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We study the statics and dynamics of an elastic manifold ifnsardered medium with quenched defects
correlated as- r~ ¢ for large separation. We derive the functional renormalization group equatitmene-
loop order which allow to describe the universal propertitthe system in equilibrium and at the depinning
transition. Using a double = 4 — d andd = 4 — a expansion we compute the fixed points characterizing
different universality classes and analyze their regidretability. The long-range disorder-correlator remains
analytic but generates short-range disorder whose ctoradghibits the usual cusp. The critical exponents and
universal amplitudes are computed to first ordes Bnd¢ at the fixed points. At depinning a velocity-versus-
force exponeng larger than unity can occur. We discuss possible realigatising extended defects.

I. INTRODUCTION determined at the depinning transition are in general wffe
from the exponent and amplitudes measured in equilibrium.

Elastic objects in random media are the simplest example Two methods were developed to study the statics of an elas-
of disordered system exhibiting metastability, glassyaveh tic manifold in a disordered medium. One of them is the Gaus-
ior and dimensional reduction, which are difficulties prése sian variational approximation performed in replica space
in a broader class of disordered systems [1J 2, 3]. They cawhich can be applied to both classes of elastic manifolds,
be used to model a remarkable set of experimental systemise, to interfaces [10] and to periodic systems/[9, 11]. \ith
Domain walls in magnets behave as elastic interfaces and cahis approach, which is believed to be exact in the mean-field
experience either random bond disorder (RB) as in ferromagdimit, i.e. when the manifold lives in a space of infinite di-
nets with non-magnetic impurities or random-field disordermensions, metastability is described by breaking of raplic
(RF) as in disordered antiferromagnets in an external magsymmetry, that allows one to compute the static correlation
netic field [4]. The interface between two immiscible ligsiid functions and to obtain different thermodynamic propsttie
in a porous medium exhibits the same behavior and undernother method which can be applied to dynamics as well as
goes a depinning transition as the pressure difference-is ino statics is the functional renormalization group (FRG)][1
creased/|5]. Charge density waves (CDW) in solids show @&imple scaling arguments show that large-scale propeties
similar conduction thresholdl[6]. Another example of peri- elastic systems are governed by disordewfer d,. = 4 and
odic systems are vortex lines in superconductors which cathat perturbation theory in the disorder breaks down orescall
form different glass phases in the presence of weak disordéérger than the so-called Larkin scale![13]. To overcoms thi
[4,18,19]. In all these systems the interplay between elastiglifficulty one performs a renormalization-group analysis.
forces which tend to keep the system ordered, i.e. flat or payas shown that in this case one has to renormalize the whole
riodic, and quenched disorder, which promotes deformationdisorder correlator which becomes a non-analytic fundtien
of the local structure, forms a complicated energy landscapyond the Larkin scale [12, 14,115.116]. The appearance of a
with numerous metastable states. This results in glasgy pro non-analyticity in the form of a cusp at the origin is related
erties and a nontrivial response of the system to extermal peto metastability, and nicely accounts for the generatioa of
turbations. In particular, the interface becomes rougtn wit threshold force at the depinning transition. It was regentl

displacements growing with the distancas shown that the FRG can unambiguously be extended to higher
” loop order so that the underlining non-analytic field theisry
C(x) ~a°, 1) probably renormalizable to all orders [17] 18| 19]. Althbug

. . - the two methods are very different, they provide a fairly-con
where( is the roughness exponent. Elastic periodic structure§igant picture of the statics, and recently a relation betw

in the presence of disorder lose their strict translati@ral o1, was found [20]. There is also good agreement with re-
der a|:]d 1;odr_m (lqua5| long-range order characterized by a slow,j5 of numerical simulations, not only for critical exgemrs
growth of displacements, [21, [22,[2B], but also for the whole renormalized disorder
o correlator [24]. However, many questions remain open. Al-
Clz) = Aalnz| (2) though the dynamics in the vicinity of the depinning traiosit
where the amplitudel, is universal in the simplest case. At and at zero temperature is well understood, there is no- satis

zero temperature, a driving forge exceeding the threshold factory theory for finite temperature, and in particular thoe

value f. is required to set the elastic manifold into steady mo-theérmal rounding of the depinning transiticn/[25]. It is@ls

tion with a velocityv which vanishes as ~ (f — f.)? at remarkable that the exponefitin experiments on depinning

the transition point. The correlation length diverges eles 'S usually larger than, while FRG and numerical simulations
the transitionf = f, as¢ ~ (f — f.)~* and the characteris- of elastic systems with weak disorder give values smalken th

tic time asT ~ £#, wherez is the dynamic critical exponent.
Note that the roughness exponentand the universal amgditud Most studies of elastic manifolds in a disordered medium



treat uncorrelated point-like disorder. Real systems,gvary; ~ described by an XY model with LR correlated defects [42].
often contain extended defects in the form of linear dislocaThis is closely related to the behavior of nematic liquidsery
tions, planar grain boundaries, three-dimensional ajigtc.  tals enclosed in a single pore of aerosil gel which was régent
It is known that such extended defects, or point-like defect studied in Ref.l[43], using the approximation in which the
with sufficiently long-range correlations can change thékbu pore hull is considered a disconnected fractal. Finalhdists
critical behaviorl[26, 27, 28, 29, 30,131, 32]. Flux linesins of the Kardar-Parisi-Zhang (KPZ) equation with power-law
perconductors are the most prominent example. The pinningorrelations in timel[44] bear connections to the cdse 1

of the flux lines by disorder prevents the dissipation of gper considered here. However the perturbative method used ther
and determines the critical current, which is of greatimpor-  cannot address directly the zero temperature (strong KBZ co
tance for applications. It was found that extended defects p pling) phase, contrarily to our present study.

duced, for instance, by heavy ion irradiation, can increlse In the present paper we study the statics and dynamics of
by several orders of magnitude [33]. Systems with anisatrop elastic manifolds in the presence of (power law) LR coreslat
orientation of extended defects can be described by a moddisorder using the FRG approach to one-loop order. The pa-
in which all defects are strongly correlatedsn dimensions  per is organized as follows. Sectibh Il introduces the model
and randomly distributed over the remainiig- ¢, dimen-  Possible physical realizations are considered in Segfibn |
sions. The case; = 0 is associated with uncorrelated point- SectionIV¥ describes the dynamical formalism and perturba-
like defects, while extended columnar or planar defects aréon theory. In Sectiofv we renormalize the theory and deriv
related to the cases; = 1 and 2 respectively. The bulk- the FRG equations to one-loop order. In Secfioh VI we study
critical behavior in the presence of this type of disordeswa random bond, in Sectido ¥l random field and in SecfionVIlI
studied in Refs1[26, 27, PB,129] using a perturbative RG-analperiodic disorder. In Section1X we discuss fully isotropic
ysis in conjunction with a double expansioreir= 4 — d and  extended defects. In the final Section we summarize the ob-
eq4. The pinning of flux lines by columnar disorder was stud-tained results and our conclusions.

ied in Ref. [34], where it was shown that the system forms

a Bose glass phase with flux lines strongly localized on the

columnar defects, resulting in a zero dc linear resistivity Il. THE MODEL

was argued recently that the topologically ordered glasas@h

(Bragg glass) formed by flux lines can be destroyed in the We consider a-dimensional elastic manifold embedded in
vicinity of a single planar defect [35]. It has been showrtthaa D-dimensional space with quenched disorder. The con-
the small dispersion in orientation of columnar defecte®®a  figuration of the manifold is described by A-component
new thermodynamic phase called “splayed glas'’ [36]. In thisdisplacement field denoted belawz), or equivalentlyu,,
phase, the entanglement of flux lines enhances significantiyhere x denotes thed-dimensional internal coordinate of
the transport of superconductorsi[37]. Competition betweethe manifold. For example, a domain wall corresponds to
various types of disorder, point and columnar, has also beet = D — 1 andN = 1, aCDW tod = D andN = 1,
studied, at equilibrium[38, 39] and in the moving phase$.[40 and a flux lattice tal = D and N = 2. In what follows, we

