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Field theory conjecture for loop-erased random walks
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We give evidence that the functional renormalization gr{fiRG), developed to study disordered systems,
may provide a field theoretic description for the loop-edasmndom walk (LERW), allowing to compute its
fractal dimension in a systematic expansiorein= 4 — d. Up to two loop, the FRG agrees with rigorous
bounds, correctly reproduces the leading logarithmicemtions at the upper critical dimensiah= 4, and
compares well with numerical studies. We obtain the unalessibleading logarithmic correction ih = 4,
which can be used as a further test of the conjecture.

The loop-erased random walk (LERW) was introduced byimproving on the previous numerical resultl[14} 1.623 +
Lawler [1] as an alternative to the self-avoiding walk (SAW) 0.011.
which is relevant in polymer physics. On the lattice, the Contrary to the SAW, which is described by tiiE V)
LERW is defined as the trajectory of a random walk in whichmodel atV = 0, there seems to be at present no field-theoretic
any loop is erased as soon as it is formed. As the SAW, thapproach to compute the LERW exponent in a dimensional
LERW has no self-intersections, but is more tractable mathexpansion around = 4. This is surprising, especially when
ematically. It has been proven that the LERW has a scalingompared with the recent progress in CFT descriptions in
limit in all dimensionsl|[2| 3,/4,/5,/6,/7]. The number of stepsd = 2. In this short paper we propose a field theoretic de-
(or time)t it takes to reach the distandescales a$;, ~ L*,  scription forthe LERW, based on the Functional RG, a method
wherez is the fractal dimension of LERW. ld = 2 this scal-  developed to study disordered systems. We build on a connec-
ing limit is conformally invariant and describeo [8, 9] byeth tion proposed a while ago between the depinning transition
stochastic Loewner evolution SLEThough the LERW and of periodic elastic systems, also called charge densityesav
SAW belong to different universality classes, the LERWIitse (CDW) in random media and sandpile models. The corre-
has received significant attention due to applicationsimlie ~ spondence, on which we detail below, is indirect, through a
natorics, self-organized criticality (SOC), and, moreargty,  chain of related models: From LERW to UST to sandpiles
conformal field theory and SLE. The LERW can be viewed agso CDW-depinning and finally to functional renormalization
a special case of the Laplacian random walk [10] and can bgroup (FRG) field theory. Some of the connections are notrig-
mapped|[4] to the problem of uniform spanning trees (UST):orous. At the end we show that the FRG passes all the tests of
Chemical (i.e. shortest) paths on UST obey LERW statisticspresently known results for LERW. In particular, it repreds
It is proven that the upper critical dimensionds. = 4, the  the correct leading logarithmic correctionsdn= 4 given by
same as for the SAW, since fdr> 4 the traces of two ran- Eq. (2), and makes a prediction for the subleading logaiithm
dom walks do almost surely not intersect. Hencedas 4  correction which we hope will be tested in the near future.
the fractal dimension of the LERW is that of a simple random We now present briefly the intermediate models. The Bak-
walk, z = 2. It was proven a while ago [11] that far < 4  Tang-Wiesenfeld (BTW) sandpile model was proposed as a
it is bounded from above by the Flory estimate for the SAWprototype for driven dissipative systems exhibiting SOE][1

exponent: It is defined on thed-dimensional hyper-cubic lattice with
L4 sites. The configuration at tineis given by the integer

2 42/ d+2 3 . ) SO ;

R ~t , #<—g—=2-3, (1)  number of graingi(z,t) at sitex. The sitex is unstable if

) ) _ h(z,t) > 2d in which case it relaxes according to the top-
whereR = (R(t)?)'/? is the radius of gyration, and we have pling rule

