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Functional renormalization group for anisotropic depinning and relation to branching processes
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Using the functional renormalization group, we study the depinning of elastic objects in presence of anisot-
ropy. We explicitly demonstrate how the Kardar-Parisi-Zhang~KPZ! term is always generated, even in the limit
of vanishing velocity, except where excluded by symmetry. This mechanism has two steps. First a nonanalytic
disorder-distribution is generated under renormalization beyond the Larkin length. This nonanalyticity then
generates the KPZ term. We compute theb function to one loop taking properly into account the nonanalyt-
icity. This gives rise to additional terms, missed in earlier studies. A crucial question is whether the nonrenor-
malization of the KPZ coupling found at 1-loop order extends beyond the leading one. Using a Cole-Hopf-
transformed theory we argue that it is indeed uncorrected to all orders. The resulting flow equations describe
a variety of physical situations: We study manifolds in periodic disorder, relevant for charge density waves, as
well as in nonperiodic disorder. Further the elasticity of the manifold can either be short range~SR! or long
range~LR!. A careful analysis of the flow yields several nontrivial fixed points. All these fixed points are
transient since they possess one unstable direction towards a runaway flow, which leaves open the question of
the upper critical dimension. The runaway flow is dominated by a Landau-ghost mode. For LR elasticity,
relevant for contact line depinning, we show that there are two phases depending on the strength of the KPZ
coupling. For SR elasticity, using the Cole-Hopf transformed theory we identify a nontrivial 3-dimensional
subspace which isinvariant to all ordersand contains all above fixed points as well as the Landau mode. It
belongs to a class of theories which describe branching and reaction-diffusion processes, of which some have
been mapped onto directed percolation.

DOI: 10.1103/PhysRevE.67.016121 PACS number~s!: 64.60.2i
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I. INTRODUCTION

The physics of systems driven through a random envir
ment is by construction irreversible. The fluctuation dissip
tion relation does not hold and one expects the coa
grained description to exhibit signatures of this irreversib
ity. In driven manifolds it has indeed been shown that no
linear Kardar-Parisi-Zhang~KPZ! terms are generated in th
equation of motion, except when forbidden by symme
@1,2#. A question which was debated for long time is wheth
at zero temperature these terms vanish as the velociv
→01. This is the limit which is relevant to describe depi
ning (f→ f c

1). It was found some time ago that there are tw
main universality classes for interface depinning@3–5#. The
conclusion was reached mainly on the basis of numer
simulations, which measure the interface velocityv(u) as a
function of an average imposed slopeu, as well as various
arguments related to symmetry. In the first universality cla
the isotropic depinning class~ID!, the coefficientl of the
KPZ term vanishes asv→01 and the KPZ term is thus no
needed in the field theoretic description. In the second cl
the anisotropic depinning class~AD!, v(u) still depends onu
as f→ f c

1 and the KPZ term is present even atv→01. For
AD, numerical simulations based on cellular automa
models which are believed to be in the same universa
class@6,7#, indicate a roughness exponentz'0.63 in d51,
z'0.48 ind52, andz'0.38 ind53 @10#. Recent simula-
tions on a continous model@32# give more precise results
z50.63560.005 (d51),z50.4560.01 (d52), and z
50.2560.02 (d53). On a phenomenological level it ha
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been argued@6–8# that configurations at depinning can b
mapped onto directed percolation ind5111 dimensions,
which yields indeed a roughness exponentzDP5n' /n i

50.63060.001, a dynamical exponentz51, a velocity ex-
ponent bDP5n i2n''0.636 and a depinning correlatio
length exponentnDP5n i51.73360.001. Some higher di-
mensional extensions of these arguments in terms of blo
ing surfaces have been proposed@9–12#, but there is, to our
knowledge, no systematic field theoretical connection
tween these problems.

Recently we have reexamined the functional renormali
tion group ~FRG! approach, introduced previously@13–17#
to describe isotropic depinning to one loop within ae54
2d expansion. We constructed@18,19# a consistent renor-
malizable field theoretical description up to two loops, taki
into account the main important physical feature—a
difficulty—of the problem, namely that the second cumula
D(u) of the random pinning force becomes nonanalytic b
yond the Larkin scale. The 2-loop result for the exponenz
shows deviations from the conjecture@17# z5(42d)/3. The
reason is the appearance of ‘‘anomalous’’ corrections cau
by the nonanalytic renormalized disorder correlator. T
2-loop corrections proved to be crucial to reconcile theo
and numerical simulations@18,19#.

The aim of this paper is to extend this FRG analysis to
universality class of anisotropic depinning. We first sho
that beyond the Larkin length, the KPZ term is indeed ge
erated atv501, as long as it is not forbidden by symmetr
We explicitly compute the lowest order corrections for
simple model studied in recent simulations@20,21#. Next we
derive the FRG-flow equations for the second cumul
©2003 The American Physical Society21-1
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D(u) in a 42e expansion. In a previous study, Stepano
@22# considered the model to one loop, but did not prope
take into account the nonanalyticity of the renormalized d
order. Since this is physically important, we reexamine
problem here. Indeed, we find several new import
‘‘anomalous’’ corrections, including the one which genera
the KPZ term in the first place, as well as terms correct
the b function. We then introduce an equivalent descripti
in terms of Cole-Hopf transformed fields. This description
not only much simpler to study in perturbation theory~e.g.,
to two loops it reduces the number of diagrams by an or
of magnitude!, but it allows us to obtain a number of resul
to all orders. We argue that the coefficientl/c which mea-
sures the strength of the KPZ nonlinearity is uncorrected
all orders. We also determine a nontrivial subspace of
disorder correlators in the form of simple exponentials wh
is an exact invariant of the FRG to all orders. In the Co
Hopf variables it is reformulated as the field theory of
specific branching process, or equivalently reaction-diffus
process.

