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We study the statics and dynamics of an elastic manifold in a disordered medium with quenched defects
correlated as∼ r−a for large separationr. We derive the functional renormalization group equationsto one-
loop order which allow to describe the universal propertiesof the system in equilibrium and at the depinning
transition. Using a doubleε = 4 − d andδ = 4 − a expansion we compute the fixed points characterizing
different universality classes and analyze their regions of stability. The long-range disorder-correlator remains
analytic but generates short-range disorder whose correlator exhibits the usual cusp. The critical exponents and
universal amplitudes are computed to first order inε andδ at the fixed points. At depinning a velocity-versus-
force exponentβ larger than unity can occur. We discuss possible realizations using extended defects.

I. INTRODUCTION

Elastic objects in random media are the simplest example
of disordered system exhibiting metastability, glassy behav-
ior and dimensional reduction, which are difficulties present
in a broader class of disordered systems [1, 2, 3]. They can
be used to model a remarkable set of experimental systems.
Domain walls in magnets behave as elastic interfaces and can
experience either random bond disorder (RB) as in ferromag-
nets with non-magnetic impurities or random-field disorder
(RF) as in disordered antiferromagnets in an external mag-
netic field [4]. The interface between two immiscible liquids
in a porous medium exhibits the same behavior and under-
goes a depinning transition as the pressure difference is in-
creased [5]. Charge density waves (CDW) in solids show a
similar conduction threshold [6]. Another example of peri-
odic systems are vortex lines in superconductors which can
form different glass phases in the presence of weak disorder
[7, 8, 9]. In all these systems the interplay between elastic
forces which tend to keep the system ordered, i.e. flat or pe-
riodic, and quenched disorder, which promotes deformations
of the local structure, forms a complicated energy landscape
with numerous metastable states. This results in glassy prop-
erties and a nontrivial response of the system to external per-
turbations. In particular, the interface becomes rough with
displacements growing with the distancex as

C(x) ∼ x2ζ , (1)

whereζ is the roughness exponent. Elastic periodic structures
in the presence of disorder lose their strict translationalor-
der and form quasi long-range order characterized by a slow
growth of displacements,

C(x) = Ad ln |x| (2)

where the amplitudeAd is universal in the simplest case. At
zero temperature, a driving forcef exceeding the threshold
valuefc is required to set the elastic manifold into steady mo-
tion with a velocityv which vanishes asv ∼ (f − fc)

β at
the transition point. The correlation length diverges close to
the transitionf = fc asξ ∼ (f − fc)

−ν and the characteris-
tic time asτ ∼ ξz , wherez is the dynamic critical exponent.
Note that the roughness exponent and the universal amplitudes

determined at the depinning transition are in general different
from the exponent and amplitudes measured in equilibrium.

Two methods were developed to study the statics of an elas-
tic manifold in a disordered medium. One of them is the Gaus-
sian variational approximation performed in replica space,
which can be applied to both classes of elastic manifolds,
i.e. to interfaces [10] and to periodic systems [9, 11]. Within
this approach, which is believed to be exact in the mean-field
limit, i.e. when the manifold lives in a space of infinite di-
mensions, metastability is described by breaking of replica
symmetry, that allows one to compute the static correlation
functions and to obtain different thermodynamic properties.
Another method which can be applied to dynamics as well as
to statics is the functional renormalization group (FRG) [12].
Simple scaling arguments show that large-scale propertiesof
elastic systems are governed by disorder ford < duc = 4 and
that perturbation theory in the disorder breaks down on scales
larger than the so-called Larkin scale [13]. To overcome this
difficulty one performs a renormalization-group analysis.It
was shown that in this case one has to renormalize the whole
disorder correlator which becomes a non-analytic functionbe-
yond the Larkin scale [12, 14, 15, 16]. The appearance of a
non-analyticity in the form of a cusp at the origin is related
to metastability, and nicely accounts for the generation ofa
threshold force at the depinning transition. It was recently
shown that the FRG can unambiguously be extended to higher
loop order so that the underlining non-analytic field theoryis
probably renormalizable to all orders [17, 18, 19]. Although
the two methods are very different, they provide a fairly con-
sistent picture of the statics, and recently a relation between
them was found [20]. There is also good agreement with re-
sults of numerical simulations, not only for critical exponents
[21, 22, 23], but also for the whole renormalized disorder
correlator [24]. However, many questions remain open. Al-
though the dynamics in the vicinity of the depinning transition
and at zero temperature is well understood, there is no satis-
factory theory for finite temperature, and in particular forthe
thermal rounding of the depinning transition [25]. It is also
remarkable that the exponentβ in experiments on depinning
is usually larger than1, while FRG and numerical simulations
of elastic systems with weak disorder give values smaller than
1.

Most studies of elastic manifolds in a disordered medium
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treat uncorrelated point-like disorder. Real systems, however,
often contain extended defects in the form of linear disloca-
tions, planar grain boundaries, three-dimensional cavities, etc.
It is known that such extended defects, or point-like defects
with sufficiently long-range correlations can change the bulk
critical behavior [26, 27, 28, 29, 30, 31, 32]. Flux lines in su-
perconductors are the most prominent example. The pinning
of the flux lines by disorder prevents the dissipation of energy
and determines the critical currentJc, which is of great impor-
tance for applications. It was found that extended defects pro-
duced, for instance, by heavy ion irradiation, can increaseJc
by several orders of magnitude [33]. Systems with anisotropic
orientation of extended defects can be described by a model
in which all defects are strongly correlated inεd dimensions
and randomly distributed over the remainingd − εd dimen-
sions. The caseεd = 0 is associated with uncorrelated point-
like defects, while extended columnar or planar defects are
related to the casesεd = 1 and 2 respectively. The bulk-
critical behavior in the presence of this type of disorder was
studied in Refs. [26, 27, 28, 29] using a perturbative RG anal-
ysis in conjunction with a double expansion inε = 4 − d and
εd. The pinning of flux lines by columnar disorder was stud-
ied in Ref. [34], where it was shown that the system forms
a Bose glass phase with flux lines strongly localized on the
columnar defects, resulting in a zero dc linear resistivity. It
was argued recently that the topologically ordered glass phase
(Bragg glass) formed by flux lines can be destroyed in the
vicinity of a single planar defect [35]. It has been shown that
the small dispersion in orientation of columnar defects forms a
new thermodynamic phase called “splayed glas” [36]. In this
phase, the entanglement of flux lines enhances significantly
the transport of superconductors [37]. Competition between
various types of disorder, point and columnar, has also been
studied, at equilibrium [38, 39] and in the moving phases [40].

In the case of an isotropic distribution of disorder, power-
law correlations are the simplest example with the possibility
for a scaling behavior with new fixed points (FPs) and new
critical exponents. The bulk-critical behavior of systemsin
which defects are correlated according to a power-lawr−a

for large separationr was studied in Refs. [30, 31, 32]. The
power-law correlation of defects ind-dimensional space with
exponenta = d− εd can be ascribed to randomly distributed
extended defects of internal dimensionεd with random ori-
entation. For example,a = d corresponds to uncorrelated
point-like defects,a = d − 1 (a = d − 2) describes infi-
nite lines (planes) of defects with random orientation. In gen-
eral one would probably not expect a pure power-law decay
of correlations. However, if the correlations of defects arise
from different sources with a broad distribution of character-
istic lengthscales, one can expect that the resulting correla-
tions will over several decades be approximated by an effec-
tive power-law [30]. If the correlation function of disorder
can be expressed as a finite sum of power-law contributions
∑

i cir
−ai , one can expect that the scaling behavior is dom-

inated by the term with the smallestai [30]. Power-law cor-
relations with a non-integer valuea = d − df can be found
in systems containing defects with fractal dimensiondf [41].
For example, the behavior of4He in aerogels is argued to be

described by an XY model with LR correlated defects [42].
This is closely related to the behavior of nematic liquid crys-
tals enclosed in a single pore of aerosil gel which was recently
studied in Ref. [43], using the approximation in which the
pore hull is considered a disconnected fractal. Finally, studies
of the Kardar-Parisi-Zhang (KPZ) equation with power-law
correlations in time [44] bear connections to the cased = 1
considered here. However the perturbative method used there
cannot address directly the zero temperature (strong KPZ cou-
pling) phase, contrarily to our present study.

In the present paper we study the statics and dynamics of
elastic manifolds in the presence of (power law) LR correlated
disorder using the FRG approach to one-loop order. The pa-
per is organized as follows. Section II introduces the model.
Possible physical realizations are considered in Section III.
Section IV describes the dynamical formalism and perturba-
tion theory. In Section V we renormalize the theory and derive
the FRG equations to one-loop order. In Section VI we study
random bond, in Section VII random field and in Section VIII
periodic disorder. In Section IX we discuss fully isotropic
extended defects. In the final Section we summarize the ob-
tained results and our conclusions.

