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Abstract. We give a pedagogical introduction into the functional renormaliza-
tion group treatment of disordered systems. After a review of its phenomenol-
ogy, we show why in the context of disordered systems a functional renormal-
ization group treatment is necessary, contrary to pure systems, where renor-
malization of a single coupling constant is sufficient. This leads to a disorder
distribution, which after a finite renormalization becomes non-analytic, thus
overcoming the predictions of the seemingly exact dimensional reduction. We
discuss, how the non-analyticity can be measured in a simulation or experiment.
We then construct a renormalizable field theory beyond leading order. We dis-
cuss an elastic manifold embedded in N dimensions, and give the exact solution
for N → ∞. This is compared to predictions of the Gaussian replica varia-
tional ansatz, using replica symmetry breaking. We further consider random
field magnets, and supersymmetry. We finally discuss depinning, both isotropic
and anisotropic, and universal scaling function.
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1. Introduction

Statistical mechanics is by now a rather mature branch of physics. For pure
systems like a ferromagnet, it allows to calculate so precise details as the be-
havior of the specific heat on approaching the Curie-point. We know that it
diverges as a function of the distance in temperature to the Curie-temperature,
we know that this divergence has the form of a power-law, we can calculate the
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exponent, and we can do this with at least 3 digits of accuracy. Best of all, these
findings are in excellent agreement with the most precise experiments. This is
a true success story of statistical mechanics. On the other hand, in nature no
system is really pure, i.e. without at least some disorder (“dirt”). As experi-
ments (and theory) seem to suggest, a little bit of disorder does not change the
behavior much. Otherwise experiments on the specific heat of Helium would
not so extraordinarily well confirm theoretical predictions. But what happens
for strong disorder? By this we mean that disorder completely dominates over
entropy. Then already the question: “What is the ground-state?” is no longer
simple. This goes hand in hand with the appearance of so-called metastable
states. States, which in energy are very close to the ground-state, but which in
configuration-space may be far apart. Any relaxational dynamics will take an
enormous time to find the correct ground-state, and may fail altogether, as can
be seen in computer-simulations as well as in experiments. This means that our
way of thinking, taught in the treatment of pure systems, has to be adapted
to account for disorder. We will see that in contrast to pure systems, whose
universal large-scale properties can be described by very few parameters, disor-
dered systems demand the knowledge of the whole disorder-distribution function
(in contrast to its first few moments). We show how universality nevertheless
emerges.

Experimental realizations of strongly disordered systems are glasses, or more
specifically spin-glasses, vortex-glasses, electron-glasses and structural glasses
(not treated here). Furthermore random-field magnets, and last not least elastic
systems in disorder.

What is our current understanding of disordered systems? It is here that the
success story of statistical mechanics, with which we started, comes to an end:
Despite 30 years of research, we do not know much: There are a few exact solu-
tions, there are phenomenological methods (like the droplet-model), and there
is the mean-field approximation, involving a method called replica-symmetry
breaking (RSB). This method is correct for infinitely connected systems, e.g.
the SK-model (Sherrington –Kirkpatrick model), or for systems with infinitely
many components. However it is unclear, to which extend it applies to real
physical systems, in which each degree of freedom is directly coupled only to a
finite number of other degrees of freedom.

Another interesting system are elastic manifolds in a random medium, which
has the advantage of being approachable by other (analytic) methods, while still
retaining all the rich physics of strongly disordered systems. Here, we review
recent advances. This review is an extended version of [1, 2]. For lectures on
the internet see [3–5].
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Figure 1. An Ising magnet at low temperatures forms a domain wall described
by a function u(x) (right). An experiment on a thin Cobalt film (left) [6]; with
kind permission of the authors.

2. Physical realizations, model and observables

Before developing the theory to treat elastic systems in a disordered envi-
ronment, let us give some physical realizations. The simplest one is an Ising
magnet. Imposing boundary conditions with all spins up at the upper and all
spins down at the lower boundary (see Figure 1), at low temperatures, a domain
wall separates a region with spin up from a region with spin down. In a pure
system at temperature T = 0, this domain wall is completely flat. Disorder
can deform the domain wall, making it eventually rough again. Two types of
disorder are common: random bond (which on a course-grained level also rep-
resents missing spins) and random field (coupling of the spins to an external
random magnetic field). Figure 1 shows, how the domain wall is described by a
displacement field u(x). Another example is the contact line of water (or liquid
Helium), wetting a rough substrate, see Figure 2. (The elasticity is long range).
A realization with a 2-parameter displacement field ~u(~x) is the deformation of
a vortex lattice: the position of each vortex is deformed from ~x to ~x+ ~u(~x). A
3-dimensional example are charge density waves.

All these models have in common, that they are described by a displacement
field

x ∈ Rd −→ ~u(x) ∈ RN . (2.1)

For simplicity, we set N = 1 in the following. After some initial coarse-graining,
the energy H = Hel + HDO consists out of two parts: the elastic energy

Hel[u] =

∫

ddx
1

2
(∇u(x))2 (2.2)

and the disorder

HDO[u] =

∫

ddxV (x, u(x)) . (2.3)
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Figure 2. A contact line for the wetting of a disordered substrate by Glycer-
ine [7]. Experimental setup (left). The disorder consists of randomly deposited
islands of Chromium, appearing as bright spots (top right). Temporal evolution
of the retreating contact-line (bottom right). Note the different scales parallel
and perpendicular to the contact-line. Pictures courtesy of S. Moulinet, with
kind permission.

In order to proceed, we need to specify the correlations of disorder. Suppose
that fluctuations u in the transversal direction scale as

[u(x) − u(y)]
2 ∼ |x− y|2ζ (2.4)

with a roughness-exponent ζ < 1. Starting from a disorder correlator

V (x, u)V (x′, u′) = f(x− x′)R(u− u′) (2.5)

and performing one step in the RG-procedure, one has to rescale more in the
x-direction than in the u-direction. This will eventually reduce f(x − x′) to a
δ-distribution, whereas the structure of R(u−u′) remains visible. We therefore
choose as our starting model

V (x, u)V (x′, u′) := δd(x− x′)R(u− u′) . (2.6)

There are a couple of useful observables. We already mentioned the roughness-
exponent ζ. The second is the renormalized (effective) disorder. It will turn out
that we actually have to keep the whole disorder distribution function R(u), in
contrast to keeping a few moments. Other observables are higher correlation
functions or the free energy.

3. Treatment of disorder

Having defined our model, we can now turn to the treatment of disorder.
The problem is to average not the partition-function, but the free energy over
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u(x)

x

Figure 3. Cartoon of an elastic lattice (e.g. vortex lattice) deformed by disorder.
This is described by a vector ~u(x).

disorder: F = −kBT lnZ. This can be achieved by the beautiful replica-trick.
The idea is to write

lnZ = lim
n→0

1

n

(

en lnZ − 1
)

= lim
n→0

1

n
(Zn − 1) (3.1)

and to interpret Zn as the partition-function of an n times replicated system.
Averaging exp{−

∑n
a=1 Ha} over disorder then leads to the replica-Hamiltonian

H[u] =
1

T

n
∑

a=1

∫

ddx
1

2
(∇ua(x))

2 − 1

2T 2

n
∑

a,b=1

∫

ddxR(ua(x) − ub(x)) . (3.2)

Let us stress that one could equivalently pursue a dynamic (see Section 16) or a
supersymmetric formulation (Section 17). We therefore should not, and in fact
do not encounter, problems associated with the use of the replica-trick, as long
as we work with a perturbative expansion in R.

4. Flory estimates

Four types of disorder have to be distinguished, resulting in different univer-
sality classes:

(i) Random-bond disorder (RB): short-range correlated potential-potential
correlations, i.e. short-range correlated R(u).

(ii) Random-field disorder (RF): short-range correlated force-force correlator
∆(u) := −R′′(u). As the name says, this disorder is relevant for Random-
field systems, where the disorder potential is the sum over all magnetic
fields in say the spin-up phase.
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(iii) Generic long-range correlated disorder: R(u) ∼ |u|−γ .

(iv) Random-periodic disorder (RP): Relevant when the disorder couples to a
phase, as e.g. in charge-density waves. R(u) = R(u + 1), supposing that
u is periodic with period 1.

To get an idea how large the roughness ζ becomes in these situations, one
compares the contributions of elastic energy and disorder, and demands that
they scale in the same way. This estimate has first been used by Flory for
self-avoiding polymers, and is therefore called the Flory estimate. Despite the
fact that Flory estimates are conceptually crude, they often yield a rather good
approximation. For RB this gives for an N -component field u:

∫

x(∇u)2 ∼
∫

x

√

V V , or Ld−2u2 ∼ Ld
√
L−du−N , i.e. u ∼ Lζ with

ζRB
Flory =

4 − d

4 +N
. (4.1)

For RF it is R′′ that is short-ranged, and we obtain

ζRF
Flory =

4 − d

2 +N
. (4.2)

For LR

ζLR
Flory =

4 − d

4 + γ
. (4.3)

For RP, the amplitude of u is fixed, and thus ζRP = 0.

