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Measuring Functional Renormalization Group Fixed-Point Functions for Pinned Manifolds
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Exact numerical minimization of interface energies is used to test the functional renormalization group
analysis for interfaces pinned by quenched disorder. The fixed-point function R(u) (the correlator of the
coarse-grained disorder) is computed. In dimensions D = d + 1, a linear cusp in R”(u) is confirmed for
random bond (d = 1, 2, 3), random field (d = 0, 2, 3), and periodic (d = 2, 3) disorders. The functional
shocks that lead to this cusp are seen. Small, but significant, deviations from the 1-loop calculation are
compared to 2-loop corrections and chaos is measured.
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Systems with quenched (frozen-in) disorder often ex-
hibit glassy phases at low temperature. Standard pertur-
bative methods fail to describe these phases and exact
results are limited to 1D and mean-field models [1-3]. It
has been quite a challenge to develop field theoretic and
renormalization group (RG) methods that include both
metastable states and spatial fluctuations to describe uni-
versal properties of these phases. Proposed field theories
are unconventional and harder to control than those for
pure critical systems. An expansion around the mean-
field replica symmetry (and ergodicity) broken (RSB)
solution, much studied in spin glasses, is very difficult
even at the 1-loop level [4]. The functional RG (FRG)
was developed for elastic objects pinned by substrate dis-
order and random fields, including vortex lattices, mag-
netic systems, and charge density waves [5—8]. The 1-loop
FRG has been extended to describe, e.g., depinning of a
driven interface [9], activated dynamics [10], quan-
tum models [11], and sensitivity of configurations to dis-
order changes (‘“‘chaos’’) [12]. Since the FRG parametrizes
the effective action by functions, rather than the few cou-
plings of standard RG, it is better suited to handle an
infinite number of marginal parameters at the upper critical
dimension (or runaway flows as in correlated fermions
[13]).

When applying the FRG to pinned elastic manifolds
parametrized by a scalar displacement field u(x), the func-
tion in the effective action whose flow is relevant below
d = 4 is denoted by R(u). Physically, this function repre-
sents a coarse graining of the correlator of the pinning po-
tential. An unusual feature of the theory is that R”(u) can
develop a linear cusp around u = 0 at finite scale [6]. In the
space of nonanalytic functions, perturbative control was
recovered to one-loop order [i.e., to O(e =4 — d)] and
fixed-point functions R(u) obtained for various universality
classes [6,8,14]. The relations between this cusp singular-
ity, multiple metastable states, and shocks in energy land-
scapes have been vividly described [15]. The FRG agrees
with phenomenological models and successfully predicts
the roughness exponent ¢ of the pinned interface, with the
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disorder-averaged correlation function [u(x) — u(0)]> ~
x* [16-18].

Though much has been achieved, it has been questioned
[14] whether the FRG can be extended in a systematic loop
expansion, i.e., to higher order in €. Dealing with a non-
analytic action is very subtle [19,20]. Recently, candidate
renormalizable field theories for statics [19,21] and depin-
ning [22] were obtained beyond one loop. Crucial to their
construction is the property that the cusp remains linear to
higher orders. If confirmed, the FRG provides a simpler
method to attack glass problems where the RSB phenome-
nology can be avoided.

This Letter presents a new level of “smoking gun” tests
of the FRG for manifolds, by directly measuring the fixed-
point function R(u) for three universality classes (Figs. 1-
3). This is achieved by adding to the disorder a parabolic
potential (a mass m) with a variable location v for the
minimum [23]. This leads to a sample-dependent free
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FIG. 1 (color). Filled symbols show numerical results for Y(z),
a normalized form of the interface displacement correlator
—R"(u) [Eq. (4)], for D =2 + 1 random field (RF) and D =
3 + 1 random bond (RB) disorders. The inset plots the slope
Y'(z), with Y'(0) = —0.807 from a quadratic fit (dashed line),
indicating a linear cusp. Open symbols plot the cross-correlator
ratio Y(z) = A,(z)/A;(0) between two related RF disorders; it
does not exhibit a cusp. The points are for confining wells with
width given by M? = 0.02. Comparisons to 1-loop FRG pre-
dictions (curves) have no adjustable parameters.
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FIG. 2 (color). The difference between the normalized corre-
lator Y(z) and the 1-loop prediction Y (z) for RF disorder in D =
(1,2) + 1 and RB disorder in D = (1, 2, 3) + 1. The dashed lines
are the linear 2-loop correction Y,(z) = dY Z) |e=o of Eq. (5). For
each disorder class, the data are close to each other and to the
d = 0 and € = 1 linear two-loop estimates, but are distinct from
the 1-loop result.

