2.1155, the root ⇣
2

= 1 remains unique in [0, 2] and the linear cusp is the only

possible solution. For N < N
2

, an additional pair of solutions appears on both sides of
⇣
2

= 0.87 · · ·. The largest one reaches 1 at N
3

= 2.1145, while the smallest root is ⇣
2

⇡ 0.8.
For N < N

3

the two additional roots are on both sides of 1 and, as N ! 2+, one reaches
0 while the other reaches 2. For N = 2 (and N < 2) C(N, ⇣

2

) is decreasing as a function
of ⇣

2

for ⇣
2

2 [0, 2] and the cusp is again the unique root9.
In addition to the cusp, there are other roots with ⇣

2

> 2. For N > 2.43 · · · one finds
that C vanishes exactly once in each interval ⇣

2

2 [2p, 2p+2], p = 0, 1, 2, . . . and diverges to
±1 for ⇣

2

= (2p)⌥. In the other intervals, p � 1, the root tends to ⇣
2

= 2p+1 for large N .
For N = 3 the other roots are at ⇣

2

= 3.323 58, 4.982 05, 7., . . .. For 2 < N < N
4

= 2.43 · · ·
the root for ⇣

2

2 [2, 4] may not exist in which case there is a double root in the interval
[4, 6]. One root crosses ⇣

2

= 4 at N = N
4

. For N = 2 the roots are ⇣
2

= 5.024 21, 7.0006, . . ..
A peculiar result is that as N ! 2+ one root tends to 2�, but then seemingly disappears

for N = 2, suggesting that this case has to be treated with more care. Indeed, we will see
in section 6.2.4 that N = 2 and ⇣

2

= 2 is indeed a solution. The calculations are rather
non-trivial, since the integrals are not defined without proper regularization.

To conclude on an optimistic note, although the cusp seems to be the only solution
for N = 3, we did find some non-trivial values for ⇣

2

for N slightly larger than 2. One
possible scenario may be that these become valid in a larger domain in N when higher-loop
corrections (higher powers of time) are included.

8 Note, however, that there are other roots, i.e. ⇣2 = 2p + 1, p = 1, 2, . . . which are potentially possible behavior.
For N = 1 such solutions are �̃(u) � �̃(0) =

P1
m=1a2mu

2m +a2p+1u
2p+1 + · · ·, and are formally possible solutions

at small u, but do not seem to correspond to globally physical fixed points.
9 For N < 0, there are again additional solutions for ⇣2 2 [0, 2], but for NS these roots are not physically interesting.
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Figure 1. Blue solid curves: locations in the (⇣
2

, N) plane, where C given in
equation (61) vanishes. Orange dashed lines: N = 2 and 3. For N = 3 the solutions
in [0, 4] are ⇣

2

= 1 and ⇣
2

= 3.323 58. For N = 2 they are ⇣
2

= 0, 1, 2. Note that
the maximum of the lowest curve is at N = N

2

= 2.1155, ⇣
2

= 0.87 · · · hence in
the (very small) interval 2  N < N

2

there are two roots on both sides of this
maximum (in addition to the root at ⇣

2

= 1). At N = N
3

= 2.1145 the upper root
reaches ⇣

2

= 1.

6. Two-dimensional decaying turbulence (N = 2)

6.1. Basic properties

In dimension N = 2, since Kraichnan and Batchelor, it is believed that at least in the
absence of large-scale coherent structures [6, 43]:

(i) The energy flow is to small k while the enstrophy flow is to large k.

(ii) Since there is no direct energy cascade there is no energy anomaly,
i.e. lim⌫!0

+⌫�00(0) = 0, and energy is conserved, i.e. @t�(0) = (1/2⇡)@t

R

dk E(k, t) =
0, once one neglects dissipation on large scales due to friction, for example.

(iii) There is an enstrophy cascade, i.e. there is an enstrophy anomaly lim⌫!0

+⌫�0000(0) 6= 0
and enstrophy is not conserved �@t�00(0) = (1/2⇡)@t

R

dk k2E(k, t) < 0.

(iv) The energy spectrum is a self-similar function with the scaling behavior in the
enstrophy cascade given by E(k, t) ⇠ t�2k�3 up to logarithmic corrections. Note
that large scale and long-living coherent structures like vortices and dipoles may
spontaneously emerge in the vorticity field. These structures may trap a lot of energy
and a↵ect the development of the enstrophy cascade. This can modify the classical
exponents predicted by the Kraichnan and Batchelor scenario [71, 97].

Let us see how these features arise from the FRG equation. To facilitate the
calculations, we introduce the stream function  and the vorticity ! such that v↵

ut =
✏↵�@� ut and !ut = ✏↵�@↵v

�
ut = �r2 ut. In terms of the stream function, R and �↵� are

R(u � u0) = h ut u0ti, (62)

�↵�(u) = �(�↵� r2 � r↵r�)R(u). (63)
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For isotropic turbulence �(u) = �↵↵(u)/(N �1) = �↵↵(u) and �(k) = k2R(k) = E(k)/k.

6.2. Isotropic turbulence

6.2.1. FRG equations. In section 4.4 the FRG equation was given in real space. We
remind that one parameterizes the isotropic solution as

R̃(u) = r(y = u2/2), �̃(u) = �r2

uR̃(u) = �2 [r0(y) + yr00(y)] . (64)

For isotropic turbulence and N = 2, equations (33)–(35) simplify to

t@t�̃(u) = (2 � ⇣)�̃(u) + ⇣y@y�̃(u) + ��̃
L

(u) + ��̃
NL

(u), (65)

��̃
L

(u) = 8



3
Z y

1
r00(x)2 dx � 2r0(y) r00(y) + 3y r00(y)2 � 4y r0(y) r(3)(y)

+ y2 r00(y) r(3)(y) � y2 r0(y) r(4)(y)

�

, (66)

��̃
NL

(u) = �
Z

k
eik·uR̃(k)

Z

|q|<k

(k2 � q2)2q2R̃(q), (67)

where
R

|q|<k :=
R k

0

qdq/2⇡. The integration constant has been fixed assuming that �̃(u),
and thus the above correction, vanishes at |u| = 1.

The above can be turned into an equation for r0(y):

t@tr
0(y) = (2 � ⇣)r0(y) + ⇣y@yr

0(y)

+ 4



2r0(y)r00(y) � yr00(y)2 + yr0(y)r000(y) � 3
Z y

1
dx r00(x)2

�

+
4

⇡

d

dy

Z

1

0

d� (� � 1)
Z 1

0

dz
Z

2⇡

0

d✓

⇥
h

f(y + �z + 2
p

�yz cos ✓) � f(y)
i

f 0(z), (68)

f(x) = [xr0(x)]0 = r0(x) + xr00(x). (69)

In Fourier space, the FRG equation reads

t@t�̃(k) = (2 � 2⇣)�̃(k) � ⇣

2
k�̃0(k) + ��̃(k). (70)

Using the distance geometry representation of appendix E, the sum of the two non-linear
terms ��̃(k) = ��̃

L

(k) + ��̃
NL

(k) can be rewritten in Fourier space as

��̃(k) :=
k4

4⇡2

Z 1

1

ds
Z

1

�1

dt
⇥

(s � t)2 � 4
⇤ st

s2 � t2

q

(s2 � 1)(1 � t2) �̃

✓

k

2
(s � t)

◆

⇥


�̃(k) � �̃

✓

k

2
(s + t)

◆�

. (71)

We now study the scaling form and the asymptotic behavior of the fixed-point solution
�⇤(k) for large and small k.
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6.2.2. Searching for an isotropic fixed point. We look for a fixed point of the form

�(u) = t⇣�2�̃(ut�⇣/2), �(k) = t2⇣�2�̃(kt⇣/2). (72)

The asymptotic behaviors at small and large distances are

�̃(0) � �̃(u) ⇠ u⇣2 for u ⌧ 1 , �̃(k) ⇡ Ak�(2+⇣2) for k � 1 (73)

�̃(u) ⇠ u�(1+n) for u � 1 , �̃(k) ⇡ A
2

kn�1 for k ⌧ 1 (74)

valid only up to logs (and for �̃(u) at large u only an upper bound since for integer n a
faster decay is possible from analyticity in Fourier space).

Consider now the mean kinetic energy E(t) = 2⇡hv2i which is given in the non-
standard units introduced in equation (8). If we assume scaling, then

E(t) =
Z 1

0

�(k)k dk = t2�⇣

Z 1

0

�̃(p)p dp. (75)

If ⇣
2

is large enough, the energy should be conserved (the cusp seems necessary for the
violation so let us consider ⇣

2

> 1). Then the value naturally compatible with energy
conservation is ⇣ = 2. In the context of disordered system this is called the Larkin
exponent, i.e. the dimensional reduction exponent ⇣ = ✏/2 with ✏ = 4.

Furthermore Batchelor [43] proposed that E(k, t) = v3tf(kvt), which implies
conservation of energy, if

R

dz f(z) converges. This is again ⇣ = 2. Let us recall that
E(k, t) = k�t(k). It also implies a decay of the total enstrophy, i.e. of

R

dk k3�t(k),
proportional to t�2 if

R

dz z2f(z) converges. Assuming that E(k) is independent of v
at large k implies f(x) ⇠ x�3 and E(k, t) ⇠ t�2k�3 at large k. This leads to

⇣
2

= 2. (76)

This is indeed the only solution we found to be consistent with our analysis of the flow
equations10 as we discuss below. At small k it behaves as �t(k) ⇠ t4k2. Note that it is

not a long-range fixed point with n = �1, which would also give ⇣ = 2 according to the
general discussion of section 3.2. The reason is that the amplitude of the k2 depends on
time (in addition the energy would be infinite). Rather it corresponds to n = 3, but a
short-range fixed point.

We now consider the general properties of the small- and large-k expansions of the
fixed-point solution �̃⇤(k). Since the fixed-point equation is neither local in real space nor
in Fourier space, the expansions of interest are expected to contain unavoidably global

properties of the fixed point �̃⇤(k).

6.2.3. Small-k expansion. The expansion of the non-linear term (71) in the distance
geometry representation is given appendix G. To lowest orders it reads

��̃(k) =
k2

4⇡

Z 1

0

dq q�̃(q)2 � k4

16⇡

Z 1

0

dq q�̃0(q)2 + O(k6), (77)

where we used the small-k behavior (74) that implies, for n > 2, �̃(k = 0) = �̃0(k = 0) = 0.
Assuming that �̃⇤(k) = A

2

k2 + A
4

k4 + · · · we find from the FRG equations in Fourier

10 From the FRG equation in Fourier at large k one sees that ��̃⇤(k)/�̃⇤(k) should go to a constant at large k

equal to �(2 � ⇣ + 1
2⇣⇣2). This can be checked numerically and we found it holds only for ⇣2 = 1, 2 and that ⇣2 = 1

can be excluded as it would be compatible only with ⇣ > 4, a value that is much too large.

doi:10.1088/1742-5468/2013/04/P04014 22



J.S
tat.M

ech.(2013)P
04014

Functional renormalization-group approach to decaying turbulence

space:

(3⇣ � 2)A
2

= 4A
2

=
1

4⇡

Z 1

0

dk k�̃(k)2, (78)

(4⇣ � 2)A
4

= 6A
4

= � 1

16⇡

Z 1

0

dk k�̃0(k)2. (79)

6.2.4. Large-k expansion. As shown in section 6.2.2, the large-k, i.e. small-u, asymptotics
of the fixed-point solution is given by equation (73). Assuming that �(k) = A/k4+O(1/k6)
we find in appendix H, that the non-linearity gives

��̃(k) = � A2

8⇡k4

+ O

✓

ln k

k6

◆

. (80)

Inserting equation (80) into the flow equation with ⇣ = 2 and asking that it be at a fixed
point yields

A = 16⇡ $ �̃(k) ' 16⇡

k4

(81)

at large k, which implies �(k) ' 16⇡/t2k4, noting that this power of k is preserved by
rescaling by t⇣/2 in (72). This means that in real space, using the definition (31) to pass
to the second line:

�̃(u) � �̃(0) = 2u2 ln u + · · · (82)

R̃(u) = ��̃(0)
u2

4
� 1

8
u4 ln u + · · · (83)

6.2.5. Numerical solution. To find numerically a fixed-point solution �̃⇤(u) of
equation (65) is highly non-trivial. Since equation (65) is an integral equation, none of
the standard techniques, such as Taylor expansion, or solution as an eigenvalue problem
are available. From a decent physical fixed point, we expect that it is attractive w.r.t. all
(sensible and small) perturbations. Thus, if we propose a guess �̃

guess

(u), which satisfies
the above mentioned asymptotic behaviors and constraints, and is close to the true
solution, it should converge against the fixed point. This is what we succeeded in doing,
starting from �

cor

(k) = 0:

�̃(k) = �̃
guess

(k) + �̃
cor

(k), (84)

�̃
guess

(k) = 16⇡

 

k2

(k2 + 1)3

+
54.7237k6

(k2 + 1)6

+
2.651 77k4

(k2 + 1)5

!