Our flow equations allow to study both periodic disord
relevant for charge density waves~CDW!, and nonperiodic
disorder, relevant for lines or interfaces in a random envir
ment. In both cases we find several nontrivial fixed poin
All these fixed points possess at least one unstable direc
and should thus be associated to transitions. It seems
perturbatively the large scale behavior is dominated b
runaway flow, as it is in the standard KPZ problem@23,24#.
The difference is that its direction is a nontrivial functio
D(u) in functional space. Analysis of the above mention
invariant subspace suggests that the flow goes towards a
cific branching process. The present RG analysis is howe
unable to attain the nonperturbative fixed point. Thus, it a
does not allow to strictly decide whetherd54 is the upper
critical dimension of the anisotropic depinning proble
which is an open issue.

Finally, since there are indications that KPZ terms may
needed in the description of the motion of a contact line@25#,
we have studied manifolds with long range elasticity and
simplest KPZ term. We determine the critical dimensi
above which this KPZ term is irrelevant, as well as t
roughness at crossover.

II. MODEL

We consider ad-dimensional interface~in d11 embed-
ding dimensions! with no overhangs parameterized by
single component height fieldu(x). The case where the dis
order is periodic corresponds to a single component CDW
d dimensions. The common starting point is the equation
motion

h] tuxt5c]x
2uxt1l~]xuxt!

21F~x,uxt!1 f xt ~2.1!

with friction h, a driving force f xt5 f and in the case o
long-range elasticity we replace~in Fourier! q2uq by uquauq
~with mostly a51) in the elastic force. The pinning forc
F(x,u) is chosen Gaussian with second cumulant
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F~x,u!F~x8,u8!5D~u2u8!dd~x2x8!. ~2.2!

Temperature can be taken into account as an additional w
noiseh(x,t) on the right-hand side~RHS! of Eq. ~2.1! with
^h(x,t)h(x8,t8)&52hTd(t2t8)d(x2x8), but we will fo-
cus here onT50.

Disorder averaged correlation functionŝA@uxt#&
5^A@uxt#&S and response functions d^A@u#&/d f xt
5^uxtA@u#&S can be computed from the dynamical action

S5E
xt

ûxt~h] t2c]x
2!uxt2lûxt~]xuxt!

2

2
1

2 Extt8
ûxtûxt8D~uxt2uxt8!2E

xt
ûxtf xt . ~2.3!

The uniform driving forcef xt5 f .0 ~beyond threshold a
T50) may produce a velocityv5] t^uxt&.0, a situation
which we study by going to the comoving frame~where
^uxt&50) shifting uxt→uxt1vt, resulting in f→ f 2hv.
This is implied below: EachD is of the form D„uxt2uxt8
1v(t2t8)…, and we always consider the quasistatic limitv
501. Perturbation theory is performed both in KPZ an
disorder terms, using the free response function

^ûq,t8u2q,t&05Rq,t2t85h21e2~ t2t8!q2/su~ t2t8!.
~2.4!

III. GENERATION OF THE KPZ TERM

In this section we show how the irreversible~nonpoten-
tial! KPZ term is generated, even in the limitv→01, start-
ing from a purely reversible equation of motion, where
forces are derivatives of a potential.

Let us first consider the model recently studied nume
cally by Rosso and Krauth@20,21,32#, where the elastic en
ergy is*xE(¹ux), and, e.g.,E(u)5(c/2)u21(c4/4)u4. The
relevant continuum equation of motion is

h] tuxt5E9~]xuxt!]x
2uxt2F~x,uxt1vt !1 f 2hv.

~3.1!

Note first that whenc450, which corresponds to the isotro
pic depinning class withE(u)5(c/2)u2, the generation of
the KPZ term is forbidden by the statistical tilt symmet
~STS!, i.e., the invariance of the equation of motion unde
shift uxt→uxt1 f x with f x5hx ~or more generally the cova
riance under an arbitraryf x) @29#. When c4Þ0 the model
does not obey STS and the KPZ term is not forbidden, a
indeed it is generated at finite velocityv.0. This consider-
ation alone is insufficient to show that it is still generated
v→0 since in that limit the symmetryu→2u should forbid
it. Indeed, if one performs conventional perturbation theo
with ananalyticdisorder correlatorD(u), one does immedi-
ately find that the KPZ term vanishes asv→01. However,
one needs a mechanism by which, asv→01, the symmetry
u→2u remains broken.

As we now show, this mechanism is provided by t
nonanalytic nature of the disorder. We know from studies
1-2
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isotropic depinning@14,16,18,19# that at T50 the coarse
grained disorder becomesnonanalytic~NA! beyond the Lar-
kin length @28,30#. We show below that this is also the ca
for the situation considered here.

Using the techniques developed in Refs.@18,19# the cor-
responding perturbation theory, with a nonanalyticD(u) be-
comes~see Fig. 1 for notation!

~3.2!

At T50, ux,t has vanishing expectation value and the ar
ment ofD8 becomesv(t1t8). Using that

D~u!5D~0!1D8~01!uuu1
1

2
D9~01!u21¯ , ~3.3!

D8~u!5sgn~u!1D9~01!u1¯ ~3.4!

and observing thatt, t8.0, Eq. ~3.2! can be written as

dl52
c4

p2 E
t
E

t8
E

k
e2~ t1t8!k2

„k2p212~kp!2
…

3@D8~01!1D9~01!v~ t1t8!1O~v2!#. ~3.5!