: TR . focus for simplicity on the cas® = 1 and elastic objects with

In the case of an isotropic distribution of disorder, power'short-range elasticity. Extensionsto > 1 and LR elasticity

law correlations are the simplest example with the possibil . ) .
for a scaling behavior with Fr)1ew fixed goints (FPs)parfg‘neware straightforward for the statics. The energy of the nudahif

critical exponents. The bulk-critical behavior of systeims in presence of disorder is defined by the Hamiltonian

which defects are correlated according to a power-taf 4 Tc 9

for large separation was studied in Refs[_[30, 31.132]. The H = /d T {E(V“(I)) + V(z,u(z))| 3)
power-law correlation of defects iirdimensional space with ] o ) ]
exponent: = d — ¢, can be ascribed to randomly distributed Wherec is the elasticity and” a random potential. In this
extended defects of internal dimensiopwith random ori- ~ Paper we study the model where the second cumulant of the
entation. For example; = d corresponds to uncorrelated fandom potential has the form:

point-like defectsa = d — 1 (a = d — 2) describes infi- — N /

nite lines (planes) of defects with random orientation. éng V(e w)V(@',v) = Bi(u—u)§z —a’)
eral one would probably not expect a pure power-law decay + Ro(u—u)g(z —2). (4)

of correlations. However, if the correlations of defectser . o . .
) . o The first part corresponds to point-like disorder with short
from different sources with a broad distribution of chaeact ; S
range (SR) correlations in internal space. The second part ¢

Istic Ieljgthscales, one can expect that the resulting keorre responds to long-range (LR) disorder in internal space laed t
tions will over several decades be approximated by an effec-

X o a ; i

tive power-law [30]. If the correlation function of disonde ilzjg(i:ttlgggté?t itsxFou?itelratrrgaerfs.f('):ronz ‘E;’(”;’ef“ﬂﬁ?;"’ :tns%rg;?l

can be expressed as a finite sum of power-law contributions . h uni litude. A oriori ? = 19 din th

S ¢;r—%, one can expect that the scaling behavior is domd With unit amplitude. A priori we are interested in the case
2 )

inated by the term with the smallest [30]. Power-law cor- a < d where the correlations decay sufficiently ng)wa inin-
relations with a non-integer value= d — d; can be found ternal space. We denote everywhere befow= [ 547 and

in systems containing defects with fractal dimensigri41]. fw = fdda:. The short-scale UV cutoff is implied gt~ A
For example, the behavior 6fle in aerogels is argued to be and the size of the systemis



One could start with modelk(4), setting, = 0; however
as we show below a non-zef®, is generated under coarse
graining. Note that the function8;(«) can themselves a pri-
oribe SR, LR, or periodic in the direction of the displacemen
field u. For SR disorder in internal space only, iBy; = 0,
these cases are usually referred to as random bond (RB), ran-
dom field ®;(u) ~ |u| at largeu) (RF) and random periodic
(RP) universality classes. Below we discuss how theseadass
extend to the case of LR internal disord@&s(non zero).

The model [[B) and[d4) could easily be studied using
presently available numerical algorithms for directed man
folds, in its statics (e.g. exact ground state determina)io
and its dynamics (e.g. critical configuration at depinnjibyy)  FIG. 1: Linear defects randomly and isotropically disttémion par-
directly implementing a random potential correlated as deallel planes with random distances between them. This gegme
scribed by[(#). It is also interesting to examine which type o mimics distribution[[B).
correlations in a random medium can naturally leado (4) and
how such disorder could be realized from e.g. distributimins

extended defects, since some of them may be experimentally Although we mostly discuss extended defects, other
feasible. sources of long-range correlations are possible, such as de

fects where each single one creates a long-ranged disorder
potential, or a substrate matrix itself quenched at a atitic
I11. REALIZATIONSAND UNIVERSALITY CLASSES point.

A. Defect potential ) )
B. Couplingto the manifold

Let us first recall how long-range correlations can arise in
the potential created by defects. To this purposewdal) the
defect potential, in the simplest case taken to be propmatio
to defect density. Consider for simplicity a large number o
weak defect lines with a uniform and isotropic distributian
a space of dimensio». These create an almost Gaussian
random potentiab(r) with: V(z,u) = /dD_dZ v(z, 2)p(z, 2, u), )

We now examine how the long-range correlated defect po-
tential couples to the elastic manifold and what type of LR
fmodel results. A general formulation of this coupling (see
e.g. [3]) has the form:

”ﬁifi for r — oo (5)  Where the defect potential lives in tHe-dimensional space
r —r'|* parameterized by, u) andx € R? is the internal coordinate
of the manifold.p(z, z, u) is the manifold density. Each type
of coupling to the disorder corresponds to a different fiamct

(z, z,u) and we now indicate the main cases.

o(r)u(r’) ~

anda = D — 1. To derive this, consider defects of finite
radiusa,. The probability that point’ is contained in the
defect going through is ~ (agq/|r — /|)P~1, i.e. inversely ”
proportional to the sphere of radilis — r/|. This is easily
generalized to isotropic distributions of extended defext
internal dimension,, witha = D—¢,4. Note that by extended
defects we mean defects which are perfectly correlatedyalon ] ) o )
their internal dimension. Generalizations where defemts a L€t Us first discuss elastic interfaces in the so-called Ran-
themselves (anisotropic) fractals can also be considered. d0m Bond (RB) case, where the coupling between disorder
An important case is a uniform distribution of extended de-2nd interface occurs only in the vicinity of the interface as
fects inD dimensional space, but isotropic only within a lin- €-9- for domain walls in magnets with random-bond disorder.
ear subspace of dimensi@¥. For instance one can irradiate a 1hiS corresponds to the choice:
material in the bulk while simultaneously rotating it alosug
axis. This produces a distribution of linear defeets € 1), p(@, 2,u) ~ 0(2 — u), (8)
isotropic within the plane0" = 2), and normal to the axis hence the additional variabteintroduced inl[) is identical to

(see FigllL). More generally this yields a defect potentithw ,, the displacement field (with in generBl —d = N ). In
second cumulant that case:

1. Elastic interfaces in random-bond disorder

o(r, 2)0(7,2) = g(r — ') f(z — 2) (6) Vias (2, 1) ~ vz, ). ©)
g(r) ~r=%,
) / Consider now a uniform distribution of defects in the
while f(z) is short-ranged (herec R,z € RP~P  a = dimensional plane busotropically distributed within the (av-

D' —gy). eraged direction) of the internal space of the manifoldhis
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is given by [6) above wittD’ = d: that subspace. The random potential experienced by the CDW
is given by

V(z,¢) = hi(x) cos ¢(x) + ha(x) sin ¢(z), (13)

VRB (I, U)VRB (O, O) = g(x)RQ (u), (10)

which is modell(#) with a SR functioR» («) and, in full gen- ) ) o
erality,a = d — e4. The physical realization in terms of ex- With Gaussian distributed, (z) = v(x) cos(2kpz.) and
tended defects is thus an interfade 2) in D = 3with line ~ 2(z) = v(2)sin(2kpz ). On large scalespz, > 1, and
defects all orthogonal to the directions, isotropically dis- their cumulant can be approximated by (frdth (6)):
tributed within the (average) plane of the interface, and 1. 1 102
This is illustrated in FigurEl1. hi(x)h;(0) = —ngdijdd(:c) 4+ = Lf
Another physical realization consists of extended defects 2 2z

[
with finite random lengths such that the distribution of lersy ) . . o
has a power-law tail for large lengths. For instance neeafles where we have omitted all rapidly fluctuating contributions

variable lengths aligned along one direction could act on ;qs.CL'_B) and(14) give the potential correlator in a formakhi

directed polymerl — 1 as power-law correlated disorder in can be generalized to

internal space. —_— N ed ,
An interesting, though qualitatively different case occur Vi, wV (@', w) = By (u - u)o%(x — 2)

when the extended defects are distributed isotropicaltpén +Ry(u—u)g(x) — )0 (zL — '),  (15)

whole(z, u) space. It will be discussed in Sectlad IX. Finally

note that we consider weak Gaussian disorder. It is possibMith d1 = 1 and bare function®;(¢) = v7 cos(¢), u = ¢.

