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Field theory conjecture for loop-erased random walks
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We give evidence that the functional renormalization group(FRG), developed to study disordered systems,
may provide a field theoretic description for the loop-erased random walk (LERW), allowing to compute its
fractal dimension in a systematic expansion inε = 4 − d. Up to two loop, the FRG agrees with rigorous
bounds, correctly reproduces the leading logarithmic corrections at the upper critical dimensiond = 4, and
compares well with numerical studies. We obtain the universal subleading logarithmic correction ind = 4,
which can be used as a further test of the conjecture.

The loop-erased random walk (LERW) was introduced by
Lawler [1] as an alternative to the self-avoiding walk (SAW),
which is relevant in polymer physics. On the lattice, the
LERW is defined as the trajectory of a random walk in which
any loop is erased as soon as it is formed. As the SAW, the
LERW has no self-intersections, but is more tractable math-
ematically. It has been proven that the LERW has a scaling
limit in all dimensions [2, 3, 4, 5, 6, 7]. The number of steps
(or time)t it takes to reach the distanceL scales astL ∼ Lz,
wherez is the fractal dimension of LERW. Ind = 2 this scal-
ing limit is conformally invariant and described [8, 9] by the
stochastic Loewner evolution SLE2. Though the LERW and
SAW belong to different universality classes, the LERW itself
has received significant attention due to applications in combi-
natorics, self-organized criticality (SOC), and, more recently,
conformal field theory and SLE. The LERW can be viewed as
a special case of the Laplacian random walk [10] and can be
mapped [4] to the problem of uniform spanning trees (UST):
Chemical (i.e. shortest) paths on UST obey LERW statistics.
It is proven that the upper critical dimension isduc = 4, the
same as for the SAW, since ford > 4 the traces of two ran-
dom walks do almost surely not intersect. Hence ford > 4
the fractal dimension of the LERW is that of a simple random
walk, z = 2. It was proven a while ago [11] that ford < 4
it is bounded from above by the Flory estimate for the SAW
exponent:

R2 ∼ t2/z , z <
d + 2

3
= 2 −

ε

3
, (1)

whereR = 〈R(t)2〉1/2 is the radius of gyration, and we have
introducedε = 4 − d. The mapping to UST and equivalently
to the q-state Potts model atq → 0 was used ind = 2 to
predict [4]zLERW(d = 2) = 5

4
, later proved in Ref. 12. It is a

particular case, forκ = 2, of the fractal dimensiondf = 1+ κ
8

of the trace of SLEκ (a simple curve forκ < 4). Another
connection ind = 2 is to theO(N) loop model withN = −2,
both corresponding to a conformal field theory (CFT) with
central chargec = −2. The leading logarithmic corrections at
the upper critical dimensiond = 4 where obtained by Lawler
[5] who proved that:

R2 ∼ t(ln t)1/3. (2)

In d = 3 the value ofzLERW is known only from numerics.
The most precise estimate was obtained by Agrawal and Dhar
[13],

zLERW(d = 3) = 1.6183± 0.0004 , (3)

improving on the previous numerical result [14]z = 1.623 ±
0.011.

Contrary to the SAW, which is described by theO(N)
model atN = 0, there seems to be at present no field-theoretic
approach to compute the LERW exponent in a dimensional
expansion aroundd = 4. This is surprising, especially when
compared with the recent progress in CFT descriptions in
d = 2. In this short paper we propose a field theoretic de-
scription for the LERW, based on the Functional RG, a method
developed to study disordered systems. We build on a connec-
tion proposed a while ago between the depinning transition
of periodic elastic systems, also called charge density waves
(CDW) in random media and sandpile models. The corre-
spondence, on which we detail below, is indirect, through a
chain of related models: From LERW to UST to sandpiles
to CDW-depinning and finally to functional renormalization
group (FRG) field theory. Some of the connections are not rig-
orous. At the end we show that the FRG passes all the tests of
presently known results for LERW. In particular, it reproduces
the correct leading logarithmic corrections ind = 4 given by
Eq. (2), and makes a prediction for the subleading logarithmic
correction which we hope will be tested in the near future.

