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Higher correlations, universal distributions, and finite size scaling in the field theory of depinning
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~Received 1 April 2003; published 21 October 2003!

Recently we constructed a renormalizable field theory up to two loops for the quasistatic depinning of elastic
manifolds in a disordered environment. Here we explore further properties of the theory. We show how higher
correlation functions of the displacement field can be computed. Drastic simplifications occur, unveiling much
simpler diagrammatic rules than anticipated. This is applied to the universal scaled width distribution. The
expansion ind542e predicts that the scaled distribution coincides to the lowest orders with the one for a
Gaussian theory with propagatorG(q)51/qd12z, z being the roughness exponent. The deviations from this
Gaussian result are small and involve higher correlation functions, which are computed here for different
boundary conditions. Other universal quantities are defined and evaluated: We perform a general analysis of the
stability of the fixed point. We find that the correction-to-scaling exponent isv52e and not2e/3 as used in
the analysis of some simulations. A more detailed study of the upper critical dimension is given, where the
roughness of interfaces grows as a power of a logarithm instead of a pure power.
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I. INTRODUCTION

Understanding the behavior of an elastic interface in
random potential is important for many experimental s
tems, and still offers a considerable theoretical challe
@1–4#. It is expected that below the upper critical dimensi
duc, the interface is pinned by an arbitrarily weak disord
into some rough configurations and that at zero tempera
it can acquire a nonzero velocity under an applied forcf
only if f is larger than the depinning thresholdf c . A func-
tional renormalization group~FRG! method predicts tha
duc54 for the statics@5# and for the simplest universalit
class, the so-called isotropic depinning@6–8#.

There has been recent progress towards a precise des
tion of the depinning transition. From the theory side, t
FRG for single-component manifolds, originally studied f
one loop in an expansion ine5duc2d, has now been ex
tended to a field theory shown to be renormalizable to t
loops. Renormalizable, we recall, means it has a well-defi
continuum limit, which is independent of all microscop
details, and thus ensures universality of large scale obs
ables. Presumably there exists a fully renormalizable the
to all orders, with full predictive power@9–11#. From the
side of numerics, a powerful algorithm allows us to obta
the configurations at~or just below! depinning with much
improved accuracy@12–14#. A reasonable agreement b
tween the two methods was found in a measurement of
roughness exponentz, especially the clear conclusion th
z.e/3 contrarily to a previous conjecture@7,8# (z5e/3)
based on the one-loop analysis.

The field theory of depinning in its present form is unco
ventional in that one must work with a nonanalytic actio
This peculiar feature is an important part of the physics
the problem and is necessary to avoid the so-called dim
sional reduction. It makes the perturbation theory supe
cially ‘‘ambiguous.’’ A nontrivial step taken in Refs.@9–11#
to define the theory atT50 as the limitv→0 of the moving
phase was to assume that the interface position is monot
1063-651X/2003/68~4!/046118~15!/$20.00 68 0461
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in time. This removes the ambiguity and, remarkably, lea
to a renormalizable theory to at least two loops@9–11#. This
is supported by the ‘‘noncrossing theorems’’ which apply
single-component depinning and, remarkably, is the sa
property allowing to show ergodicity and to construct
efficient algorithm to find the exact critical configuration
depinning@12,15#. The origin of recent progresses in bo
numerics and field theory are thus related. Clearly, o
would like to test this field theory by calculating more un
versal measurable quantities and study its properties.

In this paper, we further explore the field theory co
structed in Refs.@9–11#. We study displacement correlation
of more than two points. We find that these correlations
static. Although physically natural, if one wants quasista
depinning to make sense, this manifests itself through ra
nontrivial massive cancellations in the time dependence
multipoint diagrams. We elucidate these cancellations
obtain as a consequence for a large class of diagrams m
simpler diagrammatic rules than previously anticipated. B
sically, all time integrals become almost trivial, resulting in
theory with ‘‘quasistatic’’ diagrams. We then apply the
properties to the calculation of universal observables. O
natural universal quantity is the so-called width distributi
of the interface. Interestingly, to the two lowest leading o
ders ine542d, the distribution coincides with the one for
Gaussian theory with the full nontrivial propagatorG(q)
51/qd12z, z being the depinning exponent. This is also t
subject of a related publication@16#, where the distribution is
also measured numerically. Here we give a detailed pres
tation and also compute the higher connected cumulant
the displacement field, i.e., deviations from the Gauss
Some of these results are quoted in Ref.@16#.

In the second part, we study the theory at the upper c
cal dimension. The motivation is that no exact result is av
able to confirm thatduc54 ~the only exactly solved limit
corresponding to fully connected models@17–19#!. Thus the
question of what is the upper critical dimensionduc is still
debated, even though the field theory of depinning@6–11,20#
©2003 The American Physical Society18-1
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clearly predictsduc54. Also, in the other class of depinnin
transitions, the so-called anisotropic depinning class w
Kardar-Parisi-Zhang nonlinearities, there is not even a c
vincing prediction forduc @21–23#, and recent numerica
studies have reopened the debate@24#. Recently it has be-
come possible to study numerically depinning and static
high-dimensional spaces for reasonable system sizes
better precision, allowing for the hope to settle the issue
the upper critical dimension in the near future@12–14,25#. It
is thus important to give precise predictions for the behav
predicted by the FRG in order to compare with numerics

Finally, we also clarify the issue of finite-size scaling. In
previous work, used in several simulations, the valuev5
2e/3 was used for the finite-size scaling exponent@26,27#.
We find that the correct value is insteadv52e. This may
prove useful in numerical studies@28#.

The paper is organized as follows. In Sec. II, we defi
the model, briefly review the FRG method and field theo
and define the main observable of interest here, the w
distribution. In Sec. III, we compute the Laplace transfo
of the width distribution in perturbation theory and find th
to lowest order ine it coincides with a Gaussian approxim
tion. This approximation is introduced and further studie
Some results on Laplace inversion are given. In Sec. IV,
go beyond the Gaussian approximation and compute hig
connected cumulants. The detailed calculation of the fou
cumulant~4-point connected correlation function of the di
placement field! is given, and the cancellations that occur
the field theory are studied. In Sec. VI, we discuss the up
critical dimension, and in Sec. VII the finite-size scaling. T
effect of various boundary conditions is studied in the A
pendix.

II. MODEL AND OBSERVABLES

A. Model

We study the overdamped dynamics described by
equation of motion

h] tuxt5c¹x
2uxt1F~x,uxt!1 f , ~1!

with friction h. Long-range elasticity relevant for solid fric
tion at the upper critical dimensiond52 can be studied by
replacingcq2→cuqu. In presence of an applied forcef, the
center of mass velocity isv5L2d*x] tuxt . The pinning force
is F(u,x)52]uV(u,x) and thus the second cumulant of th
force is

F~x,u!F~x8,u8!5D~u2u8!d d~x2x8!, ~2!

such thatD(u)52R9(u) in the bare model, whereR(u) is
the correlator of the random potential. Random bond dis
der is modeled by a short-range functionR(u), random field
~RF! disorder of amplitudes by R(u);2suuu at largeu,
and charge-density wave~CDW! disorder by a periodic func
tion R(u).
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B. Review of FRG and field theory

Let us briefly review the field theoretic approach, mo
details can be found in Ref.@10#. The dynamical action
~Martin-Siggia-Rose! averaged over disorder is given bye2S
with

S @u,û#5E
xt

ûxt~] t2¹x
2!uxt2

1

2Extt8
ûxtD~uxt2uxt8!ûxt8 .

