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Abstract

We study the dynamics of a polymer or a D-dimensional elastic manifold diffusing and con-
vected in a non-potential static random flow (the “randomly driven polymer model”). We find
that short-range (SR) disorder is relevant for d 6 4 for directed polymers (each monomer sees
a different flow) and for d 6 6 for isotropic polymers (each monomer sees the same flow) and
more generally for d < dc(D) in the case of a manifold. This leads to new large scale behavior,
which we analyze using field theoretical methods. We show that all divergences can be absorbed
in multilocal counter-terms which we compute to one loop order. We obtain the non-trivial rough-
ness ζ, dynamical z and transport exponents φ in a dimensional expansion. For directed polymers
we find ζ ≈ 0.63 (d = 3), ζ ≈ 0.8 (d = 2) and for isotropic polymers ζ ≈ 0.8 (d = 3). In all
cases z > 2 and the velocity versus applied force characteristics is sublinear, i.e. at small forces
v(f) ∼ fφ with φ > 1. It indicates that this new state is glassy, with dynamically generated
barriers leading to trapping, even by a divergenceless (transversal) flow. For random flows with
long-range (LR) correlations, we find continuously varying exponents with the ratio gL/gT of
potential to transversal disorder, and interesting crossover phenomena between LR and SR behav-
ior. For isotropic polymers new effects (e.g. a sign change of ζ − ζ0) result from the competition
between localization and stretching by the flow. In contrast to purely potential disorder, where
the dynamics gets frozen, here the dynamical exponent z is not much larger than 2, making it
easily accessible by simulations. The phenomenon of pinning by transversal disorder is further
demonstrated using a two monomer “dumbbell” toy model. c© 1999 Elsevier Science B.V. All
rights reserved.
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Fig. 1. Elastic manifolds (polymers D = 1) in random flows: (a) directed polymer (b) isotropic chain.

1. Introduction

In this paper, we study the model of a polymer diffusing in a static random flow
and its extension to an elastic manifold of arbitrary internal dimension D. The velocity
pattern of the flow v(r) is constant in time and leads to convection of the polymer
in addition to diffusion. We are interested in the general case of a non-potential flow:
the extreme example is the hydrodynamic divergenceless flow, with ∇ · v(r) = 0, but
mixtures of potential and divergenceless flows are also considered. See Figs. 2, 3 and 4
for a visualization. The physical motivations to study this model, which we call a
“randomly driven polymer”, are the following.

First, it is a prototype of an out of equilibrium system in the presence of quenched
disorder which generalizes the much studied problem of an elastic manifold in a ran-
dom potential [1111], i.e. for the present model the case of a purely potential flow.
This problem has been very popular in the last decade due to its numerous physical
realizations such as vortex lines in superconductors, interfaces in random magnets and
charge density waves [12115]. Equally fascinating, albeit more formal, relations exist
to growth processes and potential fluid dynamics, via the Cole1Hopf transformation
onto the Burgers and Kardar1Parisi1Zhang equations [16]. In addition, it is one of
the simplest models which exhibits glassy properties, typically ultra slow dynamics,
anomalously small response to external perturbations and pinning [2,12,17], which are
also present in more complex systems, such as spin glasses [18120] or random field
systems [21,22]. However, little is known about what of the glassy properties remains
in the presence of non-potential disorder. This question is important for numerous phys-
ical systems such as driven systems in the presence of quenched disorder [23126] or
domain growth in the presence of shear [27]. The model studied in this paper is simple
enough to allow for some answers to this question.

1 E-mail: wiese@theo-phys.uni-essen.de
2 E-mail: ledou@physique.ens.fr
3 LPTENS is a Unité Propre du C.N.R.S. associée à l’Ecole Normale Supérieure et à l’Université Paris Sud.
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Fig. 2. Longitudinal (potential) disorder, obtained from the disorder of Figure 4 through application of the
longitudinal projector.

Fig. 3. Transversal disorder, obtained from the disorder of Figure 4 through application of the transversal
projector.



532 K.J. Wiese, P. Le Doussal / Nuclear Physics B 552 [FS] (1999) 5291598

Fig. 4. Isotropic disorder, obtained through superposition of 7 × 7 Fourier modes. One observes purely
transversal (“turbulent”) regions and potential wells.

The second motivation concerns real systems of elastic objects convected by hydro-
dynamic flows. Recently, experiments on polymers in spatially varying stationary flows,
such as elongational flows have been performed [28131] and these experiments can be
extended to longer objects and more complex flows. Of course the model studied here
is a toy model in the sense that it disregards hydrodynamic forces (the back reaction of
the polymer on the flow) and additional time dependent components of the flow. The
main interest is to illustrate in a simple way some of the fascinating properties arising
from the competition between the convecting flow and the elasticity of the structure. We
believe that some of these properties, for instance the existence of preferred regions in
the flow, will be present in more realistic situations. Experimentally, inhomogeneities in
the polymer distribution and non-linearities in the response of the drift velocity v(f) to
an uniform applied external force f are worth being investigated [32].

In the case of non-potential disorder new effects arise from the competition between
on one hand disorder and elasticity 1 which tend to create pinned or frozen states 1 and
on the other hand the energy which is constantly pumped into the system and which
tends to destroy the glassy properties. Very few systematic studies of these effects exist
at present. One extensive work was performed in the context of driven lattices [25,33]:
it was shown that some glassy features, such as pinning in the displacement transverse
to the motion, barriers and strongly non-linear transverse velocity force-characteristics,
survive in the moving state. Some glassy features were also found to survive in infinite
range random spin systems with non-relaxational dynamics [34]. Another example,
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studied long ago [35143] and recently solved analytically in the limit of d → ∞
for long-range (LR) disorder [44], is the problem of a single-particle diffusing in
a quenched random flow, the D = 0 limit of the present model. This problem was
found to exhibit some glassy features, also seen in recent simulations of a related spin
model [34]. In the present paper we generalize the single-particle study to an elastic
manifold, which is expected to lead to new physics due to the crucial role of internal
elasticity in generating barriers. It also generalizes the studies of the dynamics of self-
avoiding manifolds [45,46] to a quenched disorder situation, though self-avoidance is
found to be perturbatively less relevant in most of the regimes studied here.

In this paper we work directly in finite dimension using dynamical renormalization
group techniques, and establish the existence of new universal fixed points for short-
range disorder. We also treat the case of long-range disorder, which leads to a line of
fixed points. In all cases we compute explicitly the non-trivial roughness exponent, the
dynamical exponent and the velocity force characteristics at small applied force f. We
study two cases: either the polymer is directed (each monomer sees a different flow) or
it is isotropic (all monomers are in the same flow) as depicted in Fig. 1. A short account
of our results has already appeared in [48], which was presented using a Wilson RG
technique as in related studies [33,49]. The aim of the present paper is to give a detailed
account of our results using a field theoretical derivation. This derivation, based on the
powerful multilocal operator product expansion (MOPE) techniques developed in the
context of self-avoiding manifolds [50154,45,46], deserves a detailed presentation, as
it is generally useful to treat problems involving manifolds. In addition, we give here a
detailed treatment of the crossover between long-range and short-range disorder, as well
as an in depth discussion of the results.

This article is organized as follows. In Section 2 we define the model, the physical
observables and present a simple analysis based on dimensional and Flory arguments.
Section 3 is devoted to the field theoretic treatment of the model. We start by defining
the generating functional (Section 3.1), and then show that divergences are short-range
(Section 3.2). This allows to identify local (Section 3.3) and bilocal (Section 3.4)
counter-terms, summarized in Section 3.6. Their divergent parts are calculated in Sec-
tions 3.7 and 3.8, followed by a discussion of the particle limit in Section 3.9. This
yields the RG equations in Sections 3.10 and 3.11.

The section which contains a presentation and a discussion of the results, and can be
read independently is Section 4. There we analyze the RG equations, report the results
of our calculation and specify them to the four cases of interest (directed and isotropic
disorder, short-range and long-range correlations). The crossover from long-range to
short-range correlated disorder is discussed in Section 4.6. We compare with previous
results for Hartree limit (d = ∞) and particle case (D = 0) and discuss the crossover
from short-range to long-range correlated disorder. This is followed by an analysis of
the effect of self-avoidance in Section 4.7. The section terminates with the study of
a toy model, involving two particles in a (directed) random flow which illustrates
how barriers are generated dynamically. Conclusions and perspectives are presented in
Section 5. Some technicalities are relegated to Appendices A, B and C.
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2. Model and physical observables

2.1. The model

We consider a manifold of internal dimension D parameterized by a d-component
field rα(x). The polymer corresponds to D = 1 (x labels the monomers), and a single-
particle to D = 0. Membranes have D = 2. We study the Langevin dynamics (for the
dimensional analysis see Section 2.3)

ṙα(x, t) = λ (∆rα(x, t) + ηα(x, t) + Fα[r(x, t), x]) , (2.1)

where the term proportional to ∆rα(x, t) is the derivative of the internal (entropic)
elasticity (“stiffness”). The Gaussian thermal noise ηα(x, t) satisfies

〈ηα(x, t)ηβ(x′, t′)〉 =
2
λ
δαβδ(t− t′)δD(x− x′). (2.2)

Angular brackets denote thermal averages and overbars disorder averages.
Fα[r, x] is a Gaussian quenched random force field of correlations:

Fα[r, x]Fβ[r′, x′] = ∆αβ(r− r′)h(x− x′). (2.3)

We study two main cases of interest illustrated in Fig. 1. If the manifold is directed
(e.g. a polymer oriented by an external field), then

h(x− x′) = δD(x− x′). (2.4)

If the manifold is isotropic, (e.g. a Gaussian chain in a static flow), the force field does
not depend on the internal coordinate,

Fα[r, x] = Fα[r] (2.5)

and

h(x− x′) = 1. (2.6)

Note that the isotropic polymer (or more generally the manifold) in a static flow can
also be seen as a directed polymer in a flow completely correlated (i.e. constant) along
its internal dimension.

We consider a statistically rotationally invariant force field with both a potential (L)
(“electric”) and a divergence-free (T) part (“magnetic”) which depends only on the
distance |r− r′|. Both parts contribute separately to the correlator:

∆αβ(r) = −∂rα∂rβ∆L(|r|)−
(
δαβ

∑
γ

∂2
rγ − ∂rα∂rβ

)
∆T(|r|). (2.7)

In Fourier space we use

∆αβ(r) =
∫
k

∆αβ(k)eik·r, (2.8)
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where we specify the normalization of the k-integral below. There are several cases of
interest for the correlation of the random force.

Model SRF: force with short-range correlations.
The force correlator scales like a δ-distribution ∆αβ(r−r′) ∼ δd(r−r′), with however

a non-trivial index structure. In Fourier space the correlator reads at small k

∆αβ(k) = gLP
L
αβ(k) + gTP

T
αβ(k), (2.9)

where P L
αβ(k) = kαkβ/k2 is the longitudinal and P T

αβ(k) = δαβ − P L
αβ(k) the transverse

projector. As we shall show below, this is the generic situation, since it is relevant for all
short-ranged correlations, even those, for which one starts with a force correlator which
is formally shorter ranged than the δ-distribution (e.g. decaying faster than 1/rd).

Model SRP: potentials with short-range correlations.
In this case, the potential correlator scales like a δ-distribution ∆L,T(r− r′) ∼ δd(r−

r′). The corresponding force-correlator reads in Fourier space at small k

∆αβ(k) = g̃Lkαkβ + g̃T(δαβk2 − kαkβ) ≡ k2
[
g̃LP

L
αβ(k) + g̃TP

T
αβ(k)

]
. (2.10)

Except for g̃T = 0, which is preserved by a fluctuation dissipation theorem [12,5,55],
this model is unstable and will renormalize to model SRF discussed above (except in
the transversal case gL = 0 for the particle D = 0).

Model LR: forces with long-range correlations.
In this model, correlations at large scale obey a power law ∆αβ(r− r′) ∼ |r− r′|−a,

with a < d. The Fourier transforms of the correlators with respect to r behave, for small
values of their argument k, as

∆αβ(k) ∼ |k|a−d(gLP
L
αβ(k) + gTP

T
αβ(k)). (2.11)

Let us also note that in order to simplify calculations, we normalize the integral over
k such that∫

k

|k|a−de−Ck
2

= C−a/2. (2.12)

2.2. Physical observables

We study the time translational invariant steady state. It can be constructed by taking
a finite size sample L and considering the large time limit first, before taking the system
size to ∞. We will not address here the subtle issue of whether, or in which case, these
limits commute (for a partial discussion in the case gT > 0 see e.g. Ref. [44]). The
radius of gyration (or roughness) exponent ζ is then defined by

〈(r(x, t)− r(x′, t))2〉 ∼ |x− x′|2ζ, (2.13)

and the single monomer diffusion exponent ν by

〈(r(x, t)− r(x, t′))2〉 ∼ |t− t′|2ν. (2.14)



536 K.J. Wiese, P. Le Doussal / Nuclear Physics B 552 [FS] (1999) 5291598

We assume scaling behavior

〈(r(x, t)− r(0, 0))2〉 ∼ |x|2ζ B(t/xz) (2.15)

with ζ = zν.
We also consider the anomalous dimension of the elasticity of the membrane, β (for

the precise definition see Eq. (3.108)), which evaluates to 0 in the directed case.
The drift velocity under a small additional applied force f in Eq. (2.1) is

v ∼ 〈r(x, t)〉/t. (2.16)

We find

v ∼ fφ (2.17)

at small f, with

φ =
z − ζ

2− ζ + β
> 1, (2.18)

indicating trapping of the polymer by the flow.

2.3. Dimensional analysis

Power counting at the Gaussian fixed point without disorder yields (denoting for
example by [r]x the dimension of r in units of x)

[r]x = ζ0 =
2−D

2
, [r]t = ν0 =

2−D
4

,

ζ̃0 =
[
η
]
x

= [r̃]x = −2 +D

2
, β = 0 (2.19)

for D < 2. The dimensions of the couplings are

εdir(D, d) =−
[
gL
]dir

x
= −

[
gT
]dir

x
= 2− ζ0a (2.20)

εiso(D, d) =−
[
gL
]iso

x
= −

[
gT
]iso

x
= 2 +D − ζ0a (2.21)

in the directed and isotropic case respectively. Thus short-range disorder (formally
a := d) is relevant for positive ε, i.e. when (see Fig. 5) d < ddir

c (D) for directed
manifolds and d < diso

c (D) for isotropic manifolds, with

ddir
c (D) =

4
2−D, diso

c (D) =
4 + 2D
2−D . (2.22)

Thus we find that short-range disorder is relevant for directed polymers when d < 4 and
for isotropic polymers for d < 6. This is interesting because it means that in physical
dimensions (d = 2, d = 3) polymers should be affected by quenched random flows
while for particles short-range disorder is irrelevant for d = 3 and only marginal in
d = 2. Disorder can also be relevant if the interaction is long enough ranged: disorder
is relevant for a < ac(D) = dc(D) for LR disorder.
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Fig. 5. Regions in the (d, D) plane where SR disorder is relevant for a directed manifold. Inset: Regions in
the (a, d) plane where SR or LR disorder is relevant for the directed polymer D = 1.

A qualitative idea of the effect of disorder is obtained by using Flory-like estimates.
Balancing in Eq. (2.1) friction or elasticity with disorder 4 yields

ζdir
F = 2νdir

F =
4−D
2 + d

, ζ iso
F = 2νiso

F =
4

2 + d
(2.23)

for directed and isotropic manifolds, respectively. Results for LR disorder are obtained
upon replacing d → a. Note that this argument is too rough to distinguish between
the potential or divergenceless nature of the flow. It suggests however that the manifold
will be stretched by disorder. As we will see below, the precise calculation will indeed
confirm that the manifolds are stretched in most (but not all!) of the cases, and will
yield the deviations away from Flory.

The expected “phase diagram” in the d,D plane is illustrated in Fig. 5 for directed
manifolds. The new glassy regime extends from the line d = dc(D) to the upper critical
(internal) dimension D = Dc = 4 beyond which disorder is perturbatively irrelevant.
For isotropic manifolds the diagram has the same topology except that the upper critical
internal dimension is pushed to Dc = +∞. We know of three ways to investigate
perturbatively the nature of the glassy regime in Fig. 5. First one can start from large d
(any D), which was done in [44]. The second approach is to start from D = 4 using
a functional RG method [73]. The last approach is to start from the line d = dc(D)
which is the aim of this paper.

4 The idea of the Flory-estimate is to suppose that all terms in the equation of motion scale in the same way,
and by this to obtain the critical exponents. For directed manifolds in short-range correlated forces, one sets
∂tr ∼ ∆r ∼ F(r, x), replaces ∂t by 1/t, ∆ by 1/x2 and from Eq. (2.3) F(r, x) by r−d/2x−D/2 to obtain
r/t ∼ r/x2 ∼ r−d/2x−D/2, and the exponents stated in the main text. For isotropic manifolds in short-range
correlated forces, the same argument reads r/t ∼ r/x2 ∼ r−d/2.
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3. Field theoretic treatment of the renormalization group equations

3.1. Definition of the field-theoretic model

We start from the equation of motion (2.1) and convert it into an effective field theory
following Ref. [56]. The effective dynamical action in prepoint (Itô) discretization reads

J [r, r̃] =
∫
x,t

r̃α(x, t) (ṙα(x, t) + λ (−∆rα(x, t) + ηα(x, t) + Fα[r(x, t), x])) .