The leading term of this expansion, which is the only U
diverging one for 4.d.2, is obtained by settingv50. In-
tegrating overt, t8 and using the radial symmetry ink gives

dl52c4S 11
2

dD E
k

D8~01!

k2 1O~v !. ~3.6!

Similarly, there is a correction toc, which reads

~3.7!

leading to

dc5c4S 11
2

dDD~0!E
k

1

k2 . ~3.8!

As will become clear below, the natural coupling for th
KPZ term is notl, but the ratiol̂5l/c, which is corrected
as @31#

FIG. 1. The diagram generating the irreversible nonlinear K
term with one disorder vertex~notations are as in Refs.@18#, @19#!
and onec4 vertex ~the bars denote spatial derivatives!.
01612
-

dl̂52c4S 11
2

dD @D8~01!1l̂D~0!#E
k

1

k2 . ~3.9!

Thus we have shown that the symmetryu→2u which for-
bids the KPZ term~e.g., in an analytic perturbation theor
whereD8(0)50), is broken here atv501 by the nonana-
lytic term, and that a KPZ term is indeed generated at dep
ning. As in our previous study@18,19# the only assumption is
that the interface always advances forward~or that backward
motion can be neglected in the steady state!, supported in
this single component model by no passing theore
@16,20,21#. By providing a physical mechanism, this explic
calculation confirms the argument given in@4# based on a
Larkin type estimate of the angleu dependence of the critica
force.

Note the sign of the generated KPZ term. SinceD8(01) is
negative,l is positive as found in simulations@3,4#. It is a bit
counterintuitive that the surface should become stiffer. A
it effectively corresponds to the generation of a positive
erage curvature. This is presumably through nonanal
coarse grained configurations of the string~in d51) since
otherwise*0

L¹2u5@¹u#0
L would grow asL which is un-

physical, while cusps inu(x) allow for such a result.
This model is only a particular case, which shows that

anisotropic depinning class is rather broad and not limited
anisotropic disorder. In general, unless they are excluded
symmetry, KPZ terms will appear. One such case, co
sponding to a flux line in 111 dimensions which moves
perpendicular to itself was considered in@4#. There disorder
is anisotropic with correlatorsDx and Du for the pinning
force. In the case of isotropic disorderDx5Du , exact rota-
tional invariance~which in infinitesimal form readsu→u
1ux, x→x2uu) should suffice to exclude the KPZ term
We have indeed checked this by adding to the above M
action withl50 the nonlinear terms of@4#

dS52E
xt

ûxt@A¹2uxt~¹uxt!
21B f~¹uxt

2 !#

2E
xtt8

ûxtûxt8@C~¹uxt!
21D¹uxt¹uxt8#D~uxt2uxt8!.

~3.10!

The generated KPZ term reads to lowest order

dl52~2A1C1D !D8~01!E
k

1

k2 . ~3.11!

Since the equation of motion of Ref.@4# for Dx5Dh corre-
sponds toA521, D5C51/2, one checks to lowest orde
that the KPZ term is indeed not generated. Although we h
not checked it further, it is clear that this property shou
extend to all orders. In the anisotropic classl, cana priori
be of any sign. The argument given in@4# suggests that for
the flux-line modell is positive whenDx,Dh and negative
for Dx.Dh . Note that anisotropy by itself is not enough
generate the KPZ term, but that a nonlinear and nonana
disorder correlator is needed, and that this term will

Z

1-3



o

pl
o

rm
f

co
u
or
en
fo
ic
i

f

st
th

le
nge
for

ve.

s
.

only
tion
on

s

e

is
rm

cal

-
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course not be generated in a simple Larkin-type rand
force model, whereDx andDh are constants.

IV. DIMENSIONAL FLORY ESTIMATES

Before using analytical methods, let us indicate a sim
Flory, or dimensional, argument which indicates how exp
nents for ID and AD can differ. In the absence of a KPZ te
and settingu;xz the two static terms in the equation o
motion scale as

¹x
2u;xz22, ~4.1!

F~ux ,x!;x2~d1z!/2. ~4.2!

Using F(u,x)F(u8,x8);d(u2u8)dd(x2x8) for random
field disorder gives the Imry-Ma value

zF5
42d

3
~4.3!

which can be argued to be exact for the statics and is
rected byO(e2) terms at depinning. These types of arg
ments typically give the exact result for LR correlated dis
der, as the LR disorder part is not renormalized. It happ
that this range is long enough for the statics but not
depinning; hence there is a correction at depinning wh
increasesz. Note that it becomes again exact for depinning
the range ofD in u or x is large enough~see, e.g., the end o
Sec. IV B in @26# and Appendix B!.

In presence of a KPZ term the latter scales as

~¹xu!2;x2z22. ~4.4!

Supposing that it is relevant, it dominates over the ela
term. Balancing the KPZ term against disorder gives
modified Flory estimate

FIG. 2. 1-loop diagrams correctingl ~top!, c ~middle!, and h
andD(u) ~bottom!.
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zF5
42d

5
. ~4.5!

For d51 it yields zF50.6 versusz50.63 observed in simu-
lations @20#, which is not bad an estimate for such a simp
argument. Again it is possible that if one increases the ra
of D the estimate~4.5! becomes again exact, as is the case
standard KPZ~directed polymer!, see Appendix B. Note
however that it works with an upper critical dimensiond
54, which is an open question, and is thus merely indicati

V. FLOW EQUATIONS IN THE PRESENCE
OF A KPZ TERM

Let us start by deriving the FRG flow ofl, c, h andD to
one loop starting from Eq.~2.3!. The KPZ and disorder term
are both marginal ind54 and become relevant below
Simple dimensional arguments show that these are the
needed counterterms. We have computed the effective ac
to lowest order. The corrections as given by the diagrams
Fig. 2 are~for details see Appendix A!

dh

h
52@a0c23lD8~01!1c22D9~01!#I ,

dc

c
52@a1lc23D8~01!1a2l2c24D~0!#I ,

~5.1!
dl

l
52@a3lc23D8~01!1a4l2c24D~0!#I ,

dD5„a5l2c24D21c22$D9@D~0!2D#2~D8!2%…I ,

where I 5*1/q4 ~integrated over the shell if using Wilson’
scheme! and the coefficients are

a051, a152~d22!/d, a254/d,

a35a454/d, a552. ~5.2!