II. THE MODEL

We consider ad-dimensional elastic manifold embedded in
a D-dimensional space with quenched disorder. The con-
figuration of the manifold is described by aN -component
displacement field denoted belowu(x), or equivalentlyux,
where x denotes thed-dimensional internal coordinate of
the manifold. For example, a domain wall corresponds to
d = D − 1 andN = 1, a CDW tod = D andN = 1,
and a flux lattice tod = D andN = 2. In what follows, we
focus for simplicity on the caseN = 1 and elastic objects with
short-range elasticity. Extensions toN > 1 and LR elasticity
are straightforward for the statics. The energy of the manifold
in presence of disorder is defined by the Hamiltonian

H =

∫

ddx
[ c

2
(∇u(x))2 + V (x, u(x))

]

, (3)

wherec is the elasticity andV a random potential. In this
paper we study the model where the second cumulant of the
random potential has the form:

V (x, u)V (x′, u′) = R1(u− u′)δd(x− x′)

+ R2(u− u′)g(x− x′). (4)

The first part corresponds to point-like disorder with short-
range (SR) correlations in internal space. The second part cor-
responds to long-range (LR) disorder in internal space and the
functiong(x) ∼ x−a at largex. For convenience we normal-
ize it so that its Fourier transform isg(q) = |q|a−d at small
q with unit amplitude. A priori we are interested in the case
a < d where the correlations decay sufficiently slowly in in-

ternal space. We denote everywhere below
∫

q =
∫

ddq
(2π)d and

∫

x =
∫

ddx. The short-scale UV cutoff is implied atq ∼ Λ
and the size of the system isL.
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One could start with model (4), settingR1 = 0; however
as we show below a non-zeroR1 is generated under coarse
graining. Note that the functionsRi(u) can themselves a pri-
ori be SR, LR, or periodic in the direction of the displacement
field u. For SR disorder in internal space only, i.e.R2 = 0,
these cases are usually referred to as random bond (RB), ran-
dom field (R1(u) ∼ |u| at largeu) (RF) and random periodic
(RP) universality classes. Below we discuss how these classes
extend to the case of LR internal disorder (R2 non zero).

The model (3) and (4) could easily be studied using
presently available numerical algorithms for directed mani-
folds, in its statics (e.g. exact ground state determinations)
and its dynamics (e.g. critical configuration at depinning), by
directly implementing a random potential correlated as de-
scribed by (4). It is also interesting to examine which type of
correlations in a random medium can naturally lead to (4) and
how such disorder could be realized from e.g. distributionsof
extended defects, since some of them may be experimentally
feasible.

III. REALIZATIONS AND UNIVERSALITY CLASSES

A. Defect potential

Let us first recall how long-range correlations can arise in
the potential created by defects. To this purpose callv(r) the
defect potential, in the simplest case taken to be proportional
to defect density. Consider for simplicity a large number of
weak defect lines with a uniform and isotropic distributionin
a space of dimensionD. These create an almost Gaussian
random potentialv(r) with:

v(r)v(r′) ∼ v2
LR

|r − r′|a for r → ∞ (5)

anda = D − 1. To derive this, consider defects of finite
radiusad. The probability that pointr′ is contained in the
defect going throughr is ∼ (ad/|r − r′|)D−1, i.e. inversely
proportional to the sphere of radius|r − r′|. This is easily
generalized to isotropic distributions of extended defects of
internal dimensionεd, with a = D−εd. Note that by extended
defects we mean defects which are perfectly correlated along
their internal dimension. Generalizations where defects are
themselves (anisotropic) fractals can also be considered.

An important case is a uniform distribution of extended de-
fects inD dimensional space, but isotropic only within a lin-
ear subspace of dimensionD′. For instance one can irradiate a
material in the bulk while simultaneously rotating it alongan
axis. This produces a distribution of linear defects (εd = 1),
isotropic within the plane (D′ = 2), and normal to the axis
(see Fig. 1). More generally this yields a defect potential with
second cumulant

v(r, z)v(r′, z) = g(r − r′)f(z − z′) (6)

g(r) ∼ r−a ,

while f(z) is short-ranged (herer ∈ RD
′

, z ∈ RD−D′

, a =
D′ − εd).

FIG. 1: Linear defects randomly and isotropically distributed on par-
allel planes with random distances between them. This geometry
mimics distribution (6).

Although we mostly discuss extended defects, other
sources of long-range correlations are possible, such as de-
fects where each single one creates a long-ranged disorder
potential, or a substrate matrix itself quenched at a critical
point.

B. Coupling to the manifold

We now examine how the long-range correlated defect po-
tential couples to the elastic manifold and what type of LR
model results. A general formulation of this coupling (see
e.g. [3]) has the form:

V (x, u) =

∫

dD−dz v(x, z)ρ(x, z, u), (7)

where the defect potential lives in theD-dimensional space
parameterized by(x, u) andx ∈ Rd is the internal coordinate
of the manifold.ρ(x, z, u) is the manifold density. Each type
of coupling to the disorder corresponds to a different function
ρ(x, z, u) and we now indicate the main cases.

1. Elastic interfaces in random-bond disorder

Let us first discuss elastic interfaces in the so-called Ran-
dom Bond (RB) case, where the coupling between disorder
and interface occurs only in the vicinity of the interface as
e.g. for domain walls in magnets with random-bond disorder.
This corresponds to the choice:

ρ(x, z, u) ∼ δ(z − u), (8)

hence the additional variablez introduced in (7) is identical to
u, the displacement field (with in generalD − d = N ). In
that case:

VRB(x, u) ∼ v(x, u). (9)

Consider now a uniform distribution of defects in theD-
dimensional plane butisotropically distributed within the (av-
eraged direction) of the internal space of the manifold. This
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is given by (6) above withD′ = d:

VRB(x, u)VRB(0, 0) = g(x)R2(u), (10)

which is model (4) with a SR functionR2(u) and, in full gen-
erality, a = d − εd. The physical realization in terms of ex-
tended defects is thus an interface (d = 2) in D = 3 with line
defects all orthogonal to theu directions, isotropically dis-
tributed within the (average) plane of the interface, anda = 1.
This is illustrated in Figure 1.

Another physical realization consists of extended defects
with finite random lengths such that the distribution of lengths
has a power-law tail for large lengths. For instance needlesof
variable lengths aligned along one direction could act on a
directed polymerd = 1 as power-law correlated disorder in
internal space.

An interesting, though qualitatively different case occurs
when the extended defects are distributed isotropically inthe
whole(x, u) space. It will be discussed in Section IX. Finally
note that we consider weak Gaussian disorder. It is possible
that at strong disorder another phase exists where the line or
manifold gets localized along the strongest extended defect.

2. Elastic interfaces in random field disorder

Random-Field (RF) disorder is described by the function:

ρ(x, z, u) ∼ Θ(u− z), (11)

whereΘ(z) is the Heaviside step function. This means that
the change in energy when the interface moves between two
configurations is proportional to the sum of all defect poten-
tials in the volume (inRD) spanned by this change. The dis-
cussion of the geometry of defects needed to produce LR dis-
order in internal space is identical to the last section. Substitu-
tion of Eq. (11) into Eq. (7) yields the RF disorder correlator
which can be approximated by Eq. (4) withRi(u) ∼ −u for
largeu.

3. Periodic systems

As an example of periodic systems we consider incommen-
surate single-Q CDWs. In that caseD = d, hence the function
ρ(x, z, u) = ρ(x, u) in (7). The electron density of CDWs ne-
glecting effects caused by an applied strain has the form [3,6]:

ρ(x, φ) ∼ ρ0 + ρ1 cos(2kF(x⊥ − u(x)), (12)

where the displacementu(x) of the maximum of the density
is related to the standard phase field viaφ(x) = −2kFu(x),
wherekF is the Fermi wave-vector. Thed-dimensional space
is splitted intox = (x‖, x⊥), with x⊥ denoting the modula-
tion direction of the CDW andkF the Fermi wave-vector.

We again consider the situation of extended defects all
aligned with the directionx‖ and isotropically distributed in

that subspace. The random potential experienced by the CDW
is given by

V (x, φ) = h1(x) cosφ(x) + h2(x) sin φ(x), (13)

with Gaussian distributedh1(x) = v(x) cos(2kFx⊥) and
h2(x) = v(x) sin(2kFx⊥). On large scaleskFx⊥ ≫ 1, and
their cumulant can be approximated by (from (6)):

hi(x)hj(0) =
1

2
v2
SRδijδ

d(x) +
1

2

v2
LR

xa‖
δijδ(x⊥), (14)

where we have omitted all rapidly fluctuating contributions.
Eqs. (13) and (14) give the potential correlator in a form which
can be generalized to

V (x, u)V (x′, u′) = R1(u− u′)δd(x− x′)

+R2(u− u′)g(x‖ − x′‖)δ
d⊥(x⊥ − x′⊥), (15)

with d⊥ = 1 and bare functionsRi(φ) = 1
2v

2
i cos(φ), u ≡ φ.

Thus periodic systems are described by periodic functions
Ri(u). Hered⊥ is the dimension of the transverse subspace.
Note that the HamiltonianHXY =

∫

ddx[ 12 (∇φ)2 +V (x, φ)]
with V (x, φ) given by Eq. (13) and a Gaussian distribution
of fieldshi(x)hj(x′) ∼ g(x − x′) describes the XY model
with long-range correlated random fields. Therefore the lat-
ter can be mapped onto periodic manifolds with correlator
(15) andd⊥ = 0, i.e. to model (4) with periodic functions
Ri(u). In the next section we will show how the FRG pic-
ture of model (15) can be obtained from the FRG results for
model (4). It is worthy to note that in the case of periodic sys-
tems the integration in Fourier space is supposed to be over
the first Brillouin zone. Note also that we have neglected the
coupling of disorder to the long wavelength part of the den-
sity −ρ0

∫

ddxv(x)∇u(x) as it is usually irrelevant near the
upper critical dimension. Indeed, in the replicated Hamilto-
nian (see below) this coupling generates additionally to the
SR term−1/T

∫

ddxσ1∇ua(x)∇ub(x) the LR term

− 1

T

∫

ddxddx′σ2g(x‖−x′‖)δd⊥(x⊥−x′⊥)∇ua(x)∇ub(x′).