(3.1)

The noise η(x, t) as well as the disorder force F(r) are Gaussian, see Eqs. (2.2) and
(2.3), and can thus be integrated over. This gives the dynamic functional

J [r, r̃] =
∫
x,t

r̃(x, t) (ṙ(x, t)− λ∆r(x, t))− λr̃(x, t)2

−1
2
λ2

∫
x,y,t,t′

r̃α(x, t)∆αβ(r(x, t)− r(y, t′))h(x− y)r̃β(y, t′). (3.2)

Here and in the following, contraction over indices is implied, where ever confusion is
impossible. In order to simplify notations, we will in the following suppress the factor
of λ, i.e. set

λt→ t. (3.3)

This is not problematic, as λ always appears with time. At the end of the calculations
one has to replace t by λt which is necessary in order to get the renormalization factors
correct. Note also that the factor 1

2 disappears, if we use the time-ordered vertex.
The disorder correlator is

∆αβ(r(x, t)− r(y, t)) =
∫
k

eik(r(x,t)−r(y,t))
(
gLP

L
αβ(k) + gTP

T
αβ(k)

)
|k|a−dh(x− y).

(3.4)

The function h(x) may be specified to the directed case with

h(x− x′) = δD(x− x′) (3.5)

or to the isotropic case

h(x− x′) = 1. (3.6)

Eventually, one may also want to study an interpolating case, where

h(x− x′) = δ(x⊥ − x′⊥). (3.7)

In order to simplify notations, we introduce the following graphical symbols:
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= r̃(x, t)(−∆x)r(x, t)
= r̃(x, t)ṙ(x, t)

= r̃(x, t)2

α β =
∫
k

r̃α(x, t)eik(r(x,t)−r(y,t′))r̃β(y, t′)|k|a−dh(x− y) (3.8)

=
∫
k

r̃(x, t)eik(r(x,t)−r(y,t′))r̃(y, t′)|k|a−dh(x− y)

L =
∫
k

P L
αβ(k)r̃α(x, t)eik(r(x,t)−r(y,t′))r̃β(y, t′)|k|a−dh(x− y)

T =
∫
k

P T
αβ(k)r̃α(x, t)eik(r(x,t)−r(y,t′))r̃β(y, t′)|k|a−dh(x− y).

The action takes the symbolic form

J [r, r̃] =
∫
x,t

+ −

−1
2

∫
x,y,t,t′

(
L

gL+ T
gT

)
. (3.9)

The free theory (gL = gT = 0) is easily investigated to obtain the free response R(x, t)
and correlation function C(x, t):

R(x, t) =
1
d
〈r(x, t)r̃(0, 0)〉0 , (3.10)

C(x, t) =
1
d

〈
1
2

(r(x, t)− r(0, 0))2

〉
0

, (3.11)

where 〈. . .〉0 denotes averages in the free theory. Explicit analytical expressions are given
in appendix A. Here it is only important to note that for 0 < D < 2 both functions are
well defined in the continuum. C(x, t) vanishes for x = t = 0, and is monotonically
increasing in both arguments. They are non-trivially related by the fluctuation1dissipation
theorem

Θ(t)
∂

∂t
C(x, t) = R(x, t). (3.12)

3.2. General considerations about renormalization

Before embarking upon calculations, let us follow [51,45] to show that divergences
are always short range. This is necessary for the renormalization program to work. To
this aim write down the perturbation expansion, the interaction vertex being
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:=
∫
k

r̃(x, t) eik(r(x,t)−r(y,t′)) r̃(y, t′), (3.13)

where for the sake of transparency, we have neglected the index structure. The reader
will easily be able to generalize the analysis given below to the model defined in
Eq. (3.2).

The perturbative expansion of an observable O can then be written as

〈O〉 = Norm
∑
n

gn

n!

∫
{xi,ti}

〈O n〉0 , (3.14)

where 〈. . .〉 denotes the expectation value with respect to the free, non-interacting theory,
and the normalization Norm has to be chosen so that 〈1〉 = 1. The integral is taken over
all arguments of the interaction vertex. We claim that divergences only occur at short
distances and short times. To prove this look at a typical expectation value with fixed
xi and ti

〈O n〉0 =
∑
α

∫
{ki}

fα(xl − xm, tl − tm, kl, km)e
−
∑

i,j
Qijkikj , (3.15)

where each contribution consists of a function fα, which is a polynomial product of
correlation and response functions and k’s and an exponential factor, with

Qij = −C(xi − xj, ti − tj). (3.16)

As fα is a regular function of the distances, divergences in the k-integral in Eq. (3.15)
can only occur if Qij is not a positive form. We will show that Qij is a positive form
for all ki which satisfy the constraint∑

i

ki = 0. (3.17)

This constraint always holds, see Eq. (3.13). For equal times it is just the statement that
the Coulomb energy of a globally neutral assembly of charges is positive by identifying
C with the Coulomb-propagator and ki with the charges. In the dynamic case, write

Qij =
∫

dDp
(2π)D

∫
dω
2π

2

ω2 +
(
p2
)2

(
eip(xi−xj)+iω(ti−tj) − 1

)
. (3.18)

The exponential in Eq. (3.15) then reads∑
i,j

kikjQij =
∫

dDp
(2π)D

∫
dω
2π

2

ω2 +
(
p2
)2

∑
ij

kikj
(
eip(xi−xj)+iω(ti−tj) − 1

)

=
∫

dDp
(2π)D

∫
dω
2π

2

ω2 +
(
p2
)2

∣∣∣∣∣∑
i

ki eipxi+ωti

∣∣∣∣∣
2

. (3.19)

To get the second line, Eq. (3.17) has been used. Note that again due to Eq. (3.17),
the integral is ultraviolet convergent and thus positive. It vanishes if and only if the
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charge-density, regarded as a function of space and time, vanishes. This is possible if
and only if endpoints of the dipoles (which form the interaction) are at the same point
in space and time.

Thus when integrating in Eq. (3.14) over xi and ti, no divergence can occur at
finite distances. To renormalize the theory, only short distance divergences have to
be removed by adding appropriate counter-terms. Thay are analyzed via a multilocal
operator product expansion (MOPE) [50,51]. For a detailed discussion of the MOPE
and examples see Refs. [50152,54,47]. The main result of this analysis is, like in scalar
field theory, that in any order of perturbation theory, only a finite number of counter-
terms is necessary and that these are exactly those terms, which are already present
in the original theory. The theory is thus multiplicatively renormalizable. To actually
evaluate the counter-terms, a multilocal operator product expansion is used, which is
described in the next sections. The general idea is always to study the behavior of n
disorder-vertices on approaching their end-points. The resulting term is expanded into a
product of a (multi-local) operator, times a MOPE coefficient, which is a homogeneous
function of the distances involved. Power-counting then indicates that as long as the
operator is relevant or marginal in the RG sense, the integral over the distances possesses
an UV-divergence, and thus requires a counter-term in the Hamiltonian. On the other
hand, when the operator is irrelevant in the RG sense, then the integral over the MOPE
coefficient is globally UV-convergent, and no counter-term is needed. This procedure is
constructed such, that possible sub-divergences are taken care of recursively as in the
BPHZ scheme. A formal proof of this statement is given in the context of a simpler
model in [51], see also Ref. [47].

3.3. Divergences associated with local operators

We now analyze our specific model, using the techniques of the multilocal oper-
ator product expansion (MOPE) [50,51]. The first class of divergences stems from
configurations where the two end-points of the interaction vertex are approached. The
interaction vertex is

L
gL+ T

gT =
∫
k

r̃α(x, t)eik[r(x,t)−r(y,t
′)]r̃β(y, t′)

×(P L
αβ(k)gL + P T

αβ(k)gT) |k|a−dh(x− y).

(3.20)

For short-range forces set a = d.
In order to extract the divergences for small x−y and t− t′, the first possibility is not

to contract any response-field. We then start by normal-ordering the r.h.s. of Eq. (3.20).
As usual in statistical field theory, we define the normal-ordered operator : O : starting
from the operator O by

: O := O − all self-contractions, (3.21)
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where the self-contractions are taken with respect to the free theory. The idea is that in
order to calculate the insertion of : O : into some expectation value only contractions of
: O : with the other operators in this expectation value have to be taken. This implies
that the operator : O1(x, t)O2(0, 0) : is always free of divergences for (x, t)→ (0, 0).

Using the identity

eikr(x,t) e−ikr(y,t
′) =: eikr(x,t)e−ikr(y,t

′) : e−k
2C(x−y,t−t′), (3.22)

one can expand the normal-ordered vertex-operators on the r.h.s. for small x − y and
t− t′. The leading contribution is

1 e−k
2C(x−y,t−t′), (3.23)

yielding the first term in the short-distance expansion of Eq. (3.20) (for the normaliza-
tion of the k-integral cf. Eq. (2.12)):∫

k

e−k
2C(x−y,t−t′) : r̃α(x, t)r̃β(y, t′) : (P L

αβ(k)gL + P T
αβ(k)gT)|k|a−dh(x− y)

= r̃

(
x+ y

2
,
t+ t′

2

)2(
gT

(
1− 1

d

)
+ gL

1
d

)
C(x− y, t− t′)−a/2h(x− y)

+subleading terms

=

(
gT

(
1− 1

d

)
+ gL

1
d

)
C(x− y, t− t′)−a/2h(x− y)

+subleading terms. (3.24)

By going from the first to the second line, two things have been used: First, since the
integral over k is rotationally invariant, only terms with α = β survive, with a geometric
factor of 1/d for the transversal and (1 − 1/d) for the longitudinal projector. Second,
since : r̃(x, t)r̃(y, t′) : is normal-ordered, i.e. all contractions between the two fields r̃
have been eliminated and no short-distance singularities remain, it can be written as

: r̃(x, t)r̃(y, t′) : = : r̃

(
x+ y

2
,
t+ t′

2

)2

:

+ : r̃

(
x+ y

2
,
t+ t′

2

)[
2(x− y)∇

]
r̃

(
x+ y

2
,
t+ t′

2

)
:

+ : r̃

(
x+ y

2
,
t+ t′

2

)[
2(t− t′) 2∂

∂t

]
r̃

(
x+ y

2
,
t+ t′

2

)
:

+O
(
(x− y)2

)
+O

(
(t− t′)2

)
+O (x− y)O

(
t− t′

)
.

(3.25)

From this expansion, only the first term has to be retained and will give a correction
to the marginal operator = r̃2 in the action. The following terms are irrelevant
(in the RG sense) with respect to this dominant term and can therefore be neglected.
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Dropping the explicit normal ordering of r̃2 which is a pure number, and zero by analytic
continuation, leads to Eq. (3.24).

Note that when expanding the product of two operators as sum of normal ordered
ones, this sum runs over all possible contractions. The second contribution to the normal-
ordered product of Eq. (3.20) is therefore obtained upon contracting one response field.
Due to causality, this must be the field with the smaller time-argument. For simplicity,
let us take t > 0 and put y = t′ = 0. By the same procedure as above, we obtain the
following contribution:∫

k

: r̃α(x, t)eik(r(x,t)−r(0,0)) : R(x, t)(ik)βe−k
2C(x,t)

×(P L
αβ(k)gL + P T

αβ(k)gT)|k|a−dh(x− y). (3.26)

The next step is to expand : eik(r(x,t)−r(0,0)) : about (x, t). (It is important to expand
about (x, t) as otherwise r̃(x, t) had to be expanded, too.) This expansion is

: eik(r(x,t)−r(0,0)) : = 1 + (ik)γ

(
tṙγ(x, t) + (x∇)rγ(x, t)− 1

2
(x∇)2rγ(x, t)

)
+subleading terms. (3.27)

Upon inserting Eq. (3.27) into Eq. (3.26) and integration over k, only terms even in k
survive. We can also neglect the term linear in x, which is odd under space reflection.
The remaining terms are

∫
k

: r̃α(x, t)

(
tṙγ(x, t)− 1

2
(x∇)2rγ(x, t)

)
: (ik)γ(ik)βR(x, t)e−k

2C(x,t)

×(P L
αβ(k)gL + P T

αβ(k)gT)|k|a−dh(x)

= −R(x, t)
a

2d
C(x, t)−a/2−1 h(x)

(
t +

x2

2D

)
gL. (3.28)

For the contribution proportional to , we have retained from the tensor operator
r̃(x, t)(x∇)2r(x, t) only the diagonal contribution 1

D r̃(x, t)x
2(∆)r(x, t), which is suf-

ficient at 1-loop order. For the subtleties associated with the insertion of this operator at
the 2-loop level cf. Ref. [52]. Using the FDT, Eq. (3.12), this can still be simplified to

∂

∂t
C(x, t)−a/2

(
t

d
+

x2

2dD

)
gL. (3.29)

Eqs. (3.24) and (3.29) contain all possible divergent terms in the short-distance expan-
sion of Eq. (3.20) and all terms which have to be taken into account in 1-loop order.
Notably, due to causality, no term independent of r̃ appears.
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Fig. 6. The diagrams D1 (left) and D2 (right).

3.4. The renormalization of the disorder (divergences associated with bilocal
operators)

There are also UV-divergent configurations associated to bilocal operators, which
renormalize the disorder, and which are depicted in Fig. 6. A dashed line indicates
that the end-points of the interaction vertices are approached in space and time. Up to
permutations of the two interaction vertices, there are two possibilities to order their
end-points in time, namely D1 and D2 in Fig. 6. We first calculate D1, starting from

r̃α(y, t)
∫
k

(
gTP

T
αβ(k) + gLP

L
αβ(k)

)
|k|a−dh(x− y)eik(r(y,t)−r(x,0)) r̃β(x, 0)

×r̃γ(y′, t− σ)
∫
p

(
gTP

T
γδ(p) + gLP

L
γδ(p)

)
|p|a−dh(x′ − y′)

×eik(r(y′,t−σ)−r(x′,−τ))r̃δ(x
′,−τ). (3.30)

For small x− x′, y− y′, τ and σ, with τ, σ > 0, there is one contribution for the renor-
malization of the interaction vertex. First, due to causality, r̃γ(y′, t−σ) and r̃δ(x′,−τ)
have to be contracted with a correlator field in order to obtain two response fields at the
end. Then the short-distance expansion for nearby vertex-operators reads

eikr(y,t)eipr(y
′ ,t−σ) ≈ ei(k+p)r(y,t) ekpC(y−y′,σ),

e−ikr(x,0)e−ipr(x
′,−τ) ≈ e−i(k+p)r(x,0)ekpC(x−x′,τ). (3.31)

This yields up to subleading terms∫
k

∫
p

r̃α(y, t)r̃β(x, 0)ei(k+p)(r(y,t)−r(x,0))

×
(
gTP

T
αβ(k) + gLP

L
αβ(k)

) (
gTP

T
γδ(p) + gLP

L
γδ(p)

)
×(ik)γ(−ik)δR(y − y′, σ)R(x− x′, τ)ekp(C(y−y′,σ)+C(x−x′,τ))

×|k|a−d|p|a−dh(x− y)h(x′ − y′). (3.32)
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In the next step, first k and second p are shifted:

k→ k− p, p → p +
k

2
. (3.33)

The result is∫
k

r̃α(y, t)r̃β(x, 0)eik(r(y,t)−r(x,0))

[ ∫
p

(
gTP

T
αβ(p − k/2) + gLP

L
αβ(p − k/2)

)
×
(
gTP

T
γδ(p + k/2) + gLP

L
γδ(p + k/2)

)
×(k/2− p)γ(k/2− p)δ|p + k/2|a−d|p − k/2|a−d

×R(y − y′, σ)R(x− x′, τ)e(k2/4−p2)(C(y−y′,σ)+C(x−x′,τ))h(x− y)h(x′ − y′)
]
.

(3.34)

To compute the correction proportional to the disorder vertex, the expression in the
rectangular brackets is expanded for small k. As the integral has a well-defined limit
for k → 0, convergent for d > 2, neither a term of the form kαkβ/k

2, nor a term of
the form |k|a−d with a < d can be generated. We conclude that in the LR-case only
SR disorder is generated. In the remainder of this sections, we therefore focus on short-
range correlated forces setting a = d. The leading term of the above expansion is then
(the p-integral being defined in Eq. (2.12))

α β

∫
p

(
gT
(
δαβ − p−2pαpβ

)
+ gLp

−2pαpβ
)
gLp

2e−p
2(C(y−y′,σ)+C(x−x′,τ))

×R(y − y′, σ)R(x− x′, τ)h(x′ − y′)

=

(
gT

(
1− 1

d

)
+ gL

1
d

)
gL
d

2

(
C(y − y′, σ) + C(x− x′, τ)

)−d/2−1

×Ċ(y − y′, σ)Ċ(x− x′, τ)h(x′ − y′)

=

(
gT

(
1− 1

d

)
+ gL

1
d

)
gL

× 2
d − 2

∂

∂τ

∂

∂σ

(
C(y − y′, σ) + C(x− x′, τ)

)−d/2+1

×h((x− y) − (x′ − y′)). (3.35)

In the last formula we have rearranged the product of h-functions, using the fact that
they are always δ-distributions for the cases of interest. Note also that we have used the
(perturbative) FDT, Eq. (3.12), for the first transformation.

The second possible way to do the contraction, see D2 in Fig. 6, is performed similarly.
The leading term is

−1
d
g2

L
2

d − 2
∂

∂τ

∂

∂σ

(
C(y − y′, σ) + C(x− x′, τ)

)−d/2+1

×h((x− y)− (x′ − y′)). (3.36)
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Note that there are two other possible contractions, which can be obtained from D1

and D2 by replacing τ and σ with −τ and −σ respectively. Together they add up to

gLgT
4

d − 2

(
1− 1

d

)
∂

∂τ

∂

∂σ

(
C(y − y′, σ) + C(x− x′, τ)

)−d/2+1

×h((x− y)− (x′ − y′)). (3.37)

This result is remarkable in several respects: First, the contribution to the renormalization
of disorder from the disorder- disorder contraction is isotropic. We will see that this
stabilizes the isotropic fixed point. Second, there is no divergent contribution in the
purely transversal or purely longitudinal case at 1-loop order. (Note however that there
are finite contributions in the transversal case, see appendix C, such that isotropic
disorder will be generated at 2-loop order.)