that at strong disorder another phase exists where the fline dhus periodic systems are described by periodic functions

manifold gets localized along the strongest extended tlefec Ri(u). Hered is the dimension of the transverse subspace.
Note that the Hamiltoniat(xy = [ d’z[3(V$)? + V(z, ¢)]

with V(z, ¢) given by Eq.[IB) and a Gaussian distribution
2. Elastic interfaces in random field disorder of fields h;(z)h;(z') ~ g(xz — ') describes the XY model
with long-range correlated random fields. Therefore the lat
ter can be mapped onto periodic manifolds with correlator
@3) andd;, = 0, i.e. to model[[®) with periodic functions
pa, z,u) ~ Ou — 2), (11) R;(u). In the next section we will show how the FRG pic-
ture of model[(Ib) can be obtained from the FRG results for

where@(z) is the Heaviside step function. This means thatModel [3). Itis worthy to note that in the case of periodic sys
the change in energy when the interface moves between twi§MS the integration in Fourier space is supposed to be over
configurations is proportional to the sum of all defect peten the f|r_st Brlllo_um zone. Note also that we have neglected the
tials in the volume (ink?) spanned by this change. The dis- coupling of disorder to the long wavelength part of the den-
cussion of the geometry of defects needed to produce LR digity —ro J d*zv(z)Vu(z) as it is usually irrelevant near the
order in internal space is identical to the last section.sBtb ~ UPPer critical dimension. Indeed, in the replicated Hawnilt
tion of Eq. [T1) into Eq.I7) yields the RF disorder corretato Nian (see below)dthls coupling generates additionally ® th
which can be approximated by EG] (4) wilh)(u) ~ —u for ~ SRterm—1/T [ d?zo Vue(2)Vuy(x) the LR term

largeu.

6ij0(z1),  (14)

Random-Field (RF) disorder is described by the function:

1
—T/ddac Az’ o2g(z) —:101‘)6‘1L (x1 —2'| ) Vue(x)Vup(z').

3. Periodic systems For small disorder in the vicinity of the upper critical dime
sion both of them renormalize to zero according to
As an example of periodic systems we consider incommen-
surate single-Q CDWs. In that caBe= d, hence the function deor = (2—d—2Q)o1 + ..., (16)
p(x, z,u) = p(z,u) in {@). The electron density of CDWs ne- dioy = (2—a—dyL —20)oy + ... (17)
glecting effects caused by an applied strain has the farfi{3,

IV. DYNAMICAL FORMALISM
p(x,¢) ~ po + p1cos(2kp (2L — u(z)), (12)
The over-damped dynamics of the elastic manifold in a dis-

where the displacemeni(x) of the maximum of the density ,qered medium can be described by the equation of motion
is related to the standard phase field &) = —2kpu(z),

whereky is the Fermi wave-vector. Thédimensional space
is splitted intox = (z), 2. ), with = denoting the modula- NOugr = V2ugs + F(2, ugt) + far, (18)
tion direction of the CDW andy the Fermi wave-vector.

We again consider the situation of extended defects allvheren is the friction coefficient. In the presence of an ap-
aligned with the directiorr; and isotropically distributed in  plied forcef the center of mass velocity is= L fm OpUgy.



The pinning force read8' = —9,V (x, ), and thus, for cor-

relator [3) the second cumulant of the force is given by a’
F(z,u)F(z',u') = Ay(u—u)d%x —2') t----i
+ Mo(u—u)glx—a), (19) b

with A; = —R/(u) in the bare model. In the following, we W

will always usey(q) = |¢|*~¢, andg(z) = [, "% g(q). c e
The most important quantity of interest is the roughness ex-
ponent¢ measured in equilibrium or at the depinning transi- FiG. 2: Diagrammatic rulesa - propogatorp - SR disorder vertex,

tion f = f. defined by c - LR disorder vertex;d ande one-loop diagrams generating the
critical force at the depinning and giving correction to thebility
Clz—12') = |ug — up |2 ~ |z — x’|24, (20)  and elasticity.

The velocity vanishes at the depinning transitionas |f — . ] ] )
£.|°, while the correlation length diverges at the transition aglasticity. The quadratic part of the actigni(21) yields ffee
¢ ~ |f — f.|~*. One can also introduce the dynamic critical "€SPonse function
exponent, which relates spatial and temporal correlations via o(t) s s
t ~ x”. (ugt ili—qo)o = Rgr = — e (ea )t/n’ (23)

Let us briefly sketch how one can construct the perturba- n
tion theory in disorder. We adopt the dynamic formalism. Itwhich can be used to generate the perturbation theory in dis-
also allows us to obtain the statics equations (to one lodp anorder. The theory has two disorder interaction vertidgsu,)
N = 1 these can easily be deduced, as can be checked usiagd A (u). At each vertexA;(u) there is one conservation
replica). Instead of a direct solution of the equation ofiorot  rule for momentum and two for frequency while each vertex
(@) with consequent averaging over different initial cend Az (u) carries additional momentum dependence. In what fol-
tions and disorder configurations we employ the formalism ofows we generalize the splitted diagramatic method dewezlop
generating functional. Introducing the response figldwe  in Ref. [18], shown in FigurBl2. As is the case for the model

derive the effective action which reads with SR-disorder, our model exhibits the so-called dimensi
reduction, both in the statics and in the dynamics. The naive
S — / it (70 — V2 + m2 g _/ it fot perturbation theory obtained taking the functiahg(u) an-
ot wt alytic atu = 0 leads to the same result as that computed
1 S from the Gaussian theory settidyg (u) = A;(0). In the limit
-3 /m/ Ui Ulize A (Uat — Ustr) m — 0 the two-point function then read to all orders:
1
-3 /M/ ifarilary 9(@ = 3') A (Uar = uerv), (21) Tt = Aciég) + cziffg)_a- (24)

where we have added a small masswhich plays the role The first term in Eq.[[J4) dominates in the limjt— 0 for
of an IR cutoff. To study the critical domain one has to takea > d, and LR disorder is irrelevant in this case, while the last
the limit m — 0. The average of the observabléu,,] over  term dominates for < d. Eq. [Z3) results if = (4 — d)/2
dynamic trajectories with different initial conditions@over ~ for a > d and¢ = (4 — a)/2 for a < d that are known
different disorder configurations can be written as follows  to be incorrect. The physical reason for this is the existenc
of a large number of metastable states. The roughnescs expo-
N —S[u,i nent can be estimated using Flory arguments setting z¢.
(Afua]) = /D[U]D[U]A[u“]e . (22) " Then the gradient term scales ¥8u, ~ x¢~2. The pin-
ning force for SR disorder scales &z, u,) ~ z~(¢+)/2
Furthermore the response to the external perturbafign and for LR disorder aF(x,uy) ~ 1+~ (@+0)/2 Therefore
which is local in time and in space, can be computed usingn the regime where the behavior is governed by SR disorder
(Alugtitize) = 57— (Alus]). Note that causality is fulfilled, the Flory estimate gives for RF disorder the Imry-Ma value
and here we adopt the Ito convention, which results in ggttin (£, = (4 — d)/3 while for LR RF disorder we geff; =
rid of all closed loops composed of response functions. (4 — a)/3. A similar argument constructed from the potential
Inthe absence of LR correlated disorder action, the[Eq. (21¢orrelatorsi; (u) yields the Flory estimate§ = (4 — d)/5
exhibits the so-called statistical tilt symmetry (STSg, the — and(ly = (4—a)/5 respectively, for the case of random-bond
invariance of the disorder terms under thedilt — w ¢ + h, disorder. To obtain corrections to the Flory values, the FRG
with an arbitrary functior,.. The STS gives the exactidentity developed in Refs|_[12, 14,115,116/ 17| 18] will be employed.
ft Rqt = 1/cq?® for the response functioR ;; = (ugt iti—q0), The solution is nontrivial because the renormalized disord
which implies that the elasticity is uncorrected by disertde  becomes non-analytic above the Larkin scale, and one has to
all orders. LR correlated disorder destroys the STS of actio deal with a non-analytic field theory. Here we generalizs thi
@1), and thus, in principle allows for a renormalizatiortttd ~ approach to the case of LR correlated disorder.