5. Dimensional reduction

There is a beautiful and rather mind-boggling theorem relating disordered
systems to pure systems (i.e. without disorder), which applies to a large class of
systems, e.g. random field systems and elastic manifolds in disorder. It is called
dimensional reduction and reads as follows [8]:

Theorem. A d-dimensional disordered system at zero temperature is equiva-

lent to all orders in perturbation theory to a pure system in d − 2 dimensions

at finite temperature.

Moreover the temperature is (up to a constant) nothing but the width of the
disorder distribution. A simple example is the 3-dimensional random-field Ising
model at zero temperature; according to the theorem it should be equivalent
to the pure 1-dimensional Ising-model at finite temperature. But it has been
shown rigorously, that the former has an ordered phase, whereas we have all
solved the latter and we know that there is no such phase at finite temperature.
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So what went wrong? Let us stress that there are no missing diagrams or
any such thing, but that the problem is more fundamental: As we will see
later, the proof makes assumptions, which are not satisfied. Nevertheless, the
above theorem remains important since it has a devastating consequence for
all perturbative calculations in the disorder: However clever a procedure we
invent, as long as we do a perturbative expansion, expanding the disorder in
its moments, all our efforts are futile: dimensional reduction tells us that we
get a trivial and unphysical result. Before we try to understand why this is so
and how to overcome it, let us give one more example. Dimensional reduction
allows to calculate the roughness-exponent ζ defined in equation (2.4). We know
(this can be inferred from power-counting) that the width u of a d-dimensional
manifold at finite temperature in the absence of disorder scales as u ∼ x(2−d)/2.
Making the dimensional shift implied by dimensional reduction leads to

[u(x) − u(0)]2 ∼ x4−d ≡ x2ζ , i.e. ζ =
4 − d

2
. (5.1)

6. The Larkin-length, and the role of temperature

To understand the failure of dimensional reduction, let us turn to an inter-
esting argument given by Larkin [9]. He considers a piece of an elastic manifold
of size L. If the disorder has correlation length r, and characteristic potential
energy f̄ , this piece will typically see a potential energy of strength

EDO = f̄
(L

r

)d/2

. (6.1)

On the other hand, there is an elastic energy, which scales like

Eel = c Ld−2. (6.2)

These energies are balanced at the Larkin-length L = Lc with

Lc =
( c2

f̄2
rd

)1/(4−d)

. (6.3)

More important than this value is the observation that in all physically inter-
esting dimensions d < 4, and at scales L > Lc, the membrane is pinned by
disorder; whereas on small scales the elastic energy dominates. Since the disor-
der has a lot of minima which are far apart in configurational space but close
in energy (metastability), the manifold can be in either of these minimas, and
the ground-state is no longer unique. However exactly this is assumed in e.g.
the proof of dimensional reduction; as is most easily seen in its supersymmetric
formulation, see [10] and Section 17.
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Another important question is, what the role of temperature is. In (2.4), we
had supposed that u scales with the systems size, u ∼ Lζ . From the first term
in (3.2) we conclude that

T ∼ Lθ, θ = d− 2 + 2ζ. (6.4)

Temperature is irrelevant when θ > 0, which is the case for d > 2, and when
ζ > 0 even below. The RG fixed point we are looking for will thus always be at
zero temperature.

From the second term in (3.2) we conclude that disorder scales as

R ∼ Ld−4+4ζ . (6.5)

This is another way to see that d = 4 is the upper critical dimension.

7. The functional renormalization group (FRG)

Let us now discuss a way out of the dilemma: Larkin’s argument (Section 6)
or eq. (6.5) suggests that 4 is the upper critical dimension. So we would like
to make an ε = 4 − d expansion. On the other hand, dimensional reduction
tells us that the roughness is ζ = (4 − d)/2 (see (5.1)). Even though this is
systematically wrong below four dimensions, it tells us correctly that at the
critical dimension d = 4, where disorder is marginally relevant, the field u
is dimensionless. This means that having identified any relevant or marginal
perturbation (as the disorder), we find immediately another such perturbation
by adding more powers of the field. We can thus not restrict ourselves to
keeping solely the first moments of the disorder, but have to keep the whole
disorder-distribution function R(u). Thus we need a functional renormalization

group treatment (FRG). Functional renormalization is an old idea going back to
the seventies, and can e.g. be found in [11]. For disordered systems, it was first
proposed in 1986 by D. Fisher [12]. Performing an infinitesimal renormalization,
i.e. integrating over a momentum shell à la Wilson, leads to the flow ∂`R(u),
with (ε = 4 − d)

∂`R(u) = (ε− 4ζ)R(u) + ζuR′(u) +
1

2
R′′(u)2 −R′′(u)R′′(0) . (7.1)

The first two terms come from the rescaling of R in eq. (6.5) and u respectively.
The last two terms are the result of the 1-loop calculations, which are derived
in Appendix A.

More important than the form of this equation is it actual solution, sketched
in Figure 4.

After some finite renormalization, the second derivative of the disorderR′′(u)
acquires a cusp at u = 0; the length at which this happens is the Larkin-
length. How does this overcome dimensional reduction? To understand this,
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renormalization

uu

-R’’(u) -R’’(u)

Figure 4. Change of −R′′(u) under renormalization and formation of the cusp.

it is interesting to study the flow of the second and forth moment. Taking
derivatives of (7.1) w.r.t. u and setting u to 0, we obtain

∂`R
′′(0) = (ε− 2ζ)R′′(0) +R′′′(0)2 −→ (ε− 2ζ)R′′(0), (7.2)

∂`R
′′′′(0) = εR′′′′(0) + 3R′′′′(0)2 + 4R′′′(0)R′′′′′(0) −→ εR′′′′(0) + 3R′′′′(0)2.

(7.3)

Since R(u) is an even function, and moreover the microscopic disorder is smooth
(after some initial averaging, if necessary), R′′′(0) and R′′′′′(0) are 0, which we
have already indicated in eqs. (7.2) and (7.3) . The above equations for R′′(0)
and R′′′′(0) are in fact closed. Equation (7.2) tells us that the flow of R′′(0)
is trivial and that ζ = ε/2 ≡ (4 − d)/2. This is exactly the result predicted
by dimensional reduction. The appearance of the cusp can be inferred from
equation (7.3). Its solution is

R′′′′(0)
∣

∣

`
=

c eε`

1 − 3c(eε` − 1)/ε
, c := R′′′′(0)

∣

∣

`=0
. (7.4)

Thus after a finite renormalization R′′′′(0) becomes infinite: The cusp appears.
By analyzing the solution of the flow-equation (7.1), one also finds that beyond
the Larkin-length R′′(0) is no longer given by (7.2) with R′′′(0)2 = 0. The
correct interpretation of (7.2), which remains valid after the cusp-formation, is
(for details see below)

∂`R
′′(0) = (ε− 2ζ)R′′(0) +R′′′(0+)2. (7.5)

Renormalization of the whole function thus overcomes dimensional reduction.
The appearance of the cusp also explains why dimensional reduction breaks
down. The simplest way to see this is by redoing the proof for elastic mani-
folds in disorder, which in the absence of disorder is a simple Gaussian theory.
Terms contributing to the 2-point function involve R′′(0), TR′′′′(0) and higher
derivatives of R(u) at u = 0, which all come with higher powers of T . To obtain
the limit of T → 0, one sets T = 0, and only R′′(0) remains. This is the di-
mensional reduction result. However we just saw that R′′′′(0) becomes infinite.
Thus R′′′′(0)T may also contribute, and the proof fails.
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8. Measuring the cusp

Until now the function R(u), a quantity central to the FRG, was loosely de-
scribed as an effective disorder correlator, which evolves under coarse-graining
towards a non-analytic shape. It turns out that it can be given a precise defini-
tion as an observable [13]. Hence it can directly be computed in the numerics, as
we will discuss below, and in principle, be measured in experiments. The cusp
therefore is not a theoretical artefact, but a real property of the system, related
to singularities or shocks, which arise in the landscape of pinning forces. More-
over, these singularities are unavoidable for a glass with multiple metastable
states.

Consider our interface in a random potential, and add an external quadratic
potential well, centered around w:

Hw
tot[u] =

m2

2
(u(x) − w)2 + Hel[u] + HDO[u]. (8.1)

In each sample (i.e. disorder configuration), and given w, one finds the minimum
energy configuration. This ground state energy is

V̂ (w) := min
u(x)

Hw
tot[u]. (8.2)

It varies with w as well as from sample to sample. Its second cumulant

V̂ (w)V̂ (w′)
c

= LdR(w − w′) (8.3)

defines a function R(w) which is proven [13] to be the same function computed
in the field theory, defined from the zero-momentum action [14].

Physically, the role of the well is to forbid the interface to wander off to
infinity. The limit of small m is then taken to reach the universal limit. The
factor of volume Ld is necessary, since the width u2 of the interface in the well
cannot grow much more than m−ζ . This means that the interface is made of
roughly L/Lm pieces of internal size Lm ≈ m pinned independently: (8.3) hence
expresses the central limit theorem and R(w) measures the second cumulant of
the disorder seen by any one of the independent pieces.