3.5. Beyond the leading order

The MOPE coefficients evaluated in the last two subsections are sufficient to derive the
RG equations at leading order. Subleading orders are analyzed similarly, with the result
that the only diverging contributions, and thus those which have to be renormalized,
are proportional to the terms already present in the action. An explicit example is the
second order term from the contraction of three disorder-vertices towards a single one
as

−→ . (3.38)

Another question is, whether the fixed point as given in leading order, is stable
towards perturbations with respect to subleading terms, i.e. those which are irrelevant
at the trivial (Gaussian) fixed point. This is a difficult question, and cannot be studied
in its generality here. However, we shall show later in Section 4.7 that the physically
important perturbation by self-avoidance is indeed irrelevant at the 1-loop fixed point to
be described below.

3.6. List of the MOPE coefficients

We have identified the 1-loop divergences, and shall now compute explicitly the
counter-terms needed to render the action finite to 1-loop order. To summarize, we
first give a list of the corrections to each term in the original action in the form of
the MOPE coefficients for the diagonal case (gL = gT). Then the MOPE coefficients
for the transversal and longitudinal disorder are expressed with its help. To simplify
notations, the fluctuation1dissipation theorem (3.12) has been used. Concerning the
notation: (A|B) means the contribution from the contraction A proportional to B, and
is expressed in terms of the relative distances. From Eq. (3.24) we obtain( ∣∣∣∣ )

= C(x, t)−a/2h(x) (3.39)
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L

∣∣∣∣ )
=

1
d

( ∣∣∣∣ )
(3.40)(

T

∣∣∣∣ )
=

(
1− 1

d

)( ∣∣∣∣ )
. (3.41)

The other local divergences are determined from Eq. (3.29):( ∣∣∣∣ )
=

1
d
t
∂

∂t
C(x, t)−a/2h(x) (3.42)(

L

∣∣∣∣ )
=

( ∣∣∣∣ )
(3.43)(

T

∣∣∣∣ )
= 0 (3.44)

and ( ∣∣∣∣ )
=

1
2dD

x2 ∂

∂t
C(x, t)−a/2h(x) (3.45)(

L

∣∣∣∣ )
=

( ∣∣∣∣ )
(3.46)(

T

∣∣∣∣ )
= 0. (3.47)

Diagrams proportional to , renormalizing the stiffness, will of course vanish in the
directed case.

The bilocal divergences, proportional to the disorder vertex, are( ∣∣∣∣ )
=

4
d − 2

(
1− 1

d

)
× ∂

∂τ

∂

∂σ
(C(x, τ) + C(y, σ))−d/2+1 h(x− y)

(3.48)(
L
T

∣∣∣∣ )
=

1
2

( ∣∣∣∣ )
(3.49)(

L
L

∣∣∣∣ )
= 0 (3.50)(

T
T

∣∣∣∣ )
= 0. (3.51)

Remember that in the LR-case, this class of diagrams vanishes.

3.7. The residues in the directed case

Let us start by analyzing the directed case, i.e. h(x) = δD(x). Using the MOPE
coefficients given in the last subsection, we can calculate the diverging part of the
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diagrams as pole in

ε = 2− ζ0a, (3.52)

where

ζ0 =
2−D

2
, (3.53)

and setting a = d for SR. For ε > 0, the integrals are UV-convergent and we put an
IR-cutoff L in position space and L2 in time. Note that reintroducing λ this would yield
a “physical” time cut-off λL2. The precise procedure is irrelevant at 1-loop order, cf.
Ref. [53]. Note that

h(x) = δD(x) (3.54)

always eliminates one space integration.
Start with an explicit example. Let us define a Feynman diagram as the integral of the

MOPE coefficient over all distances in space and time, bounded by L and L2 respectively

(for details, see Ref. [52]). For the MOPE coefficient

( ∣∣∣∣ )
this reads

〈 ∣∣∣∣ 〉
L

:=
∫

t<L2

( ∣∣∣∣ )

=

L2∫
0

dt C(0, t)−a/2

= P

L2∫
0

dt t−ζ0a/2

= P
2
ε
Lε, (3.55)

where

P = C(0, t = 1)−a/2 =

(
(2−D)(4π)D/2

2

)a/2

. (3.56)

We introduce the following abbreviation for the pole term, which has to be subtracted
in the minimal subtraction scheme:

Adir :=

〈 ∣∣∣∣ 〉
ε

= 2P. (3.57)

The divergent contribution to the friction coefficient is obtained from〈 ∣∣∣∣ 〉
L

=
∫

t<L2

( ∣∣∣∣ )
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=

L2∫
0

dt
t

d

∂

∂t
C(0, t)−a/2

=−
L2∫

0

dt
1
d
C(0, t)−a/2 +O(ε0)

=− 1
d
P

L2∫
0

dt t−ζ0a/2 +O(ε0)

=− 1
d
P

2
ε
Lε +O(ε0), (3.58)

with P introduced in Eq. (3.56). The pole term, which has to be subtracted in the
minimal subtraction scheme, is〈 ∣∣∣∣ 〉

ε

=− 2
d
P. (3.59)

Remarkably〈 ∣∣∣∣ 〉
ε

= −d
〈 ∣∣∣∣ 〉

ε

. (3.60)

This relation can be viewed as a consequence of the (perturbative) FDT, and is respon-
sible for the non-renormalization of the temperature in the longitudinal case, where a
FDT holds in the full theory.

Since the disorder vertex is local in x-space (“statistical tilt invariance”), there is no
contribution proportional to r̃(−∆)r:〈 ∣∣∣∣ 〉

ε

= 0. (3.61)

The renormalization of the disorder interaction is (for a = d only) obtained from〈 ∣∣∣∣ 〉
L

=

L∫
0

dDx

L2∫
0

dτ

L2∫
0

dσ
4

d − 2

(
1− 1

d

)
∂

∂τ

∂

∂σ
(C(x, τ) + C(x, σ))−d/2+1

=
4

d − 2

(
1− 1

d

)
SD

L∫
0

dx
x
xD (2C(x, 0))−d/2+1 + finite terms, (3.62)

resulting in

Bdir :=

〈 ∣∣∣∣ 〉
ε

=
4

d − 2

(
1− 1

d

)
Q, (3.63)
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Fig. 7. The function Ĩ(D). The dots have been obtained numerically, the interpolating line is a polynomial fit
of fifth degree, later used in the extrapolations.

where

Q =

(
2

(2−D)SD

)1−d/2

SD. (3.64)

with SD = 2πD/2/Γ[D/2]. This terminates the evaluation of the Feynman diagrams in
the directed case.

3.8. The residues in the isotropic (non-directed) case

In the isotropic, i.e. non-directed case with

h(x) = 1, (3.65)

the dimensional regularization parameter is

ε = 2 +D − ζ0a. (3.66)

We now parallel the calculation of diagrams from the last subsection. The term propor-
tional to (see Eq. (3.39)) is

〈 ∣∣∣∣ 〉
L

=

L∫
0

dDx

L2∫
0

dt

( ∣∣∣∣ )

= SD

L∫
0

dx
x
xD

L2∫
0

dt C(x, t)−a/2

= SD
Lε

ε

∞∫
0

dt C(1, t)−a/2 + finite, (3.67)
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where in addition a has to be set to ac(D), defined by ε(D, ac) = 0. Here ac =
2(2 +D)/(2−D). The residue is

Aiso :=

〈 ∣∣∣∣ 〉
ε

= SD

∞∫
0

dt C(1, t)−ac(D)/2 =: I(D). (3.68)

where the expression for the free correlator (obtained e.g. via time integration of the
free response function) reads

C(1, t) =
Γ
(
D
2

)
2(2−D)π

D
2

+
1

4π
D
2

Γ

(
−1 +

D

2
,

1
4t

)
=

1

2(2−D)π
D
2

[
Γ

(
D

2

)
+ (4t)

2−D
2 e−

1
4t − Γ

(
D

2
,

1
4t

)]
, (3.69)

where we have abbreviated the incomplete Γ-function as

Γ(a, b) =

∞∫
b

dt ta−1e−t. (3.70)

We could not find a closed analytical form for the integral I(D). Using the approxi-
mation for the correlator

C(1, t) ≈ 2
(2−D)(4π)D/2

(
|t|+ 2

D

)ζ0

, (3.71)

which works astonishingly well numerically, we obtain for the integral I(D)

I(D) = SD

(
(2−D)(4π)D/2

2

)a/2 (
2
D

)1−D/2

Ĩ(D)

= SD (SD(2−D))a/2
[

2D−2Γ

(
D

2

)]a/2( 2
D

)1−D/2

Ĩ(D). (3.72)

where a must be set to a = ac(D). If the approximation in Eq. (3.71) was exact, Ĩ(D)
would equal 1. This is not the case, and the value for Ĩ(D) obtained from numerical
integration is plotted in Fig. 7. It is a slowly varying function though, well behaved
at D = 0 and D = 2. Note also that in Eq. (3.72) a factor of SD (SD(2−D))a/2 is
factorized which is common to all other diagrams and will therefore cancel at the end.

Proceeding equivalently, the diagram correcting the friction coefficient is calculated
as 〈 ∣∣∣∣ 〉

ε

=−SD
d

∞∫
0

dt C(1, t)−a/2 = − 1
d
I(D). (3.73)

Like in the directed case, we have〈 ∣∣∣∣ 〉
ε

= −d
〈 ∣∣∣∣ 〉

ε

. (3.74)
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This relation can be used to simplify the RG-calculations. As in the directed case, it is
a reflection of the FDT, valid in perturbation theory, and in the longitudinal case in the
full theory.

In contrast to the directed case, the stiffness of the membrane is renormalized through

〈 ∣∣∣∣ 〉
L

=

L∫
0

dDx

L2∫
0

dt

( ∣∣∣∣ )

=
1

2dD

L∫
0

dDx

L2∫
0

dt x2 ∂

∂t
C(x, t)−a/2

=− 1
2dD

SD

L∫
0

dx
x
xD+2 C(x, 0)−a/2 + finite

=− 1
2dD

SD((2−D)SD)a/2L
ε

ε
+ finite. (3.75)

The residue is therefore given by

−C
iso

d
:=

〈 ∣∣∣∣ 〉
ε

= − 1
2dD

× SD ((2−D)SD)a/2 . (3.76)

Finally, the diagram correcting the disorder vertex is (for a = d only) evaluated as
follows:〈 ∣∣∣∣ 〉

L

=

L∫
0

dDx

L∫
0

dDy

L2∫
0

dτ

L2∫
0

dσ
4

d − 2

(
1− 1

d

)
∂

∂τ

∂

∂σ
(C(x, τ) + C(y, σ))−d/2+1

=
4

d − 2

(
1− 1

d

)
S2
D

L∫
0

dx
x
xD

L∫
0

dy
y
yD (C(x, 0) + C(y, 0))−d/2+1 + finite terms

=
4

d − 2

(
1− 1

d

)
S2
D

∞∫
0

dx
x
xD (C(x, 0) + C(1, 0))−d/2+1 L

ε

ε
+ finite terms

=
4

d − 2

(
1− 1

d

)
S2
D ((2−D)SD)d/2−1

∞∫
0

dx
x
xD
(
x2−D + 1

)−d/2+1 Lε

ε

+finite terms

=
4

d − 2

(
1− 1

d

)
S2
D ((2−D)SD)d/2−1 1

2−D
Γ2
(

D
2−D

)
Γ
(

2D
2−D

) Lε

ε
+ finite terms.

(3.77)
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The residue is given by the expression

Biso :=

〈 ∣∣∣∣ 〉
ε

=
4

d − 2

(
1− 1

d

)
1

(2−D)2

Γ2
(

D
2−D

)
Γ
(

2D
2−D

) × SD ((2−D)SD)d/2 . (3.78)

The factor involving the Γ-functions is familiar from the renormalization of the interac-
tion vertex for self-avoiding membranes.

3.9. The particle limit

In this section, we demonstrate that our model reproduces, both in the directed and
in the isotropic case, the known results for the particle upon taking the limit D → 0.
Some subtleties have to be taken into account. Study first the directed case. Then
unambiguously

lim
D→0

〈 ∣∣∣∣ 〉dir

ε

= 2. (3.79)

The other independent and non-vanishing digram is in the limit of small D and ε〈 ∣∣∣∣ 〉dir

ε

≈ 2D
d − 2

. (3.80)

Note that it was calculated under the tacit assumption that ε→ 0 is taken first. In order
to perform the limit D → 0, we insert d − 2 = 2D−ε

2−D into Eq. (3.80) and then perform
the limit ε→ 0. We obtain〈 ∣∣∣∣ 〉

ε

≈ D(2−D)
D − ε

ε→0−→ 2−D D→0−→ 2. (3.81)

One easily verifies that these results coincide with a direct calculation for the particle,
obtained by using the single-particle propagator and response functions and by omitting
the space integration from the very beginning. The isotropic case reduces to the particle
case along the same lines. First

lim
D→0

〈 ∣∣∣∣ 〉iso

ε

= 2,

lim
D→0

〈 ∣∣∣∣ 〉iso

ε

= 0. (3.82)

The last diagram is〈 ∣∣∣∣ 〉iso

ε

≈ 4D
d − 2

. (3.83)
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Note the apparent difference in factor of 2 to Eq. (3.80). Inserting now d − 2 = 2 2D−ε
2−D

yields〈 ∣∣∣∣ 〉iso

ε

≈ −2D(2−D)
2D − ε

ε→0−→ 2−D D→0−→ 2 (3.84)

and thus the same final result, cf. Eq. (3.81).
Our calculations, at least at this order, thus always include the particle case.

3.10. The flow equations

We now introduce renormalized quantities. Going back to the original model, (3.2),
we take care to reinsert the factors of λ, which were dropped in intermediate expressions.
Define

r0 =
√
Z r,

r̃0 =
√
Z̃ r̃, (3.85)

λ0 = Zλ λ.

Explicitly, the counter-terms are as follows. First, introducing a counter-term for
yields√

ZZ̃ = 1 +
〈

T

∣∣∣∣ 〉
ε

gT

ε
+
〈

L

∣∣∣∣ 〉
ε

gL

ε

= 1 +
〈 ∣∣∣∣ 〉

ε

gL

ε
. (3.86)

The counter-term for λ is given by

Z̃Zλ = 1−
〈

T

∣∣∣∣ 〉
ε

gT

ε
−
〈

L

∣∣∣∣ 〉
ε

gL

ε

= 1−
〈 ∣∣∣∣ 〉

ε

(
1
d

gL

ε
+
(

1− 1
d

)
gT

ε

)
. (3.87)

In the isotropic (non-directed) case, there is also a counter-term for λ namely√
ZZ̃Zλ = 1 +

〈
T

∣∣∣∣ 〉
ε

gT

ε
+
〈

L

∣∣∣∣ 〉
ε

gL

ε

= 1 +
〈 ∣∣∣∣ 〉

ε

gL

ε
. (3.88)

These equations are solved for Z , Z̃ and Zλ:

Zλ = 1 +
(〈 ∣∣∣∣ 〉

ε

−
〈 ∣∣∣∣ 〉

ε

)
gL

ε
, (3.89)
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Z̃ = 1 +
(〈 ∣∣∣∣ 〉

ε

−
〈 ∣∣∣∣ 〉

ε

)
gL

ε

−
〈 ∣∣∣∣ 〉

ε

(
1
d

gL

ε
+
(

1− 1
d

)
gT

ε

)
, (3.90)

Z = 1 +
(〈 ∣∣∣∣ 〉

ε

+
〈 ∣∣∣∣ 〉

ε

)
gL

ε

+
〈 ∣∣∣∣ 〉

ε

(
1
d

gL

ε
+
(

1− 1
d

)
gT

ε

)
. (3.91)

It is more complicated to introduce renormalized couplings gL and gT. Set

α β

(
P L
αβgL + P T

αβgT
)
λ2µε = α

0
β

(
P L
αβg

0
L + P T

αβg
0
T

)
λ2

0.

(3.92)

This equation is to be understood such that quantities on the l.h.s. are renormalized, and
those on the r.h.s. are bare. Solving the system of equations yields

g0
L =µεZ−2

λ Z a/2Z̃−1

(
gL −

1
2

〈 ∣∣∣∣ 〉
ε

gLgT

ε

)
+O(g3)

(3.93)

g0
T =µεZ−2

λ Z a/2Z̃−1

(
gT −

1
2

〈 ∣∣∣∣ 〉
ε

gLgT

ε

)
+O(g3).