V. FUNCTIONAL RENORMALIZATION

0000 o000 00O
a b
We now consider the renormalization of modell(21). The
subtleties arising for of the correlat@]15) will shortlg His- ceves cesee

cussed in the end. We carry out perturbation theory in the bar
disorder correlatord,;o(u) and then introduce the renormal-
ized correlatorg\; (u). We will suppress the subscript "0” to
avoid an overly complicated notation. According to the stan
dard renormalization program we compute the effectiveacti

to one-loop order. Here we adopt the dimensional regulariza
tion of integrals and employ the minimal subtraction scheme
to compute the renormalized quantities and absorb the poles

ine =4 —dandj = 4 — a into multiplicative Z factors.
When derivatives of thé\; at« = 0 occur, in the dynamics
(i.e. at the depinning transition for dynamical quantitigey
are taken at: = 0" as can be justified exactly fa¥ = 1.

In the statics the treatment is more subtle (as discusseebin t

FIG. 3: 1-loop diagrams correcting disorder. The dot linereo
sponds to either SR disorder vertex (dash line) or to LR disor
vertex (wavy line). Diagrams of type,b, and ¢ contribute to SR
disorder. Only diagrams of typécorrect the LR disorder.

loop studies|[19]) but is not needed in the present one loop

study.

Let us firstly consider the first order terms generated by ex-
pansion ok~ in disorder. These terms are given by diagrams

d ande shown in Figur€R. We start from
/ Z'amtAl (umt - umt/)iamt’
t>t ¢
+/ 10t Do (Ugt — Ugrer ) g(x — 2" )itgrer . (25)
t>t'x,x’

Expanding);(u) in a Taylor series and contracting oiiewe
obtain the leading corrections to the threshold forcetiénc
and elasticity. The terms giving the threshold force to iegd
order are

/ ZﬂmtAa (O+)Rm:(),t7t’
t>t'
+ / ZﬁmtA/Q(O+)g(x — x/)RI—m’,t—t" (26)
t>tx,x!

They are strongly UV diverging§ A2 + A?~2), and thus,
are non-universal. The terms proportionalAg(0*) can be
rewritten as corrections to friction and elasticity usihg &x-
pansion

Uzt — Ugrpr = (8 — )0t + (x — & )i —uge

o

2
L 0%uat oA, Ad?). (27)

=2 =25 5
10T

The first term in Eq.[{A7) gives the correction to friction

by = —A(0%) / {Ro_os — AJ(0F) / tRy1g(a)
t xt

—n [AY(OF)1 + A(0H) ] (28)

where we have introducedl; (u) = A;(u)/c2. The one-loop
integrals/; and I diverge logarithmically and fot,§ — 0

read

I

+O(1), (29)

1 m=°
=K
[ =

a—d =6
q m
- =K,
/q(q2+m2)2 S

where we setn m/+/c and K, is the area of ad-
dimensional sphere divided i§g7)?. To remove the poles in
the mobility we introduce the correspondidgfactorng =

Zn‘1 [A;]n which to one-loop order is given by

I +0(1),  (30)

Z;t=1-AJ(0") L — AJ(0) 1. (31)

In the absence of LR correlated disorder the elasticity re-
mains uncorrected to all orders due to the STS, while here the
correction reads

1
oc —A”O/ 2
2850 [

(32)

We have not set the second derivativedatas A, remains
analytic as is discussed below. Furthermore the correttion
elasticity [32) is finite foe, § — 0, and thus: does not acquire
an anomalous dimension. However, we expect corrections at
2-loop order. Ifit is the case, one has to introducg-éactor
which renormalizes elasticityer = Z;'c with Z. = 1 +
O(A?).

In principal, due to the lack of STS, the KPZ term
A(Vu,,)? breaking the symmetry — —u can be generated
in the equation of motiorL{18) at the depinning transitian. |
deed, diagram in Figure[2, when expandingy () to second
order inu, using [2¥), gives

1 1
6X = Ay (0") / (33)

x

xQRm,tg(:C).
t



Moreover the term with cubic symmetrj/{ = 2) and terms
with higher order symmetried{ > 2) Ay, Zi(&umt)QM can
be generated by diagram

1 (2M+1)

00 = Joanite

0%) [ Rosgla) o2 (39

However, as we will show later, if we start from bare analytic
disorder distribution the LR disorder remains analyticnglo
the FRG flow and the corresponding FP valvgv) is also an
analytic function. Thus termE{B3) aiid134) are zero, predid
that they are absent in the beginning. Moreover, the tdrdis (3
are irrelevant in the RG sense fof > 2, [but not the KPZ
term [33), see Refl.[46]]. This proves that our bare mddé)l (21
is a minimal model for the description of elastic manifolds i
a random media with LR correlated disorder.

Note that in the presence of SIS= 0 and we recover the
conditions obtained at the end of Secfiah Ill. The actualeal
of ¢ will be fixed by the disorder correlators at the FP. The
elasticity exponent and the dynamic exponeatead

d
d ~
z = 2—w+m%1nZn(Ai) o (43)

where subscript "0” means a derivative at constant bare pa-
rameters. To one-loop order this yields

The corrections to disorder are given by the diagramdhe scaling relations then read|[46]

shown in Figur€B. The corresponding expressions read

5 A (u) = —[A)(u)* + (Ar(u) — A1 (0) AT (w)] 1y
—[2A7 () Al (u)? + (Aa(u) — Az(0)AY (u)
+A1 ()AL ()] Ty — [Ab (1) + Ag(u)Af ()] 15, (35)
6 As(u) = —AL(0)AY (u) Iy — Ay(0)AY (u) L. (36)

The one-loop integrald; and I, have been defined in
Eqgs. [29) and(30), whereds s given by

L= |
q

Let us define the renormalized dimensionless disafdéas

a—d) K4m725+5

20 — ¢

¢
(q2+m2)2 -

+01). (37

mEAR = A (u) + 0 Ay (u),
mOAR = Ag(u) 4 6 Ag(u).

(38)
(39)

The B; functions are defined as the derivative/®f (u) with
respect to the mass at fixed bare disordef\;(u). In or-

der to attain a fixed point, it is necessary to rescale the field

u by m¢ and write the3 functions for the functiond\; =:
Kym~ 2 AR (um?):

AL (u) = (e —20)A1(u) + Cul (u)
g [A )+ Ap() + AR (), (40)
OAz(u) = (6 —20)As(u) + Culy(u) + AAY(u), (41)

whereA = [A;(0) + Az(0)], andd, == —m 2.

The scaling behavior of the system is controlled by a sta
ble fixed point[A}(u), A%(u)] of flow equations[{40) and

¢ = O(e,€6,6°), (44)
2 = 2 AY(0) - A%(0). (45)
1
oy 2—C
B=vlz-0= ot @7)

At zero velocity, the above calculation can be consid-
ered as a dynamical formulation of the equilibrium problem.
However, one has to be careful with mapping the dynamic
FRG equations to the static equations, because as shown in
Ref. [19] the bare relatiol; = —R/(u) breaks down for
the SR case at two-loop order. The standard derivation of the
FRG equations in the statics is based on the renormalization
of the replicated Hamiltonian. We have checked that similar
to other systems with only SR disorder, the static FRG equa-
tions for systems with LR disorder can be obtained from the
dynamic flow equations to one-loop order using the identifi-
cationA; = —R/(u). They read

ORi(u) = (¢ —4¢)Ri(u) + CuRy(u)
5 IRYw) + R + ARV (W), (49)
OR2(u) = (6 —4C)Ra(u) + CuR)(u) + ARY (u), (49)

whered = —[R/(0) + R5(0)].

In the case of the model with correlator given by Hql (15),
one has to distinguish between the transverse and parallel d
rections, and therefore introduce corresponding elastfie
cientsc, andc. In the transverse direction, disorder is only
o-correlated and as a result the transverse elasticity isarot
rected and can be setto 1. The power counting shows that the
LR disorder is naively relevant fa, = 4 — d; —a < 0.

The one-loop integrals are logarithmically divergent aod f
€,61 — 0 are given by Eqs[{29)[(B0) and{37) with— §;.

@I). To determine the critical exponents let us start fromThus the above renormalization can be generalized to model

power counting following Ref.l[46]. The quadratic part of
action [21) is invariant under — b, t — tb*, u — ubC,
@ — ab?~*~<~4t¥_ Under this transformation the mobility,
elasticity, and disorder scale at the Gaussian FP asb?,
n ~ b27z+w’ Al ~ HA—d—2¢+2¢9 gnd AQ ~ pAma—20+2¢
Thus SR disorder becomes relevant for ¢ < (4 — d)/2
while LR disorder is naively relevant fgr— ¢ < (4 — a)/2.