~3!

Here and below we denote*xª*ddx, in Fourier
*kª*ddk/(2p)d and* t5*dt. The FRG shows that the ful
functionD(u) becomes relevant belowd5duc54 and a flow
equation for its scale dependence has been derived for
and two loops, in an expansion ind542e. In Ref.@10#, this
was derived by adding a small massm as an infrared cutoff
and computing the flow of disorder, defined from the effe
tive action G@u,û# of the theory, asm decreases toward
zero. As in Ref.@10# we will denote byD0(u) the bare dis-
order correlator, i.e., the one appearing in the actionS in Eq.
~3!, and byD(u) the renormalized one, appearing inG@u,û#
which has a similar expression as in Eq.~3!. The rescaled
disorder is then defined by

D~u!5
1

e Ĩ 1

me22zD̃~umz!, ~4!

whereI 15m2e Ĩ 15*k(k
21m2)22 is the one-loop integral. It

was then shown in Refs.@9,10# that Eq.~3! leads to a func-
tional renormalization group equation

2m]mD̃~u!5~e22z!D̃~u!1zuD̃8~u!

2
1

2
@„D̃~u!2D̃~0!…2#9

1
1

2
@„D̃~u!2D̃~0!…D̃8~u!2#9

1
1

2
D̃8~01!2D̃9~u! ~5!

up toO(D4) terms. This equation implies that there are on
two main universality classes at depinning, a single RF fix
point for interfaces and a periodic one for CDW type diso
der @9,10#. Both z and the fixed point functionD̃* (u) were
determined to the orderO(e2) for these classes@9,10#.

The important feature of the field theory of depinning
that D(u) has a cusplike nonanalyticity atu50. As was
shown in Refs.@9,10#, calculations in the nonanalytic theor
@e.g., yielding Eq.~5!# are meaningfully performed using th
expansion

D~u!5D~0!1D~01!uuu1
1

2
D~01!u21•••. ~6!

Performing Wick averages yield the usual diagrams, exc
that their actual values involve averages of, e.g., sign fu
tions of the fields. Replacing everywhere sgn(ut2ut8)→sgn(t2t8) is justified for single-component quasistatic d
8-2
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pinning ~i.e., in the limit of vanishing velocityv501). This
yields diagrams with sometimes complicated internal ti
and momentum dependences. We find, however, that in s
cases massive cancellations occur despite the complica
due to the time dependence between various diagrams,
tributing to the same observable.

C. Universal distributions and observables

To motivate the present study, let us consider one spe
example of a universal observable, the width distribution
the configuration at depinning~the so-called critical configu
ration!. The width of a configuration is definedin a given
disorder realizationas

w2
ª

1

LdEx
~ux2ū!2, ~7!

where ū5(1/Ld)*xux is the center of mass andLd is the
volume of the system. The basic observation is that
sample to sample probability distributionP(w2) of w2 is
expected to be universal, with a single scale set by the

order averaged second cumulantw2̄, i.e.,

P~w2!5
1

w2̄
f S w2

w2̄D . ~8!

f (z) is a universal function. This holds for thermal averag
in a number of finite temperature problems of pure syste
@29–31#. Here we show that it also holds for depinning
T50 and compute the distribution, first within a simp
Gaussian approximation and then within thee expansion. In
the process we study higher point correlation functions in
field theory of depinning, define specific universal ratios
these~describing deviations from Gaussian behavior!, and
compute them.

Before turning to actual calculations, let us first summ
rize the general spirit of the method and discuss the ques
of the universality of such observables. The hallmark o
renormalizable theory is that if one expresses the correla
functions in an expansion in therenormalizeddisorderD,
then the resulting expressions are UV finite, equivalen
they have a well-defined continuum limit, independent
short scale details. On a technical level, this can be achie
by computing correlations in standard perturbation theory
a given order in powers ofD0, and then using the relatio
between renormalized disorderD and the bare oneD0 to the
same order, or equivalently through the definition of app
priate counterterms@32#. Here, we restrict ourselves to ca
culations at dominant order ine and thus using eitherD or
D0 makes no difference. Beyond the Larkin scale, howev
these are nonanalytic functions, which is crucial.

In the limit of large scales or large system sizes, the fix
point form reached by the rescaledD implies that the result-
ing observable, e.g., the width distribution, isuniversal. Uni-
versal means that these quantities do not depend on the
scale details. However, theydo dependon the details of the
large scale infrared~IR! cutoff, i.e., of the type of chosen
04611
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boundary conditions. Here we focus onperiodic boundary
conditions @33#, also of interest for numerical simulation
@16#, although we sometimes give results for other types,
instance for the massive IR cutoff described in the preced
paragraph.

Since the FRG method developed in Refs.@9–11# and
summarized above uses a mass as IR cutoff and defines
order vertices at zero momentum, one should be carefu
calculations with, e.g., periodic boundary conditions. Sin
we only compute observables either to dominant order ie
or within a one-loop approximation, it is easy to make t
necessary replacements, as will be indicated below. For
stance, the one-loop FRG equation remains identical to
first two lines of Eq. ~5!, the only changes being~1!

2m]mD̃ has to be replaced byL]LD̃; ~2! m→1/L in the
definition of the rescaled disorder;~3! the one-loop integral
I 15*k@1/(k21m2)2# entering into the definition of the res
caled disorder has to be replaced by its homolog for perio
boundary conditions used below@34#:

I 1ª(
k

1

~k2!2
[L2d (

nPZd,nÞ0

1

~2pn/L !4
. ~9!

III. WIDTH DISTRIBUTION: PERTURBATION THEORY
AND GAUSSIAN APPROXIMATION

Let us start by giving the simplest approximation for th
distribution. It can be derived in two ways:~i! perturbation
theory in the renormalized theory to lowest order ine ~ii ! a
simple Gaussian approximation. In the end, this will mo
vate going further, i.e., studying deviations from the Gau
ian approximation.

A. Perturbation theory

We now study perturbation theory. To compute the wid
distribution using the dynamical field theoretic meth
@9,10#, one can start from the Laplace transform

W~l!5e2lw2
~10!

with w25(x(ux2ū)2. Here and below we omit the globa
multiplicative factorL2d in the definition ofw2, since in the
end we will always normalize the distributionP(w2) by fix-
ing its first moment to unity@in Eq. ~10! it can be absorbed
by a rescaling ofl].

Expanding in powers of the correlator of the pinning for
D(u) ~to lowest order this is equivalent toD0, see above!,
one finds that to leading order lnW(l) is the sum of all
connected one-loop diagrams, as represented in Fig. 1.
loop with n disorder vertices andn insertions ofw2 is

1

2n (
q

S 22lD~0!