For small disorder in the vicinity of the upper critical dimen-
sion both of them renormalize to zero according to

dℓσ1 = (2 − d− 2ζ)σ1 + ..., (16)

dℓσ2 = (2 − a− d⊥ − 2ζ)σ2 + ... (17)

IV. DYNAMICAL FORMALISM

The over-damped dynamics of the elastic manifold in a dis-
ordered medium can be described by the equation of motion

η∂tuxt = c∇2uxt + F (x, uxt) + fxt, (18)

whereη is the friction coefficient. In the presence of an ap-
plied forcef the center of mass velocity isv = L−d

∫

x
∂tuxt.
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The pinning force readsF = −∂uV (x, u), and thus, for cor-
relator (4) the second cumulant of the force is given by

F (x, u)F (x′, u′) = ∆1(u − u′)δd(x− x′)

+ ∆2(u − u′)g(x− x′), (19)

with ∆i = −R′′
i (u) in the bare model. In the following, we

will always useg(q) = |q|a−d, andg(x) =
∫

q e
iqxg(q).

The most important quantity of interest is the roughness ex-
ponentζ measured in equilibrium or at the depinning transi-
tion f = fc defined by

C(x− x′) = |ux − ux′ |2 ∼ |x− x′|2ζ . (20)

The velocity vanishes at the depinning transition asv ∼ |f −
fc|β , while the correlation length diverges at the transition as
ξ ∼ |f − fc|−ν . One can also introduce the dynamic critical
exponentz, which relates spatial and temporal correlations via
t ∼ xz.

Let us briefly sketch how one can construct the perturba-
tion theory in disorder. We adopt the dynamic formalism. It
also allows us to obtain the statics equations (to one loop and
N = 1 these can easily be deduced, as can be checked using
replica). Instead of a direct solution of the equation of motion
(18) with consequent averaging over different initial condi-
tions and disorder configurations we employ the formalism of
generating functional. Introducing the response fieldûxt we
derive the effective action which reads

S =

∫

xt

iûxt(η∂t − c∇2 +m2)uxt −
∫

xt

iûxtfxt,

− 1

2

∫

xtt′
iûxtiûxt′∆1(uxt − uxt′)

− 1

2

∫

xx′tt′
iûxtiûx′t′g(x− x′)∆2(uxt − ux′t′), (21)

where we have added a small massm, which plays the role
of an IR cutoff. To study the critical domain one has to take
the limit m → 0. The average of the observableA[uxt] over
dynamic trajectories with different initial conditions and over
different disorder configurations can be written as follows

〈A[uxt]〉 =

∫

D[u]D[û]A[uxt]e
−S[u,û]. (22)

Furthermore the response to the external perturbationfxt,
which is local in time and in space, can be computed using
〈A[uxt]iûxt〉 = δ

δfxt
〈A[uxt]〉. Note that causality is fulfilled,

and here we adopt the Ito convention, which results in getting
rid of all closed loops composed of response functions.

In the absence of LR correlated disorder action, the Eq. (21)
exhibits the so-called statistical tilt symmetry (STS), i.e. the
invariance of the disorder terms under the tiltuxt → uxt+hx
with an arbitrary functionhx. The STS gives the exact identity
∫

tRqt = 1/cq2 for the response functionRqt = 〈uqt iû−q0〉,
which implies that the elasticity is uncorrected by disorder to
all orders. LR correlated disorder destroys the STS of action
(21), and thus, in principle allows for a renormalization ofthe

FIG. 2: Diagrammatic rules:a - propogator,b - SR disorder vertex,
c - LR disorder vertex;d and e one-loop diagrams generating the
critical force at the depinning and giving correction to themobility
and elasticity.

elasticity. The quadratic part of the action (21) yields thefree
response function

〈uqt iû−q0〉0 = Rqt =
Θ(t)

η
e−(cq2+m2)t/η, (23)

which can be used to generate the perturbation theory in dis-
order. The theory has two disorder interaction vertices∆1(u)
and∆2(u). At each vertex∆i(u) there is one conservation
rule for momentum and two for frequency while each vertex
∆2(u) carries additional momentum dependence. In what fol-
lows we generalize the splitted diagramatic method developed
in Ref. [18], shown in Figure 2. As is the case for the model
with SR-disorder, our model exhibits the so-called dimension
reduction, both in the statics and in the dynamics. The naive
perturbation theory obtained taking the functions∆i(u) an-
alytic at u = 0 leads to the same result as that computed
from the Gaussian theory setting∆i(u) = ∆i(0). In the limit
m→ 0 the two-point function then read to all orders:

uqtu−qt′ =
∆1(0)

c2q4
+

∆2(0)

c2q4+d−a
. (24)

The first term in Eq. (24) dominates in the limitq → 0 for
a ≥ d, and LR disorder is irrelevant in this case, while the last
term dominates fora < d. Eq. (24) results inζ = (4 − d)/2
for a ≥ d and ζ = (4 − a)/2 for a < d that are known
to be incorrect. The physical reason for this is the existence
of a large number of metastable states. The roughness expo-
nent can be estimated using Flory arguments settingu ∼ xζ .
Then the gradient term scales as∇2ux ∼ xζ−2. The pin-
ning force for SR disorder scales asF (x, ux) ∼ x−(d+ζ)/2

and for LR disorder asF (x, ux) ∼ x−(a+ζ)/2. Therefore
in the regime where the behavior is governed by SR disorder
the Flory estimate gives for RF disorder the Imry-Ma value
ζF
SR = (4 − d)/3 while for LR RF disorder we getζF

LR =
(4 − a)/3. A similar argument constructed from the potential
correlatorsRi(u) yields the Flory estimatesζF

SR = (4 − d)/5
andζF

LR = (4−a)/5 respectively, for the case of random-bond
disorder. To obtain corrections to the Flory values, the FRG
developed in Refs. [12, 14, 15, 16, 17, 18] will be employed.
The solution is nontrivial because the renormalized disorder
becomes non-analytic above the Larkin scale, and one has to
deal with a non-analytic field theory. Here we generalize this
approach to the case of LR correlated disorder.
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V. FUNCTIONAL RENORMALIZATION

We now consider the renormalization of model (21). The
subtleties arising for of the correlator (15) will shortly be dis-
cussed in the end. We carry out perturbation theory in the bare
disorder correlators∆i0(u) and then introduce the renormal-
ized correlators∆i(u). We will suppress the subscript ”0” to
avoid an overly complicated notation. According to the stan-
dard renormalization program we compute the effective action
to one-loop order. Here we adopt the dimensional regulariza-
tion of integrals and employ the minimal subtraction scheme
to compute the renormalized quantities and absorb the poles
in ε = 4 − d andδ = 4 − a into multiplicative Z factors.
When derivatives of the∆i at u = 0 occur, in the dynamics
(i.e. at the depinning transition for dynamical quantities) they
are taken atu = 0+ as can be justified exactly forN = 1.
In the statics the treatment is more subtle (as discussed in two
loop studies [19]) but is not needed in the present one loop
study.

Let us firstly consider the first order terms generated by ex-
pansion ofe−S in disorder. These terms are given by diagrams
d ande shown in Figure 2. We start from

∫

t>t′,x

iûxt∆1(uxt − uxt′)iûxt′

+

∫

t>t′,x,x′

iûxt∆2(uxt − ux′t′)g(x− x′)iûx′t′ . (25)

Expanding∆i(u) in a Taylor series and contracting oneiû we
obtain the leading corrections to the threshold force, friction
and elasticity. The terms giving the threshold force to leading
order are

∫

t>t′,x

iûxt∆
′
1(0

+)Rx=0,t−t′

+

∫

t>t′,x,x′

iûxt∆
′
2(0

+)g(x− x′)Rx−x′,t−t′ . (26)

They are strongly UV diverging (∼ Λd−2 + Λa−2), and thus,
are non-universal. The terms proportional to∆′′

i (0
+) can be

rewritten as corrections to friction and elasticity using the ex-
pansion

uxt − ux′t′ = (t− t′)∂tuxt + (x− x′)i
∂

∂xi
uxt

+(x− x′)i(x− x′)j
1

2

∂2uxt
∂xi∂xj

+ O(∆t2,∆x3). (27)

The first term in Eq. (27) gives the correction to friction

δη = −∆′′
1(0+)

∫

t

tRx=0,t − ∆′′
2 (0+)

∫

xt

tRx,tg(x)

= −η
[

∆̂′′
1(0+)I1 + ∆̂′′

2(0+)I2

]

, (28)

where we have introduced̂∆i(u) = ∆i(u)/c
2. The one-loop

integralsI1 andI2 diverge logarithmically and forε, δ → 0

a b

c d

FIG. 3: 1-loop diagrams correcting disorder. The dot line corre-
sponds to either SR disorder vertex (dash line) or to LR disorder
vertex (wavy line). Diagrams of typea,b, andc contribute to SR
disorder. Only diagrams of typed correct the LR disorder.