In the following we will setd54 in these coefficients sinc
they are universal only to this order. This gives

a05a15a25a35a451, a552. ~5.3!

One then notes that the quantityl/c remains uncorrected to
first order ind54. In the next section we shall argue that th
remains true to all orders. The corrections to the linear te
in Eq. ~2.3! can be interpreted as the correction to the criti
force

d f 52d f c5@lc22D~0!1c21D8~01!#I 1 , ~5.4!

whereI 15*q(1/q2). It does not require an additional coun
terterm if we tunef to be exactly at depinningf 5 f c .

In view of the nonrenormalization ofl/c in Eq. ~5.1! it is
useful to denote the unrescaled coupling constants as

l̂5
l

c
, ĥ5

h

c
, D̂5

D

c2 . ~5.5!
1-4
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One should also notice that if one performs the change
variable in the initial modelu→u/l̂, û→ûl̂, then the free
~quadratic! part of the action~proportional toc and h! re-
mains invariant while disorder and KPZ terms become

l̂→1,

D~u!→l̂2D~u/l̂!. ~5.6!

Thus the coefficientl̂ can be set to one upon appropria
redefinitions of disorder and displacements.

It is natural to start the study of the FRG flow and t
search for fixed points as forl50 by defining the following
rescaled parameters:

l̃5l̂L,
2z , ~5.7!

D̃~u!5L,
2z2eD̂~uL,

2z!, ~5.8!

within a Wilson scheme whereL,5Le2, is the running UV
cutoff. This yields two coupled equations for the couplingsl̃

and D̃(u),

], ln l̃5z, ~5.9!

],D̃~u!5~e22z!D̃~u!1uzD̃8~u!12l̃2D̃~u!2

1@2l̃2D̃~0!12l̃D̃8~01!#D̃~u!2D̃8~u!2

2D̃9~u!@D̃~u!2D̃~0!#, ~5.10!

where here and below we absorbeI 5S4 /(2p)4 in the cou-
plings. One notes that if there is a fixed point forD̃(u), then
z is the roughness exponent since

^uqu2q&5D~0!/c2q45L,
e22zD̃* ~0!/q4;D̃* ~0!/qd22z,

~5.11!

when evaluated at scaleL,5q. A more rigorous calculation
uses the effective action@19# at non-zero momentum, but t
one loop gives the same result. The dynamical exponentz in
t;xz and the anomalous dimension of the elasticity can
determined from

2c5], ln c52l̃D̃8~01!2l̃2D̃~0!,
~5.12!

z225], ln~n/c!52D̃9~01!1l̃2D̃~0!.

The correlation-length exponentn in j;( f 2 f c)
2n and the

velocity exponentb in v;( f 2 f c)
b are given by the scaling

relations

n5
1

22z1c
, ~5.13!

b5n~z2z!5
z2z

22z1c
. ~5.14!
01612
of

e

This can be seen by noting that the action~2.3! is invariant
under x5e,x8, t5ez,t8, u5ez,u8, û5û8e(22z2z2d1c),

provided h5h8e(22z1c),, c5c8ec,, l5l8e(c1z),, f
5 f 8e(22z1c), and D5D8e(e22z12c), as well as T
5T8e(22d22z1c),. While in presence of STS one hasc
50, this is not the case here. In a Wilson formulation, t
critical force is obtained by integration over scales of

], f c52c,@ l̃,D̃,~0!1D̃,8~01!#L,
22z , ~5.15!

a quantity which physically is likely to remain positive.
A salient feature of the AP class is that the critical for

depends on the angle by which the interface is tilted. Fr
the arguments of@3,4# the characteristic slopeu should scale
like the ratio of the characteristic lengths orthogonal and p
allel to the interface,u;j' /j i;( f 2 f c)

n(12z) and more
generally the velocity should behave as

v~ f ,u!5@ f 2 f c~0!#bgS u

@ f 2 f c~0!#n~12z!D . ~5.16!

Defining leff by @4# v( f ,u)5leffu
21¯ , the smallu expan-

sion of v( f ,u) gives the effectiveleff as

leff;@ f 2 f c~0!#b22n~12z!5@ f 2 f c~0!#2n~22z2z!.
~5.17!

Performing the redefinitionu5ũ1ux, we can compute the
critical force as a function of the angleu to lowest order in
disorder

d f c~u!52u2lH 12
4

d
I †l̃2D̃~0!1l̃D̃8~01!] J

52u2lS 11
dl

l D ~5.18!

and thus we find an angular dependence, which is increa
under renormalization.

The notable feature of the above FRG equation is
absence of corrections tol̂ to this order in Eqs.~5.1!. It is
crucial to determine whether this persists beyond one loop
there were corrections to higher order this might allow fo
nontrivial fixed point of l̂ and thus to fixz. On the other
hand, absence of corrections would imply that forz.0, l̃
flows to infinity, which makes the existence of a perturbat
fixed point doubtful. In the next section, we present a diff
ent approach, which allows to clarify this question.