(3.94)

We are now in a position, to define the so-called β-functions, quantifying the flow of
the renormalized theory upon a variation of the renormalization scale, through

βL(gL, gT) :=µ
∂

∂µ
0

gL, (3.95)

βT(gL, gT) :=µ
∂

∂µ
0

gT. (3.96)

The β-function for the longitudinal disorder coupling is

βL(gL, gT) =µ
∂

∂µ
0

gL (3.97)

=µ
∂

∂µ

(
g0

Lµ
−εZ 2

λZ
−a/2Z̃ +

1
2

〈 ∣∣∣∣ 〉
ε

g0
Lg

0
T

ε
µ−2ε

)
+O(g3)

=−εgL +
(
a+ 2

2

〈 ∣∣∣∣ 〉
ε

+
a+ 2

2d

〈 ∣∣∣∣ 〉
ε

+
a− 2

2

〈 ∣∣∣∣ 〉
ε

)
g2

L
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+
((

1− 1
d

)
a+ 2

2

〈 ∣∣∣∣ 〉
ε

−1
2

〈 ∣∣∣∣ 〉
ε

)
gLgT +O(g3). (3.98)

Using the relation〈 ∣∣∣∣ 〉
ε

= −d
〈 ∣∣∣∣ 〉

ε

, (3.99)

valid both in the directed, see Eq. (3.60), and isotropic, see Eq. (3.74), case, Eq. (3.97),
results in the simplification

βL(gL, gT) =−εgL +
a− 2

2

〈 ∣∣∣∣ 〉
ε

g2
L

+
((

1− 1
d

)
a+ 2

2

〈 ∣∣∣∣ 〉
ε

−1
2

〈 ∣∣∣∣ 〉
ε

)
gLgT +O(g3). (3.100)

By an analogous calculation, we obtain for the β-function of the transversal disorder

βT(gL, gT) =µ
∂

∂µ
0

gT (3.101)

=µ
∂

∂µ

(
g0

Tµ
−εZ 2

λZ
−a/2Z̃ +

1
2

〈 ∣∣∣∣ 〉
ε

g0
Lg

0
T

ε
µ−2ε

)
+O(g3)

=−εgT +
(
a+ 2

2

〈 ∣∣∣∣ 〉
ε

+
a+ 2

2d

〈 ∣∣∣∣ 〉
ε

+
a− 2

2

〈 ∣∣∣∣ 〉
ε

− 1
2

〈 ∣∣∣∣ 〉
ε

)
gLgT

+
((

1− 1
d

)
a+ 2

2

〈 ∣∣∣∣ 〉
ε

)
g2

T +O(g3). (3.102)

With the simplification given by Eq. (3.99) the final result is

βT(gL, gT) =−εgT +
(
a− 2

2

〈 ∣∣∣∣ 〉
ε

−1
2

〈 ∣∣∣∣ 〉
ε

)
gLgT

+
(

1− 1
d

)
a+ 2

2

〈 ∣∣∣∣ 〉
ε

g2
T +O(g3). (3.103)

In view of a possible stable fixed point for gL = gT, it is interesting also to study the
flow equation for the difference of both couplings gL − gT:
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(βL − βT)(gL, gT) = −ε(gL − gT) +
a− 2

2

〈 ∣∣∣∣ 〉
ε

gL(gL − gT)

+
(

1− 1
d

)
a+ 2

2

〈 ∣∣∣∣ 〉
ε

gT(gL − gT) +O(g3). (3.104)

3.11. Other RG functions and critical exponents

Several critical exponents can be identified. Taking into account scaling relations
among them, there are three independent exponents in the directed case, and four in
the isotropic case. The first is the full scaling-dimension of the membrane, given by the
fixed point value ζ∗ of

ζ(gL, gT) =
2−D

2
− 1

2
µ
∂

∂µ
0

lnZ

=
2−D

2
− 1

2

(
βL(gL, gT)

∂

∂gL
lnZ + βT(gL, gT)

∂

∂gT
lnZ

)
=

2−D
2

+
gL

2

〈 ∣∣∣∣ 〉
ε

+
gT

2

(
1− 1

d

)〈 ∣∣∣∣ 〉
ε

+O(g2). (3.105)

We again used Eq. (3.99) to simplify the result. The dynamical exponent z is

z(gL, gT) = 2− µ ∂

∂µ
0

lnZλ

= 2−
(
βL(gL, gT)

∂

∂gL
lnZλ + βT(gL, gT)

∂

∂gT
lnZλ

)
= 2 + gL

(〈 ∣∣∣∣ 〉
ε

−
〈 ∣∣∣∣ 〉

ε

)
+O(g2). (3.106)

The (full) scaling dimension of the response field is

ζ̃(gL, gT) =−2 +D

2
− 1

2
µ
∂

∂µ
0

ln Z̃

=−2 +D

2
− 1

2

(
βL(gL, gT)

∂

∂gL
ln Z̃ + βT(gL, gT)

∂

∂gT
ln Z̃

)
=−2 +D

2
− gL

2

(〈 ∣∣∣∣ 〉
ε

+
2
d

〈 ∣∣∣∣ 〉
ε

)
−gT

2

(
1− 1

d

)〈 ∣∣∣∣ 〉
ε

+O(g2). (3.107)

We used Eq. (3.99) to simplify the result.
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In the isotropic (non-directed) case, there is still another independent exponent,
which is called β (not to be confounded with the β-functions describing the flow of
the coupling constants) and which measures the anomalous dimension of the stiffness
of the membrane,

β(gL, gT) =−µ ∂

∂µ
ln
(√

ZZ̃Zλ

)
= gL

〈 ∣∣∣∣ 〉
ε

+O(g2). (3.108)

With the help of the above introduced exponents, we can quantify the non-linearity
in the response of the drift velocity to a uniform applied force. Adding a small constant
term f to the random force in Eq. (2.1) results into a change in the dynamical functional
of the form

λ

∫
x,t

r̃(x, t)f. (3.109)

Since this term does not require a renormalization, we deduce the exact exponent identity
for the full scaling dimension

[
f
]

of f[
f
]

+ ζ̃ + z +D = 0. (3.110)

From the definition of β in Eq. (3.108), we have a second identity, namely

β = ζ + ζ̃ + z +D − 2. (3.111)

Combining these two relations, we obtain[
f
]

= ζ − β − 2. (3.112)

Since the drift velocity has dimension

[v] =
[r
t

]
, (3.113)

we deduce the scaling relation

v ∼ fφ with φ =
z − ζ

2 + β − ζ . (3.114)

Since, as we will see, always z > 2 and β 6 0, φ is larger than 1 indicating trapping
of the membrane by the random flow.

Let us also mention another possible parameterization of our model, where one does
not introduce λ and renormalization factors for λ and the field r, but associates a friction
coefficient η with ṙ, entering into the dynamical functional as

η

∫
x,t

r̃(x, t)ṙ(x, t) (3.115)
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and a temperature T associated to disorder, entering into the dynamical functional as

ηT

∫
x,t

r̃2(x, t). (3.116)

The corresponding renormalization factors then read

Zη ≡
√
ZZ̃, (3.117)

ZT ≡ Zλ

√
Z̃

Z
. (3.118)

It is especially enlightening to consider the renormalization of temperature, which in
conserved systems (i.e. those with longitudinal disorder) is preserved by the fluctuation1
dissipation theorem. Stated differently, temperature appears as a parameter in its static
partition function, and dynamics is constructed such that via detailed balance the static
partition function is reproduced. Only non-conserved forces can give rise to a change in
temperature. This is read off from the explicit form of ZT at 1-loop order:

ZT = 1−
(

1
d

〈 ∣∣∣∣ 〉
ε

+
〈 ∣∣∣∣ 〉

ε

)
gL

ε

−
(

1− 1
d

)〈 ∣∣∣∣ 〉
ε

gT

ε
. (3.119)

Since the term proportional to gL vanishes as found in Eqs. (3.60) and (3.74), anoma-
lous corrections to the temperature are proportional to gT and present whenever gT 3 0.
Stated differently: In the presence of non-potential forces, the fluctuation1dissipation
theorem (FDT) is violated.

4. Results and discussion

In this section we analyze the general renormalization group flow given by the two
β-functions in Eqs. (3.100) and (3.103) where the coefficients have been computed in
Section 3.7. We identify the fixed points and compute the critical exponents at these
fixed points. Before doing so it is useful to recapitulate the results obtained so far in the
previous sections.

4.1. Preliminaries

To present conveniently the analysis below we introduce the following notation for
the three independent coefficients (two in the directed case) as

A :=

〈 ∣∣∣∣ 〉
ε

, (4.1)
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B :=

〈 ∣∣∣∣ 〉
ε

, (4.2)

C :=−d
〈 ∣∣∣∣ 〉

ε

. (4.3)

The explicit expressions for these coefficients are given above: for A see Eqs. (3.57)
and (3.68), for B see Eqs. (3.63) and (3.78) and for C (only non-zero for isotropic
manifolds), see Eq. (3.76). They are non-negative. In terms of these three coefficients,
the β-functions of the two coupling constants read

βgL(gL, gT) =−εgL +
1
2

((
1− 1

d

)
(a+ 2)A− B

)
gLgT −

a− 2
2d
Cg2

L, (4.4)

βgT(gL, gT) =−εgT −
1
2

(
B +

a− 2
d
C
)
gTgL +

(
1− 1

d

)
a+ 2

2
Ag2

T, (4.5)

where a must be replaced by d for short-range disorder (the crossover between SR and
LR disorder is also studied below). Similarly, the expressions of the exponents are to
lowest order (from Section 3.11 above)

ζ(gL, gT) =
2−D

2
+
gT

2

(
1− 1

d

)
A− gL

2d
C, (4.6)

z(gL, gT) = 2 +
1
d

(A− C)gL, (4.7)

β(gL, gT) =−gL
1
d
C, (4.8)

where we have used (3.74). Note that in the end the exponents will depend on the
amplitudes only through their ratios B/A and C/A which are universal, in contrast to
the amplitudes themselves, which depend on the specific normalizations of the model.

The coefficients of the RG equations (4.4)1(4.8), including A, B and C, depend a
priori on a, d and D, and their full dependent expressions are given in the previous
sections (where SR and LR disorder are treated in a single calculation). However,
since we are expanding to first order around the line of critical dimension dc(D) (see
Eq. (2.22)), we can simplify all these coefficients as follows: For short-range disorder
one can substitute a = d = dc(D) in all coefficients. For long-range disorder we can
substitute a = ac(D) everywhere, but one must keep d as an independent variable. This
is the reason, why we defined A and C as d independent, while B = 0 for LR disorder.
The final result for the coefficients used below, expressed only as a function of D is,
for directed manifolds,

Adir = 2

[
(2−D)(4π)D/2

2

] 2
2−D

,

Bdir =
2 +D

D

[
(2−D)πD/2

Γ(D
2 )

] 2
2−D

, (4.9)
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Cdir = 0.

For polymers (D = 1) one finds A = 2π, B = 3 and the universal ratio A/B = 2π/3.
For isotropic manifolds one has

Aiso =
1

(2−D)22+D

(
2
D

) 2−D
2 [

Γ
(
D
2

)] 2+D
2−D GDĨ(D),

Biso =
2 + 3D

2D(2−D)2(2 +D)

Γ
(

D
2−D

)2

Γ
(

2D
2−D

) GD, (4.10)

C iso =
1

2D(2−D)
GD,

where we denote by

GD =

[
2πD/2(2−D)

Γ(D
2 )

]4/(2−D)

(4.11)

the factor common to the three amplitudes (which therefore drops in the final results).
Ĩ(D) is plotted in Fig. (7) and defined as

Ĩ(D) :=

(
D

2

) 2−D
2

22+D

+∞∫
0

dt
[
Γ(D

2 ) + (4t)
2−D

2 e−
1
4t − Γ(D

2 ,
1
4t)
]− 2+D

2−D
. (4.12)

It takes the values Ĩ(D = 0) = 1, Ĩ(D = 1) = 1.82202 and Ĩ(D = 2) = 3. For the
coefficients for D = 1 we find A = 1.79351G1, B = 5

6G1 and C = 1
2G1.

We now specify to each of the four cases of interest and compute the critical expo-
nents.

4.2. Directed manifolds with short-range disorder

The flow for this case is represented in Fig. 8. The expansion parameter is ε =
2− (2−D)d/2. The fixed points are found to be:

(1) Gaussian fixed point.
The Gaussian fixed point at gL = gT = 0 is completely unstable for d < ddir

c (D) =
4

2−D .

(2) Potential disorder.
The line gT = 0 is found to be preserved by RG and we find a flow towards strong

coupling. This case corresponds to the dynamics of a directed manifold in a long-range
correlated random potential (short-range correlated force). It has been well studied and
it is indeed known that for d 6 dc(D) (defined above) and D < 2, or in any d for
2 < D < 4, the physics is controlled by a strong disorder (zero temperature) fixed
point [1,6], inaccessible by the present method (it is accessible only via a D = 4 − ε
calculation).
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g

g
L

T

I*

Fig. 8. RG flow diagram for SR disorder. The physics is controlled by the fixed point I∗ at gT = gL.

Further results are available for the particle (D = 0, dc = 2). There it is known
rigorously that for d = 1 (Sinai model) ultra-slow logarithmic diffusion r ∼ (ln t)2

occurs (ν = 0) and it is believed (but not proven) that similar ultra-slow diffusion also
occurs for manifolds D > 0 (see e.g. Ref. [12]). At the critical dimension, for the
particle dc(D = 0) = 2, 1- and 2-loop calculations [39,40,42] have shown that diffusion
is anomalous with a continuously varying exponent ν(gL). It was further argued that the
β function vanishes to all orders, and that the one loop result for ν(gL) holds exactly,
for SR disorder as well as for LR disorder [40]. While unchallenged for SR disorder
(i.e. at d = 2), the exactness of the one loop exponent was recently questioned for LR
disorder in [76]. To our knowledge such issues have not been addressed for manifolds.

(3) Isotropic disorder fixed point.
Noting from Eq. (3.104) that the line gT = gL is preserved by the flow at 1-loop

order, we find an isotropic fixed point at

gL = gT = g∗ :=
2εd

(d − 1) (d + 2)A− dB +O(ε2), (4.13)

where the coefficients are given in Eq. (4.9). Since at the critical dimension the de-
nominator is positive for all values of 0 6 D < 2, g∗ is positive and thus physical. This
fixed point is completely attractive, and its domain of attraction covers all perturbative
situations except the potential case with gT = 0. As we show below, it also controls the
line gL = 0 (except for D = 0).

Let us give the values of the roughness exponent ζ∗ and of the dynamical exponent
z ∗, defined in Eqs. (2.13) and (2.15), at the fixed point:

ζ∗ = ζ(g∗, g∗) =
2−D

2
+

ε

d + 2− R̃
+O(ε2), (4.14)

R̃ =
B(

1− 1
d

)
A

=
d

d − 2

(
2D−1Γ(D/2)

)−d/2
, (4.15)

where ε = 2 − 2−D
2 d. Again one can substitute d = dc(D) in the coefficient of ε.

Expressed as a function of D one has R̃ = 2
D(2D−1Γ(D/2))−2/(2−D). The dynamical
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Table 1
Results for directed polymers and membranes, isotropic fixed point, SR disorder. Values given for the exponent
ζ (obtained by extrapolating ζd) are rather faithful. Corrections to z are small, but no plateau could be found
to optimize the extrapolations. The given values are therefore only intended to give a rough idea. The same
is true for extrapolations for ν. We have reported the values of ν obtained by setting D0 = D

d ζ z ν φ

Polymer 2 0.87 2.2 0.5 > 1
3 0.63 2.1 0.3 > 1

Membrane 2 0.8 2.2 0.5 > 1
3 0.5 2.1 0.33 > 1
4 0.4 2.1 0.25 > 1
6 0.25 2.07 0.17 > 1
8 0.2 2.05 0.13 > 1

20 0.08 2.01 0.05 > 1

exponent is

z ∗ = 2 +
2ε

(d − 1)(d + 2− R̃)
+O(ε2). (4.16)

The exponent β is equal to 0 as a consequence of the statistical tilt symmetry (see
Eq. (3.61)). The exponents ν and φ can then be found using

ν = ζ/z, φ =
z − ζ
2− ζ . (4.17)

In particular, for the polymer D = 1, we find that below dc = 4 the random flow is
relevant and roughness and dynamical exponents take the anomalous dimension

ζ∗ =
1
2

(
1 +

ε

3− π−1

)
, (4.18)

z ∗ = 2

(
1 +

ε

6(3− π−1)

)
, (4.19)

where ε = 1
2 (4− d). Interestingly we find that to first order in ε, ζ > ζF.

The most naive fixed D expansion gives in d = 3 (setting ε = 1 in the above) that
ζ = 0.686, z = 2.12, ν = 0.323, φ = 1.094. In d = 2 it gives (setting ε = 2) that
ζ = 0.873, z = 2.249, ν = 0.388, φ = 1.22. These estimates can be improved since the
expansion can be carried from any point of the line d = dc(D). It is possible to optimize
the numerical estimation of the above critical exponents over the expansion point D0.
Details of the general optimization method are described in [52] and applied to the
present case in Appendix B. The results are listed in Table 1 and are purely indicative:
we have even refrained from giving an error bar.

(4) Transversal disorder.
There is an apparent fixed point at

gL = 0, gT =
2ε(

1− 1
d

)
(d + 2)A

+O(ε2), (4.20)
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where the coefficients are given in Eq. (4.9). Interestingly, at this fixed point we recover
exactly the Flory result at 1-loop order:

ζ∗ =
2−D

2
+

ε

d + 2
+O(ε2), (4.21)

z = 2 +O(ε2). (4.22)

In the case of the particle (D = 0) the result ν = νF was found to be true to all orders
(see e.g. Refs. [42,40] and discussion below).

However, for D > 0 we show (see Appendix C) that finite non-transversal terms
are generated in perturbation theory. Since the above fixed point is unstable to adding
a small longitudinal disorder, gL > 0, these terms will drive the system towards the
isotropic fixed point discussed above.

Let us close this section by noting that we recover the known results for the particle
D = 0, obtained via different RG techniques in [36,39,40,42]. That this should be so
was discussed in Section 3.9 but here we discuss it explicitly for the exponents. First
we note that the flow diagram of Fig. 8 has the same structure for all D as the one
found in [39] for the particle with an isotropic disorder fixed point and the transversal
fixed point. Second, expressing in all our results the coefficient of ε as a function of
D alone (using d = dc(D)) yields in the limit D → 0 with ε = 2 − d, that at the
isotropic fixed point ν = ζ/ε = 1/2 + O(ε2) and φ = 1 + ε (note that one also finds
ζ = 1 + ε/2, z = 2 + ε, but only ν and φ have a physical meaning for D = 0). Similarly
at the transversal disorder fixed point (which has a meaning only for the particle), one
recovers the known result ν = νF and φ = 1.