. (85)

The main problem then was that numerically the flow equation (65) is rather unstable.
The technique we finally succeeded in getting to work was: starting with �̃

corr

(k) = 0,
we recursively inject �̃

corr

(k) into the flow equation (65), and use the latter to evolve
�̃(k) during a small time step, giving us an improved approximation for �̃(k), calculated
for approximately 100 k-points. The latter is then projected onto an optimal spline with
only 20 supporting points, or more precisely a non-linear transformation thereof. This
procedure is numerically much more stable than using a best polynomial fit, a Fourier
representation or any of the other known sets of orthogonal functions we tried. The
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Figure 2. Double logarithmic plot for the rescaled energy Ẽ(k) := k�̃(k) as a
function of k. The solid black line is our solution of equation (65); the thick
dashed lines show the asymptotic slopes ±3. The thin gray-blue dashed line is
Ẽ

guess

(k) := k�̃
guess

(k), see equation (85).

projection e↵ectively smoothes the function, while still capturing the necessary details.
The complete technical details can be found in appendix I, most importantly a check of
the convergence of the function (see figure I.2) as well as its tabulated values. Here we
illustrate the result in the form of the classical double logarithmic plot for the energy
as a function of k (see figure 2). The small-k asymptotics is E(k) ⇠ k3, and the large-k
asymptotics is E(k) ⇠ k�3. We remark that the solution remains below the asymptotic
small-k behavior, but then converges from above towards the asymptotic large-k behavior.

6.2.6. Physical interpretation of the solution. We have found a fixed point �̃(k) for 2D
decaying turbulence. Having in mind equation (72), the velocity–velocity correlation is
�(k) = t2�̃(tk) where �̃ is time independent. Thus

t@t�(k) = 2�(k) + k�0(k). (86)

This implies similar relations for the time evolution of energy E(k) = k�(k) and enstrophy
⌦(k) = k3�(k)

t@tE(k) = 2k�(k) + k2�0(k), t@t⌦(k) = 2k3�(k) + k4�0(k). (87)

We define scaled momentum-dependent energy and enstrophy decay rates, written in
terms of the scaled momentum k̃ = kt⇣/2 = kt and correlator, as:

˜̇E(k̃) := @tE(k) = 2k̃�̃(k̃) + k̃2�0(k̃) = �@
˜kj̃E(k̃) (88)

˜̇⌦(k̃) := t2@t⌦(k) = 2k̃3�̃(k̃) + k̃4�̃0(k̃) = �@
˜kj̃⌦

(k̃) (89)

where we have defined the scaled energy and enstrophy fluxes:

j̃E(k̃) = �k̃2�̃(k̃), j̃
⌦

(k̃) = �k̃4�̃(k̃) + 2
Z

˜k

0

dp p3 �̃(p). (90)

The scaled energy and enstrophy decay rates, and the scaled fluxes, all as functions of
k̃ are plotted in figure 3. (For convenience we revert to the notation of the rest of the
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Figure 3. The scaled energy decay rate ˜̇E and enstrophy ˜̇⌦ (top) as well as their
fluxes j̃E and j̃

⌦

(bottom), defined in the text, as a function of the rescaled
momentum (denoted k here). The scaled energy decay rate is in qualitative
agreement with the 2D turbulence kinetic energy transfer obtained in numerical
simulations [108].

paper for the argument of �̃, i.e. the x-axis is called k but it is more properly k̃.) We
see that the energy flux j̃E(k) is negative, thus to small momentum scales, and moreover
energy is conserved, since limk!1j̃E(k) = 0. Hence the total energy decay rate vanishes,

✏̄ = �@tE = (�1/4⇡t)
R

dk̃ ˜̇E(k̃) = 0. The enstrophy flux is mostly positive, thus to large
momentum scales, and enstrophy is not conserved. However, note that for �(k) ⇠ 1/k4,
the integral in (90) grows as ln k, thus the enstrophy conservation is only marginally

violated. For �(k) ⇠ 1/[k4(ln k)c], and c > 1, the enstrophy would be conserved, since the
flux at large k would vanish. Thus a small modification of the asymptotic behavior, which
might not be given correctly by our leading-order fixed point, would be enough to ensure
enstrophy conservation.

To summarize, it seems that the FRG fixed point is compatible with the
Batchelor–Kraichnan scenario [43, 98] with an enstrophy anomaly �@t

1

2

h!2

uti =
lim⌫!0

⌫h(r!)2i = ✏̄!. Since ✏̄! has dimension (time)�3, the energy spectrum within
the Batchelor–Kraichnan 2D enstrophy cascade is E(k, t) ⇠ ✏̄2/3

! k�3, with, in decaying
turbulence ✏̄! ⇠ 1/t3. However, it is also known that this is not the end of the story, and
that more detailed arguments and assumptions lead to additional logarithmic corrections,
e.g. E(k, t) ⇠ ✏̄2/3

! /(k3(ln k)c) with c = 1/3 [98, 6]. It was also argued that in real space
the vorticity correlations are not h(!u �!

0

)2i ⇠ ln u at small scale, as would be the case if
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E(k) ⇠ 1/k3. Instead they have fractional powers of ln u, claimed to extend to all moments
of the vorticity field, as h(!u � !

0

)ni ⇠ (ln u)n/3 [99], as a consequence of the infinite
number of conservation laws; each conservation law is violated and leads to a flux of the
corresponding (almost conserved) quantity. (Equivalently one can write that hv · r!n!ni
is a constant [99].) Most of these issues were discussed for forced turbulence, but remain
relevant for the decaying case. Note that in forced 2D turbulence there is an additional
regime with an inverse energy cascade E(k) ⇠ k�5/3 (see e.g. [6]). The energy flows to large
scales, until the largest scale is reached, where coherent structures form. (These lowest
k modes may be called a condensate.) At small scales however, the behavior should not
be qualitatively di↵erent from decaying turbulence. For numerical and experimental tests
of the enstrophy cascade see [100]–[102]. As discussed in [103, 104], friction is a marginal
perturbation, and hence should change the logarithms of the distance in the vorticity
correlations into power laws. Finally, for a more mathematical discussion of the enstrophy
anomaly see [105, 106]. In particular, the anomaly was proven to vanish in the forced 2D
Euler equation with friction [107].

A challenging question is whether some of this physics can be captured in higher-loop
extensions of the present approach.

6.3. Periodic 2D turbulence

Let us consider the NS equation in a square box of size L = 2⇡ with periodic boundary
conditions. We study the FRG equation (26) for N = 2, using integer Fourier modes
(kx, ky) 2 Z2, which are summed over. It is easy to analyze numerically the FRG equation
projected onto a grid [�Q, Q]2, setting �(k) = 0 outside. Equation (26) can be written
schematically as @⌧R(k) = (R ⇤ R)(k) with ⌧ = t2/2 and R(k) = �(k)/k2. Rescaling is not
crucial here, since periodic turbulence corresponds to ⇣ = 0. One finds, for any Q, that
the flow asymptotically behaves as

R(k) = r
1

�k=(±1,0),(0,±1)

+ r̃ke
��⌧ (91)

and that the energy becomes entirely concentrated in the lowest modes k2 = 1. The Fourier
coe�cient r

1

of these modes tends to a constant at large times, while all other modes
decay. There is a transient regime where the other modes first increase before decaying,
following (91). The r̃k are obtained by diagonalizing @⌧ r̃k = 2(R

1

⇤ r̃)(k) = ��r̃k, where
R

1

= r
1

�k=(±1,0),(0,±1)

is a real non-symmetric matrix. We truncated numerically on a
grid k 2 [�Q, Q]2 and found, apart from one trivial eigenvalue � = 0, corresponding to
R̃ = R

1

, that all eigenvalues are negative. Only the leading one corresponds to a vector
with all positive entries for k2 > 1, which is requested from (91). A plot of � versus
1/Q2 is approximately linear and the numerical solution suggests � = �0.6r

1

. The leading
eigenvector is very well fitted by r̃k/r̃1

= 1.57k�a with a = 5.8 ± 1, which we checked up
to Q = 16. Since a > 4, this is consistent with the absence of an energy anomaly. It is
interesting that this value of a seems to be indeed near the Batchelor value of a = 6,
which corresponds to �(k) ⇠ k�4 and E(k) ⇠ k�3 [43], consistent with our analysis in
section 6.2.6.

In conclusion, we want to note that R(k) written in real space tends to a fixed point
which corresponds to the average over the set of exact, time-independent solutions of the
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Euler equation,

 ut = w
1x cos(ux) + w

2x sin(ux) + w
1y cos(uy) + w

2y sin(uy), (92)

vut = (�w
1y sin(uy) + w

2y cos(uy), w1x sin(ux) � w
2x cos(ux)) . (93)

This is easily checked by inserting into the Euler equation. The four parameters w
ix,y

are independent Gaussian random variables with zero mean and variance r
1

/2. The FRG
suggests that the way it tends to this fixed point is non-trivial (with a non-analytic
correlator). It would be of great interest to study that question in detail.

7. Analysis of the FRG equation in three dimensions (N = 3), and in large
dimensions (N ! 1)

Obtaining a numerical solution for the fixed point of the FRG equation for N > 2 is
di�cult. In three dimensions, N = 3, we have studied the FRG equation (26) for a periodic
flow, in Fourier space, very much as we did in section 6.3 for N = 2. We have found
that on a grid in Fourier space [�Q, Q]3 equation (29) does flow to a fixed point with
⇣ = 0. This fixed point, to our numerical accuracy, was compatible with a cusp behavior
at large k, i.e. ⇣

2

= 1. Since the result is not too surprising, and consistent with the
analysis of section 5, we will not reproduce the details here. Instead we now turn to the
large-dimension limit (large N limit) analysis of the FRG equation.