(@I3) if one formally replace§ — ¢;.

Let us show how a non-analyticity of the disorder appearsin
the problem. We start from the bare analytic correlatorf wit
AY(0) < 0. The flow equation foy := —AY(0) — AZ(0)
R (0) + R5"(0) > 0 reads

Ay = ey + 3y° + y(m), (50)



wherey(m) = (e — §)A%(0). As we show below, the func-
tion A, (u) remains analytic along the whole FRG flow and at
the fixed point (FP). The solution of Eq._{50) for any function
~(m) bounded from below blows up at some finite scale

TABLE I: Long-range correlated random bond fixed point. Sirap
parameterr = —r7'(0), the maximal eigenvalue and the universal
amplitude for different values .

which can be associated with the inverse Larkin length. Thiss z(8) i B(9)
blowup ofy corresponds to the generation of a cusp singular-| | 1.931986 _ 33.89
ity: A;(u) becomes non-analytic at the origin and acquires for, , 1.121722 —0.160 31.37
m < m* a non-zerd\’ (0"). The precise estimation of the 13 0.922046 0.262 31.64
Larkin scale requires the solution of the pair of flow equadio ~ ' ' '
for both A, (1), 1.4&1 0.825747 —0.365 32.41
Before studying different FPs, let us note an important1'5b 0.766976 —0.469 33.34
property which is valid under all condition: &, (u) (i = 1,2) 20 0.639151 -1 38.44
is a solution of Eqs[T40) an@{¥1) thedA;(u/x) is also a  3.0° 0.562357 —2.120 48.10
solution. Analogously, if?;(u) is a solution of Eqs[{48) and oo 0.463619 00

#3) thenx* R;(u/k) is also a solution. We can use this prop-

erty to fix the amplitude of the function in the non-periodic ,2ndom lines ina planar interfacé & 2, a = 1).
Random lines in a 3d manifoldi(= 3, a = 2).

case, while for the periodic case the solution is unique @s th crandom planes in a 3d manifold & 3, @ = 1).

period is fixed.

Vl. NON-PERIODIC SYSTEMS: RANDOM BOND Since Eq.[[BK) is linear iny, it can be solved for fixed by

DISORDER

5(1+x) ou
In this Section we study the scaling behavior of an elastic ra(u) = 5 P <_m> : (55)
interface in a disordered environment with LR correlated RB
disorder. To this aim we have to find a stationary solution
(FP) of Egs. [48) and{#9) which decays exponentially fasfrom the Taylor expansion of Eq._{53) aroune- 0 we find
at infinity as expected for RB disorder. The SR RB FP with

Rs(u) = 0, which describes systems with only SR correlated 5(1 — 22)

disorder, was computed numerically in Refs! 12,117, 18k Th r(0) = ————,

corresponding roughness exponent to one-loop order isigive 80 —10

by (sr = 0.208298¢ + O(<2). We now look for a LR RB FP r1(0) = 0, (56)

with Rs(u) # 0. Integrating Eq.[[49) we obtain
where the second condition excludes the possibility of @sup

7 cusp (the first line does not diverge since= 1 for § = 5/4.
Or / Ra(u) = (6= 5¢) /R2 (w). (51)  Thus for fixeds the simultaneous equatiolisI53) ad (54) have
0 0 a unique solution for any but only for a specificc does the

solutionr; (u) decays exponentially fast tofor largeu. To
determine this value we employ the shooting method choosing
s x as our shooting parameter. For fixedve integrate numer-
5 (52) ically Eq. [53) \{Vllthrg(u) given by Eq. [(5b) fromo to some
largeu,,.x with initial conditions [56). Then the shooting pa-
which will hold to all orders (since the RG equation f@s to ~ fameterz can be found by solving numerically the algebraic
higher orders can only be linear iy (u) and involve even €quationr; (umax; ©) = 0. Increasingum.x we acquire the
derivatives) and as a consequengs; duRs(u) is exactly ~ desired accuracy far andr,(x). We were able to find the
preserved along the FRG flow. Using our freedom to rescal@umerical solution with reasonable accuracy onlyjfor 1.1.
R;(u), we introduced := &/e, Ri(u) =: er;(u) and fix ~ The typical FP functionsy(u) andr;(u) are shown in Fig-

Therefore, the new LR RB FP, if it exists, has

CLRRB =

(0) =: —z andr (0) = —1, wherez is the parameter to be ureld. The actual values sfobtained by shooting for different
determined. The ‘stationarity condition of EJS(48) i) (49 0 are summarized in Tabik I.
reads Let us now check the stability of SR and LR FPs. To that
. end we linearize the FRG equations about each FP. In the
(1- ég)rl (u) + ém,/l (u) vicinity of a FP, the linearized flow equations have solusion
5 5 which are pure power-laws im, i.e. scale as»~* with a dis-

Loy eo\12 " crete spectrum of eigenvalugs A stable fixed point has all
= 1 =0 53 . o .
Folri @)+ W+ A+t (w) =0, (53) eigenvalues\ < 0. Substitutingr; — 7 (u) + 2(u) into

§ 5, . the flow equations and keeping only terms which are linear
572(u) + gury(u) + (1 +2)rz (u) = 0. (54) in z(u), we derive the linearized flow equations at the FP
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FIG. 4: Fixed point describing the interface in a medium vidthg-
range correlated random bond disorder (LR RB FP)Sf@E 2. The

SR partri (u) is a non-analytic function with;” (0%) # 0. The LR
partr;(u) is an analytic function. Here we report minus their second
derivative.

{ri(u), 75 (uw)}:
(1 — 4Gz (u )+<1uz () + [ (u) + 75" (u)]
X [2Y () + 25 ()] + (1 + 2) 2 (w)
+ Agri’(u) = 21 (u), (57)
(6 — 4G1)2(w) + Guzh(u)
+ (1 +2)25 (u) + Agry” (u) = Az2(u), (58)

where we have introduced= ¢, Ag = —[2{(0) + 25(0)],
and X\ is also measured in unites ef. Note that because
of the freedom to rescale;(u) we always have the eigen-

modezfo) with marginal eigenvaluey = 0. As shown in
Ref. |45] for SR RB FP the corresponding eigenfunction is
given byz1 0 = ury(u) — 4r} (u),zéo) =0, Wh|Ie the next
eigenvalue\; = —1 corresponds to{l) i (u) +

(1 — ACSR)rx (u), 28” = 0. Here {ri,r; = O} is the SR
RB FP and the Taylor expansion of the functr@h can be
found in Ref. [45]. Thus the SR RB FP is stable in the
SR disorder subspaces( = 22 = 0). Let us check its
stability with respect to introduction of LR correlated dis
order. From Eq.[[38) follows that the maximal eigenvalue
Amax = 0 — 5¢R corresponds to the exponential eigenfunc-
tion zo(u) = exp(—¢FRu2/|2r;”(0)]) with 73 (0) = —0.577

-0,8

FIG. 5: Second derivative of eigenfunctions(u) and z2(u) com-
puted at the LR RB FP fof = 2.

We are free to fix the length of the eigenvectors, for instance
by the conditiorz (0) = 1 which gives

Ay = i(l + 2)[26 + 5. (60)
30

Thus to find the eigenvalueand the eigenfunction, we have

to solve Eq.[[(A7) with condition;’ (0) = —1 — Ay and require

an exponentially fast decay of the solution at latge The
only case for which we succeeded to construct the solution

analytically is0 = 2, which is depicted in FigurEl 5. It has
eigenvalue\ = —1 and reads
1 */ 1 * 5 *
z1(u) = —3ur (u) + 3" (u) + 52 (u), (61)
1
2(u) = —glury(u) + ry(u)]. (62)

For other values of we solve Eq.[[(H7) numerically usingas

a shooting parameter and require an exponentially fastydeca
of z;(u) for largeu. To compute the numerical solution we
need the initial conditions. Expanding Eg57) in a Taylor
series, we obtain

5[2%(26 4 5X) + 52(5 + A) + 30]

(0) 35(5 — 46 — 5))

#(0)

(63)

3

0. (64)

for SR RB FP. As a consequence, the LR correlated disorder

destabilizes the SR RB FPdf > 5¢SR ~ 1.041, or equiva-
lently, using [BR) if¢S® < ¢MR. This criterion was of course
expected.