The nice thing about (8.3) is that it can be measured. One varies w and com-
putes (numerically) the new ground-state energy; finally averaging over many
realizations. This has been performed recently in [15] using a powerful exact-
minimization algorithm, which finds the ground state in a time polynomial in
the system size. In fact, what was measured there are the fluctuations of the
center of mass of the interface u(w) = L−d

∫

ddxu0(x;w):

[w − u(w)][w′ − u(w′)]
c

= m−4L−d∆(w − w′) (8.4)
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Figure 5. Filled symbols show numerical results for Y (z), a normalized form
of the interface displacement correlator −R′′(u) [eq. (8.4)], for D = 2 + 1 ran-
dom field (RF) and D = 3 + 1 random bond (RB) disorders. These suggest
a linear cusp. The inset plots the numerical derivative Y ′(z), with intercept
Y ′(0) ≈ −0.807 from a quadratic fit (dashed line). Open symbols plot the
cross-correlator ratio Ys(z) = ∆12(z)/∆11(0) between two related copies of RF
disorder. It does not exhibit a cusp. The points are for confining wells with
width given by M2 = 0.02. Comparisons to 1-loop FRG predictions (curves)
are made with no adjustable parameters. Reprinted from [15].

which measures directly the correlator of the pinning force ∆(u) = −R′′(u). To
see why it is the total force, write the equilibrium condition for the center of
mass

m2[w − u(w)] + L−d

∫

ddxF (x, u) = 0

(the elastic term vanishes if we use periodic b.c.). The result is represented
in Figure 5. It is most convenient to plot the function Y = ∆(u)/∆(0) and
normalize the u-axis to eliminate all non-universal scales. The plot in Figure 5
is free of any parameter. It has several remarkable features. First, it clearly
shows that a linear cusp exists in any dimension. Next it is very close to the 1-
loop prediction. Even more remarkably, as detailed in [15], the statistics is good
enough to reliably compare the deviations to the 2-loop predictions obtained in
Section 11.

What is the physics of the cusp in ∆(u)? One easily sees in a zero-dimensi-
onal model, i.e. a particle on a line, d = 0, that as w increases, the position of
the minimum u(w) increases smoothly, except at some discrete set of positions
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w = ws, where the system switches abruptly between two distant minima.
Formally, one can show that the landscape of the force −V̂ ′(w) evolves, as the
mass is lowered, according to a Burgers equation, known to develop finite-time
singularities called “shocks”. For details on this mapping see [13, 16]. For an
interface these shocks also exist, as can be seen on Figure 6. Note that when
we vary the position w of the center of the well, it is not a real motion. It
just means to find the new ground state for each w. Literally “moving” w is
another very interesting possibility, and will be discussed in Section 16 devoted
to depinning [17, 18].

w
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Figure 6. Discontinuous positions, “shocks”, in w − uw as a function of w.
Reprinted from [15].

9. Rounding the cusp

As we have seen, a cusp non-analyticity necessary arises at zero temperature,
due to the switch-over between many metastable states. Interestingly, this cusp
can be rounded by several effects: By non-zero temperature T > 0, chaos, or
a non-zero driving velocity (in the dynamics discussed below). It is easy to
include the effect of temperature in the FRG equation to one loop [19]:

∂`R(u) = (ε− 4ζ)R(u) + ζuR′(u) +
1

2
R′′(u)2 −R′′(u)R′′(0) + T̃`R

′′(u). (9.1)

T̃` = T exp{−θ`} is the dimensionless temperature. It finally flows to zero, since
temperature is an irrelevant variable as discussed above. Although irrelevant,
it has some profound effect. Clearly the temperature in (9.1) acts as a diffusive
term smoothening the cusp. In fact, at non-zero temperature there never is a
cusp, and R(u) remains analytic. The convergence to the fixed point is non-
uniform. For u fixed, R(u) converges to the zero-temperature fixed point, except
near u = 0, or more precisely in a boundary layer of size u ∼ T̃`, which shrinks
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to zero in the large-scale limit. Non-trivial consequences are: The curvature
blows up as R′′′′(0) ∼ exp{θ`}/T ∼ Lθ/T . One can show that this is related
to the existence of thermal excitations (“droplets”) in the statics [20] and of
“barriers” in the dynamics, which grow as Lθ [21].

Another case where rounding occurs is for “disorder chaos”. Disorder chaos
is the possibility of a system to have a completely different ground state at
large scales, upon a very slight change in the microscopic disorder (for instance
changing slightly the magnetic field in a superconductor). Not all types of
disorder exhibit chaos. Its presence in spin glasses is still debated. Recently it
was investigated for elastic manifolds, using FRG [22]. One studies a model with
two copies, i = 1, 2, each seeing slightly different disorder energies Vi(x, u(x)) in
eq. (2.3). The latter are mutually correlated gaussian random potentials with a
correlation matrix

Vi(x, u)Vj(x′, u′) = δd(x− x′)Rij(u− u′). (9.2)

At zero temperature, the FRG equations for R11(u) = R22(u) are the same as
in (7.1). The one for the cross-correlator R12(u) satisfies the same equation
as (9.1) above, with T̃` is replaced by T̂ := R′′

12(0) − R′′
11(0). It is some kind

of fictitious temperature, whose flow must be determined self-consistently from
the two FRG equations. As in the case of a real temperature, it results in a
rounding of the cusp. The physics of that is apparent from Figure 6, which
shows the set of shocks in two correlated samples. Since they are slightly and
randomly displaced from each other, the cusp is rounded.

Chaos is obtained when T̂ grows with scale, and occurs on scales larger than
the so-called overlap length. The mutual correlations

Cij(x − x′) = 〈[ui(x) − ui(x′)][uj(x) − uj(x′)]〉

behave as Cij(x) = x2ζf(δxα), where δ quantifies the difference between the two
disorders at the microscopic level. Cij(x) decays at large distance as Cij(x) ∼
x2ζ−µ [22].

10. Beyond 1 loop

Functional renormalization has successfully been applied to a bunch of prob-
lems at 1-loop order. From a field theory, we however demand more. Namely
that it

• allows for systematic corrections beyond 1-loop order,

• be renormalizable,

• and thus allows to make universal predictions.
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However, this has been a puzzle since 1986, and it has even been suggested that
the theory is not renormalizable due to the appearance of terms of order ε3/2 [23].
Why is the next order so complicated? The reason is that it involves terms
proportional to R′′′(0). A look at Figure 4 explains the puzzle. Shall we use the
symmetry of R(u) to conclude that R′′′(0) is 0? Or shall we take the left-hand
or right-hand derivatives, related by

R′′′(0+) := lim
u>0
u→0

R′′′(u) = − lim
u<0
u→0

R′′′(u) =: −R′′′(0−). (10.1)

In the following, we will present our solution of this puzzle, obtained at 2-loop
order, at large N , and in the driven dynamics.

11. Results at 2-loop order

For the flow-equation at 2-loop order, the result is [14, 24–27]

∂`R(u) = (ε− 4ζ)R(u) + ζuR′(u) +
1

2
R′′(u)2 −R′′(u)R′′(0)

+
1

2

(

R′′(u) −R′′(0)
)

R′′′(u)2 − 1

2
R′′′(0+)2R′′(u). (11.1)

The first line is the result at 1-loop order, already given in (7.1). The second line
is new. The most interesting term is the last one, which involves R′′′(0+)2 and
which we therefore call anomalous. The hard task is to fix the prefactor (−1/2).
We have found five different prescriptions to calculate it: The sloop-algorithm,
recursive construction, reparametrization invariance, renormalizability, and po-
tentiality [14, 24]. For lack of space, we restrain our discussion to the last two
ones. At 2-loop order the following diagram appears

R’’’R’’’

R’’

−→ 1

2

(

R′′(u) −R′′(0)
)

R′′′(u)2 − 1

2
R′′(u)R′′′(0+)2 (11.2)

leading to the anomalous term. The integral (not written here) contains a sub-
divergence, which is indicated by the box. Renormalizability demands that its
leading divergence (which is of order 1/ε2) be canceled by a 1-loop counter-term.
The latter is unique thus fixing the prefactor of the anomalous term. (The idea
is to take the 1-loop correction δR in eq. (A.4) and replace one of the R′′ in it
by δR′′ itself, which the reader can check is leading to the terms given in (11.2)
plus terms which only involve even derivatives.)

Another very physical demand is that the problem remain potential, i.e.
that forces still derive from a potential. The force-force correlation function
being −R′′(u), this means that the flow of R′(0) has to be strictly 0. (The
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simplest way to see this is to study a periodic potential.) From (11.1) one can
check that this does not remain true if one changes the prefactor of the last
term in (11.1); thus fixing it.