Large dimensions are often a means of controlling an expansion. The aim would be
to sum contributions from all loops at N ! 1, thus avoiding any artifact from a closure
scheme, as has been done for random manifolds, i.e. Burgers [56], [109]–[111]. While this
remains a project for future research, we have analyzed the one-loop equations for N ! 1.
In terms of the function r(y) introduced in equation (31), the RG equations at large N
are derived in appendix J and read

N (2 + N) t@tr
00(y) + 4 y

h

(2 + N) t@tr
000(y) + yt@tr

0000
(y)
i

= 2r00(y)

+ ⇣
0

yr000(y) + 2r00(y)2 + 2r000(y) [r0(y) � r0(0)]

+
1

N

h

4r00(y) + y(8 + 6⇣
0

+ ⇣�1

)r000(y) + 4⇣
0

y2r
0000

(y)

+ 2r00(y)2 + 10r000(y) [r0(y) � r0(0)]

+ 12yr
0000

(y) [r0(y) � r0(0)] + 28yr00(y)r000(y) � 4
Z 1

0

dt r000(y + t)r00(t)

�

+ O(1/N2), (94)

where ⇣ = ⇣
0

+ ⇣�1

/N + · · ·. We now look for a fixed point. To leading order we have

0 = 2r00(y) + ⇣
0

yr000(y) + 2 [r00(y)]2 + 2r000(y) [r0(y) � r0(0)] , (95)

which coincides, up to a numerical prefactor, with the large-N limit of the one-loop Burgers
equation (see e.g. equation (7.7) of [110]). This confirms that at least to one loop the
infinite-N limit of the decaying NS equation reproduces that of the Burgers equation.
Equation (95) has an exponentially decaying solution only for ⇣

0

= 0; an analytic solution
for the inverse function can be written as

z := �r0(y), (96)
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y = z � z
0

� z
0

ln(z/z
0

). (97)

The asymptotic behavior is z = z
0

e�1�y/z0 for large y. However, we cannot neglect the
terms of order 1/N for y/N � 1, and the above solution is valid only for y ⌧ N , the
primary region. On the other hand, for y � z

0

, one can neglect the non-linear terms in
equation (95) due to the exponential decay of r(y). Both solutions are expected to match in
the inner region z

0

⌧ y ⌧ N , which becomes quite wide for N ! 1 [81, 93]. Presumably
in the inner region both solutions have a simple exponential behavior, to order 1/N . The
linearized equation to order 1/N reads

0 = 2r00(y) � 2r000(y)r0(0) +
1

N



4r00(y) + 8yr000(y) + ⇣�1

yr000(y) � 10r000(y)r0(0)

� 12yr
0000

(y)r0(0) � 4
Z 1

0

dt r000(y + t)r00(t)

�

. (98)

We assume that this equation has a solution which behaves as e�y/z0 for y � z
0

. We are
free to fix z

0

= 1 for the sake of simplicity. Substituting r(y) = Ce�y into the linearized
equation, and collecting all terms proportional to e�y and ye�y, we obtain

e�y : 0 = 2 + 2r0(0) +
1

N



4 + 10r0(0) + 2
Z 1

0

dt e�tr00(t)

�

,

ye�y : 0 =
1

N
[�8 � ⇣�1

� 12r0(0)] . (99)

The first line gives r0(0) = �1 + O(1/N) and the second ⇣�1

= 4, so that

⇣ =
4

N
+ O

✓

1

N2

◆

. (100)

Close to z
0

the solution of equation (97) has the form z � z
0

=
p

2z
0

y ⇠ u. This implies
that the cusp persists, i.e. ⇣

2

= 1.

8. Decaying surface quasi-geostrophic turbulence

An interesting and still much studied generalization of 2D NS is the surface quasi-
geostrophic (SQG) equation. It is defined in dimension N = 2, and depends on a
continuously varying parameter a. In real space it reads

@tTut + vut · rTut = ⌫r2Tut, vut = ẑ ⇥ r ut, (�r2)a/2 ut = Tut. (101)

It describes the convection of a quantity Tut by the velocity field vut, which in turn
is related to the velocity. For a = 2 one recognizes that the quantity Tut is precisely the
vorticity !ut, and one recovers the usual 2D NS equation. For a = 1 the field Tut represents
the temperature in the ‘true’ SQG turbulence, which is used to model the 2D atmospheric
flow on the surface of the Earth. Finally, for a = �2 the model was obtained by Charney
and Oboukhov for waves in rotating fluids, and by Hasegawa and Mima for drift waves
in a magnetized plasma in the limit of a vanishing Rossby radius. It is thus called the
Charney–Hasegawa–Mima equation [112]. The naive scaling dimension of the field Tut is
�uT ⇠ uH with H = (2 � 2a)/3. Recently, it has been conjectured that isolines of Tut in the

doi:10.1088/1742-5468/2013/04/P04014 28



J.S
tat.M

ech.(2013)P
04014

Functional renormalization-group approach to decaying turbulence

inverse-cascade regime of the forced Charney–Hasegawa–Mima equation were SLE lines
with  = 4

3

(1 + 2a), with some numerical evidence [44, 113].
The SQG equation for arbitrary a shares some properties with the 2D NS equation,

in the sense that in the inviscid limit both the enstrophy D = 1

2

hT 2i (and all powers of
T ) and the energy E = 1

2

hT i are conserved for smooth enough flows. To show the latter
one goes to Fourier space, where the relation between  ut and vut is  qt = q�aTqt. This
yields

@tE =
X

q

T�qtq
�a@tTqt =

X

k,q

✏↵�k↵q�

qaka
TktTq�ktT�qt = 0, (102)

due to the symmetry q $ �k.
Here we consider the decaying inviscid SQG equation. We display the FRG equation

to one loop, leaving its analysis for the future. One defines the two-point correlation in
Fourier space,

�T (k) = hT�ktTkti. (103)

The FRG equation for �T (k) is derived in appendix D, and reads

@t�T (k) = t
X

q

�T (q)�T (q + k)[q ⇥ k]2
�

q�2a � 2q�a|q + k|�a + |q + k|�2a
 

� 2t
X

q

�T (q)�T (k)[q ⇥ k]2

⇥
�

q�2a � q�ak�a � q�a|q + k|�a + k�a|q + k|�a
 

. (104)

Note that the correlator associated with the velocity is �(k) = k2�2a�T (k). Again, it is
convenient to introduce the rescaled correlators via

�T (k) = t�2+(⇣/2)(6�2a)�̃T (kt⇣/2), (105)

�(k) = t�2+2⇣�̃(kt⇣/2). (106)

For the rescaled correlator, the FRG equation can be written as

t@t�̃T (k) = [2 � (3 � a)⇣]�̃T (k) � ⇣

2
k@k�̃T (k)

+
X

q,p=k�q

[q ⇥ k]2(q�a � p�a)�̃T (q)

⇥
h

(q�a � p�a)�̃T (p) � 2(q�a � k�a)�̃T (k)
i

. (107)

One can use q ⇥ p = q ⇥ k. The equation for the rescaled velocity correlator reads

t@t�̃(k) = (2 � 2⇣)�̃(k) � ⇣

2
k@k�̃(k)

+
X

q,p=k�q

[q ⇥ k]2

q2

�̃(q)



(pa � qa)2

k2a�2p2

�̃(p) � 2
(pa � qa)(ka � qa)

kapa
�̃(k)

�

. (108)

In this form it is easy to check that for a = 2 one recovers the FRG equation for the NS
equation in N = 2.
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The FRG equation (108) written in real space for general values of a is a non-
local integro-di↵erential equation. It is interesting that there are some values of a for
which the FRG equation becomes quasi-local, i.e. involving only derivatives of finite
order at the point u and at the origin u = 0. For instance that happens in the case
of Charney–Hasegawa–Mima turbulence corresponding to a = �2.

In section F.3 we have studied, as we did for Burgers and NS, the possible values
for the exponent ⇣

2

, defined from �̃(k) ⇠ k�(2+⇣2) at large k, and isotropic turbulence.
More work is necessary to study the fixed points of the FRG equation as a function of the
parameter a.

9. Conclusions and perspectives

In this paper, we have applied functional renormalization-group methods to decaying
turbulence. In contrast to a standard perturbative RG, the functional RG approach
takes into account a coupling function i.e. an infinity of couplings rather than one or
a few. It naturally leads to a non-analytic two-point function. While the method is in
principle exact, as any RG treatment, in practice the flow has to be projected onto a
lower-dimensional subspace, here the equal-time two-point velocity correlation function.
With this projection in mind, the FRG equations are organized in an expansion in powers
of the two-point velocity correlation function itself, equivalent to a loop expansion. As
we have discussed, they correspond to a small-time renormalized perturbation theory.
Here, we studied the one-loop equations. For Burgers, they reproduce the FRG equations
derived in the context of random manifolds, and correctly describe the singular structure
of the flow, made out of shocks. While this had been worked out in detail before for N = 1,
here we extended it to any dimension N .

Let us stress that the method works at least qualitatively for Burgers; that it correctly
accounts for shocks, and that the distribution of velocities is not close to a Gaussian. The
reason is that the extension to a manifold provides a model which can be controlled
perturbatively (in d = 4 � ✏), while at the same time exhibiting shock singularities, non-
conservation of energy (called failure of dimensional reduction in the context of disordered
systems) and energy cascades. This is because shock sizes and the magnitude of the energy
decay rate are O(✏) in that expansion. That in itself is remarkable in the turbulence
context, and motivated us to consider NS with this method.

For NS, the fixed point depends on the dimension. For N ! 1, the FRG equations
converge (at leading one-loop order) to those of the decaying Burgers equation. Thus the
two-point velocity correlation function should grow linearly with distance, i.e. have a cusp.
This cusp is also the only possible solution for the three-dimensional FRG equation, at
one-loop order, in contradiction to experimental evidence. It is possible, that at second
(two-loop) or higher order, new non-trivial fixed points emerge. If this is not the case,
one would have to understand why the method seemingly does not admit the correct
singularities. Since for large N we find that the FRG equation reduces to the one of
Burgers, and hence has shock singularities, one possible way to understand that may be
via a large-dimension expansion combined with a loop expansion.

Finally, in two dimensions the FRG equations allow for a fixed point which is consistent
with Batchelor’s scaling. While the equations are similar to the quasi-normal Markovian
approximation, we give here an explicit solution. Again it seems a good starting point
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to include higher-loop corrections, one challenge being to confirm, or contradict, the
conjectured logarithmic corrections. We have also written the flow equations corresponding
to SQG turbulence, which await a more detailed analysis.

We hope that this work helps to bring a new perspective in a long-debated subject.
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Appendix A. One-loop FRG equation in real space

The two equations from (13) needed to one loop in the inviscid limit are

@t�↵1↵2(u) = Sym
h

P↵1;��(@u)C(3)

��↵2
(0, 0,u)

i

= �Sym
h

P↵1;��(@u)C(3)

��↵2
(u,u, 0)

i

(A.1)

= 2 Sym
h

PT

↵1�(@u)@�
uC(3)

��↵2
(0, 0,u)

i

(Euler) (A.2)

= Sym
h

@↵1
u C(3)

��↵2
(0, 0,u)

i

(Burgers) (A.3)

@tC
(3)

↵1↵2↵3
(u

1

,u
2

,u
3

) = � 3

2

Sym
h

P↵1��(@u1)C
(4)

��↵2↵3
(u

1

,u
1

,u
2

,u
3

)
i

(A.4)

with u = u
12

and where P↵;��(@) = PT

↵�(@)@� + PT

↵�(@)@� (Euler), P↵;��(@) = ���@↵

(Burgers). In the first three lines Sym[· · ·] means symmetrization over ↵
1

,↵
2

and we
have used that �↵1↵2(u) is even in u (no average helicity). In the last line, and everywhere

below Sym[· · ·] means symmetrization over u↵1
1

,u↵2
2

,u↵3
3

, i.e. simultaneous exchange of the
points in space and the indices.