We now present briefly the intermediate models. The Bak-
Tang-Wiesenfeld (BTW) sandpile model was proposed as a
prototype for driven dissipative systems exhibiting SOC [15].
It is defined on thed-dimensional hyper-cubic lattice with
Ld sites. The configuration at timet is given by the integer
number of grainsh(x, t) at sitex. The sitex is unstable if
h(x, t) > 2d in which case it relaxes according to the top-
pling rule

h(x, t + 1) = h(x, t) − 2d ,

h(y, t + 1) = h(y, t) + 1 , (4)

wherey denotes all the2d nearest neighbors of sitex. The
neighbor sites may then become unstable and the toppling
continue. The order of topplings is irrelevant, thus the notion
of “Abelian” sandpile, which allows to use e.g. parallel dy-
namics. The process continues until no unstable site remains,
i.e. the avalanche ends. This is achieved through grains that
leave the system at the boundary. To ensure a steady state one
drives the system by adding a grain to a randomly chosen site
x after each avalanche. Stable configurations are either tran-
sient, or recurrent in which case they appear in the stationary
state with equal probability [16]. The recurrent configurations
are shown to be in one-to-one correspondence with spanning
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TABLE I: Padé approximants forz in d = 3.

[n/m] m = 0 m = 1 m = 2 m = 3

n = 0 2 1.71429 1.6 1.61074

n = 1 1.66667 1.5 1.61194

n = 2 1.55556 1.63158

n = 3 1.60069

trees [17] on the same lattice plus a sink (into which fall all
grains leaving the system through the boundary). These span-
ning trees are connected sets of edges touching all lattice sites
with no loops, and chosen with uniform probability (UST).
Thus the timet and lengthL in the sandpile dynamics are re-
lated by the fractal dimension of the chemical path along a
spanning tree, which is nothing but a LERW.

Narayan and Middleton proposed that the charge density
wave (CDW) near the depinning transition can be viewed to
some extent as a BTW sandpile model [18, 19]. The configu-
ration of ad-dimensional elastic object, such as a CDW mov-
ing in a disordered medium is parameterized by a displace-
ment fielduxt, x ∈ R

d. In the continuous limit, the dynamics
is described by the over-damped equation of motion

η∂tuxt = ∇2uxt + F (x, uxt) + f, (5)

whereη is the friction,f the driving force, andF the random
pinning force. The latter is taken to be Gaussian with zero
mean and correlator

F (x, u)F (x′, u′) = ∆(u − u′)δd(x − x′). (6)

where∆(u) is an even periodic function (chosen here with pe-
riod 1). Discretizing space and time, one can rewrite Eq. (5)
near the depinning transition [32] in the form of the automa-
ton model (4) withh(x, t) playing the role of a coarse-grained
curvature of the elastic object. Both models, the original BTW
model and the discretized version of Eq. (5), are driven by
adding grains,h(x, t + 1) = h(x, t) + 1. In the CDW model
grains are added with a cycle restriction [33]. While this dif-
ference may seem inconsequential, it illustrates that the map-
ping is presently not rigorous; moreover an ad-hoc discretiza-
tion must be used. Nevertheless it is supported by numerics
[18]. It strongly suggests that the dynamic exponentz de-
scribing the depinning transition of ad-dimensional CDW co-
incides with the fractal dimension of LERW ind dimensions.

The field theory which describes the depinning transition
for system (5) is based on the Functional RG [20]. Recent
progress has shown that full consistency requires a 2-loop
study. The coupling constant of the theory isa function. The
corresponding flow equations to 2-loop order read [21]

∂l∆(u) = ε∆(u) −
1

2
[(∆(u) − ∆(0))2]′′

+
1

2

[

(∆(u) − ∆(0)) ∆′(u)2
]′′

+
1

2
[∆′(0+)]2∆′′(u), (7)

∂l ln η = −∆′′(0) + ∆′′(0)2 + ∆′′′(0+)∆′(0+)

[

3

2
− ln 2

]

,

(8)

wherel = lnL, andL the infrared cutoff, e.g. the size of the
system. Belowd = 4 the flow equation (7) has a fixed point
(FP) solution∆∗(u) with a cusp at the origin:∆∗′(0+) 6= 0.
Taking into account thatt ∼ ηlL

2 and that in the vicinity of
the FPηl scales withL according to Eq. (8), one finds that
t ∼ Lz, and to 2-loop order the exponentz is given by [21]:

z = 2 −
ε

3
−

ε2

9
+ O(ε3). (9)

Comparison with the exact bound (1) is encouraging since the
2-loop correction has the correct sign. To estimate values of z
in d = 2, 3 we compute different Padé approximants[n/m] to
(9). In d = 2 we obtainz(d = 2) = 1.23 ± 0.22, consistent
with the presumed exact value5

4
but of poor accuracy [34] due

to the large expansion parameterε = 2. Table I contains the
approximants[n/m] in d = 3. To improve the accuracy we
construct the higher order Padé approximants withn+m = 3
imposing thatz(d = 2) = 5

4
for ε = 2. The average and

root-mean-square of all approximants withn + m = 3 yields

z = 1.614± 0.011 . (10)

The same procedure based on one loop only producesz =
1.638 ± 0.012. The value (10) is our best 2-loop FRG pre-
diction for d = 3 and is in fairly good agreement with the
numerical result (3).