~q2!2 D n

. ~11!

Here and below the sums overq thus runs over a
d-dimensional hypercubic lattice with spacing 2p/L, and the
8-3
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0 mode is excluded, as appropriate for periodic bound
conditions. If one were now to resum Eq.~11! over n, one
would find

W~l!5)
q

@112lG~q!#21/2 ~12!

with G(q)5GLarkin(q)5D(0)/q4, a Larkin model type re-
sult if interpreted as naive perturbation theory@i.e., if D(0)
was interpreted as the bare original disorder rather than
renormalized one#. The correct procedure implies thatD(0)
is the running renormalized disorder,D(0)→D l(0)
5(e Ĩ 1)21e(2z2e) lD̃* (0), whereD̃* (0) is the~nonuniversal!
value of the fixed point@9,10#. Althoughl 5 ln(L) for the zero
momentum disorder vertex, one notes that a momentuq
flows in each vertex and one should take care of this
settingl→ ln(1/q). This yields finally Eq.~12! with

G~q!5C/qd12z, ~13!

where the value ofC is nonuniversal and fixed byw2̄. As
will become clear in the following section, the appropria
choice forG(q) is the two-point finite-size scaling functio
GL(q)5C/qd12zg(qL) with g(0)51. The difference be-
tween the two above-mentioned choices forl simply
amounts to the two different limits of small, or large,qL.
However, to lowest order ine542d, they are identical.~For
a calculation of the scaling function to next order ine see
Appendix J in Ref.@10#.!

B. Gaussian approximation and beyond

A more general approach consistent with the previous
culation is the following. We first note that the above res
~12! would be exact if the distribution of the displaceme
fields u were Gaussian. It can thus be called the Gaussia
approximation~GA!. To understand why it was obtaine
here, let us consider simply the second connected cumu

of the width distribution(w2)2
c
5(w2)22(w2)

2
. This cu-

mulant, however, is not connected with respect tou, and thus
there is an exact relation:

FIG. 1. Examples of contributions to Eq.~10! @terms w2̄c,

(w2)2̄c, and (w2)4̄c ~bottom!#, together with the vertices for disor
der ~top left!, w2 ~top center!, and response function~top right!.
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~w2!2
c

5E
xy

~2Gxy
2 1ux

2uy
2

c

!, ~14!

where hereGxy5uxuȳ is the exact disorder averaged tw
point function. The first term is just Wick’s theorem an
would be the full result if the measure ofu were Gaussian.
Analogous formulas exist for higher cumulants: the first te
on the right-hand side~rhs! of Eq. ~14! generalizes into

~w2!n
c

uGA52n21~n21!! E
x1 , . . .xn

Gx1x2
Gx2x3

•••Gxnx1

~15!

as a simple consequence of Wick’s theorem. This is ag
easily resummed into Eq.~12! which would thus be exact if
the measure ofu were exactly Gaussian. Note that all resu
of Refs.@29,30# for pure Gaussian theories can also easily
obtained by the present resummation method~temperature
replacing disorder!. Thus in the GA,G(q) appearing in Eq.
~12! is the exact two-point function. It can be tested in
simulation by inserting the measured two-point function
Eq. ~12!. In the large but finite system size limit, it takes th
scaling function formGL(q) discussed above.

When comparing to the numerical results for the wid
distribution, it turns out that the GA is a surprisingly goo
approximation even down tod51. This is discussed in de
tail in Ref. @16#. However, we do not expect the GA to b
exact. It is thus interesting to compute the deviationD

5*xyux
2uy

2̄c for the second cumulant ofw2 in Eq. ~14!. It is
computed below and is found to be of ordere4, while the GA
contribution@first term in Eq.~14!# is of ordere2 ~sinceG
;e). Similarly the GA contribution to Eq.~14! is O(en),
while the deviations are found to beO(e2n). This can be
summarized asu5Aeu01eu1, whereu0 is a Gaussian ran
dom variable ofO(1) andu1 a non-Gaussian one ofO(1).

Computing deviations from the GA is thus one motivati
to compute higher point correlations.

C. Laplace inversion

Before doing so, let us discuss how the distributi
P(w2) is obtained through an inverse Laplace transform

P~w2!5 R dl

2p i
W~l!elw2

. ~16!

Noting that ind51, Eq. ~12! can also be written as

W~l!5 )
q.0

@112lG~q!#21, ~17!

this is equivalent to

P~w2!5 (
p.0

e2[w2/2G(p)]
1

2G~p! )
q.0,qÞp

F12
G~q!

G~p!G
21

.

~18!
8-4
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This formula shows that for largew2, the distribution is
dominated by the first termp51, and in practice summing
the first few terms gives an excellent approximation.

It is instructive to apply Eq.~18! to a random walk, where
G(q)51/q2. Using (nPN)

)
n.0

S 12
x2

n2D 5
sin~px!

px
, ~19!

one finds in terms of the widthw2

P~w2!5w2̄
p2

3 (
n.0

n2~21!n11e2(p2/6)(w2/w2̄)n2
. ~20!

For d.1 the situation is more complicated. Writing

P~w2!5 R dl

2p i
ew2l )

q,qx.0
@112lG~q!#21, ~21!

we have, e.g., at least multiplicity 2d for each factor in Eq.
~12!, as long as no component vanishes, but this multiplic
may even be higher, as can be seen from the following s
tions of the diophantic equation~for two dimensions! 12

172552152, 62172592122, and many more. Let us de
fine the classC(q) as
he
pl
th

be

te
s

is
t

ex
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pPC~q! if p25q2. ~22!

Let us index these classes bya and introduce an order,

Ca,Ca8 if qPCa and q8PCa8 ⇒uqu,uq8u.
~23!

The number of elements of each class is defined as

uCauªnumber of elements inCa . ~24!

We further define

qaªany element out ofCa . ~25!

Note that since forpPCa and pÞ0 ~by definition, we ex-
cludep50) uCau is always even. Equation~21! can then be
rewritten as

P~w2!5 R dl

2p i
ew2l)

a
@112lG~qa!#2uCau/2. ~26!

There are poles atl52@2G(qa)#21. The sum over these
poles can after partial integration be written as
P~w2!5(
a

1

~ uCau/221!! S 1

2G~qa! D
uCau/2S ]

]l D uCau/221Few2l )
a8Þa

„112lG~qa!…2uCau/2GU
l52[2G(qa)] 21

. ~27!
ted
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IV. HIGHER POINT CORRELATIONS IN DEPINNING
FIELD THEORY

In this section, we analyze how one can compute hig
correlations in the depinning field theory and obtain sim
diagrammatic rules for doing so. These are illustrated on
four-point function. Specific calculations and results will
given in the following section.

A. Preliminaries

We want to compute atT50, using the dynamical action
S in Eq. ~3!, e.g., the four-point expectation value, connec
with respect to disorder~and u) as defined in the previou
sections:

E
xy

uxt
2 uyt

2 c
5E

xy
^uxt

2 uyt
2 &c . ~28!

Similar formulas hold for higher correlation functions. Th
is identical to a connected expectation value with respec
the actionS, denoted hereafter as^•••&c .