To lowest order we replace (denoting uij := ui � uj)

C(4)

��↵2↵3
(u

1

,u
1

,u
2

,u
3

) = ���(0)�↵2↵3(u23

) + ��↵2(u12

)��↵3(u13

)

+ ��↵3(u13

)��↵2(u12

). (A.5)

This Wick decomposition is known in turbulence as the Millionschikov hypothesis [114].
Hence integrating equation (A.4) one gets

C(3)

↵1↵2↵3
(u

1

,u
2

,u
3

) = � 3

2

tSym [P↵1��(@u1) (��↵2(u12

)��↵3(u13

))

+ P↵1��(@u1) (��↵3(u13

)��↵2(u12

))]

= � 3tSym
⇥

PT

↵1�(@u1)
�

��↵3(u13

)@�
u1

��↵2(u12

)

+ ��↵2(u12

)@�
u1

��↵3(u13

)
�⇤

(Euler) (A.6)

= � 3tSym
⇥

@↵1
u1

(��↵2(u12

)��↵3(u13

))
⇤

(Burgers) (A.7)

where for Euler we used the transversality of �↵�. Expanding, one finds for Burgers

� t�1C(3)

↵1↵2↵3
(u

1

,u
2

,u
3

) = @↵1
u1

(��↵2(u12

)��↵3(u13

)) + @↵2
u2

(��↵1(u21

)��↵3(u23

))

+ @↵3
u3

(��↵2(u32

)��↵1(u31

)) . (A.8)
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This expression is symmetric and does not need to be symmetrized. Taking the limit of
u

2

! u
1

one finds

� t�1C(3)

↵1↵2↵3
(u

1

,u
1

,u
3

) = @↵3
u3

(��↵2(u31

)��↵1(u31

)) + ��↵2(0)@↵1
u1

��↵3(u13

)

+ ��↵1(0)@↵2
u2

��↵3(u23

). (A.9)

We have used that

lim
u2!u1

�

@↵1
u1

��↵2(u12

)
�

��↵3(u13

) +
�

@↵2
u2

��↵1(u21

)
�

��↵3(u23

) = 0, (A.10)

which comes from R000↵1�↵2
(u) being odd. One then gets

@t�↵1↵2(u) = �t@↵1
u @↵2

u ���0 (u)2 + 2t���0 (0)��↵2;�0↵1(u), (A.11)

where we have used that ��↵2;�0 (u) is odd and that ��↵2;�0↵1(u) = �R
0000
��0↵1↵2

(u) is
symmetric in ↵

1

,↵
2

. This gives the equation in the text.
For Euler one finds by expanding

� t�1C(3)

↵1↵2↵3
(u

1

,u
2

,u
3

) = PT

↵1�(@u1)
�
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)
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�
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)@�
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)
�

. (A.12)

This expression is symmetric and does not need to be symmetrized. We now take the limit
u

2

! u
1

:

� t�1C(3)

��↵2
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,u
1

,u
3

) = PT

↵2�0 (@u3)
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31
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. (A.13)

The term limu2!u1 (· · ·) involves a non-trivial coinciding-point limit. One may naively
equate it with

PT

��0 (@u1)��0�(0)@�0

u1
��0↵2(u13

) + PT

��0 (@u1)��0�(0)@�0

u1
��0↵2(u13

), (A.14)

but this is actually incorrect. It would lead to a term +2t��0�(0)@�0
u @

�
u�↵1↵2(u) in the

beta function. The correct beta function must retain the non-trivial limit, for which we
obtain, with u

31

= u:

@t�↵1↵2(u) = 2[PT

↵1�(@u)@�
uC(3)

��↵2
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↵2�0 (@u)
⇣

@�
u��0�(u)@�0

u ��0�(u) + ��0�(u)@�
u@

�0

u ���0 (u)
⌘

+ 2tSym



PT

↵1�(@u)@�
uPT

↵2�0 (@u3) lim
u2!u1

⇣

PT

��0 (@u1)
⇣

��0↵2(u13

)@�0

u1
��0�(u12

)

+ ��0�(u12

)@�0

u1
��0↵2(u13

)
⌘

+ PT

��0 (@u2)
⇣

��0↵2(u23

)@�0

u2
��0�(u

21

)

+ ��0�(u
21

)@�0

u2
��0↵2(u13

)
⌘⌘i

. (A.15)
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We have used that @�0
u ��0↵2(u) is odd, and several times transversality, i.e. �↵�(u) =

PT

↵�(@u)R(u) (this does not assume any symmetry) hence PT

↵1�0 (@u)��0↵2(u) = �↵1↵2(u).

Appendix B. One-loop FRG equation in Fourier space

To one loop one must first solve

@tC
(3)

↵1↵2↵3
(k

1

,k
2

,k
3

) = � 3

2

Sym

2

4P↵1;��(k1

)
X

p+q=k1

C(4)

��↵2↵3
(p,q,k

2

,k
3

)

3

5 , (B.1)

where again, here and below Sym[· · ·] means symmetrization w.r.t k↵1
1

,k↵2
2

,k↵2
2

(simultaneous permutations of points and indices). Here P↵;��(k) = ik�PT

↵�(k)+ik�PT

↵�(k)
for NS and P↵;��(k) = ik↵��� for Burgers, and one uses the Gaussian approximation

C(4)

��↵2↵3
(p,q,k

2

,k
3

) = �p+q�k2+k3���(p)�↵2↵3(k2

)

+ �p+k2�q+k3��↵2(p)��↵3(q) + �p+k3�q+k2��↵3(p)��↵2(q). (B.2)

We assume that �↵�(�k) = �↵�(k). The first term vanishes when multiplied by
P↵1;��(k1

). One finds, using symmetries

C(3)
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,k
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,k
3
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,k
3

) (B.3)

Ĉ(3)

↵1↵2↵3
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1

,k
2
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3

) = �t (P↵1��(k1
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)��↵3(k3

)
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)��↵1(k1

)��↵3(k3

) + P↵3��(k3

)��↵1(k1

)��↵2(k2

)) . (B.4)

This expression is already symmetric and does not need symmetrization anymore.
The one-loop equation is obtained by inserting this result into

@t�↵1↵2(k) = �Sym

2

4P↵1�0�0 (k)
X

p+q=k

Ĉ(3)

�0�0↵2
(p,q, �k)
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5

= tSym

2
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X
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X
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� P↵1�0�0 (k)P↵2��(k)
X
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���0 (p)���0 (q)

3

5 , (B.5)

where here Sym[· · ·] means symmetrization w.r.t. ↵
1

,↵
2

. Symmetrization finally yields the
general one-loop equation

@t�↵1↵2(k) = t

0

@(P↵1�0�0 (k)��↵2(k) + P↵2�0�0 (k)��↵1(k))
X

p+q=k

P�0��(p)���0 (q)

� P↵1�0�0 (k)P↵2��(k)
X

p+q=k

���0 (p)���0 (q)

1

A , (B.6)

from which the one-loop FRG equation for NS and Burgers can be retrieved.
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For NS one has k↵i�↵1,↵2(k) = 0 for i = 1, 2. One checks on (B.6) that if � is transverse
at a given time t, it remains so, i.e. the r.h.s. is automatically transverse. For N = 2 this
implies that �↵�(k) = PT

↵�(k)�(k), but this is not true for N > 2. The general form is

�↵�(k) =
PN�1

i,j=1

ei

↵(k)ej
�(k)�ij(k) where the ei(k) span a basis orthogonal to k and �ij(k)

is a symmetric matrix.
For simplicity we consider here the subspace �↵�(k) = PT

↵�(k)�(k). One finds, using
Mathematica

X

p+q=k

P↵1�0�0 (k)P↵2��(k)���0 (p)���0 (q) =
�2

N � 1
PT

↵1↵2
(k)

X

q

[k2q2 � (k · q)2]

k2q2(k � q)2

⇥
h

1

2

�

(k � q)2 � q2

�

2

+ 1

2

(N � 2)k2

�

q2 + (k � q)2

�

i

�(q)�(k � q). (B.7)

At this stage this was obtained by: (i) symmetrizing w.r.t. q ! k�q, and (ii) assuming that
the result was proportional to PT

↵1↵2
(k), and then contracting with PT

↵1↵2
(k) (or �↵1,↵2).

For N = 2 there is no loss of generality, and the sum over momenta can be discrete, while
for N > 2 this holds only for isotropic turbulence �(k) = �(k) and in the limit of an
infinite box where the sums become integrals.

Next one finds by the same method

(P↵1�0�0 (k)��↵2(k) + P↵2�0�0 (k)��↵1(k))
X

p+q=k

P�0��(p)���0 (q)

=
�2
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X
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⇥

(k2 � q2)
�

(k � q)2 � q2

�

+ (N � 2)k2(k � q)2

⇤

�(q)�(k). (B.8)

This yields the one-loop FRG equation

@t�(k) =
2t

N � 1

X

q
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⇥
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(N � 2)k2
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�
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⇤

�(q)�(k)
 

. (B.9)

We note Kraichnan’s conventions,

4k2ak,p,q = P↵1�0�0 (k)P↵1��(k)PT

��0 (p)PT

��0 (q), (B.10)

2k2bk,p,q = Pcjm(k)Pjbc(p)PT

mb(q). (B.11)

This corrects a misprint in equation (VII-2-7) of [6]. The various symbols satisfy

2ãk,k�q,q = �4k2ak,k�q,q =
[k2q2 � (k · q)2]

k2q2(k � q)2

⇥
h

�

(k � q)2 � q2

�

2

+ (N � 2)k2

�

q2 + (k � q)2

�

i

(B.12)
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b̃k,k�q,q = �2k2bk,k�q,q =
[k2q2 � (k · q)2]

k2q2(k � q)2

⇥
⇥

(k2 � q2)
�

(k � q)2 � q2

�

+ (N � 2)k2(k � q)2

⇤

(B.13)

ãk,k�q,q = 1

2

h

b̃k,k�q,q + b̃k,q,k�q

i

. (B.14)

The FRG equation can thus be written in various forms,

@t�(k) =
2t

N � 1

X

q

ãk,k�q,q�(q)�(k � q) � b̃k,k�q,q�(q)�(k), (B.15)

as well as the form given in the text.
Note that b̃k,k�q,q is not invariant under q ! k � q; ãk,k,0 = ãk,0,k = 1

2

b̃k,k,0 while

b̃k,0,k = 0. These properties imply that the coe�cient B in the expansions in the text is
zero. Further k2q2 � (k · q)2 = k2p2 � (k · p)2 = p2q2 � (p · q)2 if k = p + q, hence this
term is already symmetric under q ! k � q.

Appendix C. FRG equation for N = 3 periodic flows

A convenient parameterization of a general N = 3 divergence-less velocity correlation
matrix, i.e. such that k↵�↵�(k) = 0 (with mirror symmetry), is

�↵�(k) =
X

i=x,y,z

✏↵i�k̂�✏�i�k̂��i(k) = �↵�

 

X

i

�i(k)(1 � k̂2

i ) � �↵(k)

!

� k̂↵k̂�

 

X

i

�i(k) � �↵(k) � ��(k)

!