4.3. Directed manifold with long-range disorder

Long-range correlated disorder (a < d) can be studied in an expansion near ac =
4/(2−D), in the small parameter δ = 2 − (2−D) a

2 (with d and D fixed). We have
shown in Section 3.4 that in this case the vertex renormalization vanishes

B =

〈 ∣∣∣∣ 〉
ε

= 0. (4.23)

Thus the renormalization is driven by the corrections to temperature and friction. The
β-functions in Eqs. (3.100) and (3.103) lead to the flow diagram presented in Fig. 9.
Since there is no vertex renormalization, both couplings have the same renormalization
factor, the ratio κ = gL/gT is preserved by RG, and the flow is along straight lines. One
finds a line L of fixed points, which is vertical to first order in ε. This feature, already
noted in the particle case, D = 0 [42,40], thus extends to manifolds with D > 0. Here
the fixed line is given by

g∗T = δ
2d

(d − 1)(a+ 2)A . (4.24)



K.J. Wiese, P. Le Doussal / Nuclear Physics B 552 [FS] (1999) 5291598 565

T

g
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Fig. 9. RG flow for directed manifolds in LR disorder. The flow is along straight lines and preserves the line
L of fixed points.

For LR correlations the result for ζ∗ at any point on the fixed line can be derived
to all orders in perturbation theory. First, there is no counter-term to r̃∆r to any order
in perturbation theory due to the fact that the interaction vertex is a difference of the
r-fields at the same point (“statistical tilt symmetry”), resulting in the scaling relation

ζ∗ + ζ̃∗ + z ∗ = 2−D, (4.25)

where ζ̃ is the full scaling dimension of the response field. Second, as long as there is
no renormalization of the vertex,

D + 2ζ̃∗ + 2z ∗ − aζ∗ = 0 (4.26)

is valid at the fixed point. Combining these two relations gives 5

ζ∗ = ζF =
4−D
2 + a

. (4.27)

Thus the Flory estimate for ζ is exact in the LR case. Note also that ζ in that case does
not depend on the type of disorder (transversal or potential). For a polymer D = 1 we
obtain that ζ = 3/(2 + a) for a < ac = 4. This leads to the interesting prediction that
the polymer will become overstretched (ζ > 1) when the range of the force correlation
increases beyond a 6 1.

The dynamical exponent z , however, and consequently φ and ν, are non-trivial, and
depend continuously on the ratio κ = gT/gL. They are given by

z ∗ = 2

(
1 + κ

δ

(2 + a)(d − 1)

)
, (4.28)

where δ = 2 − (2 − D) a
2 . This result is valid to first order in δ and one may thus

replace a by ac = 4/(2−D) in the above formula. It shows that the more potential the
dynamics the more glassy it is (the higher z).

We can now compare these results with the results obtained in [44]. There the
exponents were obtained exactly for d → ∞ and arbitrary a. A Hartree approximation

5 This identity also holds at 1-loop order at the apparent SR transversal fixed point discussed in Eq. (4.21),
since vertex-corrections are proportional to gLgT, see Eq. (3.37).
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was obtained for finite d. The notations of [44] were different. To translate to the
present notations one must set in [44] γ → a/2, g2 → gL

d , g1 − g2 → (1 − 1
d)gT and

ε = 2/(2−D)−γ→ δ
2−D . With this correspondence the results of [44] are as follows.

First ζ = ζF, both for d =∞ and for finite d within the Hartree approximation. This is
in agreement with the present result. z in [44] however is a highly non-trivial function
of a, D (and of d in the Hartree approximation) implicitly given by Eq. (9) in [44].
Remarkably, for D < 2, expanding z near a = ac, which yields formula (12) of [44],
one finds to first order in ε exactly the same result as here in Eq. (4.28). Of course
the two also coincide, as they should, for d = ∞. Thus we find that in the long-range
directed case, the Hartree approximation in [44] gives the correct result for z to first
order, and is exact for ζ.

Let us also give the results for the exponents ν and φ. One finds

ν =
2−D

4

[
1 + δ

(κ∗ − κ)(2−D)
2(4−D)(d − 1)

]
, (4.29)

φ = 1 + δ
2(2−D)κ

(2 +D)(4−D)(d − 1)
(4.30)

and thus we find that the single monomer dynamics is either subdiffusive if κ = gL/gT >

κ∗ = 2(d − 1)/(2 − D) or superdiffusive if κ < κ∗, while φ is always larger than 1
(except when the flow is purely transversal). One can also check that our formulae
agree, in the limit D → 0 with the known formulae [40142] for the particle (with
ac = 2 and δ = 2− a).

To conclude note that in the case κ = 0, i.e. in presence of LR transversal disorder
alone, the mechanism of generation of potential disorder and barriers is different from the
SR-case. LR non-transversal disorder is not generated, only SR non-transversal disorder
is. (See also the section below, where the crossover from LR to SR is discussed).
The final result is that in that case the exponents are given correctly too by the above
formulae setting κ = 0.

4.4. Isotropic (non-directed) manifold with short-range disorder

For an isotropic manifold, we find from the RG equations (3.100) and (3.103) and
the expressions given in Section 3.8 for the coefficients that the RG flow is qualitatively
similar to the one in the directed case depicted in Fig. 8, with the following fixed points:

(1) Gaussian fixed point.
The Gaussian fixed point at gL = gT = 0 is completely unstable for ε = 2 +D− d

2 (2−
D) > 0.

(2) Potential disorder.
The line gT = 0 is preserved by RG and again, we find a flow towards strong coupling,

which is faster than in the directed case, as there is an additional term. This problem
describes the dynamics of an isotropic manifold in a long-range correlated random
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potential (short-range correlated force). The statics of this problem has been much
studied and it is indeed expected that this problem is described by strong disorder.

In the absence of self-avoidance some features of the problem are relatively simple
to analyze. For instance can a polymer (D = 1) in a d-dimensional random potential
also be seen as a directed polymer in a d + 1-dimensional random potential (the
additional coordinate being the internal dimension) which is constant (i.e. correlated)
in the internal dimension, a problem extensively reinvestigated recently in relation with
flux lines in superconductors in presence of columnar disorder [81,77,78,12]. It is also
related to the problem of quantum localization of a particle in a d-dimensional random
potential (the internal dimension being the quantum imaginary time). It is known, and
rather obvious in relation to these problems, that if the polymer is free to move, it is
localized in the deepest localized state and has a finite extent. Properties then strongly
depend on details, such as the system size, the tail of the disorder distribution (Lifschitz
tails), and the short scale cutoff [79,80].

On the other hand, the problem of many interacting directed polymers is well defined
and identical to the problem of localization of bosons in a random potential. These
properties should remain true for membranes as well and in general we expect that in
the absence of self-avoidance, the membrane collapses (ζ = 0).

For a self-avoiding polymer the problem is better defined. Self-avoidance is then
relevant (see Section 4.7) and properties will depend on whether one end of the polymer
is held fixed or is allowed to move freely. It was studied previously with short-range
potential disorder [55]. There, if the polymer is free to move one expects again [60]
a collapsed state, whereas if one end is fixed there may be another strong disorder
fixed point [57] (see Section 4.7). In all cases it is natural to expect non-trivial glassy
dynamics.

We will not say more here about the potential case (gT = 0) which is beyond the
reach of our perturbative method, but let us stress that it is all the more interesting to
investigate what happens to localization when transverse disorder is added. We therefore
now turn to the case gT > 0.

(3) Isotropic disorder fixed point.
Noting from Eq. (3.104) that the line gT = gL is preserved by the flow (to this order),

we find an isotropic fixed point at

gL = gT = g∗ :=
2εd

(d − 1) (d + 2)A− dB − (d − 2)C +O(ε2), (4.31)

where the coefficients are given in Eq. (4.10). We have checked numerically that the
denominator of Eq. (4.31) is always positive, which is necessary for this fixed point to
be stable and to be in the physical domain. We have also checked numerically that this
fixed point is completely attractive, and its domain of attraction covers all perturbative
situations except the potential case gT = 0. As in the directed case, it also controls the
line gL = 0 (except for D = 0) and describes the large scale behavior of an isotropic
manifold in a random short-range force flow, see appendix C.
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Table 2
Results for isotropic polymers and membranes at the isotropic fixed point, SR disorder. Results for ζ are
obtained from the extrapolation of ζd, and are the most faithful. One observes a nice plateau in extrapolations
for ν, but no corrections to the Flory approximation can be deduced. The exponents z and φ do not allow
for direct extrapolations, but are always corrected upwards. Results for β are significant for polymers. For
membranes only a bound seems to emerge from extrapolations

d ζ z ν β φ

2 ≈ 1 > 2 0.5 −0.08 > 1
Polymer 3 0.8 > 2 0.40 −0.06 > 1

4 0.67 > 2 0.33 −0.03 > 1
3 0.8 > 2 0.40 −0.2 . . . 0 > 1
4 0.68 > 2 0.33 −0.2 . . . 0 > 1

Membrane 6 0.5 > 2 0.25 −0.2 . . . 0 > 1
8 0.4 > 2 0.20 −0.2 . . . 0 > 1

20 0.2 > 2 0.09 −0.2 . . . 0 > 1

The critical exponents at this fixed point, ζ∗ and z ∗, defined in Eqs. (2.13) and
(2.15), are with the same diagrams, given in Eq. (4.10)

ζ∗ = ζ(g∗, g∗) =
2−D

2
+

((d − 1)A− C) ε
(d − 1) (d + 2)A− dB − (d − 2)C +O(ε2). (4.32)

Note the difference with the directed case. The first coefficient in the numerator, A,
is positive as before, since it arises from the upward corrections to the temperature.
However, since there is no tilt symmetry any more, the elasticity is also renormalized
upwards (the polymer tends to shrink to take advantage of favorable regions). This
produces the second coefficient −C, which is negative. The competition between the
two opposite effects however gives a positive sum and the membrane is stretched. Also
note that the ε-correction vanishes like 1/d for D→ 2.

A similar formula is valid for the dynamic exponent z :

z ∗ = z(g∗, g∗) = 2 +
2 (A− C) ε

(d − 1) (d + 2)A− dB − (d − 2)C +O(ε2) (4.33)

with the same coefficients. The ε-correction is always positive, but vanishes like 1/d2

for D → 2.
Since there is no tilt symmetry any more, the elasticity is also renormalized up-

wards and gives rise to a non-trivial exponent β∗ (with the coefficients again given in
Eq. (4.10)):

β∗ =
−2 Cε

(d − 1) (d + 2)A− dB − (d − 2)C +O(ε2). (4.34)

The other exponents can be obtained as ν = ζ/z and φ = (z − ζ)/(2− ζ + β). One
notes that in the limit D → 0 one recovers again correctly the results for the particle
for ν and φ.

For a polymer, D = 1, the disorder becomes relevant below d = 6 and setting D = 1,
we find that the above results yield:
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ζ∗ = 0.5 + 0.130792ε, z ∗ = 2 + 0.03996ε, β∗ = −0.015446ε (4.35)

with ε = 1
2 (6− d), as well as ν = 1/4 + 0.060401ε and φ = 1 + 0.0369373ε. The most

naive extrapolation to d = 3 would be (setting ε = 1.5) that ζ = 0.70, z = 2.06 and
β = −0.023 and in d = 2 that ζ = 0.76, z = 2.08 and β = −0.031.

One can try to obtain more reliable estimates for these critical exponents from ex-
pressions (4.32), (4.33) and (4.34) for polymers (D = 1) and membranes (D = 2)
in three or two dimensions by optimizing on the expansion point. This is a tedious task
since ε is rather big. The numerical values obtained by the methods of [52] are not
very precise, as we could not find a combination of the exponents and D or d, which in
suitable extrapolation variables build up a nice plateau. Different extrapolation schemes
yielded strongly varying results. Some indicative values obtained by this methods are
summarized in Table 2.

Since ζ seems to increase rapidly as d decreases, an interesting question is whether
there is a dimension dl below which the polymer will be fully stretched (ζ = 1). The
result of Table 2 seems to indicate that dl could be around dl = 2. Our calculations are
not precise enough to decide on whether the polymer is already over-stretched or not in
d = 2 but that would be an interesting point to try to answer by other methods or by
numerical simulations (in d = 2).

(4) Transversal disorder fixed point.
The transversal fixed point (gL = 0) is at

gL = 0, gT =
2ε(

1− 1
d

)
(d + 2)A

+O(ε2), (4.36)

where the diagram is given in Eq. (4.10). It is unstable towards perturbations of gL see
appendix C. For the critical exponents ζ∗ and z ∗, we recover exactly the Flory result at
1-loop order:

ζ∗ =
2−D

2
+

ε

d + 2
+O(ε2), (4.37)

z ∗ = 2 +O(ε2). (4.38)

As was discussed for the directed case, this result was also found to be true for the
particle (D = 0) to all orders, but for D > 0 as we show (see Appendix C) finite
non-transversal terms are generated in perturbation theory which will drive the system
towards the isotropic fixed point discussed above.

4.5. Isotropic (non-directed) manifold with long-range disorder

For isotropic manifolds, LR correlated disorder becomes relevant for a < ac(D) =
2(2 +D)/(2−D). For fixed dimension d > ac(D), it can be studied in an expansion
in δ = 2 +D − (2−D)

2 a. As for directed manifolds, the vertex renormalization vanishes,

B =

〈 ∣∣∣∣ 〉
ε

= 0. (4.39)
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Fig. 10. RG flow diagram for isotropic manifolds in LR disorder. The flow is along straight lines. There is
a line of fixed points L and an apparent separatrix. ζ − ζ0 changes sign upon increasing gL/gT, suggesting
progressive localization.

Thus the renormalization is driven by the corrections to temperature, friction and elas-
ticity. The β-functions (4.4) and (4.5) with the coefficients given in Eq. (4.10), lead
to the flow diagram represented in Fig. 10. Since there is no vertex renormalization
both couplings have the same renormalization factor and thus the ratio κ = gL/gT is
again preserved by RG. As in the case of directed manifolds, one finds that the flow is
along straight lines and that there is a line L of fixed points (see Fig. 10). Its equation
parameterized by the bare ratio of coupling constants κ = gL(0)/gT(0) is

g∗T =
2dδ

(d − 1)(a+ 2)A− κ(a− 2)C (4.40)

and g∗L = κg∗T, where a should be replaced by a = ac(D) = 2(2 +D)/(2−D).
A novel and interesting feature is the existence of a separatrix, as depicted in Fig. 10:

When starting with mostly potential disorder, i.e. a large enough ratio,

κ =
gL

gT
> κc := (d − 1)

a+ 2
a− 2

A
C , (4.41)

there is no perturbative fixed point and the system, within the present expansion, always
flows to strong coupling (for the coefficients see Eq. (4.10)). For polymers D = 1,
since we expand around a = ac = 6 this value is rather large κc(d) = 7.17404(d− 1).
This property suggests the existence of two phases, or two regimes, one described by
the above fixed line, the other by a fixed point, which is non-perturbative in δ (at
fixed d). It could also be that while the perturbative one has a continuously varying
exponent ζ the non-perturbative corresponds to complete localization ζ = 0. It would be
interesting to check this scenario by non-perturbative methods as e.g. in [44]. A study
of the crossover between SR and LR in the next section will shed some more light on
the nature of the change of regimes observed here.

In the perturbative (non-localized) phase κ < κc the exponents as a function of
κ = gL/gT read

ζ∗ =
2−D

2
+ δ

(d − 1)A− κC
(d − 1)(a+ 2)A− (a− 2)κC , (4.42)
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z ∗ = 2 + 2δκ
A− C

(d − 1)(a+ 2)A− (a− 2)κC , (4.43)

where a should be replaced by a = ac(D) = 2(2 +D)/(2−D) and δ = 2 +D− 2−D
2 a.

Again the diagrams are given in Eq. (4.10).
These results contain interesting novel features compared to the case of directed

manifolds and can be studied as follows. Let us denote the universal ratio R = A/C. We
can express all exponents as follows to first order in δ = 2 +D − (2−D) a

2 :

ζ =
2−D

2
+

δ

a− 2
κ0 − κ
κc − κ

z = 2 +
2δ
a− 2

κ(R− 1)
κc − κ

,

β =− 2δ
a− 2

κ

κc − κ
, (4.44)

ν =
2−D

4
+

δ

4(a− 2)
(D + (2−D)R)

κ∗ − κ
κc − κ

,

φ = 1 +
4δ

(a− 2)
Rκ

(2 +D)(κc − κ)
(4.45)

with κ0 = (d − 1)R and κ∗ = 2(d − 1)R/(D + (2 − D)R) and one should set
a = ac(D) = 2(2 +D)/(2−D), i.e. a = ac = 6 for the polymer.

In the case of the polymer (D = 1) we find that R = 3.58702, and κc = 2R(d− 1) =
7.17404(d − 1) varies in the range 35.8702 < κc < +∞ for the range of dimensions
ac = 6 < d < +∞ where the result holds. κ0 = R(d− 1) = κc/2 = 3.58702(d− 1) and
κ∗ = 1.56399(d− 1) which varies between 7.81993 < κ∗ < +∞ as d increases from
d = 6 to d = +∞. Note that one has κ∗ < κ0 < κc.

The above given lowest order results for the exponents in the expansion in δ =
2 +D− 2−D

2 a show some new features as compared to directed manifolds which result
from the competition between the effect of temperature increase (which tends to stretch)
and the effect of increase in elastic stiffness (which tends to localize). First we find
that for κ < κ0 (with κ0 = κc/2 for polymers) the manifold is stretched ζ > ζ0

compared to manifolds in the absence of disorder (as was always the case for directed
manifolds) while for large potential disorder κ > κ0 the manifold is more localized
ζ < ζ0. The effect of potential disorder, which acts to localize isotropic polymers as
was discussed above thus becomes predominant for κ > κ0 (to lowest order in δ). The
single monomer diffusion exponent r ∼ tν also exhibits a change from superdiffusive
(ν > 1/4 for polymers) to subdiffusive (ν < 1/4) behavior when κ becomes larger
than κ∗. Finally note that in all cases κ > 0 one has z > 2 and φ > 1 which indicates
glassy dynamics and trapping by the flow.
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Fig. 11. Schematic sketch of the crossover in the d, a plane between LR and SR regimes for a directed
polymer (left). The expansion point is d = a = 4 and the SR exponents hold until the line S. The exponent ζ
is for d fixed a-independent in the SR-regime and a-dependent in the LR-regime, see the sketch on the right.