The field theory is most predictive at the upper critical di-
mension, where it yields exact results. For FRG some were
obtained previously (see e.g. Refs. 22, 23, 24). Here we com-
pute the logarithmic corrections to the dynamics which yield
a prediction for the LERW ind = 4. For ε = 0 one shows
from (7) that the (periodic) disorder correlator approaches the
FP solution∆∗(u) = 0 as follows (for0 ≤ u ≤ 1):

∆l(u) =

[

1

6l
+

ln l

9l2

] [

1

6
− u(1 − u)

]

+ O

(

1

l2

)

. (11)

Substituting Eq. (11) into Eq. (8) we obtain

ln
ηl

η0

= −
1

3
ln l +

2 ln l

9l
+ O

(

1

l

)

. (12)

Renormalizing the relationt ∼ ηlL
2 up to scaleL we arrive

at

t ∼ L2(lnL)−1/3

[

1 +
2 ln lnL

9 lnL
+ O

(

1

lnL

)]

, (13)

which can be rewritten as

L2 ∼ t(ln t)1/3

[

1 −
ln ln t

3 ln t
+ O

(

1

ln t

)]

. (14)

The scaleL2 can be taken asR2, the radius of gyration. We
note that the leading order of Eq. (14) coincides with the re-
sult (2) of Lawler. Here we obtain the universal subleading
correction.

The prediction (14) could be tested numerically, very much
as for the corresponding prediction [25] for the SAW ind = 4,
checked in [26]; there subleading corrections are necessary to
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properly fit the numerical data at any feasible chain length.To
this purpose, it is useful to note that, as for the SAW, there is
only a single non-universal constant in the correction termin
the parenthesis in (14),c/ ln t. It can e.g. be put to zero by a
proper choice oft0, settingt → t/t0 (in which case further
corrections are1/ ln2 t and determined by 3- and higher-loop
terms, not considered here). For comparison, one similarly
finds, from the 2-loopβ-function [27] of theO(N) model in
d = 4 thatL2 ∼ t(ln t)aN (1 − bN

ln ln t
ln t ) with aN = (N +

2)/(N + 8) andbN = (N + 2)(68 + 8N − N2)/(N + 8)3

from which the Duplantier values for the SAW [25],a0 = 1/4
andb0 = 17/64 are retrieved atN = 0. Note that no value
of N can account for (14), thus a representation of LERW via
theO(N) field theory, if feasible at all, would at least require
a more complicated operator correspondance.

Note finally that the exponentτ for the avalanche-size dis-
tribution [35] was recently computed to one loop within FRG
[28, 29]. In the sandpile literature no controlled calculation
exists for the corresponding exponent, usually calledτs, but
the formulaτs(d) = 2−2/d leading toτs = 4/3 in d = 3 has
been conjectured [13] from scaling arguments. The FRG was
found to agree toO(ǫ) with this formula, assumingτ = τs.
Evaluation of 2-loop corrections is in progress as a furthertest
of the conjecture and of the relations between sandpile models
and depinning.

To conclude, it may appear surprising that LERW be related

to a field theory based on functional RG, where one would ex-
pect a “simpler”, more conventional, field theory based on a
single relevant coupling constant, as for the SAW. One clue
may be that for periodic systems (CDW) the FRG posesses a
stable submanifold with only two coupling constants,∆(u) =
a + bu(1 − u) (for 0 ≤ u ≤ 1), which contains the lead-
ing critical behavior. From (7) one obtains [21, 29] the spec-
trum of convergence to the fixed point [36] as1/(lnL)1+αn

in d = 4 andL−ωn with ωn = αnǫ+βnǫ2 +O(ǫ2) for d < 4;
αn = 1

3
(3 + n)(1 + 2n), βn = − 1

9
(n + 2)(2n + 1)(2n + 3).

The valuesn = 1, 2, . . . correspond to the convergence to the
submanifold, andn = 0 to the convergence inside it. Con-
vergence to the submanifold is fast, with leading eigenvalue
1 + α1 = 5. Fast convergence was also found in numerics
[30] where the FRG function∆(u) in (7) was directlymea-
sured in d = 1, 2, 3. The conjecture raises many other in-
teresting issues to be explored, such as the possibility to pre-
dict other LERW observables and corrections to scaling, the
role of other universality classes for CDW and interface de-
pinning, the connections to fermionic field theory (known for
UST, see e.g. [31], and conjectured for the FRG [24]). Work
is in progress in these directions.
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