. (C.1)

In coordinates this is

�xx(k) = k̂2

y�z(k) + k̂2

z�y(k), �xy(k) = �yx(k) = �k̂xk̂y�z(k), (C.2)

and similar for circular permutations. The semi-isotropic case �↵�(k) = PT

↵�(k)�(k)
corresponds to �i(k) = �(k), and is fully isotropic when �i(k) = �(|k|). For a periodic
flow with a cubic lattice symmetry we expect that

�x(k) = �(ky,kz;kx), �y(k) = �(kx,kz;ky), �z(k) = �(kx,ky;kz) (C.3)

where �(k
1

,k
2

;k
3

) is a symmetric function of its first two arguments.
We have derived FRG equations for the �i. They are of the form @�z =

P

i,j=x,y,z

P

q�i(q)�j(k � q)fij(k,q) where the fij(k,q) are quite complicated functions
of kx, ky, kz, qx, qy, qz; we have not tried to solve them.

Appendix D. Generating functional approach and diagrammatics

In this appendix we explain how the FRG equations can be derived for the decaying
Burgers, NS and SQG equations within the Martin–Siggia–Rose formalism, using a small-
time expansion. We start with the Burgers equation, with an initial condition vu0

= wu
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at t = 0+. This is equivalent to

@tvut + 1

2

ruv
2

ut = ⌫r2

uvut + �(t)wu, (D.1)

with vut = 0 for t < 0, i.e. a forcing which acts only at time zero. We then introduce the
generating functional e�S[vut,˜vut] for the velocity correlators, in the usual way, which leads
to the dynamic action

S =
Z

u,t�0

⇥

ṽut@tvut � ⌫ṽutr2

uvut � 1

2

(ru · ṽut)(vut)
2

⇤

�
Z

u
ṽu0

wu (D.2)

ṽut is the response field, and the path integral should be evaluated with vut=0

� = 0 at
the boundary. Since normalization of the path integral is one, the generating function for
averages over the initial conditions can be computed from the dynamical path integral
with action:

S 0 =
Z

u,t�0

⇥

ṽut@tvut � ⌫ṽutr2

uvut � 1

2

(ru · ṽut)(vut)
2

⇤

� 1

2

Z

u,u0
ṽ↵

u0

�0

↵�(u � u0)ṽ�
u0

0

, (D.3)

where hw↵
uw

�
u0 i = �0

↵�(u � u0). We use the following graphical representation. The vertex
corresponding to the cubic non-linearity is depicted by

(D.4)

The response function in the limit ⌫ ! 0 reads

(D.5)

The dashed line denotes the two-point velocity correlator at t = 0,

(D.6)

We now switch to the Fourier representation. The two-point velocity correlator written
in Fourier space �t

↵�(k) = hv↵
ktv

�
�kti to one-loop order is given by the diagrams given on

figure D.1. The corresponding expressions with combinatorial factors are

D
1

= �0

↵�(k), (D.7)

D
2

=
t2

2
k↵k�

X

q

�0

��(q)�0

��(k + q), (D.8)

D
3

= �t2k↵k�

X

q

�0

��(q)�0

��(k). (D.9)
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Figure D.1. The diagrams given in equations (D.7)–(D.9).

In real space, the sum of the diagrams can be written as

�t
↵�(u) = �0

↵�(u) � t2

2
@↵@�[�0

��(u) � �0

��(0)]2. (D.10)

To compute the �-function we take the derivative with respect to t

@t�
t
↵�(u) = �t@↵@�[�0

��(u) � �0

��(0)]2, (D.11)

and substitute to one loop �0

↵� = �t
↵�. As a result we obtain the FRG equation (18).

We now generalize the method developed above to the NS equation. It is convenient
to put all derivatives in the cubic vertex on the response field and write the dynamical
action as

S =
Z

u,t�0

h

ṽut@tvut � ⌫ṽutr2

uvut � �v�
utv

�
ut(P

T

↵�(@u)@�
uṽ

↵
ut)
i

� 1

2

Z

u,u0
ṽ↵

u0

�0

↵�(u � u0)ṽ�
u0

0

, (D.12)

where the last term imposes the initial condition similar to that in action (D.3). The
non-linear cubic vertex can then be written as

(D.13)

The two-point function �t
↵�(k) = hv↵

ktv
�
�kti to second order in �0(k) is given by the

diagrams in figure D.2. The tree-level diagram S
1

reads

S
1

= �0

↵�(k). (D.14)

There are six 1PI one-loop diagrams which can be split into two groups. The first group
gives

S
2

+ S
3

= t2PT

↵�(�k)PT

��(k)k�k⇢

X

q

⇥

�0

��(q)�0

�⇢(q + k) + �0

�⇢(q)�0

��(q + k)
⇤

. (D.15)

Expanding the projection operators we find

PT

↵�(k)[S
2

+ S
3

] = t2
X

q

ãk,k�q,q�
0(q)�0(k + q),
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where we used that �0

↵�(q) = PT

↵�(q)�0(q) and ã is given by equation (B.12). Analogously
we obtain

S
4

+ S
5

+ S
6

+ S
7

= �t2I↵⌧ (k)�0

⌧�(k), (D.16)

where we have introduced

I↵⌧ (k) =
X

q

⇥

PT

↵�(k)PT

�⌧ (k + q)PT

µ�(q)�(q)k�(kµ + qµ)

+ PT

↵�(k)PT

�µ(k + q)PT

µ�(q)�(q)k�(k⌧ + q⌧ )

+ PT

↵�(k)PT

�⌧ (k + q)PT

µ�(q)�(q)k�(kµ + qµ)

+ PT

↵�(k)PT

�µ(k + q)PT

µ�(q)�(q)k�(k⌧ + q⌧ )
⇤

. (D.17)

Expanding the projection operators one sees that

PT

↵�(k)[S
4

+ S
5

+ S
6

+ S
7

] = �t2
X

q

b̃k,k�q,q�
0(q)�0(k),

where b̃ is defined in equation (B.13). Taking the derivative with respect to t we obtain
the FRG equation (26).

The FRG for the SQG equation can be obtained in the same way. The dynamic action
corresponding to equation (101) with the initial condition imposed at t = 0 is given by

S =
Z

u,t�0

n

T̃ut@tTut � ⌫T̃utr2Tut + T̃utẑ · [r ut ⇥ rTut]
o

� 1

2

Z

u,u0
T̃u0

�0

T (u � u0)T̃u0
0

. (D.18)

The SQG vertex can be written in Fourier space as
Z

u,t

T̃utẑ · [r ut ⇥ rTut] =
Z

u,u0,t
T̃ut✏↵�@

↵
uKu�u0Tu0t@

�
uTut

= �
Z

u,u0,t
Ku�u0Tu0t✏↵�@

↵
u [T̃ut@

�
uTut]

= �
Z

t

X

k,q

T̃�k�qt✏↵�q↵k�q�aTqtTkt, (D.19)

where we have introduced the inverse Fourier transform

Ku := FT�1

u q

1

qa
. (D.20)

The two-point function �t
T (k) = hTktT�kti to second order in �0

T is given by the diagrams
in figure D.2. The corresponding expressions read

S
1

= �0

T (k), (D.21)

S
2

+ S
3

= 1

2

t2
X

q

�0

T (q)�0

T (q + k)[q ⇥ k]2
�

q�2a � 2q�a|q + k|�a + |q + k|�2a
 

, (D.22)
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Figure D.2. Diagrams contributing to the FRG for the NS and SQG equations.

S
4

+ S
5

+ S
6

+ S
7

= �t2
X

q

�0

T (q)�0

T (k)[q ⇥ k]2

⇥
�

q�2a � q�ak�a � q�a|q + k|�a + k�a|q + k|�a
 

. (D.23)

Taking the derivative with respect to t and re-expressing the bare disorder �0

T in terms
of the renormalized one �T we obtain the FRG equation (104).

Appendix E. Distance geometry for the FRG equation

E.1. Navier–Stokes

We derive the measure used in [6], e.g. equation (VII-2-9). Following [115], appendix A,
the integral of a function f(x

1

, . . . , xn) which depends only on uij := xi · xj, can be written
as
Z

RN

n
Y

i=1

dNxi f(uij) =
SN

2
· · · SN�n+1

2

Z

Y

ij

duij(det[uij])
(N�n�1)/2 f([uij]), (E.1)

where the domain of integration is such that the scalar products can be realized in N -
dimensional space, and SN = 2⇡N/2/�(N/2) is the area of the unit sphere. Here we need
n = 2 with k = x

1

, p = x
2

, k+p+q = 0, k = |k|, q = |q|, p = |p|. One finds, for arbitrary N ,
Z

dNk dNp f(uij) =
Z

dk2 dp2 d(kp)(k2p2 � (kp)2)(N�3)/2

SNSN�1

4
f(k2, p2, (k � p)2)

= SNSN�1

Z

�

dk dp dq kpq

⇥


4

(p + q � k)(k + p � q)(k + q � p)(k + p + q)

�

(3�N)/2

f(k2, p2, q2), (E.2)
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where the triangle symbolizes the realization of the triangle inequality. We have used that
k · p = 1

2

(p2 + k2 � q2), hence dk2 dp2 d(kp) = 1

2

dk2 dp2 dq2, as well as,

k2p2 � (kp)2 = 1

4

(k + p + q)(p + q � k)(k + p � q)(k � p + q). (E.3)

The domain of integration is plotted in figure E.1. A non-trivial check is to suppose that
f is independent of p, and to do the p integration. With the domain in figure E.1, the two
cases q < k and q > k have to be distinguished. For N = 3, both (!) give

R

p dp = 2kq,
which result in two independent three-dimensional integrals (with correct normalization)
for q and k.

Since this is valid for any function of k, we may rewrite (26) for the isotropic
case and any N , replacing

P

q !
R

q =
R

dNq/(2⇡)N , using ��(K) =
R

dNk(�(k �
K)/SNkN�1)��(k), which yields

@t�(k) =
2t

N � 1

SN�1

(2⇡)N

Z 1

0

dq
Z 1

0

dp⇥
�

(k, p, q)
Bk,p,q

kNpq
[�(q)�(p) � �(q)�(k)] , (E.4)

Bkpq =
⇥

1

4

(k + p + q)(p + q � k)(k + p � q)(k � p + q)
⇤

(N�1)/2

⇥
⇥

(k2 � q2)(p2 � q2) + (N � 2)k2p2

⇤

,

⇥
�

(k, p, q) = ⇥(k + p > q)⇥(k + q > p)⇥(p + q > k). (E.5)

The domain of integration is plotted in figure E.1. The distance geometry can be
parameterized by p = (k/2)(s + t) and q = (k/2)(s � t) with
Z 1

0

dp
Z 1

0

dq ⇥
�

(k, p, q)f(k, p, q) =
k2

2

Z 1

1

ds
Z

1

�1

dt f

✓

k,
k

2
(s + t),

k

2
(s � t)

◆

. (E.6)

It is immediately seen from (E.4) that
R1
0

dk kN�1�(k) is conserved, using the symmetry
under the exchange p $ k. This implies energy conservation for all N . For N = 2
one checks that enstrophy is conserved, i.e.

R1
0

dk k3�(k) can be brought to the form
⇠
R

k,p,q Bkpq(k/pq � p/kq)�(p)�(q), which leads to a factor of (k2 � p2)(k2 � q2)(p2 � q2)
times a symmetric function of p, q; hence it vanishes.

Violation of energy conservation necessitates a divergence in the integrals for large
momenta so that the operations involved in the symmetrization, e.g. change of order in
integration, are no longer valid. For N = 3 one sees that at ⇣

2

= 1, for fixed s and t there is
a logarithmic divergence

R

dk/k at large k, none for ⇣
2

> 1, and a relevant one for ⇣
2

< 1.
The momentum space integrals are therefore no longer well defined for ⇣

2

 1.