Let us give some results for cases of physical interest. First of all, in the
case of a periodic potential, which is relevant for charge-density waves, the
fixed-point function can be calculated analytically as (we choose period 1, the
following is for u ∈ [0, 1])

R∗(u) = −
( ε

72
+

ε2

108
+O(ε3)

)

u2(1 − u)2 + const. (11.3)

This leads to a universal amplitude. In the case of random-field disorder (short-
ranged force-force correlation function) ζ = ε/3, equivalent to the Flory esti-
mate (4.2). For random-bond disorder (short-ranged potential-potential corre-
lation function) we have to solve (11.1) numerically, with the result

ζ = 0.20829804ε+ 0.006858ε2 +O(ε3). (11.4)

This compares well with numerical simulations, see Figure 7. It is also surpris-
ingly close, but distinctly different, from the Flory estimate (4.1), ζ = ε/5.

ζ one loop two loop estimate simulation and exact

d = 3 0.208 0.215 0.215± 0.01 0.22± 0.01 [28]

d = 2 0.417 0.444 0.42± 0.02 0.41± 0.01 [28]

d = 1 0.625 0.687 0.67± 0.02 2/3

Figure 7. Results for ζ in the random bond case.

12. Finite N

Up to now, we have studied the functional RG for one component N = 1.
The general case of finite N is more difficult to handle, since derivatives of the
renormalized disorder now depend on the direction, in which this derivative
is taken. Define amplitude u := |~u| and direction û := ~u/|~u| of the field.
Then deriving the latter variable leads to terms proportional to 1/u, which
are diverging in the limit of u → 0. This poses additional problems in the
calculation, and it is a priori not clear that the theory at N 6= 1 exists, supposed
this is the case for N = 1. At 1-loop order everything is well-defined [23]. We
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have found a consistent RG-equation at 2-loop order [29]:

∂`R(u) = (ε− 4ζ)R(u) + ζuR′(u) +
1

2
R′′(u)2 −R′′(0)R′′(u) (12.1)

+
N − 1

2

R′(u)

u

(R′(u)

u
− 2R′′(0)

)

+
1

2

(

R′′(u) −R′′(0)
)

R′′′(u)
2

+
N−1

2

(R′(u)−uR′′(u))2(2R′(u)+u(R′′(u)−3R′′(0)))

u5

−R′′′(0+)2
[N + 3

8
R′′(u) +

N − 1

4

R′(r)

u

]

.

The first line is the 1-loop equation, given in [23]. The second and third line
represent the 2-loop equation, with the new anomalous terms proportional to
R′′′(0+)2 (third line).

5 10 15 20

0.2

0.4

0.6

0.8

ζ

N

1-loop

2-loop

Figure 8. Results for the roughness ζ at 1- and 2-loop order, as a function of
the number of components N .

The fixed-point equation (12.1) can be integrated numerically, order by order
in ε. The result, specialized to directed polymers, i.e. ε = 3 is plotted on
Figure 8. We see that the 2-loop corrections are rather big at large N , so some
doubt on the applicability of the latter down to ε = 3 is advised. However
both 1- and 2-loop results reproduce well the two known points on the curve:
ζ = 2/3 for N = 1 and ζ = 0 for N = ∞. The latter result will be given
in Section 13. Via the equivalence [30] of the directed-polymer problem in N
dimensions treated here and the KPZ-equation of non-linear surface growth inN
dimensions, which relate the roughness exponent ζ of the directed polymer to
the dynamic exponent zKPZ in the KPZ-equation via ζ = 1/zKPZ, we know that
ζ(N = 1) = 2/3.
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The line ζ = 1/2 given on Figure 8 plays a special role: In the presence of
thermal fluctuations, we expect the roughness-exponent of the directed polymer
to be bounded by ζ ≥ 1/2. In the KPZ-equation, this corresponds to a dynamic
exponent zKPZ = 2, which via the exact scaling relation zKPZ + ζKPZ = 2 is
an upper bound in the strong-coupling phase. The above data thus strongly
suggest that there exists an upper critical dimension in the KPZ-problem, with
duc ≈ 2.4. Even though the latter value might be an underestimation, it is hard
to imagine what can go wrong qualitatively with this scenario. The strongest
objections will probably arise from numerical simulations, such as [31]. However
the latter use a discrete RSOS model, and the exponents are measured for
interfaces, which in large dimensions have the thickness of the discretization
size, suggesting that the data are far from the asymptotic regime. We thus
strongly encourage better numerical simulations on a continuous model, in order
to settle this issue.

13. Large N

In the last sections, we have discussed renormalization in a loop expansion,
i.e. expansion in ε. In order to independently check consistency, it is good to
have a non-perturbative approach. This is achieved by the large-N limit, which
can be solved analytically and to which we turn now. We start from

H[~u,~j] =
1

2T

n
∑

a=1

∫

x

~ua(x)
(

−∇2+m2
)

~ua(x)

−
n

∑

a=1

∫

x

~ja(x)~ua(x)

− 1

2T 2

n
∑

a,b=1

∫

x

B
(

(~ua(x) − ~ub(x))
2
)

, (13.1)

where in contrast to (3.2), we use an N -component field ~u. For N = 1, we
identify B(u2) = R(u). We also have added a mass m to regularize the theory in
the infra-red and a source ~j to calculate the effective action Γ(~u) via a Legendre
transform. For large N the saddle-point equation reads [32]

B̃′(u2
ab) = B′

(

u2
ab + 2TI1 + 4I2[B̃

′(u2
ab) − B̃′(0)]

)

. (13.2)

This equation gives the derivative of the effective (renormalized) disorder B̃
as a function of the (constant) background field u2

ab = (ua − ub)
2 in terms of:

the derivative of the microscopic (bare) disorder B, the temperature T and the
integrals In :=

∫

k 1/(k2 +m2)n.
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The saddle-point equation can again be turned into a closed functional renor-
malization group equation for B̃ by taking the derivative w.r.t. m:

∂`B̃(x) ≡ −m∂
∂m

B̃(x) (13.3)

= (ε− 4ζ)B̃(x) + 2ζxB̃′(x)

+
1

2
B̃′(x)2 − B̃′(x)B̃′(0) +

ε T B̃′(x)

ε+ B̃′′(0)
.

This is a complicated nonlinear partial differential equation. It is therefore
surprising, that one can find an analytic solution. (The trick is to write down
the flow-equation for the inverse function of B̃′(x), which is linear.) Let us only
give the results of this analytic solution: First of all, for long-range correlated
disorder of the form B̃′(x) ∼ x−γ , the exponent ζ can be calculated analytically
as ζ = ε/2(1 + γ). It agrees with the replica-treatment in [33], the 1-loop
treatment in [23], and the Flory estimate (4.3). For short-range correlated
disorder, ζ = 0. Second, it demonstrates that before the Larkin-length, B̃(x)
is analytic and thus dimensional reduction holds. Beyond the Larkin length,
B̃′′(0) = ∞, a cusp appears and dimensional reduction is incorrect. This shows
again that the cusp is not an artifact of the perturbative expansion, but an
important property even of the exact solution of the problem (here in the limit
of large N).

14. Relation to replica symmetry breaking (RSB)

There is another treatment of the limit of large N given by Mézard and
Parisi [33]. They start from (13.1) but without a source-term j. In the limit of
large N , a Gaussian variational ansatz of the form

Hg[~u] =
1

2T

n
∑

a=1

∫

x

~ua(x)
(

−∇2+m2
)

~ua(x) (14.1)

− 1

2T 2

n
∑

a,b=1

σab~ua(x)~ub(x)

becomes exact. The art is to make an appropriate ansatz for σab. The simplest
possibility, σab = σ for all a 6= b reproduces the dimensional reduction result,
which breaks down at the Larkin length. Beyond that scale, a replica symmetry
broken (RSB) ansatz for σab is suggestive. To this aim, one can break σab into
four blocks of equal size, choose one (variationally optimized) value for the both
outer diagonal blocks, and then iterate the procedure on the diagonal blocks,
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resulting in

σab =





















































. (14.2)

One finds that the more often one iterates, the better the result becomes. In fact,
one has to repeat this procedure infinite many times. This seems like a hopeless
endeavor, but Parisi has shown that the infinitely often replica symmetry broken
matrix can be parameterized by a function [σ](z) with z ∈ [0, 1]. In the SK-
model, z has the interpretation of an overlap between replicas. While there is no
such simple interpretation for the model (14.1), we retain that z = 0 describes
distant states, whereas z = 1 describes nearby states. The solution of the large-
N saddle-point equations leads to the curve depicted in Figure 6. Knowing it,
the 2-point function is given by

〈uku−k〉 =
1

k2 +m2

(

1 +

1
∫

0

dz

z2

[σ](z)

k2 + [σ](z) +m2

)

. (14.3)

The important question is: What is the relation between the two approaches,
which both declare to calculate the same 2-point function? Comparing the
analytical solutions, we find that the 2-point function given by FRG is the
same as that of RSB, if in the latter expression we only take into account the
contribution from the most distant states, i.e. those for z between 0 and zm

(see Figure 9). To understand why this is so, we have to remember that the
two calculations were done under quite different assumptions: In contrast to
the RSB-calculation, the FRG-approach calculated the partition function in
presence of an external field j, which was then used to give via a Legendre
transformation the effective action. Even if the field j is finally tuned to 0, the
system will remember its preparation, as is the case for a magnet: Preparing the
system in presence of a magnetic field will result in a magnetization which aligns
with this field. The magnetization will remain, even if finally the field is turned
off. The same phenomena happens here: By explicitly breaking the replica-
symmetry through an applied field, all replicas will settle in distant states, and
the close states from the Parisi-function [σ](z)+m2 (which describes spontaneous

RSB) will not contribute. However, we found that the full RSB-result can be
reconstructed by remarking that the part of the curve between zm and zc is
independent of the infrared cutoff m, and then integrating over m [32] (mc is
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from UV−cutoff

1

FRG

2[   ](  ) + σ z m

2m

0
zzcmz

IR−cutoff

Figure 9. The function [σ](u) +m2 as given in [33].

the mass corresponding to zc):

〈uku−k〉
∣

∣

∣

RSB

k=0
=
R̃′

m(0)

m4
+

mc
∫

m

dR̃′
µ(0)

µ4
+

1

m2
c

− 1

m2
. (14.4)

We also note that a similar effective action has been proposed in [16]. While it
agrees qualitatively, it does not reproduce the correct FRG 2-point function, as
it should.