energy V(v). The second cumulant correlator of V(v) in v
space is the same R(v) function as defined by the replicated
effective action in the FRG (deviations arise only in higher
cumulants [23]). This is analogous to measuring the cou-
pling constant and the total magnetization distribution in
pure systems [24]. As in pure systems, the FRG predictions
are universal at coarse-grained scales, but require specify-
ing the large scale boundary conditions (BCs). The mass
provides these conditions and also allows one to control
and quantify the zero mode (center of mass) fluctuations,
yielding the coupling function R(u). This procedure al-
lowed an exact calculation [23] of R(v) forthe D = 0 + 1
theory with RF disorder (Sinai’s model).

We numerically compute the FRG fixed-point functions
using exact ground state configurations. We study interfa-
ces embedded in dimensions D =d+1,d=0,1, 2, 3
including random bond (RB), random field (RF), and
periodic (RP) disorder. We focus on universal, parameter-
free functions; treatment of universal amplitudes is pre-
sented separately [25]. The linear cusp in A(u) = —R"(u)
is confirmed in all cases. For periodic disorder, A(u) is
consistent with the conjectured parabolic form. For RB and
RF disorder, the scaled A(u) are distinct from the 1-loop
calculations and are closer to the two-loop results, though
the curves are at most weakly dependent on d. The func-
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FIG. 3 (color). (a) Plots of the normalized pinning force cor-
relator Y(z) for RP disorder in d = 3. For these values of m, the
period P = 4 points have mostly converged to the parabolic RP
fixed-point function, while the P = 8§ curves are still crossing
over from the RB to the RP universality class. (b) Residuals rela-
tive to the parabolic shape vanish, within error bars, for larger
sizes and P = 4.

tional shocks responsible for the cusp in A(u) are directly
seen. The statistics of these shocks are consistent with d =
0 Burgers intermittency. Cross-correlation (chaos) fixed
points for two related copies of the disorder show a round-
ing of A(u) consistent with recent FRG predictions [12].

The continuum Hamiltonian for an interface u(x) of
internal area () with elastic constant K, confined in a
parabolic well centered at v, is

H (v)= ]ﬂ a'dx{g(Vu)2 + m72(u —v)>+V[x, u(x)]}, (D

where the random potential V has correlations
V(0, x)V(u, x') = Ry(u)8P(x — x/). The RB universality
class includes short ranged Ry(u), the RF class has Ry(u) ~
—o|ul at large u, and the RP class has periodic correla-
tions, e.g., Ry(u + 1) = Ry(u). The bare correlator Ry(u)
becomes R(u) upon coarse graining. Given a UV cutoff
scale b, fixed Qb ¢, and continuous V(x, u), the minimum
energy configuration u(x; v) is unique and smoothly vary-
ing with v, but for discrete shock positions where u(x; v)
jumps between degenerate minima.

For numerics, interfaces u(x) are described by a set I of
edge-sharing plaquettes p. Plaquettes are dual to the edges
in a regular lattice composed of H layers. Each layer has
L4 points, unit cell volume (), and periodic BCs. Each
point is connected to points in the layer above by « bonds,
so that an interface I has xL? plaquettes [25]. The energy
H 1, of 1, confined by a well of strength M centered at v,
is

