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Recently we constructed a renormalizable field theory up to two loops for the quasistatic depinning of elastic
manifolds in a disordered environment. Here we explore further properties of the theory. We show how higher
correlation functions of the displacement field can be computed. Drastic simplifications occur, unveiling much
simpler diagrammatic rules than anticipated. This is applied to the universal scaled width distribution. The
expansion ind=4-— e predicts that the scaled distribution coincides to the lowest orders with the one for a
Gaussian theory with propagat6(q) =1/q%"2¢, ¢ being the roughness exponent. The deviations from this
Gaussian result are small and involve higher correlation functions, which are computed here for different
boundary conditions. Other universal quantities are defined and evaluated: We perform a general analysis of the
stability of the fixed point. We find that the correction-to-scaling exponeatss— € and not— €/3 as used in
the analysis of some simulations. A more detailed study of the upper critical dimension is given, where the
roughness of interfaces grows as a power of a logarithm instead of a pure power.
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I. INTRODUCTION in time. This removes the ambiguity and, remarkably, leads
to a renormalizable theory to at least two lo¢ps-11]. This
Understanding the behavior of an elastic interface in ds supported by the “noncrossing theorems” which apply to
random potential is important for many experimental sys-single-component depinning and, remarkably, is the same
tems, and still offers a considerable theoretical challeng@roperty allowing to show ergodicity and to construct an
[1-4]. It is expected that below the upper critical dimensionefficient algorithm to find the exact critical configuration at
dyc, the interface is pinned by an arbitrarily weak disorderdepinning[12,15. The origin of recent progresses in both
into some rough configurations and that at zero temperatuneumerics and field theory are thus related. Clearly, one
it can acquire a nonzero velocity under an applied fdrce would like to test this field theory by calculating more uni-
only if f is larger than the depinning threshdid. A func-  versal measurable quantities and study its properties.
tional renormalization grougFRG) method predicts that In this paper, we further explore the field theory con-
d,=4 for the staticd5] and for the simplest universality structed in Refs[9—11]. We study displacement correlations
class, the so-called isotropic depinnift-8]. of more than two points. We find that these correlations are
There has been recent progress towards a precise descrigatic Although physically natural, if one wants quasistatic
tion of the depinning transition. From the theory side, thedepinning to make sense, this manifests itself through rather
FRG for single-component manifolds, originally studied for nontrivial massive cancellations in the time dependence of
one loop in an expansion ia=d,.—d, has now been ex- multipoint diagrams. We elucidate these cancellations and
tended to a field theory shown to be renormalizable to twmbtain as a consequence for a large class of diagrams much
loops. Renormalizable, we recall, means it has a well-definedimpler diagrammatic rules than previously anticipated. Ba-
continuum limit, which is independent of all microscopic sically, all time integrals become almost trivial, resulting in a
details, and thus ensures universality of large scale obsertheory with “quasistatic” diagrams. We then apply these
ables. Presumably there exists a fully renormalizable theorproperties to the calculation of universal observables. One
to all orders, with full predictive powef9-11]. From the natural universal quantity is the so-called width distribution
side of numerics, a powerful algorithm allows us to obtainof the interface. Interestingly, to the two lowest leading or-
the configurations afor just below depinning with much ders ine=4—d, the distribution coincides with the one for a
improved accuracy{12—-14. A reasonable agreement be- Gaussian theory with the full nontrivial propagat@(q)
tween the two methods was found in a measurement of the:1/q%*2¢, ¢ being the depinning exponent. This is also the
roughness exponerdt, especially the clear conclusion that subject of a related publicatidi6], where the distribution is
{>€l3 contrarily to a previous conjecture,8] ({= €/3) also measured numerically. Here we give a detailed presen-
based on the one-loop analysis. tation and also compute the higher connected cumulants of
The field theory of depinning in its present form is uncon-the displacement field, i.e., deviations from the Gaussian.
ventional in that one must work with a nonanalytic action. Some of these results are quoted in R&B].
This peculiar feature is an important part of the physics of In the second part, we study the theory at the upper criti-
the problem and is necessary to avoid the so-called dimercal dimension. The motivation is that no exact result is avail-
sional reduction. It makes the perturbation theory superfiable to confirm thad =4 (the only exactly solved limit
cially “ambiguous.” A nontrivial step taken in Ref$9—11]  corresponding to fully connected mod¢lsr—19). Thus the
to define the theory af=0 as the limitv—0 of the moving  question of what is the upper critical dimensidp, is still
phase was to assume that the interface position is monotondebated, even though the field theory of depiniitig11,2Q
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clearly predictsd,.=4. Also, in the other class of depinning B. Review of FRG and field theory

transitions, the so-called anisotropic depinning class with |et us briefly review the field theoretic approach, more
Kardar-Parisi-Zhang nonlinearities, there is not even a condetails can be found in Refl10]. The dynamical action
vincing prediction ford,. [21-23, and recent numerical (Martin-Siggia-Rospaveraged over disorder is given by®
studies have reopened the debg2d]. Recently it has be- with

come possible to study numerically depinning and statics in 1

high-dimensional spaces for reasonable system sizes with Ao Cv2y, T ~ _ -

better precision, allowing for the hope to settle the issue of Sluul= fxtuXt(at Vid U ZJ truX‘A(uX‘ U ) U -

the upper critical dimension in the near futfiiee—14,25. It (3)

is thus important to give precise predictions for the behavior

: : - ; Here and below we denotef,:=fd%, in Fourier
predicted by the FRG in order to compare with numerics. d e - X '
Finally, we also clarify the issue of finite-size scaling. In a/«=/d"k/(2m)" and [;=Jdt. The FRG shows that the full

previous work, used in several simulations, the vae  [UNCtiona(u) becomes relevant belodv=d,.=4 and a flow
— /3 was used for the finite-size scaling exponk28,27. equation for its scale dependence has been derived for one

We find that the correct value is instead= — €. This may and two_loops, in an expansiondh=4-—e. In Ref. [10], this
prove useful in numerical studié&s]. was derived by adding a small massas an infrared cutoff

The paper is organized as follows. In Sec. II, we defineand computing the flow of disorder, defined from the effec-

the model, briefly review the FRG method and field theorytive actionI'[u,u] of the theory, asm decreases towards
and define the main observable of interest here, the widtgero. As in Ref[10] we will denote byAy(u) the bare dis-
distribution. In Sec. Ill, we compute the Laplace transformorder correlator, i.e., the one appearing in the acion Eq.
of the width distribution in perturbation theory and find that (3), and byA (u) the renormalized one, appearinglifiu,u]
to lowest order ire it coincides with a Gaussian approxima- which has a similar expression as in Eg). The rescaled
tion. This approximation is introduced and further studied.disorder is then defined by