We now check the stability of the LR RB FP
{ri(u),r5(u) # 0}. It also has a marginal eigenvalyg = 0
with eigenfunctions given bylo) = urf(u) — 4r;(u) that
can be checked by direct substitution into Hq] (57) 4ndi (58)
Eq. (58) allows for an analytical solution which reads
bu? bu?

-1 - 59
] ] exp < 0 ) (59)

5142

5A0
20 + BA

2l = 1001 +2)

Apart from the marginal eigenvalug = 0, the largest eigen-
value is)\;. It is shown for different > 1.1 in Tablel. The
negative sign of\; reflects the stability of the LR RB FP. For

§ < 1.1 we failed to compute the numerical solution with rea-
sonable accuracy. However, the largest eigenvalue comhpute
at LR RB FP); tends to0 for 6 — 1.1 and the SR RB FP
becomes unstable far > 1.041 with respect to LR corre-
lated disorder. Thus we expect that the LR RB FP is stable for
§ > 1.041. Moreover, the largest eigenvalue within accessible
accuracy is well approximated by = 0.1917(¢P® — ¢IR)

that gives\; = —0.06 for § = 1.1.
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Besides the roughness exponent there is another universahich coincides with the Flory estimate. Introducing
quantity which is of interest. This is the displacementeeorr A;(u) = ey;(u), ¢ = €(; and fixingy; (0) = z, y2(0) = 1
lation function, which behaves like we can rewrite the stationary form of EqE.1(40) ahd (41) as

T — Ay ) (65) follows ({1 = 4/3):

d2

) + ()

Let us show that in contrast to systems with only SR- (1 —2¢)y:(u) + Cuy)(u) —
correlated disorder, this system, whose behavior is cthedro ” u

by the LR RB FP, has a universal amplitudiy. Indeed, + [+ 2]y (v) =0, (71)
according to equatiod (1), the integrfliu RY (u) is pre- (6 — 201 ya(u) + Cruyh(u) + [1+ ]yl (u) =0. (72)
served along the flow and is fixed to its bare valpiewhere

we have introduced the actual renormalized correldtgr ~ Ed. (Z2) can be solved analytically giving

which is connected t®, given by Eq. [Bb) by the relation

N =

r 4 . : < 2
R = k*R;(u/k) with  given by 1o (1) = exp (_6 fu ) . (73)
/s . 3/10 ( —HC)
! 0
k= (22)1/10 (5(1 +x)> ; (66)  Substituting the FP functior{¥3) in Eq_{71), we obtain a
closed differential equation for the functign(v). Expand-

where we used duRY (u) = Q. Then the amplitude can be ing aroundy = 0 we find

written to one-loop order as follows [19] 1 N N
) y1(0) = —g\/9$+35—6$5, (74)

_ = (_ ptry _ ptry .
Ag = K4( Ry (0) — R3™(0)) /o) 1 $x—2 5
2 Y1 T 37 9z+1
_ K — 02/5R(3 x+1
= K TN =0T, ©7) w(0) = 0, (76)
. . . §
where we have introduced the universal function J(0) = — ’ . 77)
) 5 3/5 (z+1)
a 8 a =4
B(9) = ﬁ(l +2(0))*/° <5> : (68)  Thus we can compute numerically the solutigriu) for any
fixed 0 andy;(0) = =z, however, only for special values of

values forx(S) and forB(S) for differents are shown in Ta-  © this solution decays exponentially at infinity. The corre-

sponding solution can be computed using the shooting method
blell. . ; .
as described above, usingas a shooting parameter (see Ta-
ble[).
VII. NON-PERIODIC SYSTEMS RANDOM FIELD A pair of typical FP functions is shown in Figuké 6. Sur-
DISORDER prisingly, the functiony, (v) obtained by shooting satisfies

f0°° du y1(u) = 0, characteristic for RB type correlations

. . along theu direction. In other words, the LR RF FP is in
We now address the problem of an elastic interface in ) ) ’
medium with LR-correlated RF disorder. We expect that sim-aCt of mixed type: RB for the SR part and RF for the LR part

. : : ; . . of the disorder correlator. This can be understood as faliow
ilar to systems with uncorrelated disorder this univetgali ° . 0o . : :
class also describes the depinning transition. To see yisat s Consider the flow O%% duys(u). Itis obtained by integrat-
tems with RB disorder flow in the dynamics to the RF FP, one"9 thAe L.h.s. of Eq.[(41) from O to infinity, and by inserting
has to include either effects of a finite velocity or considers! = 9/3:
two-loop contributions, that go beyond of the scope of the oo oo
present work; but we expect the mechanism to be the same 8@/ duy,(u) = (1 - 5) / duyi(u)
as in Ref.[[18]. 0 0
Let us look for a solution of Eqs[T#0) arid141), which de- +li 1 (w) + ya(w))* | _, — (1 +2)y,(0), (78)
cays exponentially fast at infinity as expected for RF disard 2du u=0
From Eq. [41) it follows that where we have used the fact that most terms in the FRG-
oo 0o equation[[7lL) are total derivatives. Finally, we remark tha
6g/A2(u) - —3()/A2(u). (69) second line of EqL{18) cancels exactly provided thdt:) is
an analytical function, leaving us with
0 0

Therefore[;~ Az (u) is preserved along the FRG flow fixing 6g/ duyi(u) = (1 - 5) / du yy (u). (79)
the roughness exponent to 0 0

S This means that for LR-correlated disorder, ide> 1, the
2 g2 . . .. . . .
CLrRF = 3 + O(e7, 0%, €9), (70)  integral ofy; indeed scales to 0. A non-trivial fixed point is
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TABLE II: Long-range correlated random field disorder. Stirogp

parameter: = y1(0), the maximal eigenvalue and the universal am- 104~ | | o
plitude for different values of. I N — )

- - - 0.8 R
0 z(9) A1 B(9) | A N I B )

1.1 0.562872 —0.1 140.43 06 \

1.2 0.525082 —0.2 142.23 ] N

1.3 0.496948 0.3 144.27 04 :

1.4 0.475110 —-0.4 146.44 1 N .

1.5% 0.457638 -0.5 148.66 0.2 R

2.0° 0.404989 —1.0 159.66 1 \ Sl

c 00 : : : — —

3.0 0.362329 2.0 179.04 0 ~__ 1 .
aRandom lines in planar interfacd & 2, a = 1). u

bRandom lines in a 3d manifoldi(= 3, a = 2).
¢Random planes in a 3d manifold & 3, a = 1).

FIG. 6: Fixed point describing the interface in a medium wdting-

possible at 2-loop order for depinning. We remind thakirj [18 range correlated random field disorder (LR RF FP)Jor 2. The
it has been shown that at 2-loop order and for SR-correlate8R correlatoy; (u) has a cusp at origin and formally corresponds to
disorder, new terms arise in the FRG-equation, whicmaio RB type of cqrrelation in direction. The LR correlatorys (u) is an
integrate to 0. Indeed, this is the mechanism which leadgnalytic function of RF type.
to a break-down of the resulkrrr = /3, at depinning.
The same terms will appear here. We expect that the addi . .
tional diagrams due to LR-correlations do not exactly chnceldo.m (I)If .rescalmg. For arbitrary, Eq. [E1) can be solved ana-
these terms, especially since these terms are proportional ytically:
the derivative at the cusp, and LR-disorder will probably re Ao (u? - 3(1 + 2)) G2
main analytique, thus not contribute to the anomalous terms 2, (u) = v 5 exp | ——— | . (82)
These considerations let us expect that at 2-loop ordenthe i 3(20 +30)(1 + ) 6(1+ )
tegral ofy; (u) will be small, but non-zero. . ) )

Let us finally check the stability of the SR RF FP and We are free_tp fix the length .of thg eigenvectors, for instance
new LR RF FP. At the SR RF FP the roughness is given by the condition:>(0) = 1 which gives
(srrr = €/3, and thus, we expect the crossover from the SR 1 .
universality to LR ab > ¢, which follows from the condition Ap=—=(20+3N)(1 + ). (83)
(srrr = (Lrrr. TO check the stability of the FPs, we fol- 0
low the strategy used for the RB case and linearize the floarhus to find the eigenvalug and the eigenfunction; we

equations about the RF FPs. We obtain have to solve Eq[{80) with condition (0) = Ay — 1 and
) require an exponentially fast decay for largeWe need the
(1 — 20121 (w) + Gruz) (u) — d_{m(u) + 3 ()] initial conditions which can be found by expanding Hg. (80)
du? U~ in a Taylor series:
X [z1(w) + 22(w)] | + (1+2)2 (W) 1
0) = —1—=(20+3)\)(1 , 84
(6 — 2C1)za(u) + Cuzh(u) + (1 4 2)z () 2(0) = — {[9)\2 + (120 = 9)](z + 1) + 6*(4z + 7)

A () = Az (), (81)
0ys" (1) = Aza(u) (6o +9)) 20y/0r — i +35. (89)

where we have introduced, = z1(0) + 22(0). Firstly we
prove our conclusion on the stability of SR RF FP with re- ¢
spect to LR correlated disorder. To that end we solve[Ed,. (58%
assuming that; = ¢! = 1/3 andz = y5®(0) = 2/9.