15. Corrections at order 1/N

In a graphical notation, we find [34]

δB(1) = + + + +

+ T

(

+ + + + +

)

+ T 2

(

+ + + AT 2

)

, (15.1)

=B′′(χab)
(

1 − 4AdI2(p)B
′′(χab)

)−1
, = B(χab), (15.2)

where the explicit expressions are given in [34].
By varying the IR-regulator, one can derive a β-function at order 1/N ,

see [34]. At T = 0, it is UV-convergent, and should allow to find a fixed point.
We have been able to do this at order ε, showing consistency with the 1-loop
result, see Section 12. Other dimensions are more complicated.
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A β-function can also be defined at finite T . However since temperature is
an irrelevant variable, it makes the theory non-renormalizable, i.e. in order to
define it, one must keep an explicit infrared cutoff. These problems have not
yet been settled.

16. Depinning transition

Another important class of phenomena for elastic manifolds in disorder is
the so-called “depinning transition”: Applying a constant force to the elastic
manifold, e.g. a constant magnetic field to the ferromagnet mentioned in the
introduction, the latter will only move, if a certain critical threshold force fc

is surpassed, see Figure 10. (This is fortunate, since otherwise the magnetic
domain walls in the hard-disc drive onto which this article is stored would move
with the effect of deleting all information, depriving the reader from his reading.)
At f = fc, the so-called depinning transition, the manifold has a distinctly
different roughness exponent ζ (see eq. (2.4)) from the equilibrium (f = 0). For
f > fc, the manifold moves, and close to the transition, new observables and
corresponding exponents appear:

• the dynamic exponent z relating correlation functions in spatial and tem-
poral direction

t ∼ xz,

• a correlation length ξ set by the distance to fc

ξ ∼ |f − fc|−ν ,

• furthermore, the new exponents are not all independent, but satisfy the
following exponent relations [35]

β = ν(z − ζ), ν =
1

2 − ζ
. (16.1)

f

v

fc

Figure 10. Velocity of a pinned interface as a function of the applied force. Zero
force: equilibrium. f = fc: depinning.
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The equation describing the movement of the interface is

∂tu(x, t) = (∇2 +m2)u(x, t) + F (x, u(x, t)), (16.2)

F (x, u) = −∂uV (x, u).

This model has been treated at 1-loop order by Natterman et. al. [35] and by
Narayan and Fisher [36]. The 1-loop flow-equations are identical to those of
the statics. This is surprising, since physically, the phenomena at equilibrium
and at depinning are quite different. There is even the claim by [36], that the
roughness exponent in the random field universality class is exactly ζ = ε/3, as
it is in the equilibrium random field class. After a long debate among numerical
physicists, the issue is today resolved: The roughness is significantly larger,
and reads e.g. for the driven polymer ζ = 1.25, instead of ζ = 1 as predicted
in [36]. Clearly, a 2-loop analysis [37] is necessary, to resolve these issues. Such
a treatment starts from the dynamic action

S =

∫

x,t

ũ(x, t)(∂t −∇2 +m2)u(x, t) +

∫

x,t,t′

ũ(x, t)∆(u(x, t) − u(x, t′))ũ(x, t′),

(16.3)
where the “response field” ũ(x, t) enforces the equation of motion (16.2) and

F (x, u)F (x′, u′) = ∆(u− u′)δd(x− x′) ≡ −R′′(u− u′)δd(x− x′) (16.4)

is the force-force correlator, leading to the second term in (16.3). As in the
statics, one encounters terms proportional to ∆′(0+) ≡ −R′′′(0+). Here the
sign-problem can uniquely be solved by observing that the membrane only jumps
ahead,

t > t′ =⇒ u(x, t) ≥ u(x, t′). (16.5)

Practically this means that when evaluating diagrams containing ∆(u(x, t) −
u(x, t′)), one splits them into two pieces, one with t < t′ and one with t > t′.
Both pieces are well defined, even in the limit of t → t′. As the only tread-
off of this method, diagrams can become complicated and difficult to evaluate;
however they are always well-defined.

Physically, this means that we approach the depinning transition from above.
This is reflected in (16.5) by the fact that u(x, t) may remain constant; and in-
deed correlation-functions at the depinning transition are completely indepen-
dent of time [37]. On the other hand a theory for the approach of the depinning
transition from below (f < fc) has been elusive so far.

At the depinning transition, the 2-loop functional RG reads [24, 37]

∂`R(u) = (ε− 4ζ)R(u) + ζuR′(u) +
1

2
R′′(u)2−R′′(u)R′′(0)

+
1

2
[R′′(u) −R′′(0)]R′′′(u)2 +

1

2
R′′′(0+)2R′′(u). (16.6)
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d ε ε2 estimate simulation

3 0.33 0.38 0.38±0.02 0.34±0.01
ζ 2 0.67 0.86 0.82±0.1 0.75±0.02

1 1.00 1.43 1.2±0.2 1.25±0.01

3 0.89 0.85 0.84±0.01 0.84±0.02
β 2 0.78 0.62 0.53±0.15 0.64±0.02

1 0.67 0.31 0.2±0.2 0.25 . . . 0.4

3 0.58 0.61 0.62±0.01
ν 2 0.67 0.77 0.85±0.1 0.77±0.04

1 0.75 0.98 1.25±0.3 1±0.05

ε ε2 estimate simulation

ζ 0.33 0.47 0.47±0.1 0.39±0.002
β 0.78 0.59 0.6±0.2 0.68±0.06
z 0.78 0.66 0.7±0.1 0.74±0.03
ν 1.33 1.58 2±0.4 1.52±0.02

Figure 11. The critical exponents at the depinning transition, for short range
elasticity (top) and for long range elasticity (bottom).

First of all, note that it is a priori not clear that the functional RG equation,
which is a flow equation for ∆(u) = −R′′(u) can be integrated to a functional
RG-equation for R(u). We have chosen this representation here, in order to
make the difference to the statics evident: The only change is in the last sign
on the second line of (16.6). This has important consequences for the physics:
First of all, the roughness exponent ζ for the random-field universality class
changes from ζ = ε/3 to

ζ =
ε

3
(1 + 0.14331ε+ · · ·). (16.7)

Second, the random-bond universality class is unstable and always renormalizes
to the random-field universality class, as is physically expected: Since the mem-
brane only jumps ahead, it always experiences a new disorder configuration, and
there is no way to know of whether this disorder can be derived from a potential
or not. Generalizing the arguments of Section 8, it has recently been confirmed
numerically that both RB and RF disorder flow to the RF fixed point [17, 18],
and that this fixed point is very close to the solution of (16.6), see Figure 12.
This non-potentiality is most strikingly observed in the random periodic univer-
sality class, which is the relevant one for charge density waves. The fixed point
for a periodic disorder of period one reads (remember ∆(u) = −R′′(u))

∆∗(u) =
ε

36
+

ε2

108
−

(ε

6
+
ε2

9

)

u(1 − u). (16.8)
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RF m = 0.071, L = 512
RB m = 0.071, L = 512

Y
(z

)

z

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Figure 12. Universal scaling form Y (z) for ∆(u) for RB and RF disorder.
Reprinted from [18].

Integrating over a period, we find (suppressing in F (x, u) the dependence on
the coordinate x for simplicity of notation)

1
∫

0

du∆∗(u) ≡
1

∫

0

duF (u)F (u′) = − ε2

108
. (16.9)

In an equilibrium situation, this correlator would vanish, since potentiality re-

quires
∫ 1

0
duF (u) ≡ 0. Here, there are non-trivial contributions at 2-loop order

(order ε2), violating this condition and rendering the problem non-potential.
This same mechanism is also responsible for the violation of the conjecture
ζ = ε/3, which could be proven on the assumption that the problem remains
potential under renormalization. Let us stress that the breaking of potentiality
under renormalization is a quite novel observation here.