Some results on Laplace inversion are given. In Sec. IV, we
go beyond the Gaussian approximation and compute higher
connected cumulants. The detailed calculation of the fourth
cumulant(4-point connected correlation function of the dis- 5
placement fielflis given, and the cancellations that occur inwherel;=m™¢l;= [, (k?+m?) 2 is the one-loop integral. It
the field theory are studied. In Sec. VI, we discuss the uppefas then shown in Ref§9,10] that Eq.(3) leads to a func-
critical dimension, and in Sec. VII the finite-size scaling. Thetional renormalization group equation

effect of various boundary conditions is studied in the Ap- _ _ _

pendix. —mdA(u)=(e—2{)A(u)+ZuA’(u)

A(u)zimf’%Z(umg), (4
6'1

1 - ~
. _ 2nm
Il. MODEL AND OBSERVABLES 2[(A(u) 407

A. Model 1 X X (ONA 2
+ —_ — ! n
We study the overdamped dynamics described by the 2[( (W=AONA (W]
equation of motion 1
A OFN2A
Mohte=CV 2yt F(X U + 1, M RO ©
up toO(A%) terms. This equation implies that there are only
with friction 7. Long-range elasticity relevant for solid fric- two main universality classes at depinning, a single RF fixed
tion at the upper critical dimensioth=2 can be studied by point for interfaces and a periodic one for CDW type disor-
replacingcg”—c|q|. In presence of an applied foréethe  der[9,10]. Both ¢ and the fixed point functiod* (u) were
penter of mass velocity is=L ~%f,d,u,;. The pinning force  determined to the orddd(e?) for these classe®,10].
is F(u,x)=—d,V(u,x) and thus the second cumulant of the  The important feature of the field theory of depinning is
force is that A(u) has a cusplike nonanalyticity at=0. As was
shown in Refs[9,10], calculations in the nonanalytic theory

- [e.g., yielding Eq(5)] are meaningfully performed using the
F(x,u)F(x",u’)=A(u—u’)8%x—x"), @ expansion

1
such thatA (u)= —R"(u) in the bare model, wherB(u) is A(u)=A(0)+A(0")|ul+ EA(0+)U2+ e (6)
the correlator of the random potential. Random bond disor-
der is modeled by a short-range functiBu), random field  Performing Wick averages yield the usual diagrams, except
(RF) disorder of amplituder by R(u)~—o|u| at largeu,  that their actual values involve averages of, e.g., sign func-
and charge-density way€DW) disorder by a periodic func- tions of the fields. Replacing everywhere sgpafu;/)
tion R(u). —sgn—t') is justified for single-component quasistatic de-
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pinning (i.e., in the limit of vanishing velocity =0"*). This  boundary conditions. Here we focus geriodic boundary
yields diagrams with sometimes complicated internal timeconditions[33], also of interest for numerical simulations
and momentum dependences. We find, however, that in sonj&6], although we sometimes give results for other types, for
cases massive cancellations occur despite the complicatioimsstance for the massive IR cutoff described in the preceding
due to the time dependence between various diagrams, coparagraph.

tributing to the same observable. Since the FRG method developed in R€i8-11] and
summarized above uses a mass as IR cutoff and defines dis-
C. Universal distributions and observables order vertices at zero momentum, one should be careful in

calculations with, e.g., periodic boundary conditions. Since
e only compute observables either to dominant ordes in
for within a one-loop approximation, it is easy to make the
necessary replacements, as will be indicated below. For in-
stance, the one-loop FRG equation remains identical to the
first two lines of Eg.(5), the only changes beindl)

1 B —md,A has to be replaced by, A; (2) m—1/L in the
wz::—df (uy—u)?, (7)  definition of the rescaled disordei3) the one-loop integral
L™ Jx I,= [ [ 1/(k?*+m?)?] entering into the definition of the res-
_ caled disorder has to be replaced by its homolog for periodic
where u=(1/L% f,u, is the center of mass anid” is the  boundary conditions used beld®4]:
volume of the system. The basic observation is that the

To motivate the present study, let us consider one specifi
example of a universal observable, the width distribution o
the configuration at depinninghe so-called critical configu-
ration). The width of a configuration is defindd a given
disorder realizationas

sample to sample probability distributio®(w?) of w? is 1 1
expected to be universal, with a single scale set by the dis- =, 22 =Ld4 > —. 9
— X 7 2n/L
order averaged second cumulavt, i.e., (k%) nezfnzo (2mn/L)
o1 [w? 1. WIDTH DISTRIBUTION: PERTURBATION THEORY
P(w )=L2f — I 8 AND GAUSSIAN APPROXIMATION
w? \w

Let us start by giving the simplest approximation for this
f(2) is a universal function. This holds for thermal averagesdistribution. It can be derived in two way§) perturbation
in a number of finite temperature problems of pure system#heory in the renormalized theory to lowest ordereiltii) a
[29-31]. Here we show that it also holds for depinning at simple Gaussian approximation. In the end, this will moti-
T=0 and compute the distribution, first within a simple vate going further, i.e., studying deviations from the Gauss-
Gaussian approximation and then within thexpansion. In  ian approximation.
the process we study higher point correlation functions in the
field theory of depinning, define specific universal ratios of A. Perturbation theory

these(describing deviations from Gaussian behayi@nd . .
We now study perturbation theory. To compute the width

compute them. . X . ; .
Before turning to actual calculations, let us first summa-distribution using the dynamical field theoretic method

rize the general spirit of the method and discuss the questioh?> 10l one can start from the Laplace transform

of the universality of such observables. The hallmark of a o

renormalizable theory is that if one expresses the correlation W(N)=e (10)
functions in an expansion in thenormalizeddisorderA, o

then the resulting expressions are UV finite, equivalentlywith w?=3,(u,—u)?. Here and below we omit the global
they have a well-defined continuum limit, independent ofmultiplicative factorL ~% in the definition ofw?, since in the
short scale details. On a technical level, this can be achieveshd we will always normalize the distributid®(w?) by fix-

by computing correlations in standard perturbation theory tdng its first moment to unityin Eq. (10) it can be absorbed
a given order in powers ak,, and then using the relation by a rescaling of\].

between renormalized disordarand the bare ond, to the Expanding in powers of the correlator of the pinning force
same order, or equivalently through the definition of appro-A(u) (to lowest order this is equivalent t,, see above
priate countertermp32]. Here, we restrict ourselves to cal- one finds that to leading order Wi(\) is the sum of all
culations at dominant order ia and thus using eithek or  connected one-loop diagrams, as represented in Fig. 1. The
A, makes no difference. Beyond the Larkin scale, howeveroop with n disorder vertices and insertions ofw? is

these are nonanalytic functions, which is crucial.