= 2 is the only case in which we succeeded to find a com-
letely analytical solution. It hak; = —1 and reads

We obtain thatz, = exp(—¢;"u?/(2y7°")) and the corre- () o )_1 (1) — 3 * (u) (86)

sponding eigenvalug,,., = 6 — 3¢SR. Therefore, indeed the A) = Uy (u) = 5hu) = 5z (),

?Ii RF FP becomes unstable with respect to LR disorder for 2o(u) = uyd (u) + yi(u). (87)
E.

We now focus on the stability of the LR RF FP. Analy- For other values of, Eq. [B) remains correct, while to obtain
sis of the linearized flow equatioris{80) afidl(81) shows that, (u), we solve Eq.[[80) numerically, usingas a shooting
there is at least one eigenvecﬁé?) = uAf(u) — 2AF with parameter. As can be seen from Tdhle Il, the largest eigen-
marginal eigenvalué, = 0, which corresponds to the free- value satisfies; (§) = 1 —4 = 3(¢SR — ¢LR). This result can
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be obtained analytically as follows. Integrating Hql (8@nfi

0 to oo, we get the condition 1,2
00 . 08 \\ e
/0 duz(u) (1-5-2) =0, (88) Wl e |
1 \
proving that as long a§ z;(u) # 0, one has\ = 1 — 5. o0 N a4 6
Therefore the LR RF FP is stable fér> ¢. Inserting this -0,4 "
value of\ back into [8D), we obtain after some simplifications 05
6 d d? 421
0 = 370 (uz1(u)) — T2 [Y(u)z1(u) + W(u)], y ] "
Y(u) = yi(u) = y1(0) + y2(u) — y2(0), (89) ]
W(u) = z2(u)[y1(u) + y2(u)] = y1(0)[21(0) + 22(0)].
The first equation can be integrated with the result FIG. 7: Eigenfunctiong: (u) andz2(u) computed at the LR RF FP
R for § = 2.
0 d
sun(u) = = [V(wa () + W],  (90)
o ) where we have fixed duAY (u) = Q. Then the amplitude
Th|S IS eqU|Va|ent to can be Written as
5 1 r r
o |V - gu +AY = W (91) Aq = E(Ai (0) + A5(0))
= E—’“””Qu +x) =£2Q**B(9) (97)
The homogenous equation reads Ky ’
5 with the universal functions given b
) = O 2% (92) gven’by
3Y .\ 1/3
Its solution is B(8) = 87%(1 + x)?/3 <§—5> : (98)
7T
C 5 [ s
a(u) = Y (u) P [5/0 ds Y(s) (©3) Values of B($) for differenté are shown in TablEll.

Depinning.We are now in the position to study the depin-
with some constart’. A solution to the inhomogeneous equa- ning transition, which we expect is controlled by the LR RF
tion is obtained by replacing’ by C(u), and inserting the FP. The dynamic critical exponentdefined by Eq.[{45) is
latter into Eq.[[QIL). This yields given to one-loop order by

C(u)_—/oudtW’(t)exp [—g/tds%

Putting together everything, we obtain
e 6 9 9
B=1—=-4—+40(06,¢9). (100)

21(u) = —ﬁ /Ou dtW'(t) exp [—g/ﬂ ds %1
(95) 6 18

Let us now compute the universal amplitude defined by ]
Eq. [63). According to EqLT89) the integréildu A (u) is It is remarkable that fop > 35 the expoqenlﬁ is Iarger_
preserved along the FRG flow and can be fixed by its baréhanl, andz larger than2. This seems to imply some dif-
valueQ. The relation between the actual renormalized disferent physics - yet to be understood - in the avalanche pro-

orderAY and the rescaled disordey, (u) given by Eq.[ZB) Cess which makes the motion slower near depinning than in
readsAi™ = k2, (u/x). We obtain the SR case. The analyticity df, seems to suggest some

smoother motion at large scale, while short scale motion re-
QU3 03 1/6 mains jerky and avalanche like. Finally, note that at the $R R
( >> ’

5
(94) 2=2- 2+ 5+ 0( 8% 2), (99)

where we have used EqE175) ahdl (77) which gi{/€0) +

y4(0) = 1/3 — §/9. Other exponents can be computed using
scaling relationd{47) anfl{46), for example

K= (96) FPzsr = 2 —2¢/9, Bsgr = 1 — /9, and thus, the exponents

gl/3 are continuous functions efandd.

3r(l+z
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VHI. PERIODIC SYSTEMS TABLE IlI: Periodic systems with LR correlated disorder.&$hoot-

ing parametery; (0) and two first eigenvalues for differeft

We now study periodic systems with disorder correlator

given by Eq.[), which we can refer to as an XY model with y1(0) A A2
LR correlated defects. The results for CDWs with LR corre- 0 0.00971 0.0 —
lated disorder defined by correlatbrl15) can then be obdaine 1 /3 0.01089 0.333 _4.089
by substitutingy — 6; = 4 — d, — a. Itis sufficientto con- ;9 0.01183 0.500 —0.500
sider the system with the perlqd fixed to 1, since other system 2/3° 0.01348 0.667 —0.980
can be related to the latter using the freedom to rescale. As

L . 0.01645 0.800 —0.125
consequence the roughness exponent for periodic systems i$

0.02346 0.900 —-0.013

¢ = 0. At variance with interfaces we introduce reduced pa-0 9

rameters according t;(u) = dyi(u), A = y1(0) + y2(0) aCorresponds td = 2, a = 1, i.e. line defects (e.g. dislocations) along the
andé = /4. Then the fixed point equations can be written asplane of a CDW.

follows

2
) — - () + o) + A{(w) =0, (201)

yo(w) + Ay (u) =0. o2 "
Equation[[I0R) can be solved analytically. Its solution is 0015
Y2 = y2(0) cos(2mu), A =1/(2n)% (103) 0.0104
Equation[(I01) can be solved analytically for 0: 0,005
y1 = y1(0) + y2(0) (1 — cos(27u)) 0,000 -
1 ]
5 V/2y2(0) (1 — cos(2mu)). (104) -0,005 -
The coefficientsy;(0) are determined by potentiality of the -0.0104
A;, i.e. from the conditions 00 o2 o4 o8  os 1o
1
/du y1(u /du ya(u (105)
] FIG. 8: Fixed point of a periodic system with LR correlatesatier.