introduced: = 4 — d. The mapping to UST and equivalently
to the g-state Potts model at — 0 was used ind = 2 to h(z,t+1) = h(z,t) —2d,
predict [4]zrerw (d = 2) = %, later proved in Ref. 12. Itisa h(y,t+1) = h(y,t) +1 (4)
particular case, for = 2, of the fractal dimensiod; = 1+ % ’ ’ ’
of the trace of SLE (a simple curve for. < 4). Another  wherey denotes all thed nearest neighbors of site The
connection in = 2 is to theO(V) loop model withV = —2,  npejghbor sites may then become unstable and the toppling
both corresponding to a conformal field theory (CFT) with continue. The order of topplings is irrelevant, thus thdarot
central charge = —2. The leading logarithmic corrections at of “Apelian” sandpile, which allows to use e.g. parallel dy-
the upper critical dimensiod = 4 where obtained by Lawler namics. The process continues until no unstable site resnain
[5] who proved that: i.e. the avalanche ends. This is achieved through grairts tha
R? ~ t(Int)*/3. 2 Ief_;\ve the system at the bpundary._To ensure a steady state one
] ] drives the system by adding a grain to a randomly chosen site
Ind = 3 the value ofzgrw is known only from numerics.  after each avalanche. Stable configurations are either tran
The most precise estimate was obtained by Agrawal and Dhajient, or recurrent in which case they appear in the statjona
[13], state with equal probability [16]. The recurrent configioas
zLerw (d = 3) = 1.6183 & 0.0004 (3)  are shown to be in one-to-one correspondence with spanning
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wherel = In L, and L the infrared cutoff, e.g. the size of the
system. Below! = 4 the flow equation[{]7) has a fixed point
(FP) solutionA*(u) with a cusp at the originA*'(07) # 0.

TABLE |: Padé approximants forin d = 3.

[n/m]| m=0 m=1 m =2 m=3 ) S0 !
n—0 2 1.71429 16 161074 rakinginto account that ~ mL.2 and that in the vicinity of

the FP; scales withL according to Eq.[{8), one finds that
n=1 1.66667 1.5 1.61194 7 1.

t ~ L?, and to 2-loop order the exponenis given by [21]:
n=2 1.55556 1.63158 -
n=3 1.60069 2

z:z—g—%+0(g3). )

trees [17] on the same lattice plus a sink (into which fall a”Comparison with the exact bourid (1) is encouraging since the

grains leaving the system through the boundary). These spaﬁ'lgo_p 2C o3r rection hast th dgf(f:orreftzfa&gp. To estimate valtltes 0
ning trees are connected sets of edges touching all lattee s ' ¢ = 2,3 We compute different Padé approximaitgin] to

with no loops, and chosen with uniform probability (UST). @) Ind = 2 we obtainz{d e 2) = 1234 0.22, c0n§istent
Thus the timeg and lengthl in the sandpile dynamics are re- with the presumed exact valgebut of poor accuracy [f;4] due
lated by the fractal dimension of the chemical path along 4° the I(_a\rge expansion parametes- 2. Tablel] contains the
spanning tree, which is nothing but a LERW. approximantgn/m in d = 3. To improve the accuracy we
Narayan and Middleton proposed that the charge densi}?onStr_UCt iﬂeg'%hir (;rde: F;a?e apqoglmﬁhnts withm = 3 d
wave (CDW) near the depinning transition can be viewed t mposing thatz( _f )”_ g fore = 2. h]Le axe?r)agelém
some extent as a BTW sandpile model [18, 19]. The Conﬁgu[oot—mean—square of all approximants with m = 3 yields
ration of ad-dimensional elastic object, such as a CDW mov- 2 —1.61440.011. (10)
ing in a disordered medium is parameterized by a displace-
ment fieldu,,, = € R?. In the continuous limit, the dynamics The same procedure based on one loop only produces
is described by the over-damped equation of motion 1.638 4+ 0.012. The value[(ID) is our best 2-loop FRG pre-
diction for d = 3 and is in fairly good agreement with the

Mytize = Vitiay + F (2, tar) + f, ®) numerical resul(3).
wherey is the friction, f the driving force, and* the random The field theory is most predictive at the upper critical di-
pinning force. The latter is taken to be Gaussian with zeragnension, where it yields exact results. For FRG some were
mean and correlator obtained previously (see e.g. Refs. [22,(23, 24). Here we com-

— ~oed , pute the logarithmic corrections to the dynamics whichdyiel
F(z,w)F (2, v) = A(u—u')0%(z —2'). (6)  a prediction for the LERW inl = 4. Fore = 0 one shows
whereA (u) is an even periodic function (chosen here with pe-om (4) that the (periodic) disorder correlator approadihe

riod 1). Discretizing space and time, one can rewrite Eq. (Sfp solutionA* (u) = 0 as follows (for0 < u < 1):

near the depinning transition [32] in the form of the automa- 1 ill1 1

ton model[(#) with(z, t) playing the role of a coarse-grained  A;(u) = {— + —2} {— —u(l - u)} + O<—2> . (11)

curvature of the elastic object. Both models, the originE\\B 60 9l 6 ¢

model and the discretized version of Elgl (5), are driven bBubstituting Eq.[{T1) into EGX8) we obtain

adding grainsh(z,t + 1) = h(x,t) + 1. In the CDW model

grains are added with a cycle restriction![33]. While thif di m 1 21nl 1

ference may seem inconsequential, it illustrates that thjg-m In w3 Ini+ 97 +0 (7) : (12)

ping is presently not rigorous; moreover an ad-hoc diszaeti

tion must be used. Nevertheless it is supported by numericRenormalizing the relation ~ n;L? up to scalel, we arrive