In the limit of large scales or large system sizes, the fixed 1 ( _ ZAA(O)) n
point form reached by the rescal@dimplies that the result- — _—
ing observable, e.g., the width distribution uisiversal Uni- 2n %q (g%)?
versal means that these quantities do not depend on the short
scale details. However, thalo dependn the details of the Here and below the sums ovey thus runs over a
large scale infraredIR) cutoff, i.e., of the type of chosen d-dimensional hypercubic lattice with spacing-A, and the

(11)
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*o---o = <o

C —C
(W?)2 :ny(ze§y+u§u§ ) (14

where hereG,,=u,u, is the exact disorder averaged two-

point function. The first term is just Wick’s theorem and
+>——< would be the full result if the measure afwere Gaussian.
Analogous formulas exist for higher cumulants: the first term

o< on the right-hand sidéhs) of Eq. (14) generalizes into
2 ¢ 1
(wo)" |GA: 2" (n—-1)! J;( . Gx1x2Gx2x3' : 'Gxnxl
i 10+ Xn
(15

FIG. 1. Examples of contributions to Eq10) [terms w2,

(w22, and W?)* (bottom], together with the vertices for disor- as a simple consequence of Wick's theorem. This is again
der (top left), w? (top centey, and response functiofiop right). easily resummed into Eq12) which would thus be exact if
the measure afl were exactly Gaussian. Note that all results
0 mode is excluded, as appropriate for periodic boundarpf Refs.[29,3( for pure Gaussian theories can also easily be
conditions. If one were now to resum E@.1) overn, one obtained by the present resummation metlimnperature
would find replacing disorder Thus in the GAG(q) appearing in Eqg.
(12) is the exact two-point function. It can be tested in a
simulation by inserting the measured two-point function in
Eq. (12). In the large but finite system size limit, it takes the
scaling function formG, (q) discussed above.
with G(q) =G anin(d) =A(0)/q*, a Larkin model type re- When comparing to the numerical results for the width
sult if interpreted as naive perturbation thedig., if A(0)  distribution, it turns out that the GA is a surprisingly good
was interpreted as the bare original disorder rather than th@pproximation even down td=1. This is discussed in de-
renormalized onk The correct procedure implies tha{0o)  tail in Ref. [16]. However, we do not expect the GA to be
is the running renormalized disorderA(0)—A,(0)  exact. It is thus interesting to compute the deviation
= (el ;) e~ 9'A*(0), whereA* (0) is the(nonuniversal = [, uuZ® for the second cumulant of? in Eq. (14). It is
value of the fixed poin9,10]. Althoughl =In(L) for the zero  computed below and is found to be of or@ér while the GA
momentum disorder vertex, one notes that a momerdqum contribution[first term in Eq.(14)] is of ordere? (sinceG
flows in each vertex and one should take care of this by~e¢). Similarly the GA contribution to Eq(14) is O(e"),

wn =11 [1+27G(q)]17 (12)
q

settingl —In(1/q). This yields finally Eq.(12) with while the deviations are found to B@(e?"). This can be
42 summarized asi=\/euy+ eu;, whereu, is a Gaussian ran-
G(q)=C/q*?, (13)  dom variable ofO(1) andu, a non-Gaussian one @(1).

Computing deviations from the GA is thus one motivation

where the value of is nonuniversal and fixed bw?. As  to compute higher point correlations.
will become clear in the following section, the appropriate

choice forG(q) is the two-point finite-size scaling function C. Laplace inversion
G_(q)=C/q%"%g(qL) with g(0)=1. The difference be-
tween the two above-mentioned choices fbrsimply
amounts to the two different limits of small, or larggl..
However, to lowest order ia=4—d, they are identicallFor dx ,
a calculation of the scaling function to next orderdrsee P(w?)= 3@ —W(\)eM", (16)
Appendix J in Ref[10].) 2mi

Before doing so, let us discuss how the distribution
P(w?) is obtained through an inverse Laplace transform as

B. Gaussian approximation and beyond Noting that ind=1, Eq.(12) can also be written as

A more general approach consistent with the previous cal-
culation is the following. We first note that the above result WM =TT [1+20G(g)]7 L, (17)
(12) would be exact if the distribution of the displacement q=0
fields u were Gaussian It can thus be called the Gaussian
approximation(GA). To understand why it was obtained this is equivalent to
here, let us consider simply the second connected cumulant

[ 2 -1
of the width distribution(w?)? = (w?)2—(w?) . This cu- P e w260 _ G(Q)}
mulant, however, is not connected with respeat,tand thus p=0 2G(P)g>05+p G(p)] -
there is an exact relation: (18
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This formula shows that for large?, the distribution is peC(q) if p?=qg> (22)
dominated by the first termp=1, and in practice summing
the first few terms gives an excellent approximation. Let us index these classes byand introduce an order,
It is instructive to apply Eq(18) to a random walk, where

G(a)=1/g*. Using (neN) C.,<C, if qeC, and q'eC,=|q|<|q’|.

[ 1 x*|  sin(mx) 19

a0 n2/  wx ' (19 The number of elements of each class is defined as
one finds in terms of the widtv? |C,,| :==number of elements irC,, . (24)

2 S
- .
P(W2)=WZ? n§>:0 n2(—1)"* 1o (n%16) (W?Iw?)n? (20) We further define

o _ - q,.:=any element out ofC,, . (25
Ford>1 the situation is more complicated. Writing
d Note that since fope(C, and p#0 (by definition, we ex-
P(w?) = 3€ 0 awih IT [1+2xG(9)1"Y, (21 cludep=0) |C,| is always even. Equatiof21) can then be
2l 9.0x>0 rewritten as

we have, e.g., at least multiplicityd2for each factor in Eq. ™

(12), as long as no component vanishes, but this multiplicity P(w?)= § —.eWZKH [1+2)\G(q,)] %2 (26)
may even be higher, as can be seen from the following solu- 2 a

tions of the diophantic equatiotfor two dimensions 12

+7%2=52+52 62+ 72=92+ 22 and many more. Let us de- There are poles at=—[2G(q,)] . The sum over these
fine the clas€(q) as poles can after partial integration be written as

1 1 Cali2) g\ [Call2=1
P =2 (ICa/2=1)! (26<qa>> (R)

(27)

e [1 <1+2xe<qa>)'ca"2}

o' #a

A=-[2G(q,)] ~?