It is worth noting that, since KPZ terms are only gene
ated above the Larkin length, the FRG flow below the Lark
length~as well as the value of this length! is identical to the
casel50. It is however instructive to artificially conside
the above FRG flow for an analytic function and with a giv
imposed bare value ofl̂ ~settingz50). One gets

],D̃~0!5eD̃~0!14l̂2D̃~0!2, ~5.19!

],D9~0!5eD9~0!23D9~0!216l̂2D~0!D9~0!.
~5.20!
1-5
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The bare disorder hasD(0).0 and D9(0),0. Since all
terms on the right-hand side~rhs! of Eq. ~5.20! have the
same sign,uD9(0)u diverges faster ifl̂Þ0, meaning that the
KPZ term cannot preventD(u) from becoming nonanalytic
Note that the first equation exhibits a runaway atLD(0) which
can shorten the Larkin length. Ind541e at l50 there is an
unstable fixed point atD9(0)52e/3 separating a Gaussia
weak-disorder phase with the bare unrescaled Larkin fo
producing finite displacements, and a phase where diso
seems to become nonanalytic, only to become irrelevan
larger scales as can be seen by examining the flow in
nonanalytic space beyond the Larkin length. Atl.0 there is
a fixed line atD(0)52e/(4l̂2).0 which separates a phas
whereD~0! grows from a phase where it decays to zero.
the transition line the flow is towards a nonanalytic disord

VI. COLE-HOPF TRANSFORMED THEORY

We now introduce the Cole-Hopf transformed theo
which has a lot of interesting properties.
Starting from Eq.~2.1! we first divide byc. This gives

ĥ] tuxt5]x
2uxt1l̂~]xuxt!

21
1

c
F~x,uxt!1

f

c
. ~6.1!

We then define the Cole-Hopf transformed fields

Zxtªel̂uxt ⇔ uxt5
ln~Zxt!

l̂
. ~6.2!

The equation of motion becomes after multiplying withl̂Zxt,

ĥ] tZxt5]x
2Zxt1

l̂

c
FS x,

ln~Zxt!

l̂
D Zxt1

l̂f

c
Zxt ~6.3!

and the dynamical action

S5E
xt

Ẑxt~ ĥ] t2]x
2!Zxt

2
l̂2

2
E

xtt8
ẐxtZxtD̂S ln Zxt2 ln Zxt8

l̂
D Ẑxt8Zxt8

2
l̂

c
f E

xt
ẐxtZxt . ~6.4!

It is important to note that the above formal manipulatio
are only valid in the midpoint~Stratonovich! discretization.
The strategy therefore is to start from the original equation
motion, which is interpreted in the Itoˆ discretization, switch
to Stratonovich, make the change of variables, and t
switch back to Itoˆ. Note the identification:

ûxt[
l̂

c
ẐxtZxt ~6.5!
01612
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er
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and that in this formalism the force~or the distance to the
critical force! corresponds to a mass:

m25
l̂

c
~ f 2 f c!. ~6.6!

Let us first illustrate how perturbation theory works in th
new formulation and how one can easily recover the 1-lo
FRG equation obtained in the previous section. Perturba
theory is performed with the standard response-function.
note a very important property: To contractẐ00 with a
disorder-insertionẐxtZxtl̂

2D̂„(ln Zxt2ln Zxt8)/l̂…Ẑxt8Zxt8 and
focusing onZxt ~not Zxt8), one can decide to either contra
Zxt standing outside theD̂ or inside. In the first place, this
eliminates the factorZxt , but leavesD̂ underived. In the
second case, deriving the argument ofD̂, gives D̂8/l̂, to-
gether with a factor of 1/Zxt from the inner derivative. The
latter also cancels theZxt standing outside theD̂. So inde-
pendently of where one derives, one always loses the fa
of Zxt outsideD̂. Contractingn times towards the vertex atx,
t thus gives a factor ofZxt

12n . This observation shows tha
the diagrammatics are a very simple generalization of
case without the KPZ term which was detailed up to tw
loops in@19#. One easily verifies that the latter case is rep
duced upon contracting only the argument ofD̂. To see this,
one performs the perturbation theory and finally takes
limit of l̂→0. Each time, one has contracted aZxt outside of
D̂, one is missing a factor of 1/l̂, and the term vanishes in
the limit of l̂→0. Further remark that forl̂→0, the argu-
ment of D̂ becomes

Zxt2Zxt8

l̂
5uxt2uxt81O~ l̂ !. ~6.7!

This shows that the perturbation theory for isotropic dep
ning is reproduced.

Thus the new diagrams, in the presence of the KPZ te
can be deduced from those forl50 by allowing additional
contractions of aZxt outside theD̂. Compared to performing
calculations using Eq.~2.3! this yields a much simpler per
turbation theory, with far less distinct diagrams. For e
ample, to two loops, the number of diagrams is reduced b
least a factor of ten.

Note that now a renormalization of the termẐD̂Z is al-
lowed, since it is no longer forbidden by STS. Indeed sh
ing uxt→uxt1ax/l̂ and Ẑxt→Ẑxte

2ax, we find that the ac-
tion changes by

dS5E
xt

Ẑxt~a21a¹!Zxt . ~6.8!

However, since the action~6.4! is still translationally invari-
ant, it remains unchanged under

Zxt→mZxt ,
1-6
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Ẑxt→
1

m
Ẑxt . ~6.9!

Transforming onlyZxt→mZxt without changingẐxt will al-
lows us later to fix the coefficient of the Laplacian to un
and transfer all its corrections into corrections toD̂ and ĥ.

We now present the calculations at 1-loop order. We s
with the corrections toĥ. Contracting one disorder verte
once with itself, we obtain

l̂2Ẑxt8ZxtF D̂S ln Zxt82 ln Zxt

l̂
D 1

1

l̂
D̂8S ln Zxt82 ln Zxt

l̂
D G

3R0,t82t . ~6.10!