read

I1 =

∫

q

1

(q2 + m̂2)2
= K4

m̂−ε

ε
+ O(1), (29)

I2 =

∫

q

qa−d

(q2 + m̂2)2
= K4

m̂−δ

δ
+ O(1), (30)

where we setm̂ = m/
√
c and Kd is the area of ad-

dimensional sphere divided by(2π)d. To remove the poles in
the mobility we introduce the correspondingZ-factorηR =
Z−1
η [∆i]η which to one-loop order is given by

Z−1
η = 1 − ∆̂′′

1(0+)I1 − ∆̂′′
2(0+)I2. (31)

In the absence of LR correlated disorder the elasticity re-
mains uncorrected to all orders due to the STS, while here the
correction reads

δc =
1

2d
∆′′

2(0)

∫

xt

x2Rx,tg(x)

= − 1

2d
∆′′

2 (0)

∫

q

g(q)∇2
q

1

cq2 +m2

= −cKd

d
∆̂′′

2(0)
ε

δ
m̂−δ. (32)

We have not set the second derivative at0+ as∆2 remains
analytic as is discussed below. Furthermore the correctionto
elasticity (32) is finite forε, δ → 0, and thusc does not acquire
an anomalous dimension. However, we expect corrections at
2-loop order. If it is the case, one has to introduce aZ-factor
which renormalizes elasticity:cR = Z−1

c c with Zc = 1 +
O(∆2

i ).
In principal, due to the lack of STS, the KPZ term

λ(∇uxt)2 breaking the symmetryu → −u can be generated
in the equation of motion (18) at the depinning transition. In-
deed, diagrame in Figure 2, when expanding∆(u) to second
order inu, using (27), gives

δλ =
1

2d
∆′′′

2 (0+)

∫

xt

x2Rx,tg(x). (33)
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Moreover the term with cubic symmetry (M = 2) and terms
with higher order symmetries (M > 2) λM

∑

i(∂iuxt)
2M can

be generated by diagrame:

δλM =
1

d(2M)!
∆

(2M+1)
2 (0+)

∫

xt

Rx,tg(x)
∑

i

x2M
i . (34)

However, as we will show later, if we start from bare analytic
disorder distribution the LR disorder remains analytic along
the FRG flow and the corresponding FP value∆∗

2(u) is also an
analytic function. Thus terms (33) and (34) are zero, provided
that they are absent in the beginning. Moreover, the terms (34)
are irrelevant in the RG sense forM > 2, [but not the KPZ
term (33), see Ref. [46]]. This proves that our bare model (21)
is a minimal model for the description of elastic manifolds in
a random media with LR correlated disorder.

The corrections to disorder are given by the diagrams
shown in Figure 3. The corresponding expressions read

δ1∆̂1(u) = −[∆̂′
1(u)

2 + (∆̂1(u) − ∆̂1(0))∆̂′′
1 (u)]I1

−[2∆̂′
1(u)∆̂

′
2(u)

2 + (∆̂2(u) − ∆̂2(0))∆̂′′
1 (u)

+∆̂1(u)∆̂
′′
2 (u))]I2 − [∆̂′

2(u)
2 + ∆̂2(u)∆̂

′′
2 (u))]I3, (35)

δ1∆̂2(u) = −∆̂1(0)∆̂′′
2(u)I1 − ∆̂2(0)∆̂′′

2 (u)I2. (36)

The one-loop integralsI1 and I2 have been defined in
Eqs. (29) and (30), whereasI3 is given by

I3 =

∫

q

q2(a−d)

(q2 +m2)2
=
K4m̂

−2δ+ε

2δ − ε
+ O(1). (37)

Let us define the renormalized dimensionless disorder∆R
i as

mε∆R
1 = ∆̂1(u) + δ1∆̂1(u), (38)

mδ∆R
2 = ∆̂2(u) + δ1∆̂2(u). (39)

Theβi functions are defined as the derivative of∆R
i (u) with

respect to the massm at fixed bare disorder∆i(u). In or-
der to attain a fixed point, it is necessary to rescale the field
u by mζ and write theβ functions for the functions̃∆i =:
K4m

−2ζ∆R
i (umζ):

∂ℓ∆̃1(u) = (ε− 2ζ)∆̃1(u) + ζu∆̃′
1(u)

− 1

2

d2

du2
[∆̃1(u) + ∆̃2(u)]

2 +A∆̃′′
1 (u), (40)

∂ℓ∆̃2(u) = (δ − 2ζ)∆̃2(u) + ζu∆̃′
2(u) +A∆̃′′

2 (u), (41)

whereA = [∆̃1(0) + ∆̃2(0)], and∂ℓ := −m ∂
∂m .

The scaling behavior of the system is controlled by a sta-
ble fixed point [∆̃∗

1(u), ∆̃
∗
2(u)] of flow equations (40) and

(41). To determine the critical exponents let us start from
power counting following Ref. [46]. The quadratic part of
action (21) is invariant underx → xb, t → tbz, u → ubζ ,
û → ûb2−z−ζ−d+ψ. Under this transformation the mobility,
elasticity, and disorder scale at the Gaussian FP asc ∼ bψ,
η ∼ b2−z+ψ, ∆̃1 ∼ b4−d−2ζ+2ψ and ∆̃2 ∼ b4−a−2ζ+2ψ.
Thus SR disorder becomes relevant forζ − ψ < (4 − d)/2
while LR disorder is naively relevant forζ − ψ < (4 − a)/2.

Note that in the presence of STSψ = 0 and we recover the
conditions obtained at the end of Section III. The actual value
of ζ will be fixed by the disorder correlators at the FP. The
elasticity exponentψ and the dynamic exponentz read

ψ = −m d

dm
lnZc(∆̃i)

∣

∣

∣

0
, (42)

z = 2 − ψ +m
d

dm
lnZη(∆̃i)

∣

∣

∣

0
, (43)

where subscript ”0” means a derivative at constant bare pa-
rameters. To one-loop order this yields

ψ = O(ε2, εδ, δ2), (44)

z = 2 − ˆ̃∆′′
1 (0) − ˆ̃∆′′

2 (0). (45)

The scaling relations then read [46]

ν =
1

2 − ζ + ψ
, (46)

β = ν(z − ζ) =
z − ζ

2 − ζ + ψ
. (47)

At zero velocity, the above calculation can be consid-
ered as a dynamical formulation of the equilibrium problem.
However, one has to be careful with mapping the dynamic
FRG equations to the static equations, because as shown in
Ref. [19] the bare relation∆i = −R′′

i (u) breaks down for
the SR case at two-loop order. The standard derivation of the
FRG equations in the statics is based on the renormalization
of the replicated Hamiltonian. We have checked that similar
to other systems with only SR disorder, the static FRG equa-
tions for systems with LR disorder can be obtained from the
dynamic flow equations to one-loop order using the identifi-
cation∆i = −R′′

i (u). They read

∂ℓR1(u) = (ε− 4ζ)R1(u) + ζuR′
1(u)

+
1

2
[R′′

1 (u) +R′′
2 (u)]2 +AR′′

1 (u), (48)

∂ℓR2(u) = (δ − 4ζ)R2(u) + ζuR′
2(u) +AR′′

2 (u), (49)

whereA = −[R′′
1 (0) +R′′

2 (0)].
In the case of the model with correlator given by Eq. (15),

one has to distinguish between the transverse and parallel di-
rections, and therefore introduce corresponding elastic coeffi-
cientsc⊥ andc‖. In the transverse direction, disorder is only
δ-correlated and as a result the transverse elasticity is notcor-
rected and can be set to 1. The power counting shows that the
LR disorder is naively relevant forδ1 = 4 − d⊥ − a < 0.
The one-loop integrals are logarithmically divergent and for
ε, δ1 → 0 are given by Eqs. (29), (30) and (37) withδ → δ1.
Thus the above renormalization can be generalized to model
(15) if one formally replacesδ → δ1.

Let us show how a non-analyticity of the disorder appears in
the problem. We start from the bare analytic correlators with
∆′′
i (0) < 0. The flow equation fory := −∆′′

1 (0) − ∆′′
2(0) ≡

R′′′′
1 (0) +R′′′′

2 (0) > 0 reads

∂ℓy = εy + 3y2 + γ(m), (50)
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whereγ(m) = (ε − δ)∆′′
2 (0). As we show below, the func-

tion ∆̃2(u) remains analytic along the whole FRG flow and at
the fixed point (FP). The solution of Eq. (50) for any function
γ(m) bounded from below blows up at some finite scalem∗

which can be associated with the inverse Larkin length. This
blowup ofy corresponds to the generation of a cusp singular-
ity: ∆1(u) becomes non-analytic at the origin and acquires for
m < m∗ a non-zero∆′

1(0
+). The precise estimation of the

Larkin scale requires the solution of the pair of flow equations
for both∆i(u).

Before studying different FPs, let us note an important
property which is valid under all condition: if∆i(u) (i = 1, 2)
is a solution of Eqs. (40) and (41) thenκ2∆i(u/κ) is also a
solution. Analogously, ifRi(u) is a solution of Eqs. (48) and
(49) thenκ4Ri(u/κ) is also a solution. We can use this prop-
erty to fix the amplitude of the function in the non-periodic
case, while for the periodic case the solution is unique as the
period is fixed.