IV. HIGHER POINT CORRELATIONS IN DEPINNING L, @
FIELD THEORY (UsUy )= f Rxtxyty Rt xot, Rytoxats Rytx gt ] i

x; i<t uuuu

In this section, we analyze how one can compute higher
correlations in the depinning field theory and obtain simple X (Xaty Xtz Xats Xals)- (29
diagrammatic rules for doing so. These are illustrated on the
four-point function. Specific calculations and results will be Here R is the exact response function afidis the exact
given in the following section. effective action [sum of one-particle irreductiblg1Pl)
graphg (with the choicee™" for the probability and™ is
symmetrig. This is the standard relation between connected
correlation functions and the effective actidne., one-

We want to compute & =0, using the dynamical action particle irreducible vertex functiondVF)]. The simplifica-
Sin Eq.(3), e.g., the four-point expectation value, connectection here is that priori the exact two-point correlation func-

with respect to disordefand u) as defined in the previous tion and vertices such a‘F:.uuufJ could also contribute, but

sections: their contribution vanishes for=0 at the depinning thresh-
old. This is becauséu,quy ) is time independent there, and

f xtuyt f (uxtu (28 then statistical tilt symmetry implies that all IVF with at least
Xy one externalu leg carrying frequencyw vanish when this
frequency is set to zer¢see Sec. Il A in Ref[10]). The

e . . . . above formula29) generalizes straightforwardly to any con-
Similar formulas hold for higher correlation functions. This nected 2-point correlation function of the field in terms of

is identical to a connected expectation value with respect t?,(zn)

the actionS, denoted hereafter gs- - ).. @ _ _
The first step is to show that correlations can all be ex- Next one can computé’ .-~ in perturbation, using the

pressed as diagrammatic rules for the nonanalytic action arising from

A. Preliminaries
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(a)

e T
]j/(c) H(d)

FIG. 2. The four one-loop diagrams with unsplit vertices which
contribute to the four-point irreducible vertex functiﬁrﬁ?aa .

(b)

1

—
—

expansion(6). Let us denot&;, as the number ofi external
legs, n, as the number ofunspliy verticesAy, n, as the
number of internal linegresponse functionsandL as the
number of(momentum loops. Then one hasni2—n,=E;
andL=1+n,—n,. Here one hak;=4 and thus the lowest- <7
order contribution has,=4, n,=4, i.e., it is the one-loop
square(since two verticesn, =2, impliesn;=0 and is dis- R
connected, three vertices, =3, impliesn,=2 and is one- l
particle reducible The two-loop corrections are diagrams

with five vertices and so on. Similarlyff”.)_fJ to lowest order

LT

FIG. 3. The 16 one-loop diagrams with split vertices which

) . correspond to diagrarta) in Fig. 2. The last one, which contains an

is the one-loop @ polygon diagram. acausal loop and thus vanishes, is added here for future conve-
Since twou fields must come outarrows of each vertex, nience.

there are four possible diagrams corresponding to the one-

loop square, shown in Fig. 2. Each line entering a vertex A0 ..

corresponds to one derivative of thgu) function of the ————— 2U3U3Us5U75;5534556578( Rao— Ra2) (Rsa— Rea)
; ; 4!
vertex. Thus from Eq(6) we see that diagrarta) is propor-
tonal to A’(0")% diagrams (b) and (¢) to X (R7g— Rgg) (Rig— Ryg): (32)

A”(0%)A’(07)2A(0), anddiagram(d) to A”(0")A(0)%.
However, as we will show below using the so-called mount- - ) ,
ing property only diagranta) is nonzero. Rij=(uju;) is the free response function. The factor of 2

We found two ways to compute diagraf@ (as well as  COMeS from the two possible time orientqtions pf the loop.
any other similar diagrajmfirst a systematic but complicated ExPanding the product of response functions yields the 16
way, and second a simple way which uses a very importarﬂ“agrams represgnted in Flg. 3, where space and time labels
property not yet fully elucidated from the field theory of @€ ordered turning clockwise around the momentum loop.
depinning, the “quasistatic property” described below. To F_or |IIustr_at|o.n, let us indicate the full expression of the first
appreciate the extent of the cancellations involved in thigliagram in Fig. 3, in momentum space:
drastic simplification, we start by sketching the systematic
method. T (a1)(P12,t1;P23,t3;P34.t5; Paz,t7)

To perform an actual calculation, since edtlvertex in-
volves fields with two different time arguments, one must :A/(0+)4f [sgr(t;—t,)sgr(ts—ts)
switch to the split diagrammatics, as described in REd).

Diagram (a) of Fig. 2 then becomes the sum of 16 split

diagramgtwo choices per vertéxepresented in Fig. 3. Note X sgrits—1e)Sgrit; —ts)

that the last one is zero since it involves an acausal loop. XR, 1 +R
That leaves 15 nonzero and nontrivial diagrams. Ptz

These diagrams correspond to the following. One first ex- (32
pandsS*#/4! using Eq.(6), which gives schematically

totatets
P2 ,t57t4Rp3 ,t77t6Rp4 ~t1*t8] '

A0+ with  pj; =2 pi—p; the entering momenta andR, ,
4_ala2312u12a3a4534u34[,5a6556u56[,7[,8378u78. = 49(7_-)e*p 7 the free response func_tion. Because of the sgn

2741 functions, the evaluation of these integrals and of the other
(300 14 nonvanishing diagrams is very tedious and was handled
.. .. USINgMATHEMATICA . Adding all diagrams, massive cancella-
In shorthand notationi; =uy , Up=Uy, t,, U12=U1—Uz,  tions occur. The final result is very simple and given below.
S1,=sgn{, —t,), omitting all space and time integrals. Then  Let us now explain the simple method and the properties
carrying the Wick contractions, yielding of the theory which lead to this.
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B. Theorems and other properties Since no response function enters into the lower disorder
The simple way to compute the four-point correlations®(U—U’), due to the assumptions this givag0), with no
(and higher onesat depinning is based on the very important 4éPendence on time. Thus one can freely integrate over the
following conjectured property. response function starting at tinte This integral for both
Quasistatic property 1. All correlation functions diagrams isfdtR(k,t)=1/k? The difference in sign comes
(Uyg,---U » computed using the diagrammatic rules of from deriving the two different ends of the upper disorder
ali - anlan e vertex. Thus both contributions exactly cancel.
the quasistatic field theory of depinning at zero temperature Thus T'@ LT v by di
and exactly at threshold aiadependent of all time argu- us I'ohi(Xata Xata, Xst3,Xats) IS given only by dia-
ments gram(a) in Fig. 2. We have not found a complete proof that
Using relations such as E€R9) for arbitrary times shows it is independent of external times, but we can prove the

that an equivalent way to state this property is the following.Weaker.

Quasistatic property 2All ng_ﬁ)_a(xltl, . Xopton) are Lemma 1We have
independentf t,, ... ty,.
This property, which appears as a physical requirement Fﬁ)m(xltl,x2t2,x3t3,x4t4) (34)

for the correct field theory of depinning, implies nontrivial auud

properties of the diagrammatics. Although we will not at-

tempt to prove it here in full generality, we have checked it[see diagram(@ in Fig. 2] is independent of the most-

on many examples, and believe that it works. We encouragadvanced time.

the reader to contribute a valid proof. We will, however, state Proof. First suppose that a response function enters at the

and prove some easier and useful properties below. most-advanced tim&. Then there is the following cancel-

Once properties 1 and 2 are accepted, evaluation of thiation:

diagrams drastically simplifies, thanks to the following trick.