The SR disorder correlatgf (u) computed for different values éf
and the identity; (0) + y2(0) = 1/(2m)2. They read

y1(0) = 1/(2m)* —1/64, (106)  WhereA, is a universal amplitude, which to one-loop order is
y2(0) = 1/64. (107) given by
2K, 5
Foré > 0 Eq. [T01) can be written in the following form AR K4d A(0) + AZ(0)] = o 110)
y1(u) — L& {[ () + yo(u)]? = &2 () } _0, (108) Where we have restored the factor bfK previously ab-
o " sorbedimA;. The SR periodic FP is Characterized,b&?R) =
wherey,(u) is given by Eq.[I03) withyx(0) = 1/(27)% — £/18 + O(g?). Itis interesting to comparE(I10) with the pre-

y1(0). Expanding EqLTI08) in a Taylor series abaut 0 we diction of the Ggg)ssian variational approximation for the S

flnd thaty] (0) = —/T/(2m)Z — y1(0)(1 — &). Thus for any disorder case4d ava = €/(2m%). We expect the crossover
fixed0 < & < 1 andy; (0) we have only one solutiogp (u), between LR and SR FPs AISLR) A, (SR) i.e. LR disorder
but only for a specifig/;, (0) this solution fulfills the condition  to be relevant for

y1(1) = 31(0). To find this value we employ the shooting c 9

method usingy; (0) as a shooting parameter. The values of 5 < 2 ~0912 (111)
y1(0) computed for different are summarized in TablelII. - o

ure[d. The flow equations linearized about the FP read
While the roughness exponent is zero, the system forms a d2
Bragg glass phase with a slow growth of the displacements  €z1(u) — W{M(U) + y3(uw)][z1(u) + zQ(u)]}
according to
g + A2 (u) + Aoyl () = Az (u), (112)
(uy —up)? = Agln|z|, (109) zo(u) + Az (u) + Aoys" (u) = Azz(u), (113)



where we have introduced, = 2;(0) + 22(0). Let us re-

mind that the SR FP is unstable with respect to non-potential __|
perturbations even in the subspace of SR disorder. Indeed, t

SR periodic FP

Al = 5 |g-ui-u], A3 =0 @14
has in the SR subspace the positive eigenvalue- 1, cor-
responding to the non-potential eigenfunction= 1. All

other eigenfunctions are potential, i.e. fulfill conditi@@3),

and have negative eigenvalugs|[45]. If we add LR correlated

disorder, the solution of Eq{TI13) yields
zo(u) = cos 2mu. (115)

The corresponding eigenvaligr = 1 — é72/9 confirms our

14

0,5

)
7, (w)

estimation for the stability of the SR periodic HP{IL11). ForFIG. 9: Two first eigenvectors computed at the LR periodic FP.

the LR periodic FP we still have EQ._{1115) with

A

Ag=-——"
O 1 —dn?y(0)

Eigenfunctions:\" (u) andz{® (u) for & = 2/3.

and thus, thee andx dependencies are coupled in the bare cor-

Equation [TIR) has a periodic solution only for a discrete serelator. Forthe present_discussion we considethe number
of eigenvalues\; (the first two are shown in Tab[Elll). It Of components of;, arbitrary, henced = N + d. We recall

follows from the Table thak; = ¢ > 0. In analogy with the

thata = D — ¢4. The question to which universality class

SR periodic FP the LR periodic FP is unstable with respect tdhis model belongs is subtle. It turns out that it does notesor

a non-potential perturbation corresponding\{o The latter is
obtained by integrating (Tl 3) over one period,

1
(e - /\)/O du z1(u) = 0. (117)

spond to LR disorder in internal space, but rather SR disorde
in internal space and LR disorder in thedirection, hence
Ry = 0 but Ry (u) long range inu. To see this let us consider
at fixedu the integral[ d’z R(x, u). We can distinguish two
cases:

(i): for a > d, this integral is convergent at large

A_s long as the inAtegraI does rjotvanish,this gives t_he redort hence we clearly have SR disorder in thedirection, and
eigenvalue\; = ¢. Indeed as it can be seen from Figlike 9 WeR (1) ~ |ul9 at largeu. This however is LR disorder

havefol duzgl)(u) #0 andfol duzgn)(u) # 0forn > 2.

in . This case has been studied using FRG and yields, for

Depinning We now focus on the depinning transition of ¢ < a.(d, N) aroughness exponent exactly given by the Flory
the periodic system with LR correlated disorder. At the LRvalue((a,d) = (4 — d)/(4 + a — d). The values.(d, N) can

periodic FP we have

y/(0) = 1+ % — 47%y1(0), (118)
Yy (0) = —4772y2(0), (119)

and thusy/ (0)+y4 (0) = £/3. The dynamic critical exponent

z defined by Eq.[{45) reads to one-loop order

SR g % +O(e2, 6%, £6), (120)

Therefore for periodic system$® = 25% to one-loop order.

IX. FULLY ISOTROPIC EXTENDED DEFECTS

In this Section we briefly examine the effect of a defect
distribution isotropic in the wholéx, u) space. Consider first
interfaces in random-bond type disorder. Fr&in (5) &hd (8) on

finds:

2
VLR

R((E, U) = VRB((E, U)VRB(O, 0) ~ W,

(121)

be estimated using the value for the SR disorder roughness ex
ponent, by requiring(a.(d, N),d) = (sr.ra(d, N) (small
deviations can arise as discussed.in [7]).

(ii): for a < d, the situation is more subtle and one may
be tempted to argue, singed?zR(z, ) diverges in the in-
frared, that disorder LR inc is produced. This is how-
ever not the case, as can be seen on the Fourier transform
R(q, P), whereP is the momentum associated & andgq
to z. One hasR(q, P) ~ (¢ + P?)@=4=N)/2 which has
a well defined limitR(q = 0,P) = P*~4=N_ This corre-
sponds again, as we argue, to a SR correlator in space with
Ri(u) — R1(0) ~ |u|?~. As is often the case LR models
require some trivial subtractions. The subtracted cawela
R(z,u) — R(z,0) has indeed a convergent integralu|?—¢
at largeu, while subtracting a:- independent piece does not
change the model. The critical cagse= d is described by
the logarithmic modeR(x,u) — R(x,0) ~ In|u| which has
¢ = (4 —d)/4in all dimensions/[47].

To summarize, isotropic distributions of defects isotoopi
in the (x,u) space also yield LR models, but not of the type
@) studied here. For isotropic line defects one figds (4 —
d)/(3+N) (i.e.¢ = 3/4for a directed polymer i = 1+1,



1

FIG. 10: 2d domain wall moving in 3D magnet with fully isotiop

planar defects.

¢ =3/5inD =1+ 2, and for an interfacd = 2 + 1,
¢ = 2/5). Isotropic planar defects yield= (4 —d)/(2+ N),
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at the depinning transition. This type of long-range carrel
tions exists in the internal space of the manifold, and weshav
discussed how it can be realized in terms of extended defects
or anisotropic defects with a broad distribution of lengttis-

ing a dynamic formalism we derived the FRG flow equations
for the SR and LR parts of the disorder correlator and found
three new FPs, which describe three new universality cdasse
All new FPs are characterized by a non-analytic SR part of
the disorder correlator and an analytic LR part. We have com-
puted the corresponding exponents and universal ampditude
in a double expansionia= 4 — d and§ = 4 — a. For RB
type of disorder we find that the LR correlation of disorder is
relevant for§ > 1.041e and results in the roughness exponent
¢ = 6/5, while for § < 1.041¢ the scaling behavior is con-
trolled by the SR RB FP witlf = 0.208298¢. We find that
the presence of RF disorder results in a mixed FP with the
SR correlator corresponding formally to RB type of disorder
and an analytic RF LR correlator. The LR RF FP which is
also expected to control the depinning transition is sténle

§ > egiving¢ =4d/3andg =1—-¢/6+6/18. The LR
correlated periodic FP is stable for< 0.912¢ and gives a

hence( = 2/3 for a (D = 2 + 1)-dimensional interface. ) ! ’ ) _
This case is illustrated in FiguEJ10. Note that in that casé!OW IogaLrghmeQrowtgh of displacements with universalam
there are infinitely many lines of defects inside the integfa plitude A;™ = 6°/(27%). It is remarkable that this type of
with random directions (the intersections of the planaedisf disorder yields an exponefitfor the velocity-force character-
with the interface gives lines), but that this does not seffc  iStics which can be larger than unity and a dynamical exppnen
create power-law correlations in internal space, as capdre s 1arger thare. This striking behavior might be relevant for ex-
from the example where the planar defects are orthogonal t8e"iments, and gives a strong motivation for numericalistid
the interface. of the problem, e.g. to understand the nature of motion at the
Finally in the periodic case, such as for CDWs, isotropicd€Pinning transition in these systems.

disorder in the full spacér, z1) again leads to correlations
(@3), but now the functiom (z — a:ﬁ) decays exponentially
beyond a length scale set by the disorder period (as can be see
in Fourier space considering the discrétenodes). Hence the

problem is described by the standard (SR) random periodic

class.

X. CONCLUSION
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