VI. NON-PERIODIC SYSTEMS: RANDOM BOND
DISORDER

In this Section we study the scaling behavior of an elastic
interface in a disordered environment with LR correlated RB
disorder. To this aim we have to find a stationary solution
(FP) of Eqs. (48) and (49) which decays exponentially fast
at infinity as expected for RB disorder. The SR RB FP with
R2(u) = 0, which describes systems with only SR correlated
disorder, was computed numerically in Refs. [12, 17, 18]. The
corresponding roughness exponent to one-loop order is given
by ζSR = 0.208298ε+ O(ε2). We now look for a LR RB FP
with R2(u) 6= 0. Integrating Eq. (49) we obtain

∂ℓ

∞
∫

0

R2(u) = (δ − 5ζ)

∞
∫

0

R2(u). (51)

Therefore, the new LR RB FP, if it exists, has

ζLRRB =
δ

5
, (52)

which will hold to all orders (since the RG equation forR2 to
higher orders can only be linear inR2(u) and involve even
derivatives) and as a consequence,

∫∞

0
duR2(u) is exactly

preserved along the FRG flow. Using our freedom to rescale
Ri(u), we introduceδ̂ := δ/ε, Ri(u) =: εri(u) and fix
r′′1 (0) =: −x andr′′2 (0) = −1, wherex is the parameter to be
determined. The stationarity condition of Eqs. (48) and (49)
reads

(1 − 4

5
δ̂)r1(u) +

δ̂

5
ur′1(u)

+
1

2
[r′′1 (u) + r′′2 (u)]2 + (1 + x)r′′1 (u) = 0, (53)

δ̂

5
r2(u) +

δ̂

5
ur′2(u) + (1 + x)r′′2 (u) = 0. (54)

TABLE I: Long-range correlated random bond fixed point. Shooting
parameterx = −r′′1 (0), the maximal eigenvalue and the universal
amplitude for different values of̂δ.

δ̂ x(δ̂) λ1 B(δ̂)

1.1 1.931986 33.89

1.2 1.121722 −0.160 31.37

1.3 0.922046 −0.262 31.64

1.4 0.825747 −0.365 32.41

1.5a 0.766976 −0.469 33.34

2.0b 0.639151 −1 38.44

3.0c 0.562357 −2.120 48.10

∞ 0.463619 ∞

aRandom lines in a planar interface (d = 2, a = 1).
bRandom lines in a 3d manifold (d = 3, a = 2).
cRandom planes in a 3d manifold (d = 3, a = 1).

Since Eq. (54) is linear inr2, it can be solved for fixedx by

r2(u) =
5(1 + x)

δ̂
exp

(

− δ̂u2

10(1 + x)

)

. (55)

From the Taylor expansion of Eq. (53) aroundu = 0 we find

r1(0) =
5(1 − x2)

8δ̂ − 10
,

r′1(0) = 0, (56)

where the second condition excludes the possibility of a super-
cusp (the first line does not diverge sincex = 1 for δ = 5/4.
Thus for fixed̂δ the simultaneous equations (53) and (54) have
a unique solution for anyx but only for a specificx does the
solutionr1(u) decays exponentially fast to0 for largeu. To
determine this value we employ the shooting method choosing
x as our shooting parameter. For fixedx we integrate numer-
ically Eq. (53) withr2(u) given by Eq. (55) from0 to some
largeumax with initial conditions (56). Then the shooting pa-
rameterx can be found by solving numerically the algebraic
equationr1(umax;x) = 0. Increasingumax we acquire the
desired accuracy forx andr1(x). We were able to find the
numerical solution with reasonable accuracy only forδ̂ ≥ 1.1.
The typical FP functionsr∗1(u) andr∗2(u) are shown in Fig-
ure 4. The actual values ofx obtained by shooting for different
δ̂ are summarized in Table I.

Let us now check the stability of SR and LR FPs. To that
end we linearize the FRG equations about each FP. In the
vicinity of a FP, the linearized flow equations have solutions
which are pure power-laws inm, i.e. scale asm−λ with a dis-
crete spectrum of eigenvaluesλ. A stable fixed point has all
eigenvaluesλ < 0. Substitutingri → r∗i (u) + zi(u) into
the flow equations and keeping only terms which are linear
in zi(u), we derive the linearized flow equations at the FP
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FIG. 4: Fixed point describing the interface in a medium withlong-
range correlated random bond disorder (LR RB FP) forδ̂ = 2. The
SR partr∗1(u) is a non-analytic function withr∗′′1 (0+) 6= 0. The LR
partr∗2(u) is an analytic function. Here we report minus their second
derivative.

{r∗1(u), r∗2(u)}:

(1 − 4ζ1)z1(u) + ζ1uz
′
1(u) + [r∗′′1 (u) + r∗′′2 (u)]

× [z′′1 (u) + z′′2 (u)] + (1 + x)z′′1 (u)

+ A0r
∗′′
1 (u) = λz1(u), (57)

(δ̂ − 4ζ1)z2(u) + ζ1uz
′
2(u)

+ (1 + x)z′′2 (u) +A0r
∗′′
2 (u) = λz2(u), (58)

where we have introducedζ = εζ1, A0 = −[z′′1 (0) + z′′2 (0)],
andλ is also measured in unites ofε . Note that because
of the freedom to rescaleri(u) we always have the eigen-
modez(0)

i with marginal eigenvalueλ0 = 0. As shown in
Ref. [45] for SR RB FP the corresponding eigenfunction is
given byz(0)

1 = ur∗′1 (u) − 4r∗1(u), z
(0)
2 = 0, while the next

eigenvalueλ1 = −1 corresponds toz(1)
1 = ζSR

1 ur∗′1 (u) +

(1 − 4ζSR
1 )r∗1(u), z

(0)
2 = 0. Here{r∗1 , r∗2 = 0} is the SR

RB FP and the Taylor expansion of the functionr∗1 can be
found in Ref. [45]. Thus the SR RB FP is stable in the
SR disorder subspace (r2 = z2 = 0). Let us check its
stability with respect to introduction of LR correlated dis-
order. From Eq. (58) follows that the maximal eigenvalue
λmax = δ̂ − 5ζSR

1 corresponds to the exponential eigenfunc-
tion z2(u) = exp(−ζSR

1 u2/|2r∗′′1 (0)|) with r∗′′1 (0) = −0.577
for SR RB FP. As a consequence, the LR correlated disorder
destabilizes the SR RB FP if̂δ > 5ζSR

1 ≈ 1.041, or equiva-
lently, using (52) ifζSR < ζLR. This criterion was of course
expected.

We now check the stability of the LR RB FP
{r∗1(u), r∗2(u) 6= 0}. It also has a marginal eigenvalueλ0 = 0

with eigenfunctions given byz(0)
i = ur∗′i (u) − 4r∗i (u) that

can be checked by direct substitution into Eq. (57) and (58).
Eq. (58) allows for an analytical solution which reads

z2(u) =
5A0

2δ̂ + 5λ

[

δ̂u2

5(1 + x)
− 1

]

exp

(

− δ̂u2

10(1 + x)

)

.(59)

0 1 2 3 4 5 6 7 8

-0,8

-0,4

0,0

0,4

0,8

 

-z1''

-z2''

FIG. 5: Second derivative of eigenfunctionsz1(u) andz2(u) com-
puted at the LR RB FP for̂δ = 2.

We are free to fix the length of the eigenvectors, for instance,
by the conditionz′′2 (0) = 1 which gives

A0 =
1

3δ̂
(1 + x)[2δ̂ + 5λ]. (60)

Thus to find the eigenvalueλ and the eigenfunctionz1 we have
to solve Eq. (57) with conditionz′′1 (0) = −1−A0 and require
an exponentially fast decay of the solution at largeu. The
only case for which we succeeded to construct the solution
analytically isδ̂ = 2, which is depicted in Figure 5. It has
eigenvalueλ = −1 and reads

z1(u) = −1

3
ur∗′1 (u) +

1

2
r∗1(u) +

5

6
r∗2(u), (61)

z2(u) = −1

3
[ur∗′2 (u) + r∗2(u)]. (62)

For other values of̂δ we solve Eq. (57) numerically usingλ as
a shooting parameter and require an exponentially fast decay
of z1(u) for largeu. To compute the numerical solution we
need the initial conditions. Expanding Eq. (57) in a Taylor
series, we obtain

z1(0) =
5[x2(2δ̂ + 5λ) + 5x(δ̂ + λ) + 3δ̂]

3δ̂(5 − 4δ̂ − 5λ)
, (63)

z′1(0) = 0. (64)

Apart from the marginal eigenvalueλ0 = 0, the largest eigen-
value isλ1. It is shown for different̂δ > 1.1 in Table I. The
negative sign ofλ1 reflects the stability of the LR RB FP. For
δ̂ ≤ 1.1 we failed to compute the numerical solution with rea-
sonable accuracy. However, the largest eigenvalue computed
at LR RB FPλ1 tends to0 for δ̂ → 1.1 and the SR RB FP
becomes unstable for̂δ > 1.041 with respect to LR corre-
lated disorder. Thus we expect that the LR RB FP is stable for
δ̂ > 1.041. Moreover, the largest eigenvalue within accessible
accuracy is well approximated byλ1 = 0.1917(ζSR

1 − ζLR
1 )

that givesλ1 = −0.06 for δ̂ = 1.1.
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Besides the roughness exponent there is another universal
quantity which is of interest. This is the displacement corre-
lation function, which behaves like

uqu−q = Ad q
−(d+2ζ). (65)

Let us show that in contrast to systems with only SR-
correlated disorder, this system, whose behavior is controlled
by the LR RB FP, has a universal amplitudeAd. Indeed,
according to equation (51), the integral

∫

duRtr
2 (u) is pre-

served along the flow and is fixed to its bare valueQ, where
we have introduced the actual renormalized correlatorRtr

2

which is connected toR2 given by Eq. (55) by the relation
Rtr
i = κ4Ri(u/κ) with κ given by

κ =
Q1/5

(2π)1/10

(

δ̂

5(1 + x)

)3/10

, (66)

where we used
∫

duRtr
2 (u) = Q. Then the amplitude can be

written to one-loop order as follows [19]

Ad =
1

K4
(−Rtr′′

1 (0) −Rtr′′
2 (0))

=
κ2

K4
(1 + x) = Q2/5B(δ̂), (67)

where we have introduced the universal function

B(δ̂) =
8π2

(2π)1/5
(1 + x(δ̂))2/5

(

δ̂

5

)3/5

. (68)

Values forx(δ̂) and forB(δ̂) for different δ̂ are shown in Ta-
ble I.