Since the result does not depend on external times, one can

take these times mutually infinitely separated, with some

fixed (and arbitrary ordering. Then one can integrate easily

over all internal times since the order at each vertex is then /
dt

specified and each sgn function has a fixed value. One recalls
that in the splitted diagrammatics all nonvanishiig 0 dia-
grams ardrees(see Sec. Il A in Refl10]). This can be seen

on the fifteen nonvanishing diagrams of Fig. 3. Thus inte-
grating independently along each tree starting from the
leaves yields one correlation function per link, since
JuRqt—v=1/g%. Performing this calculation on all fifteen
diagrams of Fig. 3 shows that they cancel pairwise since they (35
differ only by a global sign, with the exception of the acausal

diagram which is zero. Thus the final result is the same as |i'he mechanism is the same as in the proof of Theorem 1,

one had kept only £ 1) times the acausal graph. since by assumptiotf is the most advanced time, the argu-
Before giving the final result below, let us now state thement of the right-most disorder can never change the sign,
easler properties. and can be integrated over, even though it is odd, i.e.,

Theorem 1 (mounting trick diagram which contributes  —A(0*). Thus the remaining diagrams have the structure
to anu-independent vertex function is O if it contains a ver-

tex, into which no response function enters.
Examples are diagram®), (c), and (d) in Fig. 2. This
theorem thus ensures that only diagréanis nonvanishing.
Proof. The following figure demonstrates the principle.
Note that it may be part of a larger diagram. Especially, there \
may be more response functions entering into the upper dis- '
order. The statement is that

RS

\ This diagram is independent tf, as long a¢’ is the largest
--ey (external time.
Note that for a loop made out of two disorders, there is
(33  only one diagram remaining, namely,

-~

=0. (36)
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V. FINAL RESULT FOR THE FOURTH CUMULANT AND
UNIVERSAL RATIO

<> B In this section, we compute the fourth cumulant
_ 2,2
FIG. 4. The two contributions téu“). at leading order. D= Ly(UxthOc (39

as well as the ratigkurtosis

-~

*

‘ D

E R= ———, (40)

: 2f G2

; xy

E which, according to the discussion in Secs. Il and lll, is

! expected to be universal and characterizes the deviations
- from the Gaussian approximatidgfor which R=0).

Below, we computeR at depinning both for short-range
(respectively, long-rangeslasticity to lowest nontrivial order
in epsilon=4—d (respectively, e=2—d), i.e., within a
1-loop calculation. However, since it turns out that the mo-

&7 mentum inte i i i
grals involved in the calculation depend very

strongly on the dimension, we found it useful, and some-
times more accurate, to carry a one-loop approximation di-
rectly in fixed dimensiord. Also, since there is one exact
result for a massive propagator, we also give the result in that
case.

We denote

It is manifestly time independent.
Lemma 2We have

F(‘A"‘)""(Xltl5X2t2’X3t3'X4t4) (38)

uuuu

1
g(a) == (41)
q

with the obvious change in the case of long-range elasticity
g(q)=1/|q|, and(see belowthe massive propagator.

The final result in the continuum is given by the sum of
the two diagrams in Fig. 4:

[see diagranta) in Fig. 2] is independent of the differences
in time, if they are very large.

Proof. By inspection, one finds that by taking the external
times, i.e., one time at each disordgnfinitely) far apart, the
remaining integrals become unambiguous. Thus integrating -
over the response functions does not leave any time depen- D= fxy<uxtuyt>c

dence.
As mentioned above, calculation of diagraa in Fig. 2 diq  d% d
becomes then possible and one finds the following property. = —2A’(0+)4Ldj 3 5 5
Property (missing acausal loopRiagram(a) in Fig. 2 is (2m)" (2m)" (2)
given by (—1) times .the acausal Ioop, if therg one replaces x[29(9)29(k)2g(p)2g(p+q)g(p+k)
each response function by a correlation function.
Intuitively this means that if the acausal loop would give +g(q)2g(k)?g(p)g(p+a)g(p+k)g(p+k+a)],
a contribution, then all diagrams would cancel. This seems to (42
be a general mounting theorem.
Check.One can calculate diagrafa) in Fig. 4(a) explic- ddq dq
itly using none of the above theorems or conjectures. The f GLy= Ldj dG(q)ZzLdA(O)ZJ S9(q)*.
xy (27) (2m)

result is a formidable expression, which has to be integrated
over momenta. By evaluating it for given values of the mo- (43)

menta(not even necessarily conserving momentuome can  The combinatorics can be done as follows. There is a factor
compare with the prediction of Property 5. We found both1/(4124). There are 4! ways to associate each one of the
expressions to be equal for any randomly chosen values gbur externalu to an unsplitted vertex. Say 1,2 are now
}gfvmmgo-menta. The properties described here suggest the fQlaked to u? and 3,4 toug. At each vertex, al field comes
out. There are 2ways to assign them to each splitted vertex.

Property (any loop)All graphs can be computed to any Then there is a unique set of four splitted points, one at each
number of loops, using generalizations of the above rules. yertex, entering the acausal graphhich, in effect, is the

This is not attempted here but preliminary investigationonly one arising with the minus sigrBut there are still three
suggests that the same mechanism holds for two loops Witivays to join these four points in a loop: Two give the first
some simple end result related to the signs of possible “ferintegral, one the second, and finally for each case the orien-
mion loops.” tation can be chosen in two ways.
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Let us go to the discrete model with periodic boundary 1
condition (BC) [33]. We recall that R=—€%(1—2¢,)%(87?)? s 1
v
§ ddq s nezd N
L f f(a)= f( ) (44)
(2 )d nezd 1

X

2
nmiezd | (NH)Z(M?)2(1%)%(1+n)2(1+m)?
where here and in the following the term witl= 0 is always
excluded. In the limit of largé./a, one finds 1

i (n?)2(M3)2(1%)(1+n)?(1 +m)3(1 + m+n)?
D= aZdE (uZuZ) 51)

L \16 One finds, using
— _ZA/(O+)4L—2d(Z)

) > e "=0(30e (52
neZ’
X 2
n,m,lezd[ (n®)2(m?)?(12)2(1+n)?(1+m)?
thatind=4
. 1
2y20m2 2012 (1 + M2+ m2(1+m-+n)2 1 1=
(MmO EEm A men) 45 > _SZEJ t3[0(3,0e 19-1]=10.2454. (53
45 nezd N 0
L8 1 Noting f(p) == 4.z 1/(d%)*(p+a)?], one has
ZdEG ,=A(0) ( ) > = (46)
2m ne7d n8
1
One can see that the rat®will be universal since the one- akpers (@)*(k)%(p?)*(p+k)*(p+a)®
loop FRG fixed point equation taken at=0 yields 1
= Ed — f(p)?~1850, (54)
(e=20)A(0)=(e)A’(0")?, (47 pezt (P
2 1 > ! ~980.
(eh=Lal=———"—4=—: 48 ez (MHZ(MA)2(12)(1+n)%(1+m)%(1+m+n)?
(4w)d’2r<3— 5) m (55)