Expanding lnZxt82ln Zxt for small times yields

ln Zxt82 ln Zxt5
~ t82t !] tZxt

Zxt
1O~ t2t8!2. ~6.11!

One also has to expandZxt aroundxt8:

Zxt52~ t82t !] tZxt8 . ~6.12!

Since the manifold only jumps ahead, the arguments oD̂

and D̂8 are always positive. Putting all terms together,
obtain

Ẑxt8] tZxt8~ t82t !R0,t82t

3$@ l̂D̂8~01!1D̂9~01!#2@ l̂2D̂~0!1l̂D̂8~01!#%.

~6.13!

Integrating overt82t yields

Ẑxt8] tZxt8I $@ l̂D̂8~01!1D̂9~01!#2@ l̂2D̂~0!1l̂D̂8~01!#%.

~6.14!

We have grouped terms such that in the first bracket th
appear the corrections to2dh/h and in the second those t
dc/c. Here they appear all together in one diagram. In
absence of the KPZ term only the term independent ol̂
survives. Noting the cancellation between the two terms,
finally arrive at

dĥ

ĥ
5@D̂9~01!2l̂2D̂~0!#I . ~6.15!

We now turn to corrections to disorder~see Fig. 3!. Re-
minding that the arrows can either enter into the argumen
D or into the singleZ field, we get the following contribu-
tions ~plus some odd terms, which we do not write!:

FIG. 3. 1-loop dynamical diagrams correctingD̂.
01612
rt

re

e

e

of

dD̂~u!a5@2D̂9~u!D̂~u!1l̂2D̂~u!2#I ,

dD̂~u!b5@2D̂8~u!21l̂2D̂~u!2#I ,

dD̂~u!c5@D̂9~u!D̂~0!#I ,

dD̂~u!d52@ l̂D̂~u!D̂8~01!1l̂2D̂~u!D̂~0!#I . ~6.16!

These reproduce the corrections obtained in the previous
tion, but quite differently.

The Cole-Hopf transformed theory suggests that

dl̂50 ~6.17!

to all orders. To prove this one has to show that the follow
terms are not generated in the effective action

Ẑxt

1

Zxt
~¹Zxt!

2. ~6.18!

It is easy to see that these terms result from a changel̂
~keepinguxt and ûxt fixed!

Zxt→ZxtS 11
dl̂

l̂
ln ZxtD , ~6.19!

Ẑxt→ẐxtS 12
dl̂

l̂
ln ZxtD ~6.20!

and thus the Laplacian generates Eq.~6.18!. One can also
again consider a term likec4 which is known to produce a
shift in l̂ @see Eq.~3.9!#, and does produce Eq.~6.18! above
together with other irrelevant terms with more gradients.
fact Eq.~6.18! is by power counting the only term margina
in d54 which can appear. This term could in principle com
from vertices with several derivatives acting onD̂ at pointx.
As previously discussed, it is always compensated, but
compensating factor could be on a different vertex at po
tion x8 and hence produce Eq.~6.18! via a gradient expan-
sion. We have shown in Fig. 4 the 2-loop diagrams corre
ing terms with a single response field in the effective act
and theZ and 1/Z fields which appear at each vertex. A
terms contribute toĥ. Graphs b, c, and d each give a term
the form ~6.18! by expanding theZ2 on the lower disorder,
but the sum of them cancels. As we will discuss below this
graphically achieved by moving the ends of the arro
around on the upper vertex, suggesting a more general
celation. Another argument is that the divergence in sp
between the upper and lower vertex is not strong enoug
order to contribute to Eq.~6.18! or *ẐDZ. For this to hap-
pen, one needs three response functions between uppe
lower disorder, as is the case for diagrams e and f. They
both contribute to*ẐDZ, but since they have only a singleZ
on the lower disorder, they do not contribute to Eq.~6.18!.

We now argue that to all orders in perturbation theory
diagram proportional to a singleẐ ~one connected compo
1-7
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nent! can be generated, which contains a factor
(¹Z)2(1/Z). We believe these arguments to be conclusi
especially we have not been able to construct any coun
example at 3- or 4-loop order. However the structure of
theory is sufficiently complicated that some caution is a
vised.

Look at Fig. 5. The response functions~arrows! in an
arbitrary diagram correcting a single-time vertex have a t
structure~left!. This diagram can be completed by adding t
disorder-interactions between arbitrary pairs of poi
~middle!. A potentially dangerous factor of 1/Z appears at
point 2. Point 2 has a ‘‘brother’’ 3, to which it is connecte
by a disorder correlatorD̂ ~dashed line!.

Then, two cases have to be distinguished: Either ther
no line entering point 3, then point 3 can contribute his fac
of Z to point 2: Since it is at the same point in space,
difference can be expanded in a series in time, giving ti
derivatives ofZ which do not spoil the argument.