4.6. Crossover from short-range to long-range correlated disorder

It is interesting to discuss the crossover from short to long-range disorder. It can be
studied analytically around the point a = d = dc(D) in a double expansion. In the case
of the particle, this has been done by several authors (see [42] and references therein)
in a double expansion near a = d = 2. A complicated scenario was found with several
sectors. We will recover their result and find novel ones for manifolds. For polymers
we will expand near d = a = 4 for directed polymers and d = a = 6 for isotropic ones.
Typically one expects a line ac(d) where the SR exponents cease to hold, as represented
in Fig. 11. It is thus important to study the crossover in detail in view of numerical
simulations since in the physical dimensions d = 2, 3 there will be a wide range of
correlation decay exponents a accessible in practice, where the competition between
long-range and short-range disorder obtained here can be tested.

4.6.1. General structure of the RG flow
Here, the situation is analyzed as follows. Denote by gL and gT the couplings for SR

disorder, and by bL and bT the couplings for LR disorder. Their canonical dimensions
are in the case of isotropic manifolds[

gL
]

=
[
gT
]

= ε = 2 +D − 2−D
2

d, [bL] = [bT] = δ = 2 +D − 2−D
2

a

(4.46)

and for directed manifolds[
gL
]

=
[
gT
]

= ε = 2− 2−D
2

d, [bL] = [bT] = δ = 2− 2−D
2

a. (4.47)

Since a < d, we always have δ > ε. In Section 3.10 we have calculated the renor-
malization of elasticity, friction and thermal disorder. To generalize this to the mixed
case discussed here, one simply has to replace gL by gL + bL and gT by gT + bT in the
corresponding renormalization functions.
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In addition, we now have to take care of the mixture of both types of disorder under
renormalization. As discussed in Section 3.4, no LR disorder is generated. If we denote
SR disorder by , and LR disorder by (for isotropic disorder
for simplicity, generalization to transversal and longitudinal disorder are straightfor-
ward), then we obtain the following equality for the residues of the pole terms:〈 ∣∣∣∣ 〉

ε

=

〈 ∣∣∣∣ 〉
δ−1

=

〈 ∣∣∣∣ 〉
(2δ−ε)−1

= B.

(4.48)

Note that this is a statement about the leading term, i.e. the residue, but that the finite
terms are different and will lead to a less trivial result at the 2-loop level. A similar
statement holds for the particle case, as one can see by a procedure analogously to that
presented in Section 3.9. The generalized 1-loop β-functions then read

βgL(gL, gT, bL, bT) =−εgL −
d − 2

2d
CgL(gL + bL) +

(
1− 1

d

)
d + 2

2
AgL(gT + bT)

−1
2
B(gL + bL)(gT + bT), (4.49)

βgT(gL, gT, bL, bT) =−εgT −
d − 2

2d
CgT(gL + bL) +

(
1− 1

d

)
d + 2

2
AgT(gT + bT)

−1
2
B(gL + bL)(gT + bT), (4.50)

βbL(gL, gT, bL, bT) =−δ bL −
d − 2

2d
CbL(gL + bL) +

(
1− 1

d

)
d + 2

2
AbL(gT + bT),

(4.51)

βbT(gL, gT, bL, bT) =−δ bT −
d − 2

2d
CbT(gL + bL) +

(
1− 1

d

)
d + 2

2
AbT(gT + bT).

(4.52)

Once fixed points have been found, the exponents can then be obtained, since one has
simply

ζ(gL, gT, bL, bT) = ζ(gL + bL, gT + bT) (4.53)

and similarly for the exponents z and β, given by formula (4.8).
Let us now discuss the structure of these flow equations. This is not a trivial task

since the whole depends on the values of the diagrams A, B and C, all of them functions
of the expansion point, and on δ and ε. We can furthermore make the observation that

κ :=
bL

bT
(4.54)
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is again unchanged under renormalization, thus entering as an additional parameter. The
situations can then be analyzed by the following observations:

(1) Relevance of the disorder.
If both ε and δ are negative, then disorder is indeed irrelevant, i.e. when starting with

any combination of the couplings, the flow is always towards 0.
(2) Attractivity of the isotropic fixed point g := gL = gT.

The best way to study this is to write down the flow equation for the combination
(gL − gT)/(gL + gT), which using Eqs. (4.49) and (4.50) evaluates to

µ
∂

∂µ
0

gL − gT

gL + gT
= B (gL − gT)(gL + bL)(gT + bT)

(gL + gT)2
. (4.55)

Since the r.h.s. is always positive, the ratio (gL− gT)/(gL + gT) will flow to 0. We can
therefore study the simplified flow equations for which we set

g := gL = gT,

b := bT, (4.56)

bL = κb.

These equations read

βg(g, b) =−εg− d − 2
2d
Cg(g+ κb) +

(
1− 1

d

)
d + 2

2
Ag(g+ b)

−1
2
B(g+ κb)(g+ b), (4.57)

βb(g, b) =−δ b− d − 2
2d
Cb(g+ κb) +

(
1− 1

d

)
d + 2

2
Ab(g+ b). (4.58)

(3) Stability of the SR-fixed point
Next we discuss the stability of the SR-fixed point with b = 0, present for ε > 0

and consequently also δ > 0. Its stability on the axis b = 0 was established before for
all cases of interest. To analyze its stability towards perturbations of LR disorder, we
linearize Eq. (4.58) for small b. Two cases can be distinguished. If (with the diagrams
explicitly given in Eqs. (4.9) and (4.10))

δ < ε
(d − 1) (d + 2)A− (d − 2)C

(d − 1) (d + 2)A− dB − (d − 2)C , (4.59)

then LR disorder is irrelevant and the SR-fixed point alone is stable. The exponents
are then given by the results for the SR disorder problem. Note that the coefficient on
the r.h.s. of Eq. (4.59) is always larger than 1, such that this condition is satisfied for
weakly LR disorder. δ < ε would be the result of a naive dimensional estimate, and the
above results gives the correct result to lowest order, i.e. the tangent to the curve in the
a, d plane above which SR exponents are correct. For a directed polymer D = 1 one
finds the condition

4− a < (4− d)/(1− (1/3π)) = 1.1187(4− d) (4.60)
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Fig. 12. Schematic sketch of the possible flow diagrams for ε > 0. For directed manifolds, M and N are
sufficient and the fixed point C is rejected to infinity. M is relevant when SR is attractive, and N else. The
other situations become important for the isotropic case, see the discussion below.

and for an isotropic polymer

6− a < 1.07723(6− d) (4.61)

for the exponents to be given by their SR expressions (see Sections 4.2 and 4.4).
(4) Repulsiveness of the line g = 0.

By analyzing the flow equation Eq. (4.57) for vanishing coupling g, we see that the
flow on the axes g = 0 is always pointing upwards (increase of b) at least for κ > 0.

(5) The complete flow diagram.
Let us now draw the complete flow diagram for both couplings b and g in the

situation where the SR-fixed point is stable and κ large. (This domain includes all
values of κ > 1, but is significantly larger. We will detail on the exact phase boundary
below.) By direct integration of the flow equations, one finds the situation M sketched
in Fig. 12. The figure contains 4 fixed points, namely G, M, C and SR, as expected on
general grounds. (For directed manifolds, C however is rejected to ∞.) How does then
the SR-fixed point become unstable?

(6) Crossover from the SR-fixed point to the mixed fixed point M.
Above, we have given the conditions when the SR-fixed point is stable. If one now

increases δ such that Eq. (4.59) is no longer satisfied, then the flow diagram changes
to N in Fig. 12. Note that in this case, the mixed fixed point M takes over the stability
of the SR-fixed point.
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(7) Completeness of the scenarios when there is a repulsive SR-fixed point (ε > 0 and
Eq. (4.59) not satisfied).

We claim that under these conditions, the scenario on the mid of Fig. 12 is the only
possible one, i.e. that no new stable fixed point can appear in the physically relevant
sector b, g > 0, nor can the fixed point M disappear other than in a reverse of what we
discussed in point (6), making the SR-fixed point stable. Let us focus on the fixed point
M. It can neither pass through the axes b = 0 other than through the SR-fixed point, as
else there were 3 fixed points on the axes. Nor can it pass through the axes g = 0, since
this axes is always repulsive and thus does not admit a completely stable fixed point.
M can not pass through the Gaussian fixed point G since δ > ε > 0. The last way for
M to escape is via infinity. There are situations were this happens (see e.g. [58]), but
not here: At the fixed point, both Eq. (4.57) and Eq. (4.58) have to vanish. Combining
them, one obtains for b > 0 and g > 0

δ− ε =
1
2
B (g+ κb)(g+ b)

g
>

1
2
B g (4.62)

bounding g.

(8) The case of a completely stable SR fixed point.
The same scenario is valid, if ε > 0 and the SR fixed point is attractive (see left of

Fig. 12), with two possible exceptions: First, the fixed points C and M can coalesce and
then annihilate, leaving only two fixed points, G and SR, (flow Q in Fig. 12), which
always have to exist as discussed above. Formally, C and M have become complex. This
is only possible in the isotropic case, see the discussion below.

Further changing the parameters, the pair of them can re-appear in the physical sector
b, g > 0. One then obtains two completely stable fixed points, SR and M, with their
domains of attraction divided by a phase separatrix, passing through C. The most obvious
such situation is when κ = 0, since then there has to be a fixed point on the axes g = 0,
see R. This is the limiting case of the situation O in Fig. 12 for κ → 0. (The axes
g = 0 is no longer repulsive.)

(9) The case ε < 0, δ > 0.
The last case of interest is, when by say keeping δ fixed ε becomes negative. Then

the SR-fixed point disappears and only the mixed fixed point stays in the physically
relevant sector b > 0 and g > 0. With the same reasoning as above, one concludes that
it cannot escape, as long as δ > 0. If however δ changes sign, it will disappear through
the Gaussian fixed point at the origin, which then will become stable, as expected. We
have plotted some of the flow diagrams in the case ε < 0, δ > 0 in Fig. 13, which show
amusing spiral behavior. We note, as will be discussed below in details that in that case,
as ε/δ becomes very negative, the value of the couplings can become rather large. This
terminates the discussion of the topology of the flow diagrams.

Note also that in the directed case, the fixed point C is rejected to ∞, and thus the
flows M and N are sufficient to describe the crossover.

We will now give detailed results for the critical exponents at M and discuss how
they differ from their values at the LR fixed point discussed earlier. In general, if ε and
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Fig. 13. Some flow diagrams in the case of isotropic disorder. The left one is for D0 = 1, ε = −1, δ = 1,
κ = 100, the right one for D0 = 1, ε = 1, δ = 2, κ = 10. Note also the repulsive SR-fixed point on the axis
b = 0.

δ are comparable, the critical exponents are continuous functions of both arguments,
modifying the pure LR-behavior. On the other hand, when δ is small compared to the
modulus of ε (which then necessarily is negative) then the exponents tend to their
values given by the LR-fixed points, except in one situation discussed below.

4.6.2. Results for directed manifolds
Let us introduce the ratio S = (1− 1

d)(d+ 2)A/B. For polymers one expands around
a = d = 4 and S = 3π. Then the fixed point M has coordinates

b∗T + g∗ =
2dδ

(d − 1)(d + 2)A , (4.63)

b∗L + g∗ = κb∗T + g∗ = κ̃(b∗T + g∗), (4.64)

κ̃ = κ
1− ε

δ

1 + κ−1
S −

ε
δ

(4.65)

and is physical, i.e. has a positive b∗T = (b∗T + g∗)(1− 1
S −

ε
δ)/(1 + κ−1

S −
ε
δ) as long as

the above condition ε/δ < 1 − 1
S is satisfied (it collides with the SR fixed point at this

value, except for κ = 0). The fixed point C in the present case is rejected to bT = −∞.
For ε/δ < 1 − 1

S one thus recovers the previous results for the LR fixed line of
directed manifolds, Section 4.3, except that κ has to be replaced in all expressions
(e.g. in Eqs. (4.28)1(4.30)) by the value κ̃ which depends on the ratio ε/δ. Thus
we have that zM(κ) = zLR(κ̃), etc. When ε/δ = 1 − 1/S one has that all initial κ
yield κ̃ = 1 (isotropic disorder) and one recovers the SR exponents, while when ε/δ

decreases towards −∞ one recovers progressively the LR exponents since κ̃→ κ when
ε/δ → −∞. An interesting property is that κ̃(κ) is an increasing function which is
bounded κ̃(κ = ∞) = S(1 − ε/δ). Thus only a finite interval of the vertical fixed line
L studied in the LR expansion can really be reached for a fixed finite ε/δ.



578 K.J. Wiese, P. Le Doussal / Nuclear Physics B 552 [FS] (1999) 5291598

In particular the Flory exponent for ζ = ζF = (4−D)/(2+a) is still exact at M. This
yields the exact relation for a∗(d) at which the SR exponent will start being corrected
as a∗(d) = (4 − D)/ζSR(d) − 2, a relation which could be checked in numerical
simulations. For polymers using the improved estimates it gives a∗(d = 3) ≈ 2.76
(while the naive extrapolation in Eq. (4.60) gives a∗(d = 3) = 2.88) and a∗(d = 2) ≈
1.44 (while the naive extrapolation in Eq. (4.60) gives a∗(d = 3) = 1.76).

The case κ = 0 must be discussed separately. For concreteness, start with both bL = 0
and gL = 0. We know that only SR potential disorder is generated, yielding a finite
gL, but that bL remains zero. The short-range part still converges to the isotropic line
gL = gT = g, as shown in Eq. (4.55) and the above flow equations are still valid setting
κ = 0. There will be the SR fixed point as before, and the fixed point M is on the axis
g = 0. At the critical value of ε/δ (see Eq. (4.62)) the fixed points SR and M exchange
stability, but without colliding (right at the critical value there is a fixed line extending
from one to the other). In any case, the values of the exponents will be as given above
setting κ = 0.

We have also checked that the results for the crossover from LR to SR for the particle
given e.g. in Eq. (62) of [42] are recovered from our formulae.

4.6.3. Results for isotropic manifolds
With the same notations as previously (but different coefficients A, B and C) we find

the coordinates of the fixed points M and C as

g∗ + b∗T = (g∗ + b∗T)dir X, (4.66)

g∗ + b∗L = g∗ + κb∗T = (g∗ + b∗T)dir κc(X − 1). (4.67)

X satisfies an equation with the two roots

X± =
1
2

(1 + ρG±
√

(1 + ρG)2 − 4G), (4.68)

where we have defined ρ = 1− κ/κc and G = S(1− ε
δ)/(1− κ). We shall concentrate

on the case of the polymer D = 1, where one has κc = 35.8702 and S = 2
5κc. We found

that in the range of interest the fixed point M corresponds to X+ for κ > 1 and to X−
for κ < 1 and is in the physical sector as long as the condition ε/δ < 1− 1

S
κc

κc−1 holds.
The fixed point C is mostly in the unphysical region. (For the exception see below.)

There are several interesting properties. First, one can now study in more detail the
surprising property of the separatrix found before. One finds that as ε/δ is decreased
to −∞ at fixed κ, two radically different behaviours occur with a transition at κ = κc.
Either κ < κc and then one finds (for κ > 1) that as ε/δ→ −∞, X+ saturates at the
value

X+ → X+∞
+ =

κc
κc − κ

(4.69)

while for κ > κc, X+ keeps on growing indefinitely as ε/δ→ −∞ as
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X+ ∼
−ε
δ

κ− κc
κc(κ− 1)

S. (4.70)

In the first case κ < κc the exponents at the fixed point M will evolve smoothly, as
ε/δ → −∞ to their values on the fixed line obtained in section (4.5) in a first order
expansion in δ at fixed d. However, for κ > κc there is no well defined expansion in
δ at fixed d, as the fixed point M becomes non-perturbative in δ at fixed ε < 0. The
fixed point can still be reached and exponents be computed but only in a perturbative
expansion in negative ε (for δ > 0).

For a given κ and a fixed ratio ε/δ one can compute X using (4.68) and obtain the
critical exponents at M to first order in δ = 2 +D − (2−D) a

2 as

ζ =
2−D

2
+

δ

(d − 2)κc
(κ0 − κ̃)X, (4.71)

z = 2 +
2δ

d − 2
(R− 1)(X− 1), (4.72)

β =− 2δ
d − 2

(X − 1) (4.73)

with κ̃ = κc(1−1/X), κ0 = (d−1)R, R = A/C, and one should set d = 2(2+D)/(2−
D), i.e. d = 6 for the polymer. Using the above limit (4.69) one checks that indeed the
formulae (4.45) are recovered when ε/δ→ −∞ for κ < κc.

We can now obtain the exponents of the regime κ > κc (which was non-perturbative
in δ) in an expansion in negative ε. We find, using the above limits (4.70),

ζ =
2−D

2
− 4(−ε)

(d + 2)(d − 2)(κ− 1)

(
κ

κc
− 1

)
S, (4.74)
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z = 2 +
2(−ε)

(d − 2)(κ− 1)
(R− 1)

(
κ

κc
− 1

)
S, (4.75)

β =
2ε(κ− κc)
d(κ− 1)

C
B . (4.76)

The general analysis of the RG flow is complicated and we have therefore restricted
ourselves to the case of the polymer (D = 1, d ≈ dc = 6). Interestingly, there is a
domain of values of the parameters ε/δ and κ where the two roots given above become
complex (no physical fixed point M or C). This happens in general for κ < 1 when

1
S

1− κ
(1 +

√
κ/κc)2

< 1− ε

δ
<

1
S

1− κ
(1−

√
κ/κc)2

. (4.77)

with S = 2κc/5. For clarity the different regions in the plane of parameters κ and 1− ε
δ

are drawn in Fig. 14. The corresponding flow diagrams are given in Fig. 12. We invite
the reader to start with flow M and then to continue to N , O, P , and back to M,
and thus to observe how the flow is modified. The domain Q is defined by (4.77)
and corresponds to the case where the two fixed points M and C have annihilated and
only the fixed points G and SR remain. Note also that the domain O, where both the
SR and the mixed fixed points are attractive, and where both of them are separated by
a separatrix as shown on O of Fig. 12, is very small. Although it is a rather narrow
region which may thus be difficult to observe numerically (in addition the flow towards
both fixed points along the line joining them and passing through C is very slow) it is
intriguing physically since in that region there will be two different phases and possible
values of the exponent depending on the respective bare values of LR and SR disorder.