The final result is
The last identity is valid fod=4. In fact, since the one-loop

FRG equation is universal, it holds as well fd=4 as for 1
d<4. Ford<4, we use R= —1.17552%—0.1362. (56)
[ d 1_ 1 L 1 This result shows thaR is quite small nead=4, but in-
- (2m)9 p* wSd (2an/L) - 2m* S n?’ creases quite fast as the dimension is lowered. However, the

(49) sums over the momenta depend very stronglydgsee be-
low) and one should expect significant higher-order correc-
tions in €. Thus result(56) is likely to drastically overesti-

L€ 1 mate the(absolute value of theresult in lower dimensions,
Lol=el=e—F > —. (50 which is why we now turn to an estimate in fixed dimension.

This is all we need to compute the universal ratio. B. One-loop estimate in general dimension

One can perform an estimate in general dimension, based
on an arbitrary truncation on th@) one-loop graphs(ii)
neglect of the finite-size scaling function.

The ratioRzD/(ZExyGiy) is In general dimension, one has the dimensionless ratio

A. Calculation to lowest order in e=4—d

046118-9
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R=—(e—2¢)?

EXLL

4 8
nezd N nezd N

2
X

n,m%:ezd an)z(mz)zuz)z“ +n)%(1+m)?

1

" (n®)2(m?)2(12) (1 +n)2(1 +m)2(l + m+n)?

Let us give a table of values:

1—7T4—216465 d=1
B i a5 210465 (4=

=6.0268120 (d=2)
=16.5 (d=3),
1 e

Ed 5= 4755200815 (d=1)
neZ

=4.28143066080578 (d=2)
=6.945807 9272 (d=3),

D 1

nmiezd (N?)Hm?)2(12)%(1+n)%(1+m)?

—0.37342751117 (d=1)
=26.567 (d=2)
=240 (d=3),

1

nmiezd (N2)2(m2)2(12)(1+n)2(1+m)?(1 + m+n)?

—0.069 672062794960 (d=1)
—14.138 (d=2)
=143 (d=3).

In d=1, one finds

2
R=—-0.086 775969 128(71— 2%)

~—0.00964177 ({=¢€l3)
~—0.00347 (¢{=1.2).

In d=2, one finds

(57)

(58)

(59

(60)

(61)

(62)

(63

(64)

PHYSICAL REVIEW B8, 046118 (2003

g 2
R= —0.4324 1- 2—)
€
~—0.0481 ({=€l3). (65)

In d=3, one finds

2
R= —o.3297< 1— 2£)
€
~—0.0366 ({=¢€l3), (66)

where we have inserted various choices fancluding the
one-loop result{=€/3. One finds that already id= 3, the
one-loop approximation is significantly lower than the ex-
trapolation from Eq(56) as discussed above.

C. Long-range elasticity in general dimension

For long-range elasticity, the upper critical dimension is
d,c=2. The general expression f&is

1
R=—(e—2{)? 2
2 1 1
nezd n2 nezd n4
2
x 2
nm,l ez an)(mz)“z)“ +n|[l+m|
s ! (67)
M) (mMA)[1|[I+nl[l+m|[l +m+n|]
It is interesting to comput® in d=1. Using
L T 328087 68)
neZ n2_ 3 e '
1 7
gz F=4—E_)=2.164<:35, (69)
> ! =3.847, (70
nimlez (n)(mA)(13)[1+n[|l+m
1
=1.934,
nmiez (n2)(m?)|l][I+n][l+m||l+m+n|
(71)
one finds
g 2
R= —0.4105< 1—2;)
~—0.04566 (/=¢€l3). (72
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D. Long-range epsilon expansion

Similarly, one can perform an expansionéds2—d. In
d=2, one has

el=1/(2m), (73
L 7T4—6 0268120 (74)
nez? n4_45_ ' !
! =550+20, (75)
nmitez? (N2 (M) (12)|1+n|[l+m| 7
1
=370+ 10.
nmiezz (N2 (MA)|1]|1+n|]l+m||]l + m+n|
(76)
This yields
R — €(1-20,) (22— ———
(211')4 1
nezd n4
X 2 !
nmitezd | (N2 (M) (121 +n|[l+m|

1
+ :
(n?)(m?)|1]|1+n|[l+m||l + m+n|

(77)
The result is

1
R= —6.17§ez~—0.68&2 (79

PHYSICAL REVIEW E 68, 046118 (2003

Lfkfpg(@zg(k)zg(p)g(wq)g(p+ K)g(p+k+0q)

B 24578
~ 5184

—1.465 38. (82

This gives the ratio

R= 2 61 2¢le)*= 2306 _ 0.216 3694
———( - {e) __m__ . 55
(83

It is interesting to compare the present result to one case
(to our knowledge, the only one apart from mean field mod-
els where thefull distribution of uis known in a nontrivial
disordered probleni35]. This is the static random field
model ind=0 in a harmonic welli.e., the massive cagehe
so-called toy model. The exact result there is

Rioy=—0.08086 . . . . (84)

The present one-loop approximation for the problem of de-
pinning, continued tal=0, would give the larger resuR
=—1/3. It is unclear at present whether the difference be-
tween the two results indicates that the one-loop approxima-
tion is unsatisfactory so far frod=4, or if statics and de-
pinning have radically different values &

VI. BEHAVIOR AT THE CRITICAL DIMENSION

In this section, we reexamine isotropic depinning, and
statics, exactly ind=4. We solve the RG equations ih
=4 and obtain the behavior of the correlation function. Con-
trarily to periodic systems at the upper critical dimension
[36], nonperiodic objects such as interfaces submitted to ei-

again, a probable overestimation of the result if naively exther random bond or random field type disorder exhibit a

trapolated tad=1.

E. Harmonic well, short-range elasticity

It is interesting to compare with the calculation in a mas-

roughness, which is a power of a logarithm. Note that this
conclusion has independently been obtained by Fedorenko
and Stepanow37].