The first step is to show that correlations can all be
pressed as
r
e
e

d

to

-

^uxt
2 uyt

2 &c5E
xi ,t i,t

Rxt,x1t1
Rxt,x2t2

Ryt,x3t3
Ryt,x4t4

G ûûûû
(4)

3~x1t1 ,x2t2 ,x3t3 ,x4t4!. ~29!

Here R is the exact response function andG is the exact
effective action @sum of one-particle irreductible~1PI!
graphs# ~with the choicee2G for the probability andG (4) is
symmetric!. This is the standard relation between connec
correlation functions and the effective action@i.e., one-
particle irreducible vertex functions~IVF!#. The simplifica-
tion here is thata priori the exact two-point correlation func
tion and vertices such asGuuûû

(4) could also contribute, bu
their contribution vanishes forT50 at the depinning thresh
old. This is becausêuxtux,t1

& is time independent there, an
then statistical tilt symmetry implies that all IVF with at lea
one externalu leg carrying frequencyv vanish when this
frequency is set to zero~see Sec. II A in Ref.@10#!. The
above formula~29! generalizes straightforwardly to any con
nected 2n-point correlation function of the fieldu in terms of
G û•••û

(2n) .

Next one can computeG ûûûû
(4) in perturbation, using the

diagrammatic rules for the nonanalytic action arising fro
8-5
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expansion~6!. Let us denoteEû as the number ofû external
legs, nv as the number of~unsplit! verticesD0 , nI as the
number of internal lines~response functions!, and L as the
number of~momentum! loops. Then one has 2nv2nI5Eû
andL511nI2nv . Here one hasEû54 and thus the lowest
order contribution hasnv54, nI54, i.e., it is the one-loop
square~since two vertices,nv52, impliesnI50 and is dis-
connected, three vertices,nv53, impliesnI52 and is one-
particle reducible!. The two-loop corrections are diagram
with five vertices and so on. SimilarlyG û . . . û

(2n) to lowest order
is the one-loop 2n polygon diagram.

Since twoû fields must come out~arrows! of each vertex,
there are four possible diagrams corresponding to the o
loop square, shown in Fig. 2. Each line entering a ver
corresponds to one derivative of theD(u) function of the
vertex. Thus from Eq.~6! we see that diagram~a! is propor-
tional to D8(01)4, diagrams ~b! and ~c! to
D9(01)D8(01)2D(0), anddiagram~d! to D9(01)2D(0)2.
However, as we will show below using the so-called mou
ing property only diagram~a! is nonzero.

We found two ways to compute diagram~a! ~as well as
any other similar diagram!, first a systematic but complicate
way, and second a simple way which uses a very impor
property not yet fully elucidated from the field theory
depinning, the ‘‘quasistatic property’’ described below.
appreciate the extent of the cancellations involved in t
drastic simplification, we start by sketching the systema
method.

To perform an actual calculation, since eachD vertex in-
volves fields with two different time arguments, one mu
switch to the split diagrammatics, as described in Ref.@10#.
Diagram ~a! of Fig. 2 then becomes the sum of 16 sp
diagrams~two choices per vertex! represented in Fig. 3. Not
that the last one is zero since it involves an acausal lo
That leaves 15 nonzero and nontrivial diagrams.

These diagrams correspond to the following. One first
pandsS 4/4! using Eq.~6!, which gives schematically

D8~01!4

244!
û1û2s12u12û3û4s34u34û5û6s56u56û7û8s78u78.

~30!

In shorthand notationû15ûx1 ,t1
, û25ûx1 ,t2

, u125u12u2 ,

s125sgn(t12t2), omitting all space and time integrals. The
carrying the Wick contractions, yielding

FIG. 2. The four one-loop diagrams with unsplit vertices whi
contribute to the four-point irreducible vertex functionG ûûûû

(4) .
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D8~01!4

4!
2û1û3û5û7s12s34s56s78~R322R42!~R542R64!

3~R762R86!~R182R28!; ~31!

Ri j 5^ûiuj& is the free response function. The factor of
comes from the two possible time orientations of the loo
Expanding the product of response functions yields the
diagrams represented in Fig. 3, where space and time la
are ordered turning clockwise around the momentum lo
For illustration, let us indicate the full expression of the fir
diagram in Fig. 3, in momentum space:

G (a1)~p12,t1 ;p23,t3 ;p34,t5 ;p41,t7!

5D8~01!4E
t2t4t6t8

@sgn~ t12t2!sgn~ t32t4!

3sgn~ t52t6!sgn~ t72t8!

3Rp1 ,t32t2
Rp2 ,t52t4

Rp3 ,t72t6
Rp4 ,t12t8

#,

~32!

with pi j 5pi2pj the entering momenta andRp,t

5u(t)e2p2t the free response function. Because of the s
functions, the evaluation of these integrals and of the ot
14 nonvanishing diagrams is very tedious and was hand
usingMATHEMATICA . Adding all diagrams, massive cancell
tions occur. The final result is very simple and given belo

Let us now explain the simple method and the proper
of the theory which lead to this.

FIG. 3. The 16 one-loop diagrams with split vertices whi
correspond to diagram~a! in Fig. 2. The last one, which contains a
acausal loop and thus vanishes, is added here for future co
nience.
8-6
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B. Theorems and other properties

The simple way to compute the four-point correlatio
~and higher ones! at depinning is based on the very importa
following conjectured property.

Quasistatic property 1. All correlation functions
^ux1t1

•••ux2nt2n
& computed using the diagrammatic rules

the quasistatic field theory of depinning at zero tempera
and exactly at threshold areindependent of all time argu
ments.

Using relations such as Eq.~29! for arbitrary times shows
that an equivalent way to state this property is the followin

Quasistatic property 2.All G û . . . û
(2n) (x1t1 , . . . ,x2nt2n) are

independentof t1 , . . . ,t2n .
This property, which appears as a physical requirem

for the correct field theory of depinning, implies nontrivi
properties of the diagrammatics. Although we will not a
tempt to prove it here in full generality, we have checked
on many examples, and believe that it works. We encour
the reader to contribute a valid proof. We will, however, st
and prove some easier and useful properties below.

Once properties 1 and 2 are accepted, evaluation of
diagrams drastically simplifies, thanks to the following tric
Since the result does not depend on external times, one
take these times mutually infinitely separated, with so
fixed ~and arbitrary! ordering. Then one can integrate eas
over all internal times since the order at each vertex is t
specified and each sgn function has a fixed value. One re
that in the splitted diagrammatics all nonvanishingT50 dia-
grams aretrees~see Sec. II A in Ref.@10#!. This can be seen
on the fifteen nonvanishing diagrams of Fig. 3. Thus in
grating independently along each tree starting from
leaves yields one correlation function per link, sin
* t8Rq,t2t851/q2. Performing this calculation on all fiftee
diagrams of Fig. 3 shows that they cancel pairwise since t
differ only by a global sign, with the exception of the acau
diagram which is zero. Thus the final result is the same a
one had kept only (21) times the acausal graph.

Before giving the final result below, let us now state t
easier properties.