4.7. Inclusion of self-avoidance

Up to now we have not taken into account self-avoidance. While this is justified
for directed polymers (and membranes) by construction, physically, self-avoidance is
always present for isotropic polymers (and membranes). Although it is difficult to study
in a controlled way for the present problem, we give here some arguments which indicate
that self-avoidance does probably not change the behavior in the new glassy phase. We
will only address the case of short-range disorder.

Let us examine the operator for self-avoidance. In the dynamical theory of Section 3
it reads∫

x,x′,t

= 2
∫

x,x′,t

r̃(x, t)
∂

∂r(x, t)
δd(r(x, t)− r(x′, t)). (4.78)

Power counting at the Gaussian fixed point shows that in the absence of disorder, self-
avoidance is relevant for d < d0

SA(D) = 4D/(2 − D). On the other hand, we have
found that short-range disorder alone becomes relevant, for isotropic manifolds, for
d < dc(D) = (4 + 2D)/(2 − D). Since we study D < 2, self-avoidance is always
irrelevant near the upper critical dimension dc(D) around which we expand. Thus the
calculations of the previous sections are consistent.
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There is always the possibility that self-avoidance becomes relevant as the dimension
d is lowered further. One can give some qualitative estimate. We first consider the naive
dimension of the self-avoiding operator at the disorder dominated fixed point studied
in the previous sections. The power-counting used here and in our previous work [48]
gives for the eigenvalue of the above self-avoiding operator:

λPC
SA =D + 2 + β − (d + 2)ζ

= 2D − dζ − δFDT-violation, (4.79)

where δFDT-violation measures the violation of the FDT,

δFDT-violation = ζ − z − ζ̃ = D − 2− β + 2ζ. (4.80)

Of course, δFDT-violation is zero in the purely potential case, and one recovers the power-
counting of self-avoiding membranes without disorder. At the non-trivial fixed point, β
is very small and ζ much larger than its Gaussian value 2−D

2 , such that δFDT-violation is
positive and renders self-avoidance less relevant.

Let us now try to estimate (4.79). If one first inserts the Flory values ζ = 4/(d+ 2)
and β = 0, one finds that λPC

SA = D − 2 + β < 0 (since always β 6 0) and thus that
self-avoidance is never relevant. More generally, neglecting β (which is always small)
one finds that self-avoidance becomes relevant if ζdis <

2+D
2+d . The upper bound coincides

with the Flory value for the roughness exponent in presence of self-avoidance, which is
known to be a good approximation of the true value. Thus we obtain the rough estimate
that as long as ζdis > ζSA where ζSA is the roughness exponent with self-avoidance only,
self-avoidance can safely be neglected. This is in agreement with the naive expectation
that always the operator which results into the larger exponent ζ will be dominant. A
look at the estimates for ζdis obtained in Section 4.4 shows that for polymers the neglect
of self-avoidance should be justified.

The above approximation is rather naive when applied to the non-trivial fixed point,
and there are situations where this kind of arguments goes wrong. Since a complete
analysis of the situation away from ε = 0 is technically impossible, one can only
study the stability of the fixed point with respect to perturbations by self-avoidance; at
first-order in ε this stability analysis is then exact. 6 The complete expression for λSA is

λ
full
SA = 2D − dζ − δFDT-violation + µ

∂

∂µ
gL=gT=g∗

lnZρ, (4.81)

where Zρ is the renormalization group Z -factor for self-avoidance. Let us only state the
result here ( denotes the self-avoidance interaction, see Eq. (4.78)):

Zρ = 1− 2d

(
gL −

(
1− 1

d

)
gT

)〈 ∣∣∣∣ 〉
ε

,

6 It is worth mentioning that in the case of a 2-body self-avoiding interaction only, 3-body self-avoidance is
seemingly relevant by power-counting, but that with the help of the above-mentioned stability analysis one
can falsify this assertion [47].
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=

1
d

2
a− 2

∂

∂σ

∂

∂τ

[
C(x, τ) + C(y, σ)

]1−a/2
. (4.82)

In analogy to Eq. (3.78), the diagram is evaluated as

〈 ∣∣∣∣ 〉
ε

=
1
d

2
a− 2

1
(2−D)2

Γ2
(

D
2−D

)
Γ
(

2D
2−D

) × SD((2−D)SD)a/2

(4.83)

Since

µ
∂

∂µ
gL=gT=g∗

lnZρ = 2g∗
〈 ∣∣∣∣ 〉

ε

> 0, (4.84)

and with the help of Eqs. (4.79) and (4.81), λfull
SA > λPC

SA, such that vertex-corrections
render self-avoidance more relevant. The influence of these corrections for large ε is

difficult to estimate. Let us only remark that for large d,

〈 ∣∣∣∣ 〉
ε

is exponentially suppressed.
Thus we obtain that at the isotropic fixed point self-avoidance is presumably not im-

portant, since the random flow has already strongly stretched the polymer or membrane.
There is one case however, well studied previously [55,57,59161], where we know

that self-avoidance is important. This is when the flow is the gradient of a short-range
random potential, a case not studied here, but which we mention for completeness.
There disorder and self-avoidance become relevant simultaneously at d = 4D/(2−D).
The available RG treatments for this problem [55,59,60] exhibit a runaway flow to
strong coupling, as in the present method, and thus the problem can not completely
be understood. One open question is whether the exponent ζ is the same as for pure
self-avoidance ζSA [59], and even how universal the strong coupling regime is. The
question was addressed in [57] and it was concluded that the problem is governed by
a new strong disorder fixed point, very much like the directed polymer problem, where
both self-avoidance and disorder are relevant. Flory arguments were presented leading to
ζ ≈ 0.8 in d = 2 in good agreement with later simulations [61]. This problem however
deserves further studies.

4.8. Polymer in a hydrodynamic flow: toy model for generation of barriers

One of the remarkable results obtained in previous sections is that for a manifold
with D > 0 in a purely divergenceless flow new terms which violate the divergence free
condition are generated in perturbation theory (this is shown explicitly in Appendix C).
Although they are finite, they eventually drive the system to the fixed point where
gT = gL. This is in sharp contrast to the particle case D = 0 where the divergenceless
flow is a physical fixed point, distinct from the fixed point at gT = gL. Physically this



K.J. Wiese, P. Le Doussal / Nuclear Physics B 552 [FS] (1999) 5291598 583

z

z

1

2

Fig. 15. A dumbbell diffusing with each end on a rotating plane, according to Eq. (4.86).

is because barriers are generated in the case of the manifold but not in the case of the
particle.

In the case of the particle the fact that the line gT = 0 is exactly preserved to all
orders can be understood by noticing that the exact stationary distribution is known,
and is simply the spatially uniform distribution. This exact property implies strong
constraints, as it must exactly be preserved by renormalization. In the case of manifolds,
one can check whether the measure µeq = exp(−c/(2T)

∫
x(∇rx)2) is also stationary.

If it was, it would imply similar properties as for the particle, and in particular no
generation of barriers (since it is translationally invariant). There are some simple
cases of flows where µeq is indeed stationary. One example is the generalization to
polymers [62] of the de Marsilly1Matheron model of a layered random flow. There one
can show explicitly that µeq satisfies the corresponding Fokker1Planck equation and is
stationary. This problem was studied analytically in [62]. Although it can be solved,
it is in a sense misleading because it misses the physics of the generation of barriers
unveiled here: for a polymer in a generic divergenceless random flow such a simple
translationally invariant stationary measure does not exist.

In this section we will analyze this mechanism further. We will present some toy
models which allow to illustrate in a simple way how elasticity leads to dynamical
generation of barriers even in a divergenceless flow.

We start with a single-particle convected in such a flow, which we denote as vα(x).
The probability distribution P(x, t) for the particle to be at position x at time t, satisfies
the Fokker1Planck equation (T is the temperature)

∂tP(x, t) = ∂α(T∂αP(x, t)− vα(x)P(x, t)). (4.85)

Since ∂αvα = 0 one checks easily that the spatially uniform measure P(x) = 1/V (V
is the volume of the system) is a stationary solution. At large time (and T > 0) the
particle density will be uniformly distributed over the system. Upon applying a force
f, the drift velocity in response to the force will be exactly f. This can be checked by
methods similar to the one introduced in [63].

Let us now consider two elastically coupled particles (a dumbbell, see Fig. 15). We
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will start with two particles each located in a 2d plane. For convenience we will denote
zk = xk + iyk the complex position of particle k = 1, 2 in its plane. We will model the
directed polymer situation, and thus each particle will see a different flow. The equation
of motion is

ż1 = c(z2 − z1) + iω1z1 + η1,

ż2 = c(z1 − z2) + iω2z2 + η2, (4.86)

where c is the elastic coupling and
〈
ηiη
∗
j

〉
= 4Tδij the thermal noise. The flow in each

plane is thus simply vx = −ωky, vy = ωkx, i.e circulating around the center x = y = 0
(where the stream function p(x, y) = ωk(x2 + y2) has a maximum). The two flows
have identical center, but a slightly different rotation rate. We denote by 2δ = ω1 − ω2

the difference, and by ω the mean. Although this model is linear, it already exhibits
striking behavior.

In the absence of “disorder”, δ = 0, the motion is simply a collective rotation around
the center z = 0. The eigenvalues of the linear system at T = 0 are iω, which describes
the global rotation, and −2c + iω which describes the decay towards the steady state
z1 = z2. At any T the global rotation can be eliminated by redefining zk = exp(iωt) z̃k,
and similarly redefining the thermal noise. Thus the steady state measure is simply:

P(z1, z2) = e−
c

2T |z1−z2|2 , (4.87)

i.e. uniform in space and proportional to the Boltzmann measure of the elastic system
in the rotating frame. Thus again, at T > 0, one observes free collective diffusion of the
center of mass, and a linear response v = f of its velocity v to an applied force f.

Remarkably, as soon as δ > 0, the zero-mode disappears and the two particles
converge towards the center. At T = 0 the linear system eigenvalues are now λ± =
−c+ iω±

√
c2 − δ2. The global rotation can be eliminated as before, but the differential

rotation cannot. The convergence of the dumbbell towards (z1 = 0, z2 = 0) is exponential

as |zk(t)| ∼ e−(c−
√
c2−δ2)t, with a characteristic relaxation time τ ∼ 2c/δ2 at small δ

(which interestingly is much larger than the characteristic time 1/|ω1−ω2|). The slowest
decaying eigenmode has z1/z2 ∼ eiδ/c at small δ, i.e. it is twisted by an angle ∼ δ/c.

Most interestingly the effect persists to T > 0. It is difficult to find the full stationary
measure for the process (which seems to be non-Gaussian) but it is possible to compute
explicitly the mean squared positions, by integration of the equations of motion. We find〈

|zk|2
〉

=
2T
cδ2

(c2 + δ2), k = 1, 2. (4.88)

This indicates a genuine bound state at z = 0. At small δ, we find |zk|2 ∼ Tτ with the
same relaxation time τ introduced above. Since T is the diffusion coefficient, the picture
is that the dumbbell will diffuse away from the center at z = 0 for a time ∼ τ until it
is pulled back in again. The nature of this bound state is intriguing. One can easily see
that the stationary conformation is twisted. Indeed a similar calculation gives

〈z1z
∗
2 〉 = 2T(c+ iδ)/δ2. (4.89)
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Thus, remarkably, as soon as one considers two elastically coupled particles, preferred
regions appear and the stationary measure is no longer spatially uniform. Physically
this is because the two particles prefer regions where the elastic energy is reduced. The
center of mass motion thus becomes coupled to the internal elastic mode.

Let us now apply an external force. One easily sees that this only amounts to translate
the center of the bound state. In shifted coordinates the motion remains identical. The
new center has coordinates

z1,2 = f
ω∓ δ+ 2ic

2ωc− i(ω2 − δ2)
, (4.90)

where f = fx + ify is the force applied on both monomers. Interestingly the new center
now depends explicitly on ω (the global rotation cannot be eliminated anymore), in a
complicated way. Also one has z1 3 z2, i.e. the dumbbell is slightly inclined. For small
δ� ω, c it reads

z1,2 ≈ f

(
−1
iω
∓ δ

2cω− iω2

)
. (4.91)

In the limit δ → 0 the dumbbell center is close to z1 = z2 = −1/iω (with a weak
restoring spring). Amusingly, in that limit the dumbbell thus responds perpendicularly
to the force, as a vortex.

So far we have described situations where the location of the extrema of the stream
functions in each plane coincide, but the rotation rate does not. If these locations are
shifted, the same phenomena arise, i.e. a bound state occurs around a new center with
non-trivial position.

This model can be extended in several directions. First one may consider a directed
chain with N monomers, again with aligned stream function extrema at zk = 0, and
different frequencies ωk. One then sees that the decay towards the center at T = 0
exactly maps onto the problem of spin depolarization studied in [64], a problem which
arises in the context of the so called “motional narrowing” in nuclear magnetic resonance
(NMR). Using the results of [64] leads to a stretched exponential decay of

〈
|zk(t)|2

〉
towards the center.

Non-linear extensions of Eq. (4.86) can also be studied. They will show the generation
of barriers. For instance in a model with two uncorrelated random stream functions
pk(zk), local long living bound states will be located where extrema are close together
(note that saddle points are rapidly escaped from). The dumbbell will eventually escape
over barriers between these metastable states.

Finally one can see that the effect persists even if the two monomers see the same
flow, though in that case it must be non-linear. A related example of that phenomena
was discovered by Thual and Fauve [65] in a different context. If one identifies their
complex Landau1Ginsburg order parameter W(x) = z(x) as the complex position in
2d of monomers in a gaussian elastic chain at T = 0, their complex Landau Ginsburg
equation describes the dynamics of such a chain in the complex 2d velocity field v =
(µ+ (βr + iβi)|z |2 + (γr + iγi)|z |4)z (which describes a double well potential force
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plus a circulating force with a rotation depending on the distance to the center). They
found that this equation can have stationary localized solutions, which in our language
correspond to a rotating and twisted polymer in a bound state.

To conclude, some insight can be gained by studying these simple models, and
exploring further the physics of these problems would be of great interest.

5. Conclusion

In this article, we have studied a model for polymers, and manifolds of internal
dimension D, diffusing and convected by static random flows. Our results are obtained
using field theoretical dynamical RG near the upper critical dimension dc(D), which
is dc = 4 and dc = 6 for directed and isotropic polymers respectively, in short-range
correlated flows. In principle arbitrary D can be considered, although technically, since
dc(D) diverges as D → 2−, our quantitative analysis is valid for D < 2.

We found that below the upper critical dimension dc(D) the random flow is relevant
and changes the large scale behavior. This yields a new universal RG fixed point for
polymers and manifolds in non-potential static random flows with short-range correla-
tions. We have analyzed the critical theory using multilocal operator product expansion
techniques. As a result, all divergences can be absorbed by multilocal counter-terms, of
which we explicitly give the 1-loop contribution.

The new RG fixed points are in general characterized by three exponents, the rough-
ness of the manifold ζ, the dynamical exponent z , and φ related to the behavior of
the drift velocity v(f) under a small applied force f. They have been computed in a
dimensional expansion, and estimated numerically in physical dimensions. For directed
manifolds, a relation exists between these three exponents. In the limit D → 0 we
recover previously known results for the particle.

Our results show that in static random non-potential flows polymers and manifolds
are in a non-trivial steady state with glassy characteristics. In this state, the polymer or
membrane is stretched by the flow with a roughness exponent, which is larger than in
the absence of the flow (e.g. ζ ≈ 0.63 in d = 3 and ζ ≈ 0.8 in d = 2 for directed
polymers in SR random flows instead of ζ0 = 1/2 in the absence of disorder). The
internal dynamics is slower, with z > 2. Upon applying a small uniform external force
f, the polymer will move with a reduced velocity v(f) ∼ fφ with φ > 1. This state is
characterized by a zero linear mobility µ = dv/df|f=0. Thus one can consider that the
polymer is trapped in preferential regions of the flow. On a simpler toy model with only
two particles, we have been able to describe more precisely the effect of trapping, but
in the case of the polymer and manifolds its detailed physics remains to be investigated.
Numerical simulations would be extremely useful to check our results for the exponents
and to further characterize this glassy phase. These simulations should be easier to
perform than for conventional potential glassy systems, since in the present case the
convergence to the steady state is expected to be faster.

The glassy state that we found for this non-potential system can be compared to the
one arising in potential systems. The main difference is that as soon as disorder is non-
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potential, an effective temperature is generated, resulting in a violation of the fluctuation
dissipation theorem. The increase of temperature competes with the relevance of disor-
der which tends to make the temperature irrelevant. Since the important dimensionless
disorder parameter is proportional to the inverse temperature, contrarily to most potential
systems, disorder does not flow to strong coupling. Instead, it flows to a perturbatively
accessible fixed point, studied here. The effect of disorder, and thus the glassy character-
istics, are in effect weaker than in potential glasses. Indeed, we find a finite dynamical
exponent z > 2 and v ∼ fφ rather than the much stronger non-linear “creep” behavior
v ∼ exp(−c(fc/f)µ) obtained for manifolds with D < 4 and z effectively infinite,
which arises from a zero temperature fixed point [12,15,66]. In fact the state found
here is reminiscent of the so called “marginal glasses” predicted in the statics for peri-
odic manifolds at their lower critical dimension D = 2 [49,67172], where also thermal
effects are important and which have a similar v ∼ fφ characteristics. This corresponds
effectively to barriers which grow logarithmically with size (and inverse applied force),
and it is remarkable that the “randomly driven polymer” also exhibits such divergent
barriers (in an effective way, since the notion of barriers is not clear-cut in non-potential
systems). It is all the more remarkable in the case of a purely hydrodynamic (i.e. di-
vergenceless) flow, which for the single particle leads to a trivial, spatially uniform,
stationary distribution (thus without barriers). Here, these barriers are generated from a
non-trivial interplay between elasticity, disorder and thermal fluctuations.