On the other hand, there may be a line entering poin
This is drawn on Fig. 5~middle!. By construction~at least!
two branches~of response functions! enter at point 2. At leas
one of them does not contain the brother of 2~here point 3!.
Here it is the left branch, containing point 1. Now consid
the diagram where the response function from 1 to 2 is
placed by a response function from 1 to 3~right!. Since one
can always contract last the response field at point 1, lea
to either the response function from 1 to 2 or the one from
to 3, these diagrams have the same combinatorial factor

FIG. 4. 2-loop dynamical diagrams correcting the singleẐ com-
ponent. Diagrams~a!–~g! correct the friction. Only diagrams~e!
and ~f! have a sufficiently strong divergence in space~after time
integration! that they can produce spatial gradients. In fact th

both correctẐDZ. ~The diagram is the well-known sunset diagra
from f4 theory.!
01612
f
;
r-
e
-

e

s

is
r
e
e

.

r
-

ng
1
ut

differ by a factor of21, due to the derivative ofD„(ln Z

2ln Z8,)/l̂… on either the first or the second argument. Th
comes in both cases with a factor of 1/Z, at thesameposition
in space but at different positions in time. However, due
the tree structure, the time integration can always be d
freely, and the two vertices finally cancel. This argument
sufficient before reaching the Larkin length. However af
reaching the Larking length, the nonanalyticity of the dis
der may yield additional sign functions in time between bo
ends of the vertex, as has been observed in@19#. Then the
proof gets more involved. There is another very power
constraint on the generation of terms like Eq.~6.18!: One has
to construct a diagram with a strong spatial ultraviolet div
gence, such that after Taylor-expandingZ in space the addi-
tional factor ofx2 together with this strong ultraviolet diver
gence gives a pole in 1/e, i.e., a logarithmic divergence a
d54. This is the situation for diagrams e and f in Fig. 4.
arises if and only if there are 2n11 response functions con
nectingn points in space~this may well be a subdiagram!,
but where response functions that connect the same poi
space are not counted. In all examples which we conside
up to 4-loop order, which had sufficiently many factors
1/Z, and which had the correct UV structure, the (2n11)
response functions where enough to enforce an orderin
times, such that the mounting proof sketched on Fig. 5 w
through. We have to leave it as a challenge to the reade
either find a counterexample or to make the above argum
rigorous.

Let us now return to the analysis of the RG equations.
introduce rescaled variables according to

D̂~u!5L,
e22zD̃~uL,

z !, ~6.21!

l̃5l̂L,
2z , ~6.22!

with L,5Le2,. Because we have definedZ5el̂u, in order
not to generate additional terms, a rescaling ofu demands a
~compensating! rescaling ofl̂ such that the product remain
unchanged. Even though this may not be the best ch
corresponding to the existence of a fixed point, it is the o
way to preserve the Cole-Hopf transformation, leavingZ and
ln Z unchanged. The rescaling ofD̂ comes from the rescaling
of l̂, which appears as a factor ofl̂2 in front of D̂ in the
action and as a factor of 1/l̂ in the argument ofD̂.

This leads again to the FRG flow equation given in E
~5.10!:

y

FIG. 5. Figure explaining the nonrenormalization ofl̂; see main text.
1-8
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FIG. 6. Fixed point structure for different values ofl. The coordinate system is such thata grows to the right andb to the top. Both
separatrices areb521/2ael ~dark! andb52a/(11e2l) ~bright!.
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x-
],D̃~u!5~e22z!D̃~u!1zuD̃8~u!2D̃9~u!†D̃~u!2D̃~0!‡

2D̃8~u!212l̃D̃~u!D̃8~01!

12l̃2@D̃~u!21D̃~u!D̃~0!#. ~6.23!

Further remarkable properties of the Cole-Hopf transform
theory will be shown below. We now turn to the study of t
FRG flow.

VII. PERIODIC CASE

We now consider the case, whereD̂(u) is a periodic func-
tion with period 1. The starting point is Eq.~6.23! with z

50, thusl̃5l̂ remains constant under renormalization~to all
orders!. Since the period is fixed,l̃ cannot be scaled awa
using Eq.~5.6!. It is thus a continuously varying paramet
and we must study the flow as a function of it.

In Eq. ~6.23! there is a tendency for a runaway flow,
01612
d

can be seen by analyzing the flow equation~6.23! with the
trivial solution D̃(u)5D,

],D5eD14l̂2D2. ~7.1!

This corresponds to the localization—or self-attracti
chain—problem studied in@27# and we expect on physica
grounds the full functional form ofD(u) to be important,
which may lead to other fixed points.

For l̂50 we already know that there is an unstable fix
point

D,~u!5D* ~u!1cee,, ~7.2!

D* ~u!5
1

36
2

1

6
u~12u!, ~7.3!

which describes isotropic depinning for CDW. This fixe
point survives for smalll as can be seen from a series e
1-9
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pansion in powers ofl. Moreover at each order inl, D* (u)
remains polynomial inu(12u). We do not reproduce this
expansion here, since we have succeeded in obtaining
fixed point analytically. Equation~6.23! possesses the fol
lowing remarkable property:A three parameter subspace
exponential functions forms an exactly invariant subspa.
Even more strikingly, this is true toall orders in perturbation
theory. This property, which is quite nontrivial, is understo
in the Cole Hopf theory, as discussed below.

For our purposes, it is more convenient to write

D~u!5
1

l̂2
e f ~ul̂!, ~7.4!

such thatf satisfies the same FRG equation~6.23! with l
5e51, but with periodl. This allows us to make an ansa
for a family of exponential functions

f ~u!5a1be2u1ceu. ~7.5!

The FRG flow~6.23! closes in this subspace, leading to t
simpler 3-dimensional flow:

],a5a14a214ac14bc, ~7.6!

],b5b~116a1b15c!, ~7.7!

],c5c~116a1b15c!. ~7.8!

This works only for amplitude one in the exponential; oth
wise higher modes are generated. Also note that these e
tions are not symmetric under the exchange ofb and c, as
one might expect from the interpretation we will prese
later.

Requiring periodicity, or equivalentlyf (u)5 f (l2u) im-
poses

c5be2l ~7.9!

and one checks thatb/c is indeed unrenormalized. Thus on
can study the simpler two-dimensional flow

],a5a14a214abe2l14b2e2l, ~7.10!