The FRG flow equation g function) for the (renormal-
ized) force correlator has a good limit fat=4. If one de-

sive scheme, i.e., an interface in a harmonic well. Settinqmes

g(q):=1/(1+q?), we have ford=1:

LQ(Q)Z=2=1.5708, (79
LQ(Q)4=51—7;=1.625 96, (80)

fffg(q)zg(k)zg(p)zg(mq)g(p+k)
qJkJp

B 163173
~ 31104

=1.625 88, (81

Ay(u)=8m21247 1A, (ul~ %) (85)

with I=In(A/m) (A some UV cutoff, then the function

A, (u) satisfies

- - - 1 - -
A (u)=(1-2¢)A(u)+ Lud' (W) - 5[ AW —-1(0)%)"
+1718,(R), (86)

where, for depinning,

B2(A)=[(A(u)—A(0)A’(u)?]"+A"(0")2A"(u)
(87
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and{,=¢/e=1/3 is the one-loop value, see e.g., R&0]. It (b) There is no such freedom, since the period is fixed by

is then easy to see that the functidy(u) converges towards the microscopic disorder. This is the case for a charge-

the one-loop fixed point with the following asymptotic cor- density wave(random periodic problen also for the ran-
rections: dom field bulk problem, in its treatment via a nonlinear

model.
~ ~ B 1 ~ We first analyze the simpler cage).
Ry =A% (u)+ 2 17 nbo() + 3 B[A* 17 Bo(R*),
(89 A. Stability of a functional fixed point; periodic case

where (87) ! is the inverse of the linearized one-logh Let us consider the flow equation given by

function andw,, are the one-loop eigenvalues.
Using Eq.(85) with ¢;=1/3 yields the result for the cor-
relation function ag=0:

<uqu*q>|q<m: m~*A(0)

=cm 4In(A/m) "Y1+ O0@W/In(A/m))]

dR(u)=B[R](u)=eR(u) +f[R,R](u), (94

wheref is some bilinear form oRR, which contains at least
one derivative for eacR. A similar equation of course exists
for A(u)=—R"(u) and the corresponding[A](u).
SupposeR* (u) is the nontrivial fixed point of ordek,
i.e., B[R*]=0. Two eigenfunctions and eigenvalues above
(89 R*(u) can be identified(i) the constant mod&R(u)=1
with eigenvaluee (as long as it is permissible physicatly

as m—0, with c=8w2?A*(0), both for statics and depin- ;; ; ; ; i _p* ;
' ’ ii) the first subleading eigenfunctiofR(u)=R*(u) with
ning; the difference lies in the subdominant piece. Within the( ) g el (u) (u)

. R eigenvalue—e.
present approach using the renormalization scheme at Proof. For case(i), we have fork<1
=0, the two-point correlation function at nonzegacan be ' '
computed from the renormalizgdniform) effective action
by resumming an infinite set of diagrams. Using the standard

finite-size scaling ansatz allows to obtain the other limit ofsincef does not couple to the constant by assumption. This

(R* (u) + k)= B[R* + k](u) = €x, (95)

the scaling function, wherd >qg>m. To lowest ordel(one
loop) in the renormalized disorder, one Hdd]

(@2 +m?)X(ugu_g)=[A(0)—A"(0")2(1 (@)~ 1(0)+ -],

1
I(q)=f : (90
p (P*+m)((p+q)*+m?)
This gives
o™
_ 2 2\—2 e 1 " a
(ugu_g)=c(g“+m)~“n = 1—§ (A +--
In| —
m
(91
Assuming scaling, i.e., the function €I5x+---)—(1
+x) 13 one finds
m —-1/3
(ugu_gy~q~* In(a” (92
and thus
(Ux—Ug)>~(Inx)?"?, (93

VII. STABILITY OF THE ONE-LOOP FIXED POINT

Here we analyze the stability of a functional fixed point.

The following two cases have to be distinguished.

(a) There is the freedom to rescale the fiald/hile, at the

proves(i).
For case(ii), we have <1):

3(R* (u)+ «kR* (u))=B[R* (1+ «)](u)
=eR*(U)(1+ k)
+ (14 k)?f[R* ,R*](u). (96)

Subtracting B[R*](u)=0 on the rhs and expanding for
small  yields

,(R* (U) + kR* (U)) = exR* (u) + 2« f[R* ,R* ] (u)
=—exR*(u), (97)

where in the last equation we have again used the fixed-point
conditionB[R*J(u)=0, i.e.,eR* (u) + f[R* ,R*](u)=0, to
eliminatef[ R* ,R* ](u). This provedii).

Using the same line of arguments, it is easy to see that
when starting fronR(u) ~R* (u) with some arbitrary ampli-
tude, the flow is always remaining on the critical manifold
spanned byR* (u).

Of course, there are in general more eigenfunctions and
eigenvalues. See Rdf10] for an explicit example.

B. Perturbations of the fixed point in the presence of the
freedom to rescale

We state the following theorem.
TheoremThe differential equation of the form

—minA(u)=p[A],

same time, rescaling the disorder correlator. This includes the

random bond and random field interface models.

B[A]=(e—2{)A(u)+ {uA’(u)+f[A,A], (99
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where the symmetric functiond[A,A], transforms under —mdR(u)=B[R](u),
A(u)— k~2A(ku) in the same way a4, has the two eigen-
functions and eigenvalues of perturbations around the fixed  g[R](u)=(e—4¢)R(u)+ {uR’'(u)+f[R,R](u),

point B[A*]=0, (107
Zo(u)=UA"(u)—2A(u), (99 where the symmetric functiondl[ R,R] transforms under
R(u)— «~*R(ku) in the same way aR, has the two eigen-
Ao=0, (100  functions and eigenvalues of perturbations around the fixed
point B[R*]=0,
z;(u)=fuA’(u)+ (e—2{)A(u), (101
Zo(u)=UuR'(u)—4R(u), (108
)\1: — €. (102)
) _ _ o No=0. (109
(We noteA instead ofA* for the fixed point for simplicity of
notations) Note that the assumptions are satisfied by the z,(U)=uR' (u) + (e—40)R(u), (110
1-loop flow equationRF case
Proof. Let B[A](u)=0. Due to the assumptions, for all A= —e€. (112
K,

72 Note that the assumptions are satisfied by the 1-loop flow
Bk “A]J(ku)=0. (103  equation(random bond case
Proof. This can either be proven along the same lines as
for Eq. (98) or by derivingzy(u) andz;(u) twice with re-
(e—20)[UA’ (U)—2A(U)]+ ZU[UA’ (U)—2A(W)]’ specg;g)u and then using the theorem for the random field
case(99).