In the case of LR correlated flows we have found via an expansion in the range
of the correlation a near a = ac(D) = dc(D) at fixed d that the behavior of the
system is controlled by a line of fixed points, and thus depends continuously on the
ratio κ = gL/gT of the longitudinal to transversal part of disorder (which remains
unchanged under renormalization). For directed manifolds, our analytical results were
found to be in agreement with the exact large d result obtained in [44] and even,
to first order in ε with the corresponding Hartree approximation. In that case ζ was
found to be exactly equal to its Flory approximation ζF = (4 − D)/(2 + a) while the
other exponents are continuously varying. Several remarkable results were obtained in
the case of the isotropic manifold. We found that there exists a critical value κcr of κ,
beyond which no fixed point is found in the fixed dimension expansion, as well as a
smaller characteristic value κ0 beyond which the manifold becomes compressed ζ < ζ0

rather than stretched by the flow (as it is in all other cases). Since this problem also
corresponds to directed polymers subjected to non-potential “correlated disorder”, these
effects may be understood as a result of a competition between localization (due to
the correlated nature of the force) and driving. To further investigate this competition
we also studied in detail the intricate crossover between SR and LR disorder, in a
dimensional expansion around the point a = d = 6 for polymers, important for studies
in the physical dimensions d = 2, 3. In view of the rich variety of obtained behaviors,
numerical simulations would be welcome to study the competition between SR and LR
disorder effects.

We also note that the glassy phase obtained here is via the RG perturbatively controlled
around the line dc(D) (see Fig. 5), whereas the large d approach of [44] works
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for any D and for LR disorder. A last and complementary method is the functional
renormalization group (FRG) which can be used in a D = 4 − ε expansion and thus
allows to explore the region of larger D than the present method. Recent progresses
on the finite temperature FRG in [33] which showed the existence of such a finite
temperature fixed point, leads us to conjecture that a similar fixed point will be accessible
by FRG in the present model and should merge smoothly into the one found here upon
decreasing D. Work is in progress to verify this conjecture [73].

To conclude, let us mention an interesting speculation, inviting for further investiga-
tion [74]: It is well known that a directed polymer in a random potential maps via
the Cole1Hopf transformation to the Burgers1Kardar1Parisi1Zhang equation [16]. The
question is whether the generalization of the directed polymer diffusing in a non-potential
random force field instead of a potential one, has some effective correspondence in a
generalization of the Burgers equation to non-potential driving and is thus possibly
related to the Navier1Stokes equation.
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Appendix A. Correlator and response function

In this appendix we give a collection of formulas for the correlator and the response
function in the Itô-discretization,

1
d
〈r(k, ω)r(k′, ω′)〉0 =

2λ
ω2 + (λk2)2 (2π)DδD(k+ k′)(2π)δ(ω+ ω′), (A.1)

1
d
〈r(k, ω)r̃(k′, ω′)〉0 =

1
iω+ λk2

(2π)DδD(k+ k′)(2π)δ(ω+ ω′), (A.2)

1
d
〈r̃(k, ω)r̃(k′, ω′)〉0 = 0. (A.3)

Fourier-transformation with respect to ω yields

1
d
〈r(k, t)r(k′, t′)〉0 =

1
k2

e−λ|t−t
′|k2

(2π)DδD(k+ k′), (A.4)

1
d
〈r(k, t)r̃(k′, t′)〉0 =Θ(t > t′)e−λ|t−t

′|k2

(2π)DδD(k+ k′), (A.5)

1
d
〈r̃(k, t)r̃(k′, t′)〉0 = 0. (A.6)

We will mostly use the real space representation. Let us start with the correlator. The
Fourier-transformation of Eq. (A.4) cannot be done explicitly but involves an error
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function. In addition, to obtain a well-defined function for D < 2 one has to subtract
the zero-mode. We therefore define

C(x, t) :=
1

2d

〈
(r(x, t)− r(0, 0))2

〉
0
. (A.7)

The limiting cases are

C(x, t) =


1

(2−D)SD
|x|2−D for t→ 0

2
(2−D)(4π)D/2

|λt|(2−D)/2 for x→ 0

, (A.8)

with

SD = 2
π

D
2

Γ(D
2 )
. (A.9)

Let us also note the ratio

C(1, 0)
C(0, 1)

= 2D−2 Γ

(
D

2

)
. (A.10)

The response function

R(x, t) :=
1
d
〈r(x, t)r̃(0, 0)〉0 (A.11)

is calculated analytically,

R(x, t) = Θ(t > 0) (4πλt)−D/2 e−x
2/4λt. (A.12)

The (perturbative) fluctuation dissipation theorem (FDT) reads

Θ(t)
∂

∂λt
C(x, t) = R(x, t). (A.13)

Appendix B. Extrapolations

The numerical values for the exponents reported in Tables 1 and 2 were obtained by
an optimization procedure using the freedom to expand about any point on the critical
curve ε(D, d) = 0. This procedure, first proposed in [75], was later refined in [52] to
obtain reliable estimates for the scaling dimension of self-avoiding polymerized tethered
membranes in the frame work of a 2-loop calculation. As will become apparent, various
extrapolation schemes are possible, and choosing the best one is almost an art; we
shall rely heavily on the methods developed in Ref. [52] to which the interested reader
is referred to for further details and discussion. Our presentation is inspired by [58],
where complementary material can be found. The general idea is of course to expand
about some point (D0, d0) on the critical curve ε(D0, d0) = 0. The simplest scheme
is to extrapolate towards the physical theories for D = 1, 2 and d = 2, 3, . . ., using
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Fig. B.1. Extrapolations for ζd to (D = 1, d = 3).

the expansion parameters D − D0 and d − d0. However, as shown in Ref. [52], this
set of expansion parameters is not optimal, and better results are obtained by using
Dc(d), (solution of the equation ε(Dc(d), d) = 0) and ε(D, d). Furthermore, it is
advantageous to make expansions for quantities such as ζd rather than ζ.

After selecting one of these schemes, the next step is to re-express the quantity which
shall be expanded in terms of Dc(d) and ε(D, d). If we are interested in polymers
(D = 1) in d = 3 subject to isotropic disorder, we have to evaluate this expression for
ε = 3/2. However, we are still free to choose the expansion point along the critical
curve, which then fixes D0. As the expansion point is varied, different values for ζd
(i.e. 3ζ for d = 3) are obtained, as plotted in Fig. B.1. The criterion for selecting a value
for ζ from such curves is that of minimal sensitivity to the expansion point D0. We
thus evaluate ζ at the extrema of the curves. The broadness of the extremum provides
a measure of the goodness of the result, and the expansion scheme. The robustness of
this choice was explicitly checked in Ref. [52] in the case of self-avoiding tethered
membranes, by going to the second-order. (For additional discussions of such “plateau
phenomena” see Section 12.3 of Ref. [52].)

While we examined several such curves, only a selection is reproduced in Figs. B.1,
B.2 and B.3. While quantitative predictions were already reproduced in Tables 1 and 2,
let us focus on some important qualitative observations. First, it is striking to observe
that the dependence of ζ on D in the directed case and the independence on D in the
isotropic case, read off from the extrapolations in Fig. B.2, is already predicted by the
Flory estimate. Indeed, the latter is hard to improve numerically.

For the exponents z and β, we did not find a reliable extrapolation scheme: As can
be deduced from Fig. B.3, the ‘minimum sensitivity point’ in extrapolations for β is
roughly independent of D0, which indicates that the extrapolation for β only depends
on ε, but not in a non-trivial way on D and d.

Extrapolations for z show a plateau when approaching D0 → 2 only. Since the
structure of the perturbation expansion is such that expanding about D0 = 2 always
yields the free-theory result z0 = 2, extrapolations merely permit in concluding on
z > 2. On the other hand, it is possible to build up combinations of z and D and d,
which upon expansion build up a nice plateau. However, the answer obtained by this
method strongly depends on the selected scheme, and therefore is unreliable.
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Fig. B.2. Extrapolations for ζ to polymers and membranes in three dimensions, using the extrapolation of ζd.
The left diagram is for the directed, the right for the isotropic case.
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Fig. B.3. Extrapolations for β (left) and z (right) to polymers and membranes in 3 dimensions, isotropic
disorder. Note that extrapolations are impossible for z and unreliable for β.

Appendix C. Finite corrections to longitudinal disorder in the purely transversal
case

The aim of this appendix is to show that in the pure transversal case, longitudinal
disorder is generated at the 2-loop order. A full 2-loop calculation is very difficult
to perform (see Ref. [52]). We will therefore only show, that at least one MOPE

coefficient, namely

(
T
T
T

∣∣∣∣ L
)

does not vanish, as this was the

case for

(
T
T

∣∣∣∣ L
)

.

Since already the evaluation of

(
T
T
T

∣∣∣∣ L
)

is a formidable task,

we simplify the task further by considering only a special limit. This is accomplished
by evaluating the leading singularity when approaching two of its vertices as
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T
T
T

∣∣∣∣ L
)

=

(
T
T

∣∣∣∣ T
)
×
(

T
T

∣∣∣∣ L
)

+
(

T
T

∣∣∣∣ L
)
×
(

L
T

∣∣∣∣ L
)

+
(

T
T

∣∣∣∣ T
)
×
(

T
T

∣∣∣∣ L
)

+
(

T
T

∣∣∣∣ L
)
×
(

L
T

∣∣∣∣ L
)

+ . . . (C.1)

The symbol hereby denotes the subleading operator (with the possible
transversal or longitudinal projectors unspecified)

=
∫
k

r̃(x, t) k2 eik[r(x,t)−r(y,t
′)]r̃(y, t′). (C.2)

Since we know from the first-order calculations, see Section 3.4, that(
T
T

∣∣∣∣ T
)

=

(
T
T

∣∣∣∣ L
)

= 0,

the first two terms on the r.h.s. in Eq. (C.1) vanish. From the calculations in Section 3.4
also follows that(

T
T

∣∣∣∣ L
)

= 0,

but that(
L
T

∣∣∣∣ L
)

does not vanish. Since moreover is after the next-to-leading
term in the MOPE, at least for D → 2, it is sufficient to show that(

T
T

∣∣∣∣ L
)

is non-zero in order to establish that(
T
T
T

∣∣∣∣ L
)

does not vanish identically. This is the aim of the following calculation. Let us however
note that the argument is not conclusive, when is not the most relevant
subleading calculation. This applies especially to the case of the particle with D = 0,
where the canonical dimension of ∇r becomes 0 and there is thus an infinity of marginal
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operators, which can be constructed from by adding an arbitrary power of
∇r. We comment on this special case later, see appendix D.

We now study the MOPE

−→ + derivatives of , (C.3)

To simplify notations, we give all results for the isotropic case and short-range disorder
(a = d). We start from the expression (3.34) for the contraction D1 in the notation of
Fig. 6 and the analogous expression for D2, which together read

2
∫
k

∫
p

eik[r(x,0)−r(y,t)] e(−p2+ k2

4 )[C(x−x′,τ)+C(y−y′,σ)]R(x− x′, τ)R(y − y′, σ)

×
[
r̃α(x, 0)r̃β(y, t) (p − k

2 )γ (p − k
2 )δ − r̃α(x, 0) r̃δ(y, t)(p − k

2 )γ(p + k
2 )β
]

×
[
gTP

T
αβ(p − k

2 ) + gLP
L
αβ(p − k

2 )
][
gTP

T
γδ(p + k

2 ) + gLP
L
γδ(p + k

2 )
]
. (C.4)

We want to write this expression in the form∫
k

r̃α(x, 0)r̃β(y, t) eik[r(x,0)−r(y,t)] ∆αβ(k). (C.5)

In order to decompose ∆αβ(k) into longitudinal and transversal part, we remark that if
we denote

∆αβ(k) = ∆L(k)P L
αβ(k) + ∆T(k)P T

αβ(k), (C.6)

then

∆L(k) = P L
αβ(k)∆αβ(k),

∆T(k) =
1

d − 1
P T
αβ(k)∆αβ(k). (C.7)

Applying the longitudinal projector P L
αβ(k) = kαkβ/k

2 onto ∆αβ(k) as obtained from
Eqs. (C.4) and (C.5) yields

2
∫
p

e(−p2+ k2

4 )[C(x−x′,τ)+C(y−y′,σ)]R(x− x′, τ)R(y − y′, σ)

×
{

1
k2

[
gTk

2 + (gL − gT)
(pk− k2

2 )2

p2 − pk+ k2

4

]

×
[
gT(p2 − pk+

k2

4
) + (gL − gT)

(p2 − k2

4 )2

p2 + pk+ k2

4

]

− 1
k2

[
gT

(
pk+

k2

2

)
+ (gL − gT)

(pk− k2

2 )(p2 − k2

4 )

p2 − pk+ k2

4

]

×
[
gT

(
pk− k2

2

)
+ (gL − gT)

(p2 − k2

4 )(pk+ k2

2 )

p2 + pk+ k2

4

]}
. (C.8)
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Using the FDT (3.12) and expanding up to second order in k gives for the longitudinal
part ∫

p

∂

∂σ

∂

∂τ
e−p

2[C(x−x′,τ)+C(y−y′,σ)]
{(

2
p2k2 − pk2

k2p4
+

7 pk2p2k2 − 3p4k4 − 4pk4

p8k2

+
(p2k2 − pk2)

[
C(x− x′, τ) + C(y − y′, σ)

]
2p4

)
gLgT

+
4
(
p2k2 − pk2

)2

p8k2
g2

T +
k2

p4
g2

L

}
. (C.9)

Two remarks are in order. First, integrating over p, we recover from the first term
proportional to gLgT the leading contribution already given in Eq. (3.37). Second, and
most importantly, there is a term proportional to g2

T, which is positive for all dimension
d > 1. Thus, even when starting with pure transversal disorder, longitudinal disorder will
be generated under renormalization. Although finite at 1-loop order, it will necessitate a
counter-term at the 2-loop level, as discussed at the beginning of this section.

For completeness, let us also analyze corrections to the transversal part of disorder.
Since it is calculatory more convenient, instead of contracting ∆αβ(k) with the transver-
sal projector, we contract it with the unit-matrix δαβ, resulting in (d − 1)∆T + ∆L. It is
then easy to subtract ∆L already given in Eqs. (C.8) and (C.9). So

∆αα = 2
∫
p

e(−p2+ k2

4 )[C(x−x′,τ)+C(y−y′,σ)]R(x− x′, τ)R(y − y′, σ)

×
{[

gT (d − 1) + gL
] [
gT

(
p2 − pk+

k2

4

)
+ (gL − gT)

(
p2 − k2

4

)2

p2 + pk+ k2

4

]
−
[
g2

T

(
p2 − k2

4

)
+ 2 (gL − gT) gT

(
p2 − k2

4

)

+
(gL − gT)2

(
p2 − k2

4

)3

(
p2 − pk+ k2

4

)(
p2 + pk+ k2

4

)]} (C.10)

Using the FDT, Eq. (3.12), and expanding up to order k2, this can be written as∫
p

∂

∂σ

∂

∂τ
e−p

2[C(x−x′,τ)+C(y−y′,σ)]
{(

2 (d − 1)
p2

+
4d pk2 − (d + 3)p2k2

2p6

+
k2(d − 1)

2 p2

[
C(x− x′, τ) + C(y − y′, σ)

])
gLgT

+
2d
(
p2k2 − pk2)
p6

g2
T +

k2

p4
g2

L

}
. (C.11)
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The transversal part can now be obtained by subtracting Eq. (C.9) from Eq. (C.11).
The interesting thing to note is that there is no component proportional to g2

L as expected
from the fluctuation dissipation theorem, which states that potential disorder is preserved
under renormalization. On the other hand, there will be all other combinations of terms.

Appendix D. Non-renormalization of transversal disorder in the particle case

In this appendix, we show, why in the particle case purely transversal disorder is not
renormalized. An analogous result in the context of the Fokker1Planck equation was
obtained in [42].

To this aim consider n interaction vertices
T

, and choose from its 2n
end-points the one who is the most retarded in time. Without loss of generality due to
translation-invariance in time its time-argument can be set to 0, leading to r̃α(0). (Note
that for a particle, there is only a time argument, but no space argument x.) To construct
a new interaction with exactly two response-fields per vertex from the n interaction
vertices, it is necessary to contract r̃α(0). Now, any of the other vertices has the structure
V :=

∫
k
r̃(t)eik[r(t)−r(t

′)]r̃(t′). Contracting r̃α(0) with V yields ikαR(t) − ikαR(t′).
Since by assumption t > 0 and t′ > 0, R(t) = R(t′) = 1 and both terms cancel. This
cancellation is independent of the kind of disorder, and also present for longitudinal
one. (Note that the argument is not valid for D > 0.) The difference between the two
kinds of disorder comes from the last possible contraction, namely by contracting r̃α(0)
with the other end of the same vertex. Denoting by P T/L

αβ (k) the transversal respectively

longitudinal projector, this vertex is
∫
k P

T/L
αβ (k)r̃α(0)eik[r(0)−r(t)]r̃β(t), and contracting

r̃α(0) with e−ikr(t) yields −ikα which is multiplied by P
T/L
αβ (k). In the transversal

case, the product kαP T
αβ(k) vanishes identically. This is not so for longitudinal disorder,

leading to a renormalization of disorder.
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