E.2. Burgers

One finds a similar expression for Burgers:

@t�(k) =
SN�1

t

4(2⇡)N
k2�N

Z 1

0

dq
Z 1

0

dp⇥
�

(k, p, q)
1

pq

⇥


4

(p + q � k)(k + p � q)(k + q � p)(k + p + q)

�

(3�N)/2

⇥


k2

2
(p2 + q2 � k2)2�(p)�(q) � p2(k2 + q2 � p2)2�(q)�(k)

�

. (E.7)
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Figure E.1. The domain of integration in equation (E.2).

Appendix F. Short-distance expansion of �(u): amplitudes B and C for Burgers,
NS and surface quasi-geostrophic turbulence

In this appendix, we calculate the necessary integrals for the short-distance expansion of
�(u) for Burgers, section F.1, NA, section F.2, and quasi-geostrophic, section F.3. For
simplicity of notation, we use

b = N + ⇣
2

. (F.1)

F.1. Burgers

To get the coe�cient C in (58) we need to compute

J(k) =
1

2
k2

Z

q

[q · (k � q)]2

q2(k � q)2

G(q)G(k � q)

=
1

2
k2

Z

q

(k2/4 � q2)2

(k/2 + q)2(k/2 � q)2

G

✓

�

�

�

�

k

2
+ q

�

�

�

�

◆

G

✓

�

�

�

�

k

2
� q

�

�

�

�

◆

(F.2)

and set G(k) = 1/kb. We note generically I an integral where such replacement is
performed, while J denotes the same integral with IR cuto↵s. Indeed, the second integral
in (58) behaves as ⇠mN�bk2/(k2 + m2)b/2 and contributes only to B and D (equivalent
to the statement that

R

q q�a = 0 in dimensional regularization). While the calculation of
B and D (for each integral) depends a priori on the IR details of G(k), the coe�cient C
can be obtained by the method of analytical continuation on the first integral only. This
integral is both UV and IR convergent upon inserting G(k) = 1/kb for N/2 < b < N . Its
expression is then continued for b > N to get C. The cancellation of B between the two
terms is easy to show. One has

I(k) =
k2

2

Z

q

(k2/4 � q2)2

|k/2 + q|b+2|k/2 � q|b+2

=
k2

2

1

�(b/2 + 1)2

Z

ti>0

tb/2

1

tb/2

2

@2

v |v=0

⇥
Z

q
e�(t1+t2)(k2/4+q2)+v(k2/4�q2)�(t1�t2)k·q

=
1

2
k2

(4⇡)�N/2

�(b/2 + 1)2

Z

ti>0

tb/2

1

tb/2

2

@2

v |v=0

(t
1

+ t
2

+ v)�N/2e(v2�4t1t2/t1+t2+v)(k2/4)
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=
1

2
k2

(4⇡)�N/2

4�(b/2 + 1)2

Z

ti>0

tb/2

1

tb/2

2

(t
1

+ t
2

)�4�N/2e�(t1t2/t1+t2)k2

⇥
�⇥

N2(t
1

+ t
2

)2 + 2N(t
1

+ t
2

)
�

t
2

+ t
1

(1 � 2k2t
2

)
�⇤

+ 2k2

⇥

t3
1

� t
1

t2
2

+ t3
2

� t2
1

t
2

(1 � 2k2t
2

)
⇤ 

. (F.3)

Introducing s = t
1

+ t
2

, t
1

= su, t
2

= s(1 � u) with dt
1

dt
2

= s du ds one gets

I(k) =
1

2
k2

(4⇡)�N/2

4�(b/2 + 1)2

Z

1

0

du
Z

s>0

s�1+b�N/2(u(1 � u))b/2

�⇥

N2+N(2 � 4k2s(1 � u)u)
⇤

+ 2k2s
⇥

1 � 2(1 � u)u(2 � k2s(1 � u)u)
⇤ 

e�su(1�u)k2
. (F.4)

The integration over s can be performed, if b > N/2, leading to

I(k) = � (4⇡)�N/2�(b � N/2)

8�(b/2 + 1)2

k2+N�2b

Z

1

0

du [u(1 � u)](N�b�2)/2

⇥

N � 4b2(1 � u)u

� 4N(1 + N)(1 � u)u � 2b(1 � 2(1 + 2N)(1 � u)u)] . (F.5)

This integral converges only for b < N , where it is

I(k) = Ck2+N�2b = 2�2+b�2N⇡(1�N)/2

⇥ [b2 � 2b(N � 1) + N(N � 1)] �(b � N/2)� ((1/2)(N � b))

�(b/2 + 1)2� ((1/2)(1 + N � b))
k2+N�2b. (F.6)

This identifies C = C(b, N) for b < N . For b > N the correct calculation requires
regularization by a mass m2, and leads to J(k) = B

1

k2�b + Ck2+N�2b + Dk�b. While
B

1

is cancelled by the second integral in (58), the expression of C remains equal to the
analytical continuation of (F.6).

F.2. Navier–Stokes

The non-linear term in the FRG equation is the sum of two integrals,

J(k) =
2

(N � 1)

Z

q

k2q2 � (k · q)2

k2q2(k � q)2

⇥

(k2 � q2)
�

(k � q)2 � q2

�

+ (N � 2)k2(k � q)2

⇤

⇥ G(q) [G(k � q) � G(k)] .

If we replace G(p) by p�b, we see that the first integral is both UV and IR convergent for
N/2 < b < N , while the second is not convergent anywhere. It is either UV divergent (for
b < N) or IR divergent (for b > N) at q ⇡ 0 (but not at q ⇡ k). It is thus convenient to
split J(k) into two parts:

J(k) = J̃(k) + J
c

(k), (F.7)

J
c

(k) = 2
Z

q

k2q2 � (k · q)2

q2

G(q) [G(|k � q|) � G(k)] , (F.8)

J̃(k) =
2

(N � 1)

Z

q

k2q2 � (k · q)2

k2(k � q)2

⇥

q2 � k2 � (k � q)2

⇤

G(q) [G(|k � q|) � G(k)] . (F.9)
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It is easy to see that the second integral in J
c

(k) contributes only to B and D but not to
C, while Ĩ(k), the same integral as J̃(k), replacing G(p) by p�b, is now both UV and IR
convergent for N < b < N + 2. One thus has

Ĩ(k) = � 1

2k2(N � 1)

Z

t1,t2>0

"

tb/2�1

1

tb/2

2

�(1 + b/2)�(b/2)
� tb/2�1

1

k�b

�(b/2)

#

⇥ B(t
1

, t
2

)
Z

q
e�t1q2�t2(k�q)

2
(F.10)

B(t
1

, t
2

) =
⇥

k4 + 2k2(@t1 + @t2) + (@t1 � @t2)
2

⇤

(�k2 + @t2 � @t1), (F.11)

using that k2q2 � (k · q)2 = � 1

4

[k4 � 2k2(q2 + (k � q)2) + (q2 � (k � q)2)2]. Using

Z

q
e�t1q2�t2(k�q)

2
= (4⇡)�N/2(t

1

+ t
2

)�N/2e�k2
(t1t2/(t1+t2)) (F.12)

we find

Ĩ(k) = � 2k2

(4⇡)N/2

Z

t1,t2>0

"

tb/2�1

1

tb/2

2

�(1 + b/2)�(b/2)
� tb/2�1

1

k�b

�(b/2)

#

⇥ t
1

(t
1

+ t
2

)�2�N/2e�(t1t2/(t1+t2))k2
. (F.13)

Introducing s = t
1

+ t
2

, t
1

= su, t
2

= s(1 � u) with dt
1

dt
2

= s du ds one gets

Ĩ(k) = � 2k2

(4⇡)N/2�(1 + b/2)�(b/2)

Z

1

0

du
Z

s>0

s�1+b�N/2[u(1 � u)]b/2

⇥


1 � s�b/2(1 � u)�b/2�

✓

1 +
b

2

◆

k�b

�

e�k2su(1�u).

The integral over s can be performed in the first integral for b > N/2 and for b > N in
the second. This leads to

Ĩ(k) = � 2

(4⇡)N/2�(1 + b/2)�(b/2)
�

✓

b � N

2

◆

k2�2b+N

Z

1

0

du [u(1 � u)](N�b)/2

⇥


1 � ub/2

�(1 + b/2)�((b � N)/2)

�(b � N/2)

�

. (F.14)

Both integrals are convergent for b < N + 2 and one finds Ĩ(k) = (C̃
1

+ C̃
2

)k2�2b+N with

C̃
1

= � 2b�N
p
⇡b� (b � N/2) � ((1/2)(2 � b + N))

2(4⇡)N/2� (1 + b/2)2 � ((1/2)(3 � b + N))
, (F.15)

C̃
2

=
N⇡� (N/2)

(4⇡)N/2 sin ((1/2)(b � N)⇡) � (b/2) �
�

2 � b
2

+ N
� . (F.16)

We now compute the integral associated with J
c

(k)
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I
c

(k) = 2
Z

q

[k2q2 � (k · q)2]

q2

q�b |k � q|�b

= � 1

2

Z

t1,t2>0

tb/2

1

tb/2�1

2

�(1 + b/2)�(b/2)

�

k4 + 2k2(@t1 + @t2) + (@t1 � @t2)
2

�

Z

q

e�t1q2�t2(k�q)

2

=
(N � 1)k2

(4⇡)N/2�(1 + b/2)�(b/2)

Z

t1,t2>0

tb/2

1

tb/2�1

2

(t
1

+ t
2

)�1�N/2e�(t1t2/(t1+t2))k2

=
(N � 1)k2

(4⇡)N/2�(1 + b/2)�(b/2)

Z

1

0

du
Z

s>0

s�1+b�N/2ub/2(1 � u)b/2�1e�su(1�u)k2

=
(N � 1)�(b � N/2)

(4⇡)N/2�(1 + b/2)�(b/2)
k2�2b+N

Z

1

0

duu[u(1 � u)]�1+(N�b)/2.

The integral over s can be done for b > N/2, and the one over u for b < N . It gives

I
c

(k) = C
c

k2�2b+N , C
c

=
2b�N(N � 1)

p
⇡� (b � N/2) � ((1/2)(N � b))

(4⇡)N/2� (1 + b/2) � (b/2) � ((1/2)(1 � b + N))
. (F.17)

The total contribution is thus

J(k) = Bk2�b + Ck2�2b+N + Dk�b + · · · , (F.18)

C = C̃
1

+ C̃
2

+ C
c

, (F.19)

where C̃
1

+C
c

is the total contribution to C from the first integral, and C
2

the contribution
of the second integral. Of course one also shows B = 0, as a result of the cancellations.

F.3. Surface quasi-geostrophic turbulence

Let us study the non-linear term in the FRG equation for SQG turbulence given by

J(k) =
Z

d2q

(2⇡)2

[q ⇥ k]2(q�a � p�a)�̃T (q)

⇥
h

(q�a � p�a)�̃T (p) � 2(q�a � k�a)�̃T (k)
i

, (F.20)

where p = k � q. We now assume for the correlator �̃T (k) the form

�̃T (k) =
1

k�
. (F.21)

It is related to the velocity correlator �(k) by

� = 4 � 2a + ⇣
2

, �̃(k) =
1

k2+⇣2
. (F.22)

Keeping in mind that the case a = 2 corresponds to the NS equation in N = 2, we expect
that � is close to 2 near a = 2. We thus want to compute

I(k) :=
Z

d2q

(2⇡)2

[q ⇥ k]2(q�a � p�a)q��
⇥

(q�a � p�a)p�� � 2(q�a � k�a)k��
⇤

. (F.23)

Using that

[q ⇥ k]2 = k2q2 � (k · q)2 = � 1

4

⇥

k4 � 2k2(q2 + (k � q)2) + (q2 � (k � q)2)2

⇤

(F.24)
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we obtain

I(k) = � 1

4

Z

t1,t2>0

"

ta+�/2�1

1

t�/2�1

2

+ t�/2�1

1

ta+�/2�1

2

�(a + �/2)�(�/2)
� 2

ta/2+�/2�1

1

ta/2+�/2�1

2

�(a/2 + �/2)2

� 2k��

 

ta+�/2�1

1

�(a + �/2)
� k�a ta/2+�/2�1

1

�(a/2 + �/2)

!