Theorem 1 (mounting trick).A diagram which contributes
to anu-independent vertex function is 0 if it contains a ve
tex, into which no response function enters.

Examples are diagrams~b!, ~c!, and ~d! in Fig. 2. This
theorem thus ensures that only diagram~a! is nonvanishing.

Proof. The following figure demonstrates the principl
Note that it may be part of a larger diagram. Especially, th
may be more response functions entering into the upper
order. The statement is that

~33!
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Since no response function enters into the lower disor
D(u2u8), due to the assumptions this givesD(0), with no
dependence on time. Thus one can freely integrate over
response function starting at timet. This integral for both
diagrams is*dtR(k,t)51/k2. The difference in sign come
from deriving the two different ends of the upper disord
vertex. Thus both contributions exactly cancel.

Thus G ûûûû
(4) (x1t1 ,x2t2 ,x3t3 ,x4t4) is given only by dia-

gram~a! in Fig. 2. We have not found a complete proof th
it is independent of external times, but we can prove
weaker.

Lemma 1.We have

G ûûûû
(4)

~x1t1 ,x2t2 ,x3t3 ,x4t4! ~34!

@see diagram~a! in Fig. 2# is independent of the most
advanced time.

Proof. First suppose that a response function enters at
most-advanced timet8. Then there is the following cancel
lation:

.

~35!

The mechanism is the same as in the proof of Theorem
since by assumptiont8 is the most advanced time, the arg
ment of the right-most disorder can never change the s
and can be integrated over, even though it is odd, i
;D8(01). Thus the remaining diagrams have the structu

~36!

This diagram is independent oft8, as long ast8 is the largest
~external! time.

Note that for a loop made out of two disorders, there
only one diagram remaining, namely,
8-7
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~37!

It is manifestly time independent.
Lemma 2.We have

G ûûûû
(4)

~x1t1 ,x2t2 ,x3t3 ,x4t4! ~38!

@see diagram~a! in Fig. 2# is independent of the difference
in time, if they are very large.

Proof. By inspection, one finds that by taking the extern
times, i.e., one time at each disorder,~infinitely! far apart, the
remaining integrals become unambiguous. Thus integra
over the response functions does not leave any time de
dence.

As mentioned above, calculation of diagram~a! in Fig. 2
becomes then possible and one finds the following prope

Property (missing acausal loop).Diagram~a! in Fig. 2 is
given by (21) times the acausal loop, if there one replac
each response function by a correlation function.

Intuitively this means that if the acausal loop would gi
a contribution, then all diagrams would cancel. This seem
be a general mounting theorem.

Check.One can calculate diagram~a! in Fig. 4~a! explic-
itly using none of the above theorems or conjectures. T
result is a formidable expression, which has to be integra
over momenta. By evaluating it for given values of the m
menta~not even necessarily conserving momentum!, one can
compare with the prediction of Property 5. We found bo
expressions to be equal for any randomly chosen value
the momenta. The properties described here suggest the
lowing.

Property (any loop).All graphs can be computed to an
number of loops, using generalizations of the above rule

This is not attempted here but preliminary investigati
suggests that the same mechanism holds for two loops
some simple end result related to the signs of possible ‘‘
mion loops.’’

FIG. 4. The two contributions tôu4&c at leading order.
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V. FINAL RESULT FOR THE FOURTH CUMULANT AND
UNIVERSAL RATIO

In this section, we compute the fourth cumulant

D5E
xy

^uxt
2 uyt

2 &c ~39!

as well as the ratio~kurtosis!

R5
D

2E
xy

Gxy
2

, ~40!

which, according to the discussion in Secs. II and III,
expected to be universal and characterizes the deviat
from the Gaussian approximation~for which R50).

Below, we computeR at depinning both for short-rang
~respectively, long-range! elasticity to lowest nontrivial order
in epsilon542d ~respectively, e522d), i.e., within a
1-loop calculation. However, since it turns out that the m
mentum integrals involved in the calculation depend ve
strongly on the dimension, we found it useful, and som
times more accurate, to carry a one-loop approximation
rectly in fixed dimensiond. Also, since there is one exac
result for a massive propagator, we also give the result in
case.

We denote

g~q!5
1

q2
~41!

with the obvious change in the case of long-range elasti
g(q)51/uqu, and~see below! the massive propagator.

The final result in the continuum is given by the sum
the two diagrams in Fig. 4:

D5E
xy

^uxt
2 uyt

2 &c

522D8~01!4LdE ddq

~2p!d

ddk

~2p!d

ddp

~2p!d

3@2g~q!2g~k!2g~p!2g~p1q!g~p1k!

1g~q!2g~k!2g~p!g~p1q!g~p1k!g~p1k1q!#,

~42!

E
xy

Gxy
2 5LdE ddq

~2p!d
G~q!25LdD~0!2E ddq

~2p!d
g~q!4.

~43!

The combinatorics can be done as follows. There is a fa
1/(4!24). There are 4! ways to associate each one of
four externalu to an unsplitted vertex. Say 1,2 are no
linked to ux

2 and 3,4 touy
2 . At each vertex, aû field comes

out. There are 24 ways to assign them to each splitted verte
Then there is a unique set of four splitted points, one at e
vertex, entering the acausal graph~which, in effect, is the
only one arising with the minus sign!. But there are still three
ways to join these four points in a loop: Two give the fir
integral, one the second, and finally for each case the or
tation can be chosen in two ways.
8-8
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Let us go to the discrete model with periodic bounda
condition ~BC! @33#. We recall that

LdE ddq

~2p!d
f ~q![ (

nPZd
f S 2pn

L D , ~44!

where here and in the following the term withn50 is always
excluded. In the limit of largeL/a, one finds

D5a2d(
xy

^uxt
2 uyt

2 &c

522D8~01!4L22dS L

2p D 16

3 (
n,m,l PZd

F2
1

~n2!2~m2!2~ l 2!2~ l 1n!2~ l 1m!2

1
1

~n2!2~m2!2~ l 2!~ l 1n!2~ l 1m!2~ l 1m1n!2G ,

~45!

a2d(
xy

Gxy
2 5D~0!2S L

2p D 8

(
nPZd

1

n8
. ~46!

One can see that the ratioR will be universal since the one
loop FRG fixed point equation taken atu50 yields

~e22z!D~0!5~eI !D8~01!2, ~47!

~eI !5L]LI 5
2

~4p!d/2GS 32
d

2D 5
1

8p2
. ~48!

The last identity is valid ford54. In fact, since the one-loop
FRG equation is universal, it holds as well ford54 as for
d,4. Ford,4, we use

I 5E ddp

~2p!d

1

p4
[L2d (

nPZd

1

~2pn/L !4
5

Le

~2p!4 (
nPZd

1

n4
,

~49!

L]LI 5eI 5e
Le

~2p!4 (
nPZd

1

n4
. ~50!

This is all we need to compute the universal ratio.