M2
H o) = S Sl P + U0 @

pEI

where u(p) is the layer index for plaquette p and U(p) is
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the disorder potential. Long-wavelength elasticity arises
from combinatorial effects [16]. For RB disorder, U(p) is a
Gaussian variable i(p) with zero mean and variance 0'% =
1, while for RF disorder U(p) is the sum of h(p) along a
path of edges connecting p to the bottom layer. RP disorder
with period P is constructed by stacking H/P identical RB
samples of thickness P. Given U(p), v, and M, the ground
state Iy is found using a program that accommodates all
lattices, dimensionalities, and disorder types. The new
version of the core max-flow algorithm [16] in our code
has been directly tested against standard libraries and ear-
lier applications [16—18,26]. The height H is large enough
that finite size effects are controlled only by L and M.
Lattice discreteness is evident at large M, so we choose
M < 0.2. Continuum and discrete models are then related
by equating energies H ,, and JH, displacements u(p)
and u(x), interface areas Qyxb?L? = (), well strengths

2 — 2 -1 . _
m? = M*(Qyb?)~!, and disorder strengths o = 26‘;; -

We computed the discrete force-force correlation [23]:

Ay (v) = MU KLV + v — up(v' + v)[[v/ — up(v')],

3)
where the mean position uy(v) = (KLd)’lzpe,gSu(p). The
averaging (overline) is for N > 10* samples with 0 = v/ <
P for RP disorder; RF and RP samples are self-averaging
over v/ (we slide v’ over more than 10° times the interface
width while computing minima in a window centered at
v’). The plots we present have 1o-error bars computed
using direct resampling of the data. To check our proce-
dure, we confirm that [’ dul,,(u) is consistent within
errors with the value o, for RF disorder and with the value
0 for RB and RP disorders.

The FRG predicts that, for large volumes €)/b?, the re-
scaled correlator A(z), defined by A(u) = m¢ 4 A(um?),
converges to the FRG fixed-point function A*(z), which
depends on d and disorder class, as m — 0. Using Eq. (3),
convergence of M*~ €A, (zM~¢) was evident for L > 16,
choosing [16] ¢ = 2/3, 0.44, 0.22, for d =1, 2, 3, RB
disorder and / = (4 — d)/3 for RF disorder. The interface
widths grow slowly ({ = 0) for RP disorder. As the FP
functions still contain an amplitude and a scale, we intro-
duce the normalized function Y(z),

Au) = A0)Y(u/¢), “)

so that Y(0) = 1. The scale & depends on disorder type: for
the RP model, ¢ = P, for RF disorder, ¢ is set so that
[& dzY(z) = 1, and for RB disorder, [§ dzY?(z) = 1. The
scaled Y(z; d) is universal, where the dependence on d can
be computed to second order in € := 4 — d [19,21]

Y(z;d) = Y(2) + €Y5(z) + O(€?), ®))

with Y, (z) the 1-loop estimate [6,8,14]. Computation of K
is required to fix universal information not retained in Y(z),
e.g., the amplitude A(0) for RF disorder [25].

We plot illustrative examples of Y(z) in Fig. 1. In all
cases, an apparently linear cusp is found for Y(z) [with

finite intercepts for fits to ¥'(z)]. The normalized functions
are remarkably close to 1-loop predictions, with no adjust-
able parameter. We now turn to a systematic analysis of
these functions, their deviation from 1-loop results, and
related data.

We start with RF disorder. The FRG predictions for the
functions Y;(z) and Y,(z) in (5) are obtained from linear-
[ody/y=1-Iny—$F(y)’
where F(y) =2y —1+ )11% —4Iny +Liy(1 —y). Plots of the
differences Y(z) — Y,(z) between the numerical result and
the 1-loop prediction [6], for several sizes and masses in
D =2+ 1and D =3 + 1, are shown in Fig. 2. There are
small, but statistically significant, systematic deviations
from Y,(z). The sign of the expected corrections linear in
€, Y,(z), agrees with numerics. This function changes sign
at z, = 1.668 ..., near the observed location. The magni-
tude of €Y,(z), setting € = 1, is nearly consistent with nu-
merics for all d. We include O + 1 numerical results (com-
patible with Refs. [23,27] ) for comparison. Points for D =
2+ 1, 3+ 1 are both close to D =0+ 1 results. Our
computed slopes at the origin, —Y’(0) = 0.815(7) (3 + 1)
and —Y'(0) = 0.811(6) (2 + 1), are to be compared with
the FRG value 0.7753...+ (0.0328...)e and the d =0
[23] value 0.8109. ... The near equality of the d = O curve
and Y,(z) appears to be a coincidence. Although more
work is needed to resolve the differences (e.g., d =0
from d = 2, 3) the trend of the FRG results is encouraging.