The other critical exponents mentioned above can also be calculated. The
dynamical exponent z (for RF-disorder) reads [24, 37]

z = 2 − 2

9
ε− 0.04321ε2 + · · · (16.10)

All other exponents are related via the relation (16.1). That the method works
well even quantitatively can be inferred from Figure 11.
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17. Supersymmetry

The use of n replicas in the limit n → 0 to describe disordered systems is
often criticized for a lack of rigor. It is argued that instead one should use a
supersymmetric formulation. Such a formulation is indeed possible, both for the
statics as discussed in [38], as for the dynamics, which we will discuss below.
Following [10], one groups the field u(x), a bosonic auxiliary field ũ(x) and two
Grassmanian fields ψ(x) and ψ̄(x) into a superfield U(x, Θ̄,Θ):

U(x, Θ̄,Θ) = u(x) + Θ̄ψ(x) + ψ̄(x)Θ + ΘΘ̄ũ(x). (17.1)

The action of the supersymmetric theory is

SSusy =

∫

dΘdΘ̄

∫

x

U(x, Θ̄,Θ)(∆s)U(x, Θ̄,Θ), (17.2)

∆s :=∇2 − ∆(0)
∂

∂Θ̄

∂

∂Θ
.

It is invariant under the action of the supergenerators

Q := x
∂

∂Θ
− 2

∆(0)
Θ̄∇, (17.3)

Q̄ := x
∂

∂Θ̄
+

2

∆(0)
Θ∇.

What do the fields mean? Upon integrating over Θ̄ and Θ before averaging
over disorder, one would obtain two terms, ∼

∫

x ũ(x) δH/δu(x), i.e. the bosonic
auxiliary field ũ(x) enforces δH/δu(x) = 0, and a second term, bilenear in ψ̄
and ψ, ∼

∫

x ψ̄(δ2H/δu2)ψ which ensures that the partition function is one.
(17.2) is nothing but the dimensional reduction result (5.1) in super-symmetric
disguise. What went wrong? Missing is the renormalization of R(u) itself, which
in the FRG approach leads to a flow of ∆(0) ≡ −R′′(0). In order to capture
this, one has to look at the supersymmetric action of at least two copies:

S[Ua] =
∑

a

∫

Θ,Θ̄

∫

x

Ua(x, Θ̄,Θ)(∆s)Ua(x, Θ̄,Θ) (17.4)

− 1

2

∑

a6=b

∫

x

∫

Θ̄,Θ

∫

Θ̄′,Θ′

R(Ua(x, Θ̄,Θ) − Ub(x, Θ̄
′,Θ′)).

Formally, we have again introduced n replicas, but we do not take the limit
of n → 0; so criticism of the latter limit can not be applied here. After some
slightly cumbersome calculations one reproduces the functional RG β-function
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at 1-loop (7.1). (Higher orders are also possible and the SUSY method is ac-
tually helpful [38].) At the Larkin-length, where the functional RG produces a
cusp, the flow of ∆(0) becomes non-trivial, given in (7.5). Then the parame-
ter ∆(0) in the supersymmetry generators (17.3) is no longer a constant, and
supersymmetry breaks down. This is, as was discussed in section (14), also the
onset of replica-symmetry breaking in the gaussian variational ansatz, valid at
large N .

Another way to introduce a supersymmetric formulation proceeds via the
super-symmetric representation of a stochastic equation of motion [39]; a me-
thod e.g. used in [40] to study spin-glasses. The action then changes to

S[U ] =

∫

xt

∫

Θ,Θ̄

U(x, Θ̄,Θ, t)(∆d)U(x, Θ̄,Θ, t) (17.5)

− 1

2

∫

xtt′

∫

Θ̄,Θ

∫

Θ̄′,Θ′

R(U(x, Θ̄,Θ, t) − U(x, Θ̄′,Θ′, t′)),

∆d =∇2 + D̄D, D̄ =
∂

∂Θ
, D =

∂

∂Θ̄
− Θ

∂

∂t
(17.6)

and is invariant under the action of the super-generators Q := ∂/∂Θ̄ and Q̄ :=
∂/∂Θ + Θ̄ ∂/∂t, since

{Q,D} = {Q, D̄} = {Q̄,D} = {Q̄, D̄} = 0.

Different replicas now become different times, but second cumulant still means
bilocal in Θ. However the procedure is not much different from a pure Langevin
equation of motion, as in (16.2); in the latter equation Itô discretization is
already sufficient to ensure that the partition function is 1. The main ad-
vantage is the possibility to change the discretization procedure from Itô over
mid-point to Stratonovich without having to add additional terms. In this case,
supersymmetry breaking means that the system falls out of equlibrium, i.e. the
fluctuation-dissipation theorem (which is a consequence of one of the supersym-
metry generators [39]) breaks down [40].

18. Random field magnets

Another domain of application of the Functional RG is spin models in a
random field. The model usually studied is:

H =

∫

ddx
1

2
(∇~S)2 + ~h(x) · ~S(x), (18.1)

where ~S(x) is a unit vector with N -components, and ~S(x)2 = 1. This is the
so-called O(N) sigma model, to which has been added a random field, which
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can be taken gaussian

hi(x)hj(x′) = σδijδ
d(x− x′).

In the absence of disorder the model has a ferromagnetic phase for T < Tf and
a paramagnetic phase above Tf . The lower critical dimension is d = 2 for any
N ≥ 2, meaning that below d = 2 no ordered phase exists. In d = 2 solely a
paramagnetic phase exists for N > 2; for N = 2, the XY model, quasi long-

range order exists at low temperature, with ~S(x)~S(x′) decaying as a power law
of x− x′.

Here we study the model directly at T = 0. The dimensional reduction
theorem in Section 5, which also holds for random field magnets, would indicate
that the effect of a quenched random field in dimension d is similar to the one
of a temperature T ∼ σ for a pure model in dimension d− 2. Hence one would
expect a transition from a ferromagnetic to a disordered phase at σc as the
disorder increases in any dimension d > 4, and no order at all for d < 4 and
N ≥ 2. This however is again incorrect, as can be seen using FRG.

It was noticed by Fisher [41] that an infinity of relevant operators are
generated. These operators, which correspond to an infinite set of random
anisotropies, are irrelevant by naive power counting near d = 6 [42,43]. d = 6 is
the naive upper critical dimension (corresponding to d = 4 for the pure O(N)
model) as indicated by dimensional reduction; so many earlier studies concen-
trated on d around 6. Because of these operators the theory is however hard to
control there. It has been shown [41–43] that it can be controlled using 1-loop
FRG near d = 4 instead, which is the naive lower critical dimension. Recently
this was extended to two loops [44].

The 1-loop FRG studies directly the model with all the operators which are
marginal in d = 4, of action most easily expressed directly in replicated form:

S =

∫

ddx
[ 1

2T

∑

a

[(∇~Sa)2] − 1

2T 2

∑

ab

R̂(~Sa
~Sb)

]

. (18.2)

The function R̂(z) parameterizes the disorder. Since the vectors are of unit
norm, z = cosϕ lies in the interval [−1, 1]. One can also use the parametrization
in terms of the variable ϕ which is the angle between the two replicas, and define

R(ϕ) = R̂(z = cosϕ).

The original model (18.1) corresponds to R̂(z) ∼ σz. It does not remain of this
form under RG, in fact again a cusp will develop near z = 1. The FRG flow
equation has been calculated up to two loops, i.e. R2 (one loop) [41–43] and R3
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(two loops) [44]1:

∂`R(ϕ) = εR(ϕ) +
1

2
R′′(ϕ)2 −R′′(0)R′′(ϕ)

+ (N−2)
[1

2

R′(ϕ)2

sin2 ϕ
− cotϕR′(ϕ)R′′(0)

]

+
1

2
(R′′(ϕ) −R′′(0))R′′′(ϕ)2

+ (N−2)
[ cotϕ

sin4 ϕ
R′(ϕ)3 − 5 + cos 2ϕ

4 sin4 ϕ
R′(ϕ)2R′′(ϕ)

+
1

2 sin2 ϕ
R′′(ϕ)3 − 1

4 sin4 ϕ
R′′(0)

(

2(2 + cos 2ϕ)R′(ϕ)2

− 6 sin 2ϕR′(ϕ)R′′(ϕ) + (5 + cos 2ϕ) sin2 ϕR′′(ϕ)2
)]

− N+2

8
R′′′(0+)2R′′(ϕ) − N−2

4
cotϕR′′′(0+)2R′(ϕ)

− 2(N−2)
[

R′′(0) −R′′(0)2 + γaR
′′′(0+)2

]

R(ϕ). (18.3)

The constant γa is discussed in [44]; the last factor proportional to R(ϕ) takes
into account the renormalization of temperature, a specific feature absent in
the manifold problem. The full analysis of this equation is quite involved. The
1-loop part already shows interesting features. For N = 2, the fixed point was
studied in [47], and corresponds to the Bragg-glass phase of the XY model with
quasi-long range order obtained in a d = 4 − ε expansion below d = 4. Hence
for N = 2 the lower critical dimension is dlc < 4 and conjectured to be dlc < 3
in [47]. On the other hand Feldman [42,43] found that for N = 3, 4, . . . there is
a fixed point for d = 4 + ε for d > 4. This fixed point has exactly one unstable
direction, hence was conjectured to correspond to the ferromagnetic-to-disorder
transition. The situation at one loop is thus rather strange: For N = 2, only
a stable FP which describes a unique phase exists, while for N = 3 only an
unstable FP exists, describing the transition between two phases. The question
is: Where does the disordered phase go as N decreases? These results cannot
be reconciled within one loop and require the full 2-loop analysis of the above
FRG equation.