(�@t2)

+ 2k�� ta/2+�/2�1

1

ta/2�1

2

�(a/2 + �/2)�(a/2)

� 2k�a�� t�/2�1

1

ta/2�1

2

�(�/2)�(a/2)

#

B̃(t
1

, t
2

)
Z

q
e�t1q2�t2(k�q)

2
, (F.25)

where B̃(t
1

, t
2

) = k4 + 2k2(@t1 + @t2) + (@t1 � @t2)
2. Using equation (F.12) for N = 2 we

find

I(k) = F (a, �)k�2(a+��3), (F.26)

F (a, �) =
1

32⇡



�(a + � � 2)

✓

8� (2 � �/2) � (�a � �/2 + 2)

� (�/2) �(�a � � + 4)� (a + �/2)

�
p
⇡2a+�� (�a/2 � �/2 + 2)

� ((1/2)(�a � � + 5)) � ((a + �)/2)2

!

+
8�
�

2 � a
2

�

⇣

�(�a/2��/2+2)�(a+�/2�2)

�(�a��/2+4)�(a+�/2)

+ �(2��/2)�((1/2)(a+��6))

�(�/2)�(�a/2��/2+3)

⌘

� (a/2)

3

5 . (F.27)

One checks that for a = 2 one recovers C(N = 2, ⇣
2

) = F (a = 2, � = ⇣
2

) where C(N, ⇣
2

) is
given by equation (61). As we already know this means that the limits � ! 2 and a ! 2
are not exchangeable without an IR cuto↵. Indeed, we have lim�!2

F (a = 2, �) = �1/(4⇡)
and not �1/(8⇡), which we expect in the presence of an IR cuto↵. However, we find that
if one keeps a 6= 2 infinitesimally close to 2, and then takes the limit � ! 2, one does find
�1/(8⇡). This means that one needs to keep a > 2, and that lima!2

F (a, � = 2) = �1/(8⇡)
is the correct limit.

This result leaves two options for the large-k behavior of possible fixed points
parameterized by �:

(i) � = 6 � 2a leads to the non-linear term in the FRG equation which for large k
asymptotics is also ⇠Fk��. Thus, it can be balanced by the rescaling terms and
may have a self-consistent solution even if F is not zero. The tail is then given
by �T (k) ⇠ 1/k6�2a. In this case the tail �(k) ⇠ 1/k4 for the velocity remains
independent of a.

(ii) There is a value of � < 6 � 2a where F (a, �) vanishes. All possible values are
shown on figure F.1 for �2  a  2. For instance, we find that F (a, �) vanishes for
�

1

= 1+ 3

2

(2 � a) and �
2

= 4 � a, which cross at a = 0. However, there are other values.

If we ask that the function ⇣
2

(a) for the physical fixed point is continuous, it follows
from our analysis for the 2D NS equation (where ⇣

2

(a = 2) = 2) that likely values are
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Figure F.1. Blue solid curves: locations in the (a, �) plane, where F (a, �) given
in equation (F.27) vanishes. The two straight lines are given by �

1

= 1+ 3

2

(2 � a)
and �

2

= 4 � a. Orange dashed line: � = 6 � 2a.

⇣
2

(a) = 2 or ⇣
2

(a) = a for a > 0. However, more work is clearly called for, in view of these
results, to study possible fixed points as a function of a.

Appendix G. Small-k expansion for NS in dimension N = 2

In this appendix, we calculate the small-k expansion of the non-linear term in the FRG
equation for the two-dimensional decaying NS turbulence. This will allow us to find in
a self-consistent way the small-k behavior of the fixed point solution �̃⇤(k). To this
end, consider the non-linear contribution to the flow equation in the distance geometry
representation given by equation (71). It is useful to symmetrize it in t ! �t:

��̃(k) =
k4

4⇡2

Z 1

1

ds
Z

1

0

dt
st

s2 � t2

q

(s2 � 1)(1 � t2)

⇥
⇢

�

(s � t)2 � 4
�

�̃

✓

k

2
(s � t)

◆

�
�

(s + t)2 � 4
�

�̃

✓

k

2
(s + t)

◆�

�̃(k)

+ 4st�̃

✓

k

2
(s � t)

◆

�̃

✓

k

2
(s + t)

◆�

. (G.1)

We now want to expand equation (G.1) in small k for an arbitrary function �̃(k). In
section 6.2.2 we already discussed that the expected behavior of the fixed-point solution
�̃⇤(k) at small k is �̃(k) ⇠ kn�1 with n = 3. Let us for the moment consider a more general
class of functions with a finite �̃(k = 0) and �̃0(k = 0). It is not possible to expand the
integrand of (G.1) in small k, since this gives integrals diverging at large s. Instead, one
can rescale s, by defining s = 2q/k, and only then expand in k. This allows one to integrate
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term by term over t 2 [0, 1],

��̃(k) = � k2

8⇡

Z 1

k/2

dq [q2�̃0(q)�̃(0) + 2q�̃(q)(�̃(0) � �̃(q))]

� k3

8⇡
�̃0(0)

Z 1

k/2

dq
h

2q�̃(q) + q2�0(q)
i

+ O(k4)

=
k2

4⇡

Z 1

0

dq q�̃(q)2 + O(k4). (G.2)

We have used integrations by parts and the large-k behavior (73) which suggests that
limk!1k2�̃(k) = 0. Note that the expansion of �̃(q) in the integrands of the first line of
equation (G.2) cannot produce terms of order k4. Expanding (G.1) further to order k4,
we find

��̃(k) = · · · +
k4

384⇡

Z 1

k/2

dq
n

6�̃0(q)
h

7�̃(0) � 4q2�̃00(0)
i

� 12q�̃0(q)2

� q
h

12�̃(q)
⇣

4�̃00(0) � �̃00(q)
⌘

+ �̃(0)
⇣

q�̃000(q) + 6�̃00(q)
⌘io

. (G.3)

Together with (G.2), this yields

��̃(k) =
k2

4⇡

Z 1

0

dq q�̃(q)2 � k4

16⇡

Z 1

0

dq q�̃0(r)2 � 5k4

48⇡
�̃(q = 0)2 + O(k5). (G.4)

Note that at least the first few terms of the expansion (G.4) depend mainly on the integral
properties of �̃(k) and not on its small-k expansion.

Appendix H. Asymptotic large-k behavior for NS in N = 2

In this appendix, we calculate the asymptotic large-k behavior of the non-linear term in
the flow equation for 2D NS. We start from the rescaled dimensionless version of (26),
setting

�̃(k) ! 1

(k2 + m2)2

. (H.1)

Thus we need to compute for N = 2 the convergent integral

��̃(k) = 2
Z

d2q

(2⇡)2

k2q2 � (k · q)2

k2q2(k � q)2

⇥

(k2 � q2)
�

(k � q)2 � q2

�⇤ 1

(q2 + m2)2

⇥


1

((k � q)2 + m2)2

� 1

(k2 + m2)2

�

. (H.2)

In polar coordinates this integral reads

��̃(k) =
2

(2⇡)2

Z 1

0

q dq
Z

2⇡

0

d�
1 � cos2(�)

k2 � 2kq cos(�) + q2

�

k2 � q2

� ⇥

k2 � 2kq cos(�)
⇤

⇥ 1

(m2 + q2)2

"

1

(k2 � 2kq cos(�) + m2 + q2)2

� 1

(k2 + m2)2

#

. (H.3)
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After rescaling q ! qk and m ! m
1

k it becomes

��̃(k) =
2

k4(2⇡)2

Z 1

0

q dq
Z

2⇡

0

d�
1 � cos2(�)

1 � 2q cos(�) + q2

�

1 � q2

�

[1 � 2q cos(�)]
1

(m2

1

+ q2)2

⇥
"

1

(1 � 2q cos(�) + m2

1

+ q2)2

� 1

(1 + m2

1

)2

#

. (H.4)

Changing variables to t in such a way that cos(�) ! (1�t2)/(t2+1) and sin(�) ! 2t/(t2+1)
with Jacobian 4/(t2 + 1) we arrive at

��̃(k) =
8

⇡2k4

Z 1

0

q2dq
Z 1

0

t2dt
(q2 � 1) (qt2 + q + 2t2 � 2) (2q (t2 � 1) + t2 + 1)

(m2

1

+ q2)2 [q2 (t2 + 1) + 2q(t2 � 1) + t2 + 1]

⇥ (t2 + 1) (2m2

1

+ q2 + 2) + 2q (t2 � 1)

(m2

1

+ 1)2 (t2 + 1)3 [(t2 + 1) (m2

1

+ 1 + q2) + 2q (t2 � 1)]2
. (H.5)

The integral over t has to be taken independently for 0 < q < 1 and 1 < q < 1 so that
��̃(k) = �

1

�̃(k)+�
2

�̃(k). Introducing A =
p

m2

1

+ (q � 1)2 and B =
p

m2

1

+ (q + 1)2 one
can write these integrals in the following form

�
1

�̃(k) =
1

⇡k4

Z

1

0

dq
(B � A)3

h

(A2 � B2)2 � 16
i

[A4 � 2A2 (B2 + 4) + B4 � 8B2]�2

AB [(A � B)2 � 4]2 (A + B) (A2 + B2 � 2)2

⇥
h

A8 � 4A7B + 2A6

�

2B2 � 9
�

+ 4A5B
�

B2 + 7
�

� 2A4

�

5B4 + 7B2�48
�

+ 2A2

�

2B6 � 7B4 + 32B2 � 64
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� 4AB
�

B6 � 7B4 + 32
�

+ 4A3B3

�

B2 + 2
�

+ B2

�

B2 � 8
�

2

(B2 � 2)
i

(H.6)

and

�
2

�̃(k) =
1

⇡k4

Z 1

1

dq
(B � A) [(A + B)2 � 2]

h

(A2 � B2)2 � 16
i

AB(A + B � 2)2(A + B)(A + B + 2)2 (A2 + B2 � 2)2

. (H.7)

Integration over q and combining both terms gives

��̃(k) = � 1

8⇡k4

f(m/k) (H.8)

with

f(x) =
1

x4 (x2 + 1)2

n

�

6x4 + 8x2 + 2
�

log
�

x2 + 1
�

+ 2
�

2x4 + x2

�

+
p

4x2 + 1
�

x2 + 1
�

2

⇥
h

log
⇣p

4x2 + 1 � 1
⌘

� log
⇣

�

x2 + 1
�

⇣p
4x2 + 1 + 3

⌘

� 2
⌘i

+
h⇣p

4x2 + 1 � 6
⌘

x2 +
p

4x2 + 1 � 2
i

�

x2 + 1
�

log
�

x2

�

o

. (H.9)

Expanding in small x, i.e. large k/m, we obtain

f(x) = 1 + x2

�

8 log(x) � 2

3

�

� x4

�

32 log(x) + 53

6

�

+ O
�

x5

�

. (H.10)
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Figure I.1. Left: check for the precision of the fit for f(t) defined in equation (I.2).
Right: the guessed fixed-point �̃

guess

(k) (blue, thin line), and the numerical
solution �̃(k) defined in equation (84) (red, fat line). See figure 2 for a log–log
plot of �̃(k).