A. Calculation to lowest order in eÄ4Àd

The ratioR5D/(2(xyGxy
2 ) is
04611
R52e2~122z1!2~8p2!2
1

~2p!8

1

(
nPZd

1

n8

3 (
n,m,l PZd

F2
1

~n2!2~m2!2~ l 2!2~ l 1n!2~ l 1m!2

1
1

~n2!2~m2!2~ l 2!~ l 1n!2~ l 1m!2~ l 1m1n!2G .

~51!

One finds, using

(
nPZ

e2tn2
5Q~3,0,e2t! ~52!

that in d54

(
nPZd

1

n8
5

1

6E0

`

t3@Q~3,0,e2t!d21#510.2454. ~53!

Noting f (p)5(qPZd@1/(q2)2(p1q)2#, one has

(
q,k,pPZd

1

~q2!2~k2!2~p2!2~p1k!2~p1q!2

5 (
pPZd

1

~p2!2
f ~p!2'1850, ~54!

(
n,m,l PZd

1

~n2!2~m2!2~ l 2!~ l 1n!2~ l 1m!2~ l 1m1n!2
'980.

~55!

The final result is

R521.17
1

9
e2'20.13e2. ~56!

This result shows thatR is quite small neard54, but in-
creases quite fast as the dimension is lowered. However
sums over the momenta depend very strongly ond ~see be-
low! and one should expect significant higher-order corr
tions in e. Thus result~56! is likely to drastically overesti-
mate the~absolute value of the! result in lower dimensions
which is why we now turn to an estimate in fixed dimensio

B. One-loop estimate in general dimension

One can perform an estimate in general dimension, ba
on an arbitrary truncation on the~i! one-loop graphs,~ii !
neglect of the finite-size scaling function.

In general dimension, one has the dimensionless ratio
8-9
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R52~e22z!2
1

S e (
nPZd

1

n4D 2

(
nPZd

1

n8

3 (
n,m,l PZd

F 2

~n2!2~m2!2~ l 2!2~ l 1n!2~ l 1m!2

1
1

~n2!2~m2!2~ l 2!~ l 1n!2~ l 1m!2~ l 1m1n!2G .

~57!

Let us give a table of values:

(
nPZd

1

n4
5

p4

45
52.164 65 ~d51!

56.026 812 0 ~d52!

516.5 ~d53!, ~58!

(
nPZd

1

n8
5

p8

4725
52.008 15 ~d51!

54.281 430 660 805 78 ~d52!

56.945 807 927 2 ~d53!, ~59!

(
n,m,l PZd

1

~n2!2~m2!2~ l 2!2~ l 1n!2~ l 1m!2

50.373 427 511 17 ~d51!

526.567 ~d52!

5240 ~d53!, ~60!

(
n,m,l PZd

1

~n2!2~m2!2~ l 2!~ l 1n!2~ l 1m!2~ l 1m1n!2

50.069 672 062 794 960 ~d51!

514.138 ~d52!

5143 ~d53!. ~61!

In d51, one finds

R520.086 775 969 128 7S 122
z

e D 2

~62!

'20.009 641 77 ~z5e/3! ~63!

'20.003 47 ~z51.2!. ~64!

In d52, one finds
04611
R520.4326S 122
z

e D 2

'20.0481 ~z5e/3!. ~65!

In d53, one finds

R520.3297S 122
z

e D 2

'20.0366 ~z5e/3!, ~66!

where we have inserted various choices forz including the
one-loop result,z5e/3. One finds that already ind53, the
one-loop approximation is significantly lower than the e
trapolation from Eq.~56! as discussed above.

C. Long-range elasticity in general dimension

For long-range elasticity, the upper critical dimension
duc52. The general expression forR is

R52~e22z!2
1

S e (
nPZd

1

n2D 2

(
nPZd

1

n4

3 (
n,m,l PZd

F 2

~n2!~m2!~ l 2!u l 1nuu l 1mu

1
1

~n2!~m2!u l uu l 1nuu l 1muu l 1m1nu
G . ~67!

It is interesting to computeR in d51. Using

(
nPZ

1

n2
5

p2

3
53.289 87, ~68!

(
nPZ

1

n4
5

p4

45
52.164 65, ~69!

(
n,m,l PZ

1

~n2!~m2!~ l 2!u l 1nuu l 1mu
53.847, ~70!

(
n,m,l PZ

1

~n2!~m2!u l uu l 1nuu l 1muu l 1m1nu
51.934,

~71!

one finds

R520.4109S 122
z

e D 2

'20.045 66 ~z5e/3!. ~72!
8-10
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D. Long-range epsilon expansion

Similarly, one can perform an expansion ine522d. In
d52, one has

eI 51/~2p!, ~73!

(
nPZ2

1

n4
5

p4

45
56.026 812 0, ~74!

(
n,m,l PZ2

1

~n2!~m2!~ l 2!u l 1nuu l 1mu
5550620, ~75!

(
n,m,l PZ2

1

~n2!~m2!u l uu l 1nuu l 1muu l 1m1nu
5370610.

~76!

This yields

R52e2~122z1!2~2p!2
1

~2p!4

1

(
nPZd

1

n4

3 (
n,m,l PZd

F2
1

~n2!~m2!~ l 2!u l 1nuu l 1mu

1
1

~n2!~m2!u l uu l 1nuu l 1muu l 1m1nu
G . ~77!

The result is

R526.17
1

9
e2'20.686e2 ~78!

again, a probable overestimation of the result if naively
trapolated tod51.

E. Harmonic well, short-range elasticity

It is interesting to compare with the calculation in a ma
sive scheme, i.e., an interface in a harmonic well. Sett
g(q)ª1/(11q2), we have ford51:

E
q
g~q!25

p

2
51.5708, ~79!

E
q
g~q!45

5p

16
51.625 96, ~80!

E
q
E

k
E

p
g~q!2g~k!2g~p!2g~p1q!g~p1k!

5
1631p3

31 104

51.625 88, ~81!
04611
-

-
g

E
q
E

k
E

p
g~q!2g~k!2g~p!g~p1q!g~p1k!g~p1k1q!

5
245p3

5184

51.465 38. ~82!

This gives the ratio

R52
2366

1215
~122z/e!252

2366

10 935
520.216 369 455.

~83!

It is interesting to compare the present result to one c
~to our knowledge, the only one apart from mean field mo
els! where thefull distribution of u is known in a nontrivial
disordered problem@35#. This is the static random field
model ind50 in a harmonic well~i.e., the massive case!, the
so-called toy model. The exact result there is

Rtoy520.080 865 . . . . ~84!

The present one-loop approximation for the problem of
pinning, continued tod50, would give the larger resultR
521/3. It is unclear at present whether the difference
tween the two results indicates that the one-loop approxi
tion is unsatisfactory so far fromd54, or if statics and de-
pinning have radically different values ofR.

VI. BEHAVIOR AT THE CRITICAL DIMENSION

In this section, we reexamine isotropic depinning, a
statics, exactly ind54. We solve the RG equations ind
54 and obtain the behavior of the correlation function. Co
trarily to periodic systems at the upper critical dimensi
@36#, nonperiodic objects such as interfaces submitted to
ther random bond or random field type disorder exhibi
roughness, which is a power of a logarithm. Note that t
conclusion has independently been obtained by Fedore
and Stepanow@37#.