VII. NON-PERIODIC SYSTEMS: RANDOM FIELD
DISORDER

We now address the problem of an elastic interface in a
medium with LR-correlated RF disorder. We expect that sim-
ilar to systems with uncorrelated disorder this universality
class also describes the depinning transition. To see that sys-
tems with RB disorder flow in the dynamics to the RF FP, one
has to include either effects of a finite velocity or consider
two-loop contributions, that go beyond of the scope of the
present work; but we expect the mechanism to be the same
as in Ref. [18].

Let us look for a solution of Eqs. (40) and (41), which de-
cays exponentially fast at infinity as expected for RF disorder.
From Eq. (41) it follows that

∂ℓ

∞
∫

0

∆2(u) = (δ − 3ζ)

∞
∫

0

∆2(u). (69)

Therefore
∫∞

0 ∆2(u) is preserved along the FRG flow fixing
the roughness exponent to

ζLRRF =
δ

3
+O(ε2, δ2, εδ), (70)

which coincides with the Flory estimate. Introducing
∆i(u) = εyi(u), ζ = εζ1 and fixingy1(0) = x, y2(0) = 1
we can rewrite the stationary form of Eqs. (40) and (41) as
follows (ζ1 = δ̂/3):

(1 − 2ζ1)y1(u) + ζ1uy
′
1(u) −

1

2

d2

du2
[y1(u) + y2(u)]

2

+ [1 + x]y′′1 (u) = 0, (71)

(δ̂ − 2ζ1)y2(u) + ζ1uy
′
2(u) + [1 + x]y′′2 (u) = 0. (72)

Eq. (72) can be solved analytically giving

y2(u) = exp

(

− δ̂u2

6(1 + x)

)

. (73)

Substituting the FP function (73) in Eq. (71), we obtain a
closed differential equation for the functiony1(u). Expand-
ing aroundu = 0 we find

y′1(0) = −1

3

√

9x+ 3δ̂ − 6xδ̂, (74)

y′′1 (0) =
1

3
− δ̂

9

x− 2

x+ 1
, (75)

y′2(0) = 0, (76)

y′′2 (0) = − δ̂

3(x+ 1)
. (77)

Thus we can compute numerically the solutiony1(u) for any
fixed δ̂ andy1(0) ≡ x, however, only for special values of
x this solution decays exponentially at infinity. The corre-
sponding solution can be computed using the shooting method
as described above, usingx as a shooting parameter (see Ta-
ble II).

A pair of typical FP functions is shown in Figure 6. Sur-
prisingly, the functiony1(u) obtained by shooting satisfies
∫∞

0
du y1(u) = 0, characteristic for RB type correlations

along theu direction. In other words, the LR RF FP is in
fact of mixed type: RB for the SR part and RF for the LR part
of the disorder correlator. This can be understood as follows:
Consider the flow of

∫∞

0
du y1(u). It is obtained by integrat-

ing the l.h.s. of Eq. (71) from 0 to infinity, and by inserting
ζ1 = δ̂/3:

∂ℓ

∫ ∞

0

du y1(u) =
(

1 − δ̂
)

∫ ∞

0

du y1(u)

+
1

2

d

du
[y1(u) + y2(u)]

2 ∣
∣

u=0
− (1 + x)y′1(0), (78)

where we have used the fact that most terms in the FRG-
equation (71) are total derivatives. Finally, we remark that the
second line of Eq. (78) cancels exactly provided thaty2(u) is
an analytical function, leaving us with

∂ℓ

∫ ∞

0

du y1(u) =
(

1 − δ̂
)

∫ ∞

0

du y1(u). (79)

This means that for LR-correlated disorder, i.e.δ̂ > 1, the
integral ofy1 indeed scales to 0. A non-trivial fixed point is
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TABLE II: Long-range correlated random field disorder. Shooting
parameterx = y1(0), the maximal eigenvalue and the universal am-
plitude for different values of̂δ.

δ̂ x(δ̂) λ1 B(δ̂)

1.1 0.562872 −0.1 140.43

1.2 0.525082 −0.2 142.23

1.3 0.496948 −0.3 144.27

1.4 0.475110 −0.4 146.44

1.5a 0.457638 −0.5 148.66

2.0b 0.404989 −1.0 159.66

3.0c 0.362329 −2.0 179.04

aRandom lines in planar interface (d = 2, a = 1).
bRandom lines in a 3d manifold (d = 3, a = 2).
cRandom planes in a 3d manifold (d = 3, a = 1).

possible at 2-loop order for depinning. We remind that in [18]
it has been shown that at 2-loop order and for SR-correlated
disorder, new terms arise in the FRG-equation, which donot
integrate to 0. Indeed, this is the mechanism which leads
to a break-down of the resultζSRRF = ε/3, at depinning.
The same terms will appear here. We expect that the addi-
tional diagrams due to LR-correlations do not exactly cancel
these terms, especially since these terms are proportionalto
the derivative at the cusp, and LR-disorder will probably re-
main analytique, thus not contribute to the anomalous terms.
These considerations let us expect that at 2-loop order the in-
tegral ofy1(u) will be small, but non-zero.

Let us finally check the stability of the SR RF FP and
new LR RF FP. At the SR RF FP the roughness is given by
ζSRRF = ε/3, and thus, we expect the crossover from the SR
universality to LR atδ > ε, which follows from the condition
ζSRRF = ζLRRF. To check the stability of the FPs, we fol-
low the strategy used for the RB case and linearize the flow
equations about the RF FPs. We obtain

(1 − 2ζ1)z1(u) + ζ1uz
′
1(u) −

d2

du2

{

[y∗1(u) + y∗2(u)]

× [z1(u) + z2(u)]
}

+ (1 + x)z′′1 (u)

+ A0y
∗′′
1 (u) = λz1(u), (80)

(δ̂ − 2ζ1)z2(u) + ζ1uz
′
2(u) + (1 + x)z′′2 (u)

+ A0y
∗′′
2 (u) = λz2(u), (81)

where we have introducedA0 = z1(0) + z2(0). Firstly we
prove our conclusion on the stability of SR RF FP with re-
spect to LR correlated disorder. To that end we solve Eq. (58)
assuming thatζ1 = ζSR

1 = 1/3 andx = y∗SR
1 (0) = 2/9.

We obtain thatz2 = exp(−ζSR
1 u2/(2y∗SR

1 )) and the corre-
sponding eigenvalueλmax = δ̂− 3ζSR

1 . Therefore, indeed the
SR RF FP becomes unstable with respect to LR disorder for
δ > ε.

We now focus on the stability of the LR RF FP. Analy-
sis of the linearized flow equations (80) and (81) shows that
there is at least one eigenvectorz(0)

i = u∆∗
i (u) − 2∆∗

i with
marginal eigenvalueλ0 = 0, which corresponds to the free-

0 1 2 3 4 5 6
0,0

0,2

0,4

0,6

0,8

1,0

u

y2
*

y1
*

0

FIG. 6: Fixed point describing the interface in a medium withlong-
range correlated random field disorder (LR RF FP) forδ̂ = 2. The
SR correlatory∗

1(u) has a cusp at origin and formally corresponds to
RB type of correlation in directionu. The LR correlatory∗

2(u) is an
analytic function of RF type.

dom of rescaling. For arbitraryλ, Eq. (81) can be solved ana-
lytically:

z2(u) =
A0

(

δu2 − 3(1 + x)
)

3(2δ + 3λ)(1 + x)2
exp

(

− δ̂u2

6(1 + x)

)

. (82)

We are free to fix the length of the eigenvectors, for instance,
by the conditionz2(0) = 1 which gives

A0 = −1

δ̂
(2δ̂ + 3λ)(1 + x). (83)

Thus to find the eigenvalueλ and the eigenfunctionz1 we
have to solve Eq. (80) with conditionz1(0) = A0 − 1 and
require an exponentially fast decay for largeu. We need the
initial conditions which can be found by expanding Eq. (80)
in a Taylor series:

z1(0) = −1 − 1

δ̂
(2δ̂ + 3λ)(1 + x), (84)

z′1(0) = −
{

[9λ2 + λ(12δ̂ − 9)](x+ 1) + δ̂2(4x+ 7)