For RB disorder, R(u) is expected to decay [so A(u) has
a zero]. Fixing ¢ as stated sets a nonuniversal scale. The
differences Y(z) — Y,(z) are plotted in Fig. 2: we again find
small but significant deviations from the 1-loop prediction,
with at most a weak dependence on d (within error bars).
The O(€?) expansion in this case is found from series and
numerical solutions [21]. The resulting Y,(z) again agrees
well in sign and shape with the data, with a magnitude
given by € = 1. We have constructed 2-loop interpolations
which agree with the data in all d [25]. The situation
resembles that for RF disorder, even though deviations
have the opposite sign.

The computed function Y(z) for RP disorder is shown in
Fig. 3 for d = 3; similar results hold for d = 2. The 1- and
2-loop FRGs predict [8,21] a parabolic form, A(u) =
A(0)[1 — 6u(1 — u)], as do the d = 0 and the large-d cases
(with a single shock as m — 0 [15] and many small inde-
pendent shocks per period [20], respectively). Derivative
counting in the FRG equation has indicated that the para-
bolic form holds for finite d. The parabolic form is con-
sistent with our results as m — 0.

The use of a harmonic well allows one to define and
study the shocks in the force landscape. As v increases,
sections of the manifold have degenerate minima at po-
sitions v, and the polarization jumps forward by
[dx[u(x;v}) — ux; vy )] These are shocks in a func-
tional (scalar for d = 0) decaying Burgers equation [23],
with the renormalized force v —u(v) corresponding to

izing the O(e?) relation [21] z =
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FIG. 4 (color). A plot of the normalized cross-correlator i:fggg s

computed for RF disorder in d = 2, 3, showing the sensitivity to
disorder of magnitude &, compared to the 1-loop prediction and
to numerical D = 0 + 1 computations (error bars not shown; 1o
errors are about 1/2 of symbol size). Inset: the renormalized
pinning forces v — ug(v) for a sample (solid line) and a 6 = 0.1
perturbed sample (dashed line) in a typical sample; cross-
correlations of such data give the main plot.

velocity and m~? corresponding to time in Burgers

turbulence. Examples of these discontinuities in the re-
normalized force are shown in the inset of Fig. 4. We
have seen shocks merge as m decreases [25]. The mo-
ments of the renormalized force are S,(v—v')=
[v—2v"—u(v) —u(@')]". A linear cusp in S, is confirmed
by our study of A(v). A prediction of the FRG in d > 0
[23] is that S3(v — v') ~ (v — ') at small v — v/, in ac-
cord with exact results for d = 0. Linearity of all §,,, n = 2
is a hallmark of intermittency in d = 0 Burgers turbulence.
Our data show linearity of S5 (Kolmogorov scaling) and S,
in v — v’ for cases studied. This indicates that shocks do
not cluster beyond simple statistical fluctuations.

When the pinning potential is perturbed, correlations
between the original and perturbed samples remain for
RF disorder and are described by a new chaos FRG fixed
point [12]. We test this prediction using related disorders
U,(p) and U,(p)=[U,(p) + 8W(p)]/~/1+ 8%, where the
perturbation W(p) is a mean-zero univariate Gaussian and
6 is the perturbation strength. We measured the cross cor-
relator A (v — v/) = kLIM*[v — ug; (v)][v" — ug,(v')].
We check the sum rule [§ dul,(u) = o/V1 + 6% and
normalize via Y (z) = A»(£z)/A,(0). We find (Fig. 1)
that Y,(z) is rounded, as predicted [12]. The computed
Y,(0) is near the 1-loop prediction (see Fig. 4).

Our numerical calculations confirm the main features of
the FRG approach to the glassy system of pinned interfa-
ces, especially the shape of R”(u) and its linear cusp, for a
variety of disorders and dimensionalities. FRG computa-
tions to 2-loop order significantly improve upon the 1-loop
results. The functional shocks found are consistent with
expectations; their statistics merit further study.
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