The complete analysis [44] shows that there is a critical value of N , Nc =
2.8347408, below which the lower critical dimension dlc of the quasi-ordered
phase plunges below d = 4. Hence there are now two fixed points below d = 4.

1These results were confirmed in [45] (for the normal terms not proportional to R′′′(0+))
and [46] (with one proposition for the anomalous terms).
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N = N cN > N c N < N c

dd dd 444 d lc

F F F

D
D

D

D D D

QLRO

ggg

Figure 13. Phase diagram of the RF non-linear sigma model. D = disordered,
F = ferromagnetic, QLRO = quasi long-range order. Reprinted from [44].

For N > Nc a ferromagnetic phase exists with lower critical dimension dlc = 4.
For N < Nc one finds an expansion:

dRF
lc = 4 − εc ≈ 4 − 0.1268(N −Nc)

2 +O((N −Nc)
3). (18.4)

One can also compute the exponents of the correlation function

SqS−q ∼ q−4+η̄, (18.5)

and once the fixed point is known, η̄ is given by

η̄ = ε− (N − 1)R′′(0) +
3N − 2

8
R′′′(0+)2.

There is a similar exponent for the connected thermal correlation η. Another
fixed point describing magnets with random anisotropies (i.e. disorder coupling
linearly to Si(x)Sj(x)) is studied in [42–44,48].

In this context, the existence of a quasi-ordered phase for the random-
field XY model in d = 3 (the scalar version of the Bragg glass) has been ques-
tioned [45]. Corrections in (18.4) seem to be small and at first sight exclude
the quasi-ordered phase in d = 3. This should however be taken with a (large)
grain of salt [49]. Indeed the above model does not even contain topological de-
fects (i.e. vortices) as it was directly derived in the continuum. In the absence
of topological defects it is believed that the lower critical dimension is dlc = 2
(with logarithmic corrections there). Hence the above series should converge to
that value for N = 2, indicating higher order corrections to (18.4). Another
analysis [50] based on a FRG on the soft-spin model, which may be able to
capture vortices, indicates dlc(N = 2) > 3. Unfortunately, it uses a truncation
of FRG which cannot be controlled perturbatively, and as a result, does not
match the 2-loop result. It would be interesting to construct a better approx-
imation which predicts accurately at which dimension the soft and hard spin
model differ in their lower critical dimensions, probably when vortices become
unbound due to disorder.
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Figure 14. Scaling function Φ(z) for the (1 + 1)-dimensional harmonic model,
compared to the Gaussian approximation for ζ = 1.25. Data from [51].

19. More universal distributions

As we have already seen, exponents are not the only interesting quantities:
In experiments and simulations, often whole distributions can be measured,
as e.g. the universal width distribution of an interface that we have computed
at depinnings [51, 52]. Be 〈u〉 the average position of an interface for a given

disorder configuration, then the spatially averaged width

w2 :=
1

Ld

∫

x

(u(x) − 〈u〉)2 (19.1)

is a random variable, and we can try to calculate and measure its distribution
P (w2). The rescaled function Φ(z), defined by

P (w2) = 1
/

w2 Φ
(

w2
/

w2
)

(19.2)

will be universal, i.e. independent of microscopic details and the size of the
system.

Supposing all correlations to be Gaussian, Φ(z) can be calculated analyt-
ically. It depends on two parameters, the roughness exponent ζ and the di-
mension d. Numerical simulations displayed on Figure 14 show spectacular
agreement between analytical and numerical results. As expected, the Gaus-
sian approximation is not exact, but to see deviations in a simulation, about
105 samples have to be used. Analytically, corrections can be calculated: They
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are of order R′′′(0+)4 and small. Physically, the distribution is narrower than a
Gaussian.

There are more observables of which distributions have been calculated
within FRG, or measured in simulations. Let us mention fluctuations of the
elastic energy [53], and of the depinning force [54, 55].

20. Anisotropic depinning, directed percolation, branching and all
that

We have discussed in Section 16 isotopic depinning, which as the name sug-
gests is a situation, where the system is invariant under a tilt. This isotropy
can be broken through an additional anharmonic elasticity

Eelastic =

∫

x

1

2
[∇u(x)]2 + c4[∇u(x)]4, (20.1)

leading to a drastically different universality class, the so-called anisotropic de-
pinning universality class, as found recently in numerical simulations [56]. It
has been observed in simulations [57, 58], that the drift-velocity of an interface
is increased, which can be interpreted as a tilt-dependent term, leading to the
equation of motion in the form

∂tu(x, t) = ∇2u(x, t) + λ[∇u(x, t)]2 + F (x, u(x, t)) + f. (20.2)

However it was for a long time unclear, how this new term (proportional to λ),
which usually is referred to as a KPZ-term, is generated, especially in the limit
of vanishing drift-velocity. In [59] we have shown that this is possible in a
non-analytic theory, due to the diagram given in Figure 15.

t’

k p

0

t

Figure 15. The diagram generating the irreversible nonlinear KPZ term with
one disorder vertex and one c4 vertex (the bars denote spatial derivatives).

For anisotropic depinning, numerical simulations based on cellular automa-
ton models which are believed to be in the same universality class [60, 61],
indicate a roughness exponent ζ ≈ 0.63 in d = 1 and ζ ≈ 0.48 in d = 2. On a
phenomenological level it has been argued [60–62] that configurations at depin-
ning can be mapped onto directed percolation in d = 1 + 1 dimensions, which
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yields indeed a roughness exponent ζDP = ν⊥/ν‖ = 0.630± 0.001, and it would
be intriguing to understand this from a systematic field theory.

This theory was developed in [59], and we review the main results here. A
strong simplification is obtained by going to the Cole – Hopf transformed fields

Z(x, t) := eλu(x,t) ⇐⇒ u(x, t) =
ln(Z(x, t))

λ
. (20.3)

The equation of motion becomes after multiplying with λZ(x, t) (dropping the
term proportional to f)

∂tZ(x, t) = ∇2Z(x, t) + λF
(

x,
ln(Z(x, t))

λ

)

Z(x, t) (20.4)

and the dynamical action (after averaging over disorder)

S =

∫

xt

Z̃(x, t)
(

∂t −∇2
)

Z(x, t) (20.5)

− λ2

2

∫

xtt′

Z̃(x, t)Z(x, t)∆
( lnZ(x, t) − lnZ(x, t′)

λ

)

Z̃(x, t′)Z(x, t′).

This leads to the FRG flow equation at 1-loop order

∂`∆(u) = (ε− 2ζ)∆(u) + ζu∆′(u) − ∆′′(u)(∆(u) − ∆(0)) − ∆′(u)2

+ 2λ∆(u)∆′(0+) + 2λ2
(

∆(u)2 + ∆(u)∆(0)
)

. (20.6)

The first line is indeed equivalent to (7.1) using ∆(u) = −R′′(u). The second
line is new and contains the terms induced by the KPZ term, i.e. the term
proportional to λ in (20.2).

Equation (20.6) possesses the following remarkable property: A three pa-

rameter subspace of exponential functions forms an exactly invariant subspace.
Even more strikingly, this is true to all orders in perturbation theory [59]! The
subspace in question is (0 ≤ u ≤ 1/λ)

∆(u) =
ε

λ2
(a+ b e−λu + c eλu) (20.7)

The FRG-flow (20.6) closes in this subspace, leading to the simpler 3-dimensi-
onal flow:

∂`a = a+ 4a2 + 4ac+ 4bc, (20.8)

∂`b = b(1 + 6a+ b+ 5c), (20.9)

∂`c = c(1 + 6a+ b+ 5c). (20.10)
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Figure 16. Fixed point structure for λ = 2, which is a typical value. The ratio
c/b is not renormalized, see (20.9)-(20.10), such that c/b is a parameter, fixed by
the boundary conditions, especially λ. The fixed points are Gaussian G, Random
Periodic RP (the generalization of the RP fixed point for λ = 0), Self-Avoiding
Polymers SAP, and Unphysical U.

This flow has a couple of fixed points, given on Figure 16. They describe different
physical situations. The only globally attractive fixed point is SAP, describing
self-avoiding polymers. This fixed point is not attainable from the physically
relevant initial conditions, which lie (as fixed point RP) between the two sepa-
ratrices given on Figure 16. All other fixed points are cross-over fixed points.