The FRG flow equation (b function! for the ~renormal-
ized! force correlator has a good limit ford54. If one de-
fines

D l~u!58p2l 2z121D̃ l~ul2z1! ~85!

with l 5 ln(L/m) (L some UV cutoff!, then the function
D̃ l(u) satisfies

] lD̃~u!5~122z1!D̃~u!1z1uD̃8~u!2
1

2
@„D̃~u!2D̃~0!…2#9

1 l 21b2~D̃ !, ~86!

where, for depinning,

b2~D!5@„D~u!2D~0!…D8~u!2#91D8~01!2D9~u!
~87!
8-11



r-

-

-
th
t

a
o

t

th

by
ge-

t
s

ve

his

r

oint

that

ld

and

P. Le DOUSSAL AND K. J. WIESE PHYSICAL REVIEW E68, 046118 ~2003!
andz15z/e51/3 is the one-loop value, see e.g., Ref.@10#. It
is then easy to see that the functionD̃ l(u) converges towards
the one-loop fixed point with the following asymptotic co
rections:

D̃ l~u!5D̃* ~u!1(
n

l 2vnbn~u!1
1

l
b18@D̃* #21b2~D̃* !,

~88!

where (b18)
21 is the inverse of the linearized one-loopb

function andvn are the one-loop eigenvalues.
Using Eq.~85! with z151/3 yields the result for the cor

relation function atq50:

^uqu2q&uq!m5m24D~0!

5cm24ln~L/m!21/3@11O„1/ln~L/m!…#

~89!

as m→0, with c58p2D̃* (0), both for statics and depin
ning; the difference lies in the subdominant piece. Within
present approach using the renormalization scheme aq
50, the two-point correlation function at nonzeroq can be
computed from the renormalized~uniform! effective action
by resumming an infinite set of diagrams. Using the stand
finite-size scaling ansatz allows to obtain the other limit
the scaling function, whereL@q@m. To lowest order~one
loop! in the renormalized disorder, one has@11#

~q21m2!2^uqu2q&5@D~0!2D8~01!2
„I ~q!2I ~0!…1•••#,

I ~q!5E
p

1

~p21m2!~~p1q!21m2!
. ~90!

This gives

^uqu2q&5c~q21m2!22lnS L

mD 21/3S 12
1

3

lnS m

q D
lnS L

mD 1•••D .

~91!

Assuming scaling, i.e., the function (12 1
3 x1•••)→(1

1x)21/3, one finds

^uqu2q&;q24F lnS m

q D G21/3

~92!

and thus

~ux2u0!2;~ ln x!2/3. ~93!

VII. STABILITY OF THE ONE-LOOP FIXED POINT

Here we analyze the stability of a functional fixed poin
The following two cases have to be distinguished.

~a! There is the freedom to rescale the fieldu while, at the
same time, rescaling the disorder correlator. This includes
random bond and random field interface models.
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~b! There is no such freedom, since the period is fixed
the microscopic disorder. This is the case for a char
density wave~random periodic problem!, also for the ran-
dom field bulk problem, in its treatment via a nonlinears
model.

We first analyze the simpler case~b!.

A. Stability of a functional fixed point; periodic case

Let us consider the flow equation given by

] lR~u!5b@R#~u!5eR~u!1 f @R,R#~u!, ~94!

where f is some bilinear form ofR, which contains at leas
one derivative for eachR. A similar equation of course exist
for D(u)52R9(u) and the correspondingb@D#(u).

SupposeR* (u) is the nontrivial fixed point of ordere,
i.e., b@R* #50. Two eigenfunctions and eigenvalues abo
R* (u) can be identified:~i! the constant modedR(u)51
with eigenvaluee ~as long as it is permissible physically!;
~ii ! the first subleading eigenfunctiondR(u)5R* (u) with
eigenvalue2e.

Proof. For case~i!, we have fork!1,

] l„R* ~u!1k…5b@R* 1k#~u!5ek, ~95!

sincef does not couple to the constant by assumption. T
proves~i!.

For case~ii !, we have (k!1):

] l„R* ~u!1kR* ~u!…5b@R* ~11k!#~u!

5eR* ~u!~11k!

1~11k!2f @R* ,R* #~u!. ~96!

Subtractingb@R* #(u)50 on the rhs and expanding fo
small k yields

] l„R* ~u!1kR* ~u!…5ekR* ~u!12k f @R* ,R* #~u!

52ekR* ~u!, ~97!

where in the last equation we have again used the fixed-p
conditionb@R* #(u)50, i.e.,eR* (u)1 f @R* ,R* #(u)50, to
eliminate f @R* ,R* #(u). This proves~ii !.

Using the same line of arguments, it is easy to see
when starting fromR(u);R* (u) with some arbitrary ampli-
tude, the flow is always remaining on the critical manifo
spanned byR* (u).

Of course, there are in general more eigenfunctions
eigenvalues. See Ref.@10# for an explicit example.

B. Perturbations of the fixed point in the presence of the
freedom to rescale

We state the following theorem.
Theorem.The differential equation of the form

2m]mD~u!5b@D#,

b@D#5~e22z!D~u!1zuD8~u!1 f @D,D#, ~98!
8-12
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where the symmetric functionalf @D,D#, transforms under
D(u)→k22D(ku) in the same way asD, has the two eigen-
functions and eigenvalues of perturbations around the fi
point b@D* #50,

z0~u!5uD8~u!22D~u!, ~99!

l050, ~100!

z1~u!5zuD8~u!1~e22z!D~u!, ~101!

l152e. ~102!

~We noteD instead ofD* for the fixed point for simplicity of
notations.! Note that the assumptions are satisfied by
1-loop flow equation~RF case!.

Proof. Let b@D#(u)50. Due to the assumptions, for a
k,

b@k22D#~ku!50. ~103!

Deriving with respect tok gives with Eq.~98! at k51,

~e22z!@uD8~u!22D~u!#1zu@uD8~u!22D~u!#8

12 f @D~u!,uD8~u!22D~u!#50. ~104!

This is nothing but the eigenvalue equation for the pertur
tion z0(u) about the fixed pointb@D#50 and proves the
existence of the solutionz0(u) with eigenvaluel050. Note
that thisredundantoperator with eigenvalue 0 persists to a
orders in perturbation theory.

Let us turn to the next solution. Multiplying Eq.~104!
with z and adding 2e timesb@D#50 gives

~e22z!@zuD8~u!1~2e22z!D~u!#1zu@zuD8~u!

1~2e22z!D~u!#8

12 f @D~u!,zuD8~u!1~e22z!D~u!#50, ~105!

where we used the bilinearity ofD(u). Rearranging yields

~e22z!@zuD8~u!1~e22z!D~u!#1zu@zuD8~u!

1~e22z!D~u!#812 f @D~u!,zuD8~u!

1~e22z!D~u!#52e@zuD8~u!1~e22z!D~u!#.

~106!

This equation is nothing but the eigenvalue equation for
perturbation z1(u)5zuD8(u)1(e22z)D(u) about the
fixed pointb@D#50 with eigenvaluel152e. Q.E.D.