− δ̂(6x+ 9)
}

/2δ̂

√

9x− 6xδ̂ + 3δ̂. (85)

δ̂ = 2 is the only case in which we succeeded to find a com-
pletely analytical solution. It hasλ1 = −1 and reads

z1(u) = uy∗′1 (u) − 1

2
y∗1(u) − 3

2
y∗2(u), (86)

z2(u) = uy∗′2 (u) + y∗2(u). (87)

For other values of̂δ, Eq. (87) remains correct, while to obtain
z1(u), we solve Eq. (80) numerically, usingλ as a shooting
parameter. As can be seen from Table II, the largest eigen-
value satisfiesλ1(δ̂) = 1− δ̂ ≡ 3(ζSR

1 −ζLR
1 ). This result can
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be obtained analytically as follows. Integrating Eq. (80) from
0 to∞, we get the condition

∫ ∞

0

du z1(u)
(

1 − δ̂ − λ
)

= 0, (88)

proving that as long as
∫

z1(u) 6= 0, one hasλ = 1 − δ̂.
Therefore the LR RF FP is stable forδ > ε. Inserting this
value ofλ back into (80), we obtain after some simplifications

0 =
δ̂

3

d

du
(uz1(u)) −

d2

du2
[Y (u)z1(u) +W (u)] ,

Y (u) := y1(u) − y1(0) + y2(u) − y2(0), (89)

W (u) := z2(u)[y1(u) + y2(u)] − y1(0)[z1(0) + z2(0)].

The first equation can be integrated with the result

δ̂

3
uz1(u) =

d

du
[Y (u)z1(u) +W (u)] . (90)

This is equivalent to

z1

[

Y ′ − δ̂

3
u

]

+ z′1Y = −W ′. (91)

The homogenous equation reads

[ln z1Y ]′ =
δ̂

3

u

Y
. (92)

Its solution is

z1(u) =
C

Y (u)
exp

[

δ̂

3

∫ u

0

ds
s

Y (s)

]

(93)

with some constantC. A solution to the inhomogeneous equa-
tion is obtained by replacingC by C(u), and inserting the
latter into Eq. (91). This yields

C(u) = −
∫ u

0

dtW ′(t) exp

[

− δ̂
3

∫ t

ds
s

Y (s)

]

. (94)

Putting together everything, we obtain

z1(u) = − 1

Y (u)

∫ u

0

dtW ′(t) exp

[

− δ̂
3

∫ t

u

ds
s

Y (s)

]

.

(95)
Let us now compute the universal amplitude defined by

Eq. (65). According to Eq. (69) the integral
∫

du∆2(u) is
preserved along the FRG flow and can be fixed by its bare
valueQ. The relation between the actual renormalized dis-
order∆tr

2 and the rescaled disorder∆2(u) given by Eq. (73)
reads∆tr

i = κ2∆i(u/κ). We obtain

κ =
Q1/3

ε1/3

(

2δ̂

3π(1 + x)

)1/6

, (96)
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FIG. 7: Eigenfunctionsz1(u) andz2(u) computed at the LR RF FP
for δ̂ = 2.

where we have fixed
∫

du∆tr
2 (u) = Q. Then the amplitude

can be written as

Ad =
1

K4
(∆tr

1 (0) + ∆tr
2 (0))

=
εκ2

K4
(1 + x) = ε1/3Q2/3B(δ̂), (97)

with the universal functions given by

B(δ̂) = 8π2(1 + x)2/3

(

2δ̂

3π

)1/3

. (98)

Values ofB(δ̂) for differentδ̂ are shown in Table II.
Depinning.We are now in the position to study the depin-

ning transition, which we expect is controlled by the LR RF
FP. The dynamic critical exponentz defined by Eq. (45) is
given to one-loop order by

z = 2 − ε

3
+
δ

9
+ O(ε2, δ2, εδ), (99)

where we have used Eqs. (75) and (77) which givey′′1 (0) +

y′′2 (0) = 1/3 − δ̂/9. Other exponents can be computed using
scaling relations (47) and (46), for example

β = 1 − ε

6
+

δ

18
+ O(ε2, δ2, εδ). (100)

It is remarkable that forδ > 3ε the exponentβ is larger
than1, andz larger than2. This seems to imply some dif-
ferent physics - yet to be understood - in the avalanche pro-
cess which makes the motion slower near depinning than in
the SR case. The analyticity of∆2 seems to suggest some
smoother motion at large scale, while short scale motion re-
mains jerky and avalanche like. Finally, note that at the SR RF
FPzSR = 2 − 2ε/9, βSR = 1 − ε/9, and thus, the exponents
are continuous functions ofε andδ.
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VIII. PERIODIC SYSTEMS

We now study periodic systems with disorder correlator
given by Eq. (4), which we can refer to as an XY model with
LR correlated defects. The results for CDWs with LR corre-
lated disorder defined by correlator (15) can then be obtained
by substitutingδ → δ1 = 4 − d⊥ − a. It is sufficient to con-
sider the system with the period fixed to 1, since other systems
can be related to the latter using the freedom to rescale. As a
consequence the roughness exponent for periodic systems is
ζ = 0. At variance with interfaces we introduce reduced pa-
rameters according to∆i(u) = δyi(u), A = y1(0) + y2(0)
andε̂ = ε/δ. Then the fixed point equations can be written as
follows

ε̂y1(u) − 1

2

d2

du2
[y1(u) + y2(u)]

2 +Ay′′1 (u) = 0, (101)

y2(u) + Ay′′2 (u) = 0. (102)

Equation (102) can be solved analytically. Its solution is

y2 = y2(0) cos(2πu), A = 1/(2π)2. (103)

Equation (101) can be solved analytically forε̂ = 0:

y1 = y1(0) + y2(0) (1 − cos(2πu))

− 1

2π

√

2y2(0) (1 − cos(2πu)). (104)

The coefficientsyi(0) are determined by potentiality of the
∆i, i.e. from the conditions

1
∫

0

du y1(u) =

1
∫

0

du y2(u) = 0, (105)

and the identityy1(0) + y2(0) = 1/(2π)2. They read

y1(0) = 1/(2π)2 − 1/64, (106)

y2(0) = 1/64. (107)

For ε̂ > 0 Eq. (101) can be written in the following form

ε̂y1(u) −
1

2

d2

du2

{

[y1(u) + y2(u)]
2 − y1(u)

π2

}

= 0, (108)

wherey2(u) is given by Eq. (103) withy2(0) = 1/(2π)2 −
y1(0). Expanding Eq. (108) in a Taylor series aboutu = 0 we
find thaty′1(0) = −

√

1/(2π)2 − y1(0)(1 − ε̂). Thus for any
fixed 0 ≤ ε̂ < 1 andy1(0) we have only one solutiony1(u),
but only for a specificy1(0) this solution fulfills the condition
y1(1) = y1(0). To find this value we employ the shooting
method usingy1(0) as a shooting parameter. The values of
y1(0) computed for different̂ε are summarized in Table III.
The corresponding eigenfunctionsy1(u) are depicted in Fig-
ure 8.

While the roughness exponent is zero, the system forms a
Bragg glass phase with a slow growth of the displacements
according to

(ux − u0)2 = Ad ln |x|, (109)

TABLE III: Periodic systems with LR correlated disorder. The shoot-
ing parameter:y1(0) and two first eigenvalues for differentε̂.

ε̂ y1(0) λ1 λ2

0 0.00971 0.0

1/3 0.01089 0.333 −4.089

1/2 0.01183 0.500 −0.500

2/3a 0.01348 0.667 −0.280

0.8 0.01645 0.800 −0.125

0.9 0.02346 0.900 −0.013

aCorresponds tod = 2, a = 1, i.e. line defects (e.g. dislocations) along the
plane of a CDW.
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FIG. 8: Fixed point of a periodic system with LR correlated disorder.
The SR disorder correlatory1(u) computed for different values of̂ε.

whereAd is a universal amplitude, which to one-loop order is
given by

A(LR)
d =

2Kd

K4
[∆∗

1(0) + ∆∗
2(0)] =

δ

2π2
, (110)

where we have restored the factor of1/K4 previously ab-

sorbed in∆i. The SR periodic FP is characterized byA(SR)
d =

ε/18+O(ε2). It is interesting to compare (110) with the pre-
diction of the Gaussian variational approximation for the SR
disorder caseA(SR)

d,GVA = ε/(2π2). We expect the crossover

between LR and SR FPs atA(LR)
d = A(SR)

d , i.e. LR disorder
to be relevant for

ε

δ
<

9

π2
≈ 0.912. (111)

We now check the stability of the SR and LR periodic FPs.
The flow equations linearized about the FP read

ε̂z1(u) − d2

du2

{

[y∗1(u) + y∗2(u)][z1(u) + z2(u)]
}

+ Az′′1 (u) +A0y
∗′′
1 (u) = λz1(u), (112)

z2(u) + Az′′2 (u) +A0y
∗′′
2 (u) = λz2(u), (113)
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where we have introducedA0 = z1(0) + z2(0). Let us re-
mind that the SR FP is unstable with respect to non-potential
perturbations even in the subspace of SR disorder. Indeed, the
SR periodic FP