Deriving with respect toc gives with Eq.(98) at k=1,

+2f[A(u),uA’(u)—2A(u)]=0. (104

. . . . C. Numerical analysis of the RF fixed point
This is nothing but the eigenvalue equation for the perturba- umert yS| ed pot

tion zo(u) about the fixed poin3[A]=0 and proves the We start from the one-loop flow equation
existence of the solutiop,(u) with eigenvalue\,=0. Note _ ,
that thisredundantoperator with eigenvalue 0 persists to all ~MimA (W) =(e=20)A(U)+ud’(u)
orders in perturbation theory. 1

Let us turn to the next solution. Multiplying Eq104) - E[(A(u)—A(O))Z]”. (112
with ¢ and adding 2 times B[A]=0 gives

(e—20)[LUA’ (U)+(2e—27)A(U)]+ Zu[ ZUA’ (U) It has the following solutior}5,10]:
Hzem2OAWT A= £y5(u),
+2f[A(u),luA’(u)+(e—2{)A(u)]=0, (105
where we used the bilinearity @ (u). Rearranging yields yi(U)—Inyy(u)=1+ %uz' (113
(e=2)[LuA"(u)+(e=2)A(u)]+ u[{uA’(u)
+(e—2¢)A(u)]'+2f[A(u),LuA’(u)
+(e=20)A(u)]=—e[{ud’(u) +(e—20)A(U)].
(106)

Perturbations around this solution satisfy the differential
equation

—mdp[A(u)+2z(u)]=Nez(u), (114

1-3N)z(u)+uz'(u)— u)—Yy41(0))(z(u)—2(0))]"
This equation is nothing but the eigenvalue equation for the ( )z(u) (W)= [Ga(w)=y2(0))z(w) = 2(0))]

perturbation z;(u)=¢uA’(u)+(e—2¢)A(u) about the =0. (115
fixed point B[ A]=0 with eigenvaluex;=—e€. Q.E.D.

Remark.Consider the case of short-range disorder, i.e.In order to have a criterion for the numerical integration, one
A(u) falls off rapidly and is monotonic. Usually, the leading has to determine the behavior at infinity. Using, o,
fixed-point solution has no kndgtho u such thatA (u)=0]. )

Thenzy(u) has no knot and,(u) has one knot. Eigenvalues yi(u)~e 17u7 (116
should be orderedike in quantum mechani¢siue to their ) . i
number of knots. Thus we should have found the two leadin@"d @ssuming exponentially fast decay #gu), one finds
solutions for short-range disorder. This is confirmed by thenat the asymptotic behavior is

numerical analysis given in the following section.

Corollary: Random bond casd&.he differential equation 2(U)~2(0)
of the form

(u2—1)e_1_”2/2

2+3\ (12
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1 relations exactly at depinning should be time independent. A
diagrammatic proof of this property is still incomplete, but

we have provided some convincing elements in that direc-
0.6 tion. As a result the correlation functions can be computed in
a much simpler way. Thus there seems to be an underlying

o4 theory, with “quasistatic” diagram§.e., not containing time
0.2 explicitly), with some additional rules. We have understood
u these rules to lowegbne-loop order and it would be of high
w 4 5 interest to understand, and prove, them to all orders. It is
-0.2 even possible that there exists a simpler formulation of the

theory at depinning in terms of, e.g., effective fermions. The
fermionic character is suggested by the cancellation of all
diagrams except for the “acausal loops” with a minus sign.
We thus encourage further examination of this fascinating
Quite surprisingly, the asymptotic behavior is fixed, includ-question and full elucidation of the field theory which de-
ing its amplitude[41]. In any case, slower power law decay scribes depinning.

is ruled out on a physical ground since we are considering

FIG. 5. (Color onling The solutionz,(u) [in black, with z(0)
=1] and asymptotic behavior as given in E§17) (blue/brigh}.

short-range disorde(iFig. 5. o APPENDIX: DIFFERENT BOUNDARY CONDITIONS
The solutions foln=0 and\ = — € are given in Eq(99)
ff. The solutionz,(u) is dominant, and gives the correction a. Periodic boundary conditions

to scaling exponeni&= —e. Note that this exponent is mi-

nus the engineering dimension of the coupling, as is the case

in standard field theor38] and also for the random periodic

class[10]. Referencg26] cites the valuav= — ¢/3. We find

the corresponding numerical solution to decayuag, in-

compatible with Eq(117) and physically unacceptabl&8].
The question arises whether there are more solutions with

fast decay. Intuitively, one would expect this: Making u(x)= >, ue', (A2)

more negative, the solution overshoots and one might think

of fine tuning\ such that it a}ppr_oaqhes the gxis for_ large \yhere summation runs over &) such that,=n;27/L, n,

from above. However, this is incompatible with the

asymptotic behavior in Eq117), which predicts that all so-

lutions for A< —2/3 converge from below. In fact, we have b. Open boundary conditions

not been able to find any further solution, and we conjecture L ) )

that there is none. It would be interesting to prove this rig- 10 Simplify the notation, we give all formulas for one

orously. This behavior is in contrast to the random periodiclimension; generalizations are straightforward.

case, solved in Ref10], which has infinite many subleading = SUPPose the functior(x) is defined on[O,L]. Then a
contributions. functiong(x) can be defined by the following prescription:

A periodic functionu with periodL satisfies
u(x+Le)=u(x), (A1)

whereéi are orthonormal. It can be written as

f(x) for O0sx<L

VIll. CONCLUSION g(x):{f(ZL_x) for L<x=2L: (A3)

_ In this paper, we have explored further properties of they ) can he prolonged to a periodic function with peridd, 2
field theory of depinning. We have defined and compute e..g(x+2L)=g(x), and satisfies by construction in addi-
universal observables, such as the distribution of the inters ’

face width and the rati® of the connected four-point cumu- tion
lant to the square of the two-point offleurtosig. This ratio g(2L—x)=g(X). (A4)
measures the deviations from a Gaussian approximation,
which we have also used to obtain the universal distributionln the basis needed to construct functions with peribd ®e
Higher-order connected cumulants can be computed in have to restrict ourselves to
similar way for one loop using polygon diagrams, and one
should be able to reconstruct the full distribution from them. ~ 2mwnXx ~ mNX
g =2 gnCOS( )=2 gnCOS(T). (A5)

Other properties of the theory such as the behavior at the 2L
upper critical dimension and the finite-size scaling behavior
have been clarified. All calculations in the present paper arsince the sine functions do not satisfy E&4). The such
of interest for comparison with numerical simulations, exist-constructed set of function§x), xe[0L] has Neumann-
ing ones[16] or in the near future. boundary conditions at=0 andx=L. From Eq.(A5), we
In the process of computing the four-point function, weinfer that the number of modes is reduced by a factor of 2
discovered massive cancellations between diagrams. Weompared to the case of closed boundary condijjonst
traced this back to the physically expected property that corthe construction does not change any observable constructed
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from w? or any energy, all based on the symmetry relationwith closed boundary conditions, and a two-dimensional ran-
(A4). Importantly, the modes have all mean 0, which is notdom walk with open boundary conditions, which can be
the case for other basis, e.g., when using antiperiodic funcshecked numericallj40].

tions. Also note that this ansatz reproduces the formula in

Ref.[39]. As an interesting consequence, we observe that the ACKNOWLEDGMENTS
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