Note that only the leading term is universal, while the higher ones depend on the
regularization by m introduced in equation (H.1). This implies the leading-order term
�A2/8⇡k4 given in equation (80).

Appendix I. Numerical solution for the fixed point in dimension N = 2

We wish to integrate equations (65) and (71) numerically, using ⇣ = 2. If the fixed point
is attractive, �̃(k) will converge against it. Numerically, the problem is hard for several
reasons:

(i) Convergence of the integral (71) for large k is slow and imprecise.

(ii) One needs high precision for �̃(k), which respects the conditions (74) and (78) at
small k, and the asymptotic form (80) for large k.

(iii) The right-hand side of equation (65) must be calculated numerically at many di↵erent
points; we will use 108 points (see table I.1).

(iv) One easily runs into numerical instabilities, when using a spline interpolation through
all points, or a polynomial fit of degree ⇡ 20, which is necessary to represent faithfully
the data points.

In order to circumvent these problems, we do the following: Write the ansatz (84) and (85).
The guess in equation (85) was obtained by (i) imposing the correct asymptotic forms,
(ii) trying to optimize consistency relations as (G.4). Since we have no small-k expansion
with rapidly decaying coe�cients, the final criterion (iii) for (85) was a right-hand side in
the flow equation which is small in the intermediate regime of finite k.

Our information is stored in �̃
cor

(k), spaced as the first column in table I.1. It is
updated via

�̃
cor

(k) ! �̃
cor

(k) +  t@t�̃(k), (I.1)

at the given values of k. The quantity @t�̃(k) is given by equations (65) and (71). Note that
while we use the distance geometry formula (71) for the correction since it is numerically
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Table I.1. Numerical fixed point of equations (65), (71) for �̃(k).

k �̃(k) k �̃(k) k �̃(k) k �̃(k)

0 0 0.869 074 30.894 3 2.002 5 18.629 4.290 82 0.264 334
0.015 8116 0.013 152 6 0.904 5 32.589 3 2.055 54 16.096 5 4.447 68 0.222 674
0.047 4395 0.117 591 0.940 243 34.254 8 2.109 83 13.807 2 4.616 4 0.186 731
0.079 0817 0.323 878 0.976 321 35.917 5 2.165 44 11.779 8 4.798 73 0.155 76
0.110 748 0.629 261 1.012 75 37.604 8 2.222 46 10.005 4.996 81 0.129 12
0.142 447 1.033 18 1.049 55 39.302 8 2.280 96 8.469 86 5.213 27 0.106 266
0.174 189 1.539 77 1.086 73 40.941 3 2.341 04 7.159 83 5.451 42 0.086 7232
0.205 984 2.155 75 1.124 33 42.453 8 2.402 81 6.058 98 5.715 48 0.070 0738
0.237 841 2.884 8 1.162 35 43.782 2.466 37 5.144 16 6.010 89 0.055 9517
0.269 77 3.725 42 1.200 82 44.876 2.531 85 4.383 04 6.344 89 0.044 037
0.301 781 4.667 17 1.239 77 45.706 6 2.599 37 3.746 86 6.727 28 0.034 0508
0.333 885 5.687 28 1.279 2 46.268 8 2.669 09 3.211 19 7.171 78 0.025 7567
0.366 091 6.768 18 1.319 16 46.562 8 2.741 15 2.755 5 7.698 32 0.018 9527
0.398 41 7.911 67 1.359 67 46.591 5 2.815 74 2.364 75 8.337 09 0.013 4578
0.430 852 9.122 35 1.400 74 46.360 8 2.893 04 2.029 66 9.136 73 0.009 108 39
0.463 428 10.404 1 1.442 42 45.857 7 2.973 28 1.742 34 10.181 8 0.005 757 92
0.496 149 11.758 3 1.484 73 45.042 6 3.056 68 1.495 86 11.636 2 0.003 282 25
0.529 027 13.187 3 1.527 7 43.884 5 3.143 52 1.284 18 13.875 6 0.001 571 92
0.562 072 14.696 3 1.571 37 42.362 6 3.234 09 1.102 21 16 0.000 868 729
0.595 297 16.290 7 1.615 78 40.465 9 3.328 72 0.945 681 18.051 4 0.000 526 73
0.628 713 17.975 8 1.660 95 38.221 3 3.427 79 0.810 933 20 0.000 344 759
0.662 334 19.758 1.706 94 35.703 4 3.531 74 0.694 791 23.5 0.000 177 434
0.696 17 21.624 2 1.753 78 32.983 6 3.641 04 0.594 54 27 0.000 100 406
0.730 237 23.533 9 1.801 52 30.126 3 3.756 26 0.507 916 31.5 0.000 053 4954
0.764 546 25.447 1.850 21 27.188 9 3.878 03 0.433 078 35.5 0.000 032 8852
0.799 113 27.327 7 1.899 9 24.239 1 4.007 11 0.368 428 41 0.000 018 3294
0.833 95 29.146 3 1.950 64 21.362 4.144 36 0.312 578 48 9.686 50 ⇥10�6

more e�cient, we have checked that the result is the same when replacing equation (71)
by equations (66) and (67). The step size  is finally reduced to  = 0.005.

To circumvent the numerical problems mentioned under (iv) above when obtaining
the rescaling term in (65) and the numerical integral in (71), we approximate �̃

cor

(k) by
the smooth function

�̃
cor

(k) =
f (t(k))

m(k)
(I.2)

t(k) :=
kp

10 + k2

(I.3)

m(k) :=
(k2 + 1)5/2

k2

. (I.4)

The function f(t) is defined on [0, 1], bounded (of order 100), and converges to 0 for t to
0 or 1 (see figure I.1). In order to produce a smooth fit for f(t), we use the best (i.e. least
variance) cubic spline with o equidistant points and f(0) = f(1) = f 0(0) = f 0(1) = 0.
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Figure I.2. Top left: ��̃(k) (green solid line with superimposed blue dots),
2�̃(k) + k�̃0(k) (solid red line) and @`�̃(k) (dashed black line). Top right:
the same three terms, multiplied by (1 + k2)2. Bottom: plot of the ratio
��̃(k)/(2�̃(k) + k�̃0(k)) which must be 1 at the fixed point.

Initially o is chosen to be 13, and then increased up to 20. Using splines of this relatively
low order (compared with the number of data points) e↵ectively filters out numerical
noise. (Note: a polynomial fit of the same order is not adequate, but generates a dynamic
instability. To further increase precision, a spline with variable switch points could be used.
Our upper limit is o = 20 due to RAM problems in the implementation of the integration
routines, which split the integrals in pieces for each spline part.) Before updating �̃

cor

(k)
via (I.1), the table of stored values for �̃

cor

(k) is replaced by the approximation (I.2).
This is necessary for consistency. On the left of figure I.1 we show our final result of the
function f(t), and the points from which it is constructed. One sees that no numerical
artifact is present.

Our final result for �̃(k) is shown in a log–log plot in figure 2. A linear plot is presented
on the right of figure I.1 (fat red line), as well as our initial guess �̃

guess

(k). Note that since
there exists a redundant mode (the choice of k

max

at which E(k) = k�̃(k) is maximal),
one could get these two curves closer. Numerical values for �̃(k) are given in table I.1.
The precision can be inferred from figure I.2. It should be few per cent (relative precision)
for k < 5, but the precision decreases for larger values of k. Note, however, that we know
the exact asymptotic form �̃(k) = 16⇡/k4.
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Appendix J. NS equation in the limit of large N

In this appendix we consider the FRG flow for the NS equation (32) in the limit of large
N . We start from the flow equation in real space (32) to derive an equation for r2

u�(u):

t@tr2

u�̃(u) = (2 � ⇣) r2

u�̃(u) +
⇣

2
u@u

h

r2

u�̃(u)
i

+ r2

u��̃L

(u) + r2

u��̃NL

(u). (J.1)

The Laplacian is r2

u = Nd/dy + 2y d2/dy2; rewriting �(u) in terms of r(y), given by
equation (31), we obtain

r2

u�(u) = �
h

N (2 + N) r00(y) + 4 y
⇣

(2 + N) r000(y) + y r(4)(y)
⌘i

. (J.2)

The Laplacian of r2

u��̃L

(u) is local and has been expressed in terms of r(y) in
equation (33). The non-local part ��̃

NL

(u) is given by equation (34) with the kernel
(35). Taking into account that for a large-N expansion in real space, both p2 and k2 ⇠ N ,
we can expand the kernel in 1/N as follows

A(p, k) = 2k4

✓

1 � 1

N

◆

� 4

N

k4p2

k2 + p2

+ O

✓

1

N2

◆

. (J.3)

The first term in equation (J.3) can be written as a derivative, and thus also becomes
local

r2

u��̃
(1)

NL

(u) = 2 (N � 1) r0(0)
h

(4 + N)
⇣

(2 + N)
⇣

N r000(y) + 6 y r(4)(y)
⌘

+ 12 y2 r(5)(y)
⌘

+ 8 y3 r(6)(y)
i

. (J.4)

Note that apart from the factor of r0(0), it has the structure of the last term in
equation (33). Let us now evaluate the second term in equation (J.3) to leading order
at large N ,

r2

u��̃
(2)

NL

(u) = � 4

N

Z

k,p

e�ikuk6R̃(k)
1

k2 + p2

p4R̃(p)

= � 4

N

Z 1

0

dt
Z

k,p

e�ikuk6R̃(k)p4R̃(p)e�tk2�tp2
. (J.5)

Since
R

k e�ikuR̃(k) = R̃(u) = r(y), we have in the large-N limit
Z

k

e�ikue�tk2
R̃(k) = r(y + Nt), (J.6)

as can be checked by Taylor expanding and using that �k2 = r2

u = Nd/dy to leading
order. Hence

r2

u��̃
(2)

NL

(u) =
4

N
N5

Z 1

0

dt r000(y + Nt)r00(Nt) =
4

N
N4

Z 1

0

dz r000(y + z)r00(z). (J.7)

We now put all the pieces together, setting ⇣ = ⇣
0

+ ⇣�1

/N + · · ·. Expanding to order 1/N
we obtain equation (94).
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[66] Balents L, Bouchaud J P and Mézard M, The large scale energy landscape of randomly pinned objects,

1996 Physique I 6 1007
[67] Le Doussal P and Wiese K J, Size distributions of shocks and static avalanches from the functional

renormalization group, 2009 Phys. Rev. E 79 051106 [arXiv:0812.1893]

doi:10.1088/1742-5468/2013/04/P04014 54



J.S
tat.M

ech.(2013)P
04014

Functional renormalization-group approach to decaying turbulence

[68] Le Doussal P and Wiese K J, First-principle derivation of static avalanche-size distribution, 2011 Phys.
Rev. E 85 061102 [arXiv:1111.3172]

[69] Le Doussal P, Rosso A and Wiese K J, Shock statistics in higher-dimensional Burgers turbulence, 2011
EPL 96 14005 [arXiv:1104.5048]

[70] L’vov V S, Pasmanter R A, Pomyalov A and Procaccia I, Strong universality in forced and decaying
turbulence in a shell model, 2003 Phys. Rev. E 67 066310

[71] Tabeling P, Two-dimensional turbulence: a physicist approach, 2002 Phys. Rep. 362 1
[72] Le Doussal P, What can disordered systems tell us about turbulence, The Nature of Turbulence KITP

program 2011, http://online.kitp.ucsb.edu/online/turbulence11/ledoussal/
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