∆∗
1(u) =

ε

6

[

1

6
− u(1 − u)

]

, ∆∗
2(u) = 0 (114)

has in the SR subspace the positive eigenvalueλ1 = 1, cor-
responding to the non-potential eigenfunctionz1 = 1. All
other eigenfunctions are potential, i.e. fulfill condition(105),
and have negative eigenvalues [45]. If we add LR correlated
disorder, the solution of Eq. (113) yields

z2(u) = cos 2πu. (115)

The corresponding eigenvalueλSR = 1− ε̂π2/9 confirms our
estimation for the stability of the SR periodic FP (111). For
the LR periodic FP we still have Eq. (115) with

A0 = − λ

1 − 4π2y1(0)
, z1(0) = A0 − 1. (116)

Equation (112) has a periodic solution only for a discrete set
of eigenvaluesλi (the first two are shown in Table III). It
follows from the Table thatλ1 = ε̂ > 0. In analogy with the
SR periodic FP the LR periodic FP is unstable with respect to
a non-potential perturbation corresponding toλ1. The latter is
obtained by integrating (113) over one period,

(ε̂− λ)

∫ 1

0

du z1(u) = 0. (117)

As long as the integral does not vanish, this gives the reported
eigenvalueλ1 = ε̂. Indeed as it can be seen from Figure 9 we
have

∫ 1

0
duz

(1)
1 (u) 6= 0 and

∫ 1

0
duz

(n)
1 (u) 6= 0 for n ≥ 2.

Depinning. We now focus on the depinning transition of
the periodic system with LR correlated disorder. At the LR
periodic FP we have

y′′1 (0) = 1 +
ε̂

3
− 4π2y1(0), (118)

y′′2 (0) = −4π2y2(0), (119)

and thus,y′′1 (0)+y′′2 (0) = ε̂/3. The dynamic critical exponent
z defined by Eq. (45) reads to one-loop order

zLR = 2 − ε

3
+ O(ε2, δ2, εδ), (120)

Therefore for periodic systemszLR = zSR to one-loop order.

IX. FULLY ISOTROPIC EXTENDED DEFECTS

In this Section we briefly examine the effect of a defect
distribution isotropic in the whole(x, u) space. Consider first
interfaces in random-bond type disorder. From (5) and (9) one
finds:

R(x, u) = VRB(x, u)VRB(0, 0) ∼ v2
LR

|x2 + u2|a/2 , (121)
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FIG. 9: Two first eigenvectors computed at the LR periodic FP.
Eigenfunctionsz(1)

1 (u) andz
(2)
1 (u) for ε̂ = 2/3.

and thus, theu andx dependencies are coupled in the bare cor-
relator. For the present discussion we considerN , the number
of components ofu, arbitrary, henceD = N + d. We recall
that a = D − εd. The question to which universality class
this model belongs is subtle. It turns out that it does not corre-
spond to LR disorder in internal space, but rather SR disorder
in internal space and LR disorder in theu direction, hence
R2 = 0 butR1(u) long range inu. To see this let us consider
at fixedu the integral

∫

ddxR(x, u). We can distinguish two
cases:

(i): for a > d, this integral is convergent at largex,
hence we clearly have SR disorder in thex-direction, and
R1(u) ∼ |u|d−a at largeu. This however is LR disorder
in u. This case has been studied using FRG and yields, for
a < ac(d,N) a roughness exponent exactly given by the Flory
valueζ(a, d) = (4 − d)/(4 + a− d). The valueac(d,N) can
be estimated using the value for the SR disorder roughness ex-
ponent, by requiringζ(ac(d,N), d) = ζSR,RB(d,N) (small
deviations can arise as discussed in [7]).

(ii): for a < d, the situation is more subtle and one may
be tempted to argue, since

∫

ddxR(x, u) diverges in the in-
frared, that disorder LR inx is produced. This is how-
ever not the case, as can be seen on the Fourier transform
R(q, P ), whereP is the momentum associated tou, andq
to x. One hasR(q, P ) ∼ (q2 + P 2)(a−d−N)/2, which has
a well defined limitR(q = 0, P ) = P a−d−N . This corre-
sponds again, as we argue, to a SR correlator in space with
R1(u) − R1(0) ∼ |u|d−a. As is often the case LR models
require some trivial subtractions. The subtracted correlator
R(x, u) − R(x, 0) has indeed a convergent integral∼ |u|d−a
at largeu, while subtracting au- independent piece does not
change the model. The critical casea = d is described by
the logarithmic modelR(x, u) − R(x, 0) ∼ ln |u| which has
ζ = (4 − d)/4 in all dimensions [47].

To summarize, isotropic distributions of defects isotropic
in the (x, u) space also yield LR models, but not of the type
(4) studied here. For isotropic line defects one findsζ = (4 −
d)/(3+N) (i.e. ζ = 3/4 for a directed polymer inD = 1+1,
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FIG. 10: 2d domain wall moving in 3D magnet with fully isotropic
planar defects.

ζ = 3/5 in D = 1 + 2, and for an interfaceD = 2 + 1,
ζ = 2/5). Isotropic planar defects yieldζ = (4−d)/(2+N),
henceζ = 2/3 for a (D = 2 + 1)-dimensional interface.
This case is illustrated in Figure 10. Note that in that case
there are infinitely many lines of defects inside the interface
with random directions (the intersections of the planar defects
with the interface gives lines), but that this does not suffice to
create power-law correlations in internal space, as can be seen
from the example where the planar defects are orthogonal to
the interface.

Finally in the periodic case, such as for CDWs, isotropic
disorder in the full space(x‖, x⊥) again leads to correlations
(15), but now the functiong(x‖ − x′‖) decays exponentially
beyond a length scale set by the disorder period (as can be seen
in Fourier space considering the discreteP modes). Hence the
problem is described by the standard (SR) random periodic
class.

X. CONCLUSION

We have studied elastic interfaces and periodic systems in a
medium with LR correlated disorder, both in equilibrium and

at the depinning transition. This type of long-range correla-
tions exists in the internal space of the manifold, and we have
discussed how it can be realized in terms of extended defects,
or anisotropic defects with a broad distribution of lengths. Us-
ing a dynamic formalism we derived the FRG flow equations
for the SR and LR parts of the disorder correlator and found
three new FPs, which describe three new universality classes.
All new FPs are characterized by a non-analytic SR part of
the disorder correlator and an analytic LR part. We have com-
puted the corresponding exponents and universal amplitudes
in a double expansion inǫ = 4 − d andδ = 4 − a. For RB
type of disorder we find that the LR correlation of disorder is
relevant forδ > 1.041ε and results in the roughness exponent
ζ = δ/5, while for δ < 1.041ε the scaling behavior is con-
trolled by the SR RB FP withζ = 0.208298ε. We find that
the presence of RF disorder results in a mixed FP with the
SR correlator corresponding formally to RB type of disorder
and an analytic RF LR correlator. The LR RF FP which is
also expected to control the depinning transition is stablefor
δ > ε giving ζ = δ/3 andβ = 1 − ε/6 + δ/18. The LR
correlated periodic FP is stable forε < 0.912 δ and gives a
slow logarithmic growth of displacements with universal am-
plitudeALR

d = δ2/(2π2). It is remarkable that this type of
disorder yields an exponentβ for the velocity-force character-
istics which can be larger than unity and a dynamical exponent
larger than2. This striking behavior might be relevant for ex-
periments, and gives a strong motivation for numerical studies
of the problem, e.g. to understand the nature of motion at the
depinning transition in these systems.
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[6] G. Grüner, Rev. Mod. Phys.60, 1129 (1988).
[7] G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin,

and V.M. Vinokur, Rev. Mod. Phys.66, 1125 (1994).
[8] T. Nattermann and S. Scheidl, Adv. Phys.49, 607 (2000).
[9] T. Giamarchi and P. Le Doussal, Phys. Rev. Lett.72, 1530

(1994); Phys. Rev. B52, 1242 (1995).
[10] M. Mezard and G. Parisi J. Phys. A23, L1229 (1990).
[11] S.E. Korshunov, Phys. Rev. B48, 3969 (1993).

[12] D. S. Fisher, Phys. Rev. Lett.56, 1964 (1986).
[13] A.I. Larkin, Sov. Phys. JETP31, 784 (1970).
[14] T. Nattermann, S. Stepanow, L.-H. Tang, and H. Leschhorn, J.

Phys. II France2, 1483 (1992).
[15] H. Leschhorn, T. Nattermann, S. Stepanow, and L.-H. Tang,

Ann. Phys. (Leipzig)6, 1 (1997).
[16] O. Narayan and D. S. Fisher, Phys. Rev. B48, 7030 (1993).
[17] P. Chauve, P. Le Doussal, and K.J. Wiese, Phys. Rev. Lett. 86,

1785 (2001).
[18] P. Le Doussal, K.J. Wiese, and P. Chauve, Phys. Rev. B66,

174201 (2002).
[19] P. Le Doussal, K.J. Wiese, and P. Chauve, Phys. Rev. E69,

026112 (2004).
[20] P. Le Doussal and K.J. Wiese, Phys.Rev. B68, 174202 (2003).



16

[21] L. Roters and K.D. Usadel, Phys. Rev. E65, 027101 (2002)
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