Remark.Consider the case of short-range disorder, i
D(u) falls off rapidly and is monotonic. Usually, the leadin
fixed-point solution has no knot@no u such thatD(u)50].
Thenz0(u) has no knot andz1(u) has one knot. Eigenvalue
should be ordered~like in quantum mechanics! due to their
number of knots. Thus we should have found the two lead
solutions for short-range disorder. This is confirmed by
numerical analysis given in the following section.

Corollary: Random bond case.The differential equation
of the form
04611
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2m]mR~u!5b@R#~u!,

b@R#~u!5~e24z!R~u!1zuR8~u!1 f @R,R#~u!,
~107!

where the symmetric functionalf @R,R# transforms under
R(u)→k24R(ku) in the same way asR, has the two eigen-
functions and eigenvalues of perturbations around the fi
point b@R* #50,

z0~u!5uR8~u!24R~u!, ~108!

l050. ~109!

z1~u!5zuR8~u!1~e24z!R~u!, ~110!

l152e. ~111!

Note that the assumptions are satisfied by the 1-loop fl
equation~random bond case!.

Proof. This can either be proven along the same lines
for Eq. ~98! or by derivingz0(u) and z1(u) twice with re-
spect tou and then using the theorem for the random fie
case~98!.

C. Numerical analysis of the RF fixed point

We start from the one-loop flow equation

2m]mD~u!5~e22z!D~u!1zuD8~u!

2
1

2
@„D~u!2D~0!…2#9. ~112!

It has the following solution@5,10#:

D~u!5
e

3
y1~u!,

y1~u!2 ln y1~u!511
1

2
u2. ~113!

Perturbations around this solution satisfy the differen
equation

2m]m@D~u!1z~u!#5lez~u!, ~114!

~123l!z~u!1uz8~u!2@„y1~u!2y1~0!…„z~u!2z~0!…#9

50. ~115!

In order to have a criterion for the numerical integration, o
has to determine the behavior at infinity. Using, foru→`,

y1~u!'e212u2/2 ~116!

and assuming exponentially fast decay forz(u), one finds
that the asymptotic behavior is

z~u!'z~0!
~u221!e212u2/2

213l
. ~117!
8-13
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Quite surprisingly, the asymptotic behavior is fixed, inclu
ing its amplitude@41#. In any case, slower power law deca
is ruled out on a physical ground since we are conside
short-range disorder~Fig. 5!.

The solutions forl50 andl52e are given in Eq.~99!
ff. The solutionz1(u) is dominant, and gives the correctio
to scaling exponentv52e. Note that this exponent is mi
nus the engineering dimension of the coupling, as is the c
in standard field theory@38# and also for the random periodi
class@10#. Reference@26# cites the valuev52e/3. We find
the corresponding numerical solution to decay asu22, in-
compatible with Eq.~117! and physically unacceptable@38#.

The question arises whether there are more solutions
fast decay. Intuitively, one would expect this: Makingl
more negative, the solution overshoots and one might th
of fine tuningl such that it approaches the axis for largeu
from above. However, this is incompatible with th
asymptotic behavior in Eq.~117!, which predicts that all so-
lutions for l,22/3 converge from below. In fact, we hav
not been able to find any further solution, and we conject
that there is none. It would be interesting to prove this r
orously. This behavior is in contrast to the random perio
case, solved in Ref.@10#, which has infinite many subleadin
contributions.

VIII. CONCLUSION

In this paper, we have explored further properties of
field theory of depinning. We have defined and compu
universal observables, such as the distribution of the in
face width and the ratioR of the connected four-point cumu
lant to the square of the two-point one~kurtosis!. This ratio
measures the deviations from a Gaussian approxima
which we have also used to obtain the universal distributi
Higher-order connected cumulants can be computed i
similar way for one loop using polygon diagrams, and o
should be able to reconstruct the full distribution from the
Other properties of the theory such as the behavior at
upper critical dimension and the finite-size scaling behav
have been clarified. All calculations in the present paper
of interest for comparison with numerical simulations, exi
ing ones@16# or in the near future.

In the process of computing the four-point function, w
discovered massive cancellations between diagrams.
traced this back to the physically expected property that c

FIG. 5. ~Color online! The solutionz1(u) @in black, with z(0)
51] and asymptotic behavior as given in Eq.~117! ~blue/bright!.
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relations exactly at depinning should be time independen
diagrammatic proof of this property is still incomplete, b
we have provided some convincing elements in that dir
tion. As a result the correlation functions can be computed
a much simpler way. Thus there seems to be an underly
theory, with ‘‘quasistatic’’ diagrams~i.e., not containing time
explicitly!, with some additional rules. We have understo
these rules to lowest~one-loop! order and it would be of high
interest to understand, and prove, them to all orders. I
even possible that there exists a simpler formulation of
theory at depinning in terms of, e.g., effective fermions. T
fermionic character is suggested by the cancellation of
diagrams except for the ‘‘acausal loops’’ with a minus sig
We thus encourage further examination of this fascinat
question and full elucidation of the field theory which d
scribes depinning.

APPENDIX: DIFFERENT BOUNDARY CONDITIONS

a. Periodic boundary conditions

A periodic functionu with periodL satisfies

u~x1Lêi !5u~x!, ~A1!

whereêi are orthonormal. It can be written as

u~x!5( ũke
ikx, ~A2!

where summation runs over allk, such thatki5ni2p/L, ni
PZ.

b. Open boundary conditions

To simplify the notation, we give all formulas for on
dimension; generalizations are straightforward.

Suppose the functionf (x) is defined on@0,L#. Then a
function g(x) can be defined by the following prescription

g~x!5H f ~x! for 0<x<L

f ~2L2x! for L,x<2L;
~A3!

g(x) can be prolonged to a periodic function with period 2L,
i.e., g(x12L)5g(x), and satisfies by construction in add
tion

g~2L2x!5g~x!. ~A4!

In the basis needed to construct functions with period 2L, we
have to restrict ourselves to

g~x!5( g̃n cosS 2pnx

2L D5( g̃n cosS pnx

L D , ~A5!

since the sine functions do not satisfy Eq.~A4!. The such
constructed set of functionsf (x), xP@0,L# has Neumann-
boundary conditions atx50 andx5L. From Eq.~A5!, we
infer that the number of modes is reduced by a factor o
~compared to the case of closed boundary conditions!, but
the construction does not change any observable constru
8-14
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from w2 or any energy, all based on the symmetry relat
~A4!. Importantly, the modes have all mean 0, which is n
the case for other basis, e.g., when using antiperiodic fu
tions. Also note that this ansatz reproduces the formula
Ref. @39#. As an interesting consequence, we observe that
following systems lead to the same distribution:~a! an elastic
object withN degrees of freedom, and closed boundary c
ditions; ~b! an elastic object with 2N degrees of freedom
and open boundary conditions.

The simplest example is a one-dimensional random w
,

,

.

rin

.

s
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with closed boundary conditions, and a two-dimensional r
dom walk with open boundary conditions, which can
checked numerically@40#.
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