In the Cole –Hopf representation, it is easy to see why the exponential man-
ifold is preserved to all orders. Let us insert (20.7) in (20.5). The complicated
functional disorder takes a very simple polynomial form [59].

S =

∫

xt

Z̃(x, t)(∂t −∇2)Z(x, t) (20.11)

−
∫

x

∫

t<t′

Z̃(x, t)Z̃(x, t′)
(

aZ(x, t)Z(x, t′) + bZ(x, t)2 + cZ(x, t′)2
)

.

The vertices are plotted on Figure 17. It is intriguing to interpret them as
particle interaction (a) and as different branching processes (b and c): Z destroys
a particle and Z̃ creates one. Vertex b can e.g. be interpreted as two particles
coming together, annihilating one, except that the annihilated particle is created
again in the future. However, if the annihilation process is strong enough, the
reappearance of particles may not play a role, such that the interpretation as
particle annihilation or equivalently directed percolation is indeed justified.
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time

a b c

Figure 17. The three vertices proportional to a, b and c in equation (20.11).

One caveat is in order, namely that the fixed points described above, are
all transition fixed point, and nothing can a priori be said about the strong
coupling regime. However this is the regime seen in numerical simulations, for
which the conjecture about the equivalence to directed percolation has been
proposed. Thus albeit intriguing, the above theory is only the starting point for
a more complete understanding of anisotropic depinning. Probably, one needs
another level of FRG, so as standard FRG is able to treat directed polymers,
or equivalently the KPZ-equation in the absence of disorder.

21. Problems not treated in these notes. . . and perspectives

Problems not treated in these notes are too numerous to list. Let us just
mention some: depinning at the upper critical dimension is considered in [63].
In [17], the crossover from short-ranged to long-ranged correlated disorder is
treated. Our techniques can be applied to the statics at 3-loop order [64]. But
many questions remain open. Some have already been raised in these notes,
another is whether FRG can also be applied to other systems, as e.g. spinglasses
or window glasses. Can FRG be used as a tool to go beyond mean-field or mode-
coupling theories? Another open issue is the applicability of FRG beyond the
elastic limit, i.e. to systems with overhangs and topological defects, non-liear
elasticity [65], or to more general fractal curves than (directed) interfaces. For
random periodic disorder in d = 2, temperature is marginal, and a freezing
transition can be discussed (see e.g. [66,67]). It would be interesting to connect
this to methods of conformal field theory and stochastic Löwner evolution. We
have to leave these problems for future research and as a challenge for the reader
to plunge deeper into the mysteries of functional renormalization.

A. Derivation of the functional RG equations

In Section 6, we had seen that 4 is the upper critical dimension. As for
standard critical phenomena [39], we now construct an ε = (4 − d)-expansion.
Taking the dimensional reduction result (5.1) in d = 4 dimensions tells us that
the field u is dimensionless. Thus, the width σ = −R′′(0) of the disorder is
not the only relevant coupling at small ε, but any function of u has the same
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scaling dimension in the limit of ε = 0, and might thus equivalently contribute.
The natural conclusion is to follow the full function R(u) under renormalization,
instead of just its second moment R′′(0). Such an RG-treatment is most easily
implemented in the replica approach: The n times replicated partition function
becomes after averaging over disorder

exp

(

− 1

T

n
∑

a=1

Eel[ua] −
1

T

n
∑

a=1

EDO[ua]

)

(A.1)

= exp

(

− 1

T

n
∑

a=1

Eel[ua] +
1

2T 2

n
∑

a,b=1

∫

ddxR
(

ua(x) − ub(x)
)

)

.

Perturbation theory is constructed along the following lines (see [14,23] for more
details.) The bare correlation function, graphically depicted as a solid line, is
with momentum k flowing through and replicas a and b

a b =
Tδab

k2
. (A.2)

The disorder vertex is

x
a
b=

∫

x

∑

a,b

R
(

ua(x) − ub(x)
)

. (A.3)

The rules of the game are to find all contributions which correct R, and which
survive in the limit of T = 0. At leading order, i.e. order R2, counting of factors
of T shows that only the terms with one or two correlators contribute. On the
other hand,

∑

a,bR(ua − ub) has two independent sums over replicas. Thus at

order R2 four independent sums over replicas appear, and in order to reduce
them to two, one needs at least two correlators (each contributing a δab). Thus,
at leading order, only diagrams with two propagators survive. These are the
following (noting C(x− y) the Fourier transform of 1/k2):

a
b

x y
a
b =

∫

x

R′′(ua(x) − ub(x))R
′′(ua(y) − ua(y))C(x − y)2, (A.4)

a
b

x y
a
b = −

∫

x

R′′(ua(x) − ua(x))R′′(ua(y) − ua(y))C(x − y)2. (A.5)

In a renormalization program, we are looking for the divergences of these dia-
grams. These divergences are localized at x = y, which allows to approximate
R′′(ua(y) − ub(y)) by R′′(ua(x) − ub(x)). The integral

∫

x−y

C(x − y)2 =

∫

k

1

(k2 +m2)2
=
m−ε

ε
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(using the most convenient normalization for
∫

k
) is the standard 1-loop diagram

from ϕ4-theory. We have chosen to regulate it in the infrared by a mass, i.e.
physically by the harmonic well introduced in Section 8.

Note that the following diagram also contains two correlators (correct count-
ing in powers of temperature), but is not a 2-replica but a 3-replica sum:

a
b

x y
a
c . (A.6)

Taking into account combinatorial factors, the rescaling (6.5) of R, as well
as of the field u (its dimension being the roughness exponent ζ), we arrive at

−m ∂

∂m
R(u) = (ε− 4ζ)R(u) + ζuR′(u) +

1

2
R′′(u)2 −R′′(u)R′′(0). (A.7)

Note that the field does not get renormalized due to the exact statistical tilt
symmetry u(x) → u(x) + αx: The bare action (3.2), including the mass term,
changes according to Hbare[u] → Hbare[u] + δH[u], with

δH[u] = c

∫

ddx
[

∇u(x)α +
1

2
α2

]

+m2
[

u(x)αx +
1

2
α2x2

]

. (A.8)

To render the presentation clearer, the elastic constant c set to c = 1 in equa-
tion (3.2) has been introduced. The important observation is that all fields u
involved are large-scale variables, which are also present in the renormalized ac-
tion, changing according to Hren[u] → Hren[u] + δH [u]. The latter can be used
to define the renormalized elastic coefficient cren and mass mren. Since δH [u]
gives the change in energy both for the bare and the renormalized action with
unchanged coefficients, cren ≡ c and mren ≡ m, so neither elasticity nor mass
changes under renormalization.

B. Why is a cusp necessary in 4 − ε dimensions?

Let us present here another simple argument due to Leon Balents [68], why
a cusp is a physical necessity in order to have a ε = 4 − d expansion. To this
aim, consider a toy model with only one Fourier-mode u = uq

H[u] =
1

2
q2u2 +

√
ε Ṽ (u). (B.1)

Since equation (7.1) has a fixed point of order R(u) ∼ ε for all ε > 0, V (u)
scales like

√
ε for ε small and we have made this dependence explicit in (B.1)

by using V (u) =
√
εṼ (u). The only further input comes from the physics: For

L < Lc, i.e. before we reach the Larkin length, there is only one minimum, as
depicted in Figure 18. On the other hand, for L > Lc, there are several minima.
Thus there is at least one point for which

d2

du2
H[u] = q2 +

√
ε Ṽ ′′(u) < 0. (B.2)
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H[u]

u

H[u]
L < Lc

L > Lc
u

Figure 18. The toy model (B.1) before (left) and after (right) the Larkin-scale.

In the limit of ε → 0, this is possible if and only if (1/ε)R′′′′(0), which a priori
should be finite for ε→ 0, becomes infinite:

1

ε
R′′′′(0) = V ′′(u)V ′′(u′)

∣

∣

u=u′
= ∞. (B.3)

This argument shows that a cusp is indeed a physical necessity.
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[27] P. Chauve and P. Le Doussal (2001) Exact multilocal renormalization
group and applications to disordered problems. Phys. Rev. E 64, 051102/1–27.
cond-mat/0006057.

[28] A.A. Middleton (1995) Numerical results for the ground-state interface in a
random medium. Phys. Rev. E 52, R3337–40.

[29] P. Le Doussal and K.J. Wiese (2005) 2-loop functional renormalization for
elastic manifolds pinned by disorder in N dimensions. Phys. Rev. E 72, 035101
(R) (4 pages). cond-mat/0501315.

[30] M. Kardar, G. Parisi and Y.-C. Zhang (1986) Dynamic scaling of growing
interfaces. Phys. Rev. Lett. 56, 889–892.

[31] E. Marinari, A. Pagnani and G. Parisi (2000) Critical exponents of the
KPZ equation via multi-surface coding numerical simulations. J. Phys. A 33,
8181–8192.

[32] P. Le Doussal and K.J. Wiese (2002) Functional renormalization group at
large N for random manifolds. Phys. Rev. Lett. 89, 125702. cond-mat/0109204v1.
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