[18]. It strongly suggests that the dynamic exponemte-  at

scribing the depinning transition ofdadimensional CDW co-

incides with the fractal dimension of LERW ihdimensions. t~ L2(InL)"1/3 [1 + 2Inln L + 0<L>] . (13)
The field theory which describes the depinning transition 9In L InL

for system|[(b) is based on the Functional RG [20]. Recent hich b .

progress has shown that full consistency requires a 2-Ioo}§' ich can be rewritten as

study. The coupling constant of the theonaifunction The ) 13 Inlnt 1

corresponding flow equations to 2-loop order read [21] L7 ~t(Int) 1- 3Int Ol mz ) | (14)
1

A (u) = eA(u) — 5[(A(u) — A0))%) The scaleL? can be taken ag?, the radius of gyration. We

note that the leading order of EQ. {14) coincides with the re-

+% [(Aw) — A®0)) A'(w)?]” + l[A’(O*)]QA”(u), (7)  sult (@) of Lawler. Here we obtain the universal subleading
correction.
dInn = —A"(0) + A”(0)2 + A" (0F)A/(0T) F —1In 2} ’ The prediction[(14) could be tested numerically, very much
2 as for the corresponding prediction [25] for the SAW/ie- 4,

(8) checked inl[26]; there subleading corrections are necgtsar



3

properly fit the numerical data at any feasible chain len§ith. to a field theory based on functional RG, where one would ex-
this purpose, it is useful to note that, as for the SAW, there i pect a “simpler”, more conventional, field theory based on a
only a single non-universal constant in the correction tearm single relevant coupling constant, as for the SAW. One clue
the parenthesis i (143/ Int. It can e.g. be put to zero by a may be that for periodic systems (CDW) the FRG posesses a
proper choice ofy, settingt — t/t, (in which case further stable submanifold with only two coupling constamigy.) =
corrections aré / In? t and determined by 3- and higher-loop a + bu(1 — ) (for 0 < u < 1), which contains the lead-
terms, not considered here). For comparison, one similarljng critical behavior. Fron{{7) one obtains [21, 29] the spec
finds, from the 2-loog3-function [27] of theO(IN) model in  trum of convergence to the fixed point [36] &&(In L)1 +o»
d = 4thatL? ~ t(Int)*~ (1 — by 2Ly with ay = (N +  ind =4andL™*" with w,, = aye+ Bre> +O(€?) for d < 4;
2)/(N +8) andby = (N +2)(68 + 8N — N2)/(N +8)3  an=3B+n)(1+2n), B = —5(n+2)(2n+1)(2n + 3).
from which the Duplantier values for the SAW [25}, = 1/4 The values: = 1,2, ... correspond to the convergence to the
andby, = 17/64 are retrieved atv = 0. Note that no value submanifold, and: = 0 to the convergence inside it. Con-
of N can account fol{14), thus a representation of LERW viavergence to the submanifold is fast, with leading eigerezalu
the O(N) field theory, if feasible at all, would at least require 1 + a1 = 5. Fast convergence was also found in numerics
a more complicated operator correspondance. [30] where the FRG functior\ () in () was directlymea-
Note finally that the exponentfor the avalanche-size dis- suredin d = 1,2,3. The conjecture raises many other in-
tribution [35] was recently computed to one loop within FRG teresting issues to be explored, such as the possibilityeto p
[28,129]. In the sandpile literature no controlled calciiat ~ dict other LERW observables and corrections to scaling, the
exists for the corresponding exponent, usually caigcbut ~ role of other universality classes for CDW and interface de-
the formular, (d) = 2—2/d leading tor, = 4/3ind = 3has  pinning, the connections to fermionic field theory (known fo
been conjectured [13] from scaling arguments. The FRG wa¥/ST, see e.g. [31], and conjectured for the FRG [24]). Work
found to agree t@(e) with this formula, assuming = 7,.  isin progress in these directions.
Evaluation of 2-loop corrections is in progress as a furtbstr
of the conjecture and of the relations between sandpile faode We acknowledge support from the ANR under program 05-
and depinning. BLAN-0099-01 and from the European Commission under
To conclude, it may appear surprising that LERW be relateadtontract No. MIF1-CT-2005-021897 (AAF).
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