],b5b~116a1b15be2l! ~7.11!

as a function ofl. A physical requirement is that

D~0!5a1b~11e2l!.0, ~7.12!
01612
he

e
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t

f c;2@D8~01!1lD~0!#52
1

l
~a12be2l!.0.

~7.13!

For a,0 this is possible only if

2
a

11e2l ,b,2
a

2
el. ~7.14!

On the other hand, fora.0 the flow fora is alwaysa→` in
a finite time. Indeed the rhs of Eq.~7.10! is always positive
for a.0. For b.0 this is trivial; for b,0 this can be seen
from

a14a214abe2l14b2e2l

5a14~a1b!2e2l24abe2l14a2~12e2l!.0.

~7.15!

The flow given in Eqs.~7.10! and~7.11! is shown in Fig.
6. There are four fixed points ford542e. In the original
variables they are as follows.

~i! Gaussian fixed point G~repulsive in all directions!
with D(u)50.

~ii ! Self-avoiding polymer fixed point SAP, where the co
relator is a negative constant:

D~u!52
e

4l2 . ~4.16!

It is the problem of localization in an imaginary rando
potential, i.e., the Edwards version of the better known s
avoiding polymer. It is attractive in all directions, even tho
not drawn here. Writingf (u)521/41f(u) and linearizing
Eq. ~6.23! gives

],f~0!52f~0!2
1

2
f8~01!, ~7.17!

],f8~u!52
1

2
f8~u!. ~7.18!

This self-avoiding polymer fixed point will not play a role i
the following since for the disordered problemD(0).0.
However it is interesting in other contexts, as discussed
low.

~iii ! Fixed point U, with one attractive and one repulsi
direction.
D~u!5
1

l2 F2
1154e2l15e22l2~115e2l!A11e2l~341e2l!

8@125e2l~e2l28!#
1

2

127e2l23A11e2l~341e2l!
~e2lu1e2l~12u!!G .

~7.19!

The value at zero

D~0!52
31el~31A11e22l134e2l!

2l2@71el~3A11e22l134e2l21!#
~7.20!
1-10
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is always negative forl>0, thus the FP is unphysical for our problem ind542e. The combination yielding the correction
to the critical force

f c5
211el~71A11e22l134e2l!

2l@71el~3A11e22l134e2l21!#
~7.21!

is always positive forl>0.
~iv! The random periodic fixed point RP has

D~u!5
1

l2 F2
1154e2l15e22l1~115e2l!A11e2l~341e2l!

8@125e2l~e2l28!#
1

2

127e2l13A11e2l~341e2l!
~e2lu1e2l~12u!!G ,

~7.22!

D~0!5
32el~231A11e22l134e2l!

2l2@271el~113A11e22l134e2l!#
, ~7.23!

f c;2†D8~01!1lD~0!‡5
271el~11A11e22l134e2l!

2l@271el~113A11e22l134e2l!#
. ~7.24!
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Both quantitiesD~0! and f c are positive for alll>0, thus
this fixed point is physical.

The fixed point RP is the continuation of the fixed po
~7.3! at l50: Note that apart from a constant only the te
u(12u) survives from the exponential functions. Like th
fixed point atl50, it is attractive in one direction~towards
the fixed point SAP! and repulsive in another@towards large
D(u)]. It is thus a critical fixed point. One can argue that a
perturbation which leads to SAP is unphysical, since at so
scale D~0! becomes negative. Since we did not find a
strong reason why the system would be exactly on this c
cal surface, it is more likely that this FP represents a criti
regime which lies on the boundary of the physical domain
is however interesting that its analytic form can be obtain
In particular one can compute correlation functions exac
at RP.

An important question is whether there are fixed poi
outside of the exponential subspace considered above. L
give a few general properties. First the flow equations a
fixed point conditions nearu50,

],D̃~0!5eD̃~0!14l̂2D̃~0!22D̃8~01!212l̂D̃~0!D̃8~01!,

],D̃8~01!5D̃8~01!@e12l̂D̃8~01!16l̂2D̃~0!23D9~01!#
~7.25!

and the flow equation for*D̃,

],E
0

1

duD̃~u!5†e12l̂D̃8~01!12l̂2D̃~0!‡E
0

1

duD̃~u!

12l̂2E
0

1

duD̃~u!2 ~7.26!
01612
e
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shows that starting from*D̃50, a positive value for*D̃ is
generated in the early stage of the RG. If there is a fix
point value for*D̃ it must be equal to

E
0

1

duD̃* ~u!52

2l̂2E
0

1

duD̃* ~u!2

e12l̂D̃* 8~01!12l̂2D̃* ~0!
.

~7.27!

For smalll at least this appears to be negative and ofO(l2).
From the flow equation forD8(u),

],D̃8~u!52D̃-~u!@D̃~u!2D̃~0!#

1D̃8~u!@e12l̂D̃8~01!12l̂2D̃~0!14l̂2D̃~u!

23D̃9~u!# ~7.28!

one sees that the behavior at largeu/l must be exponential
It seems that there are no nonexponential fixed points.

The runaway flow will be discussed in the next section

VIII. RANDOM FIELD DISORDER

Let us now consider nonperiodic functions. The ma
problem with the natural rescaling ofu5u8ez l as in Eq.
~6.22! is that l̃ grows exponentially, and no fixed point ca
be found. Let us therefore study Eqs.~7.6!–~7.8! setting the
rescaling factorz50. Again we consider the invariant sub
space of exponential functions, parametrized by

D̃~u!5
1

l̂2
e f ~ul̂!, ~8.1!

f 5a1be2u ~8.2!
1-11
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for u.0. Note that we have put the coefficientc50, since
we are not interested in solutions growing exponentially inu.
The flow is

]a5a14a2, ~8.3!

]b5b~116a1b!. ~8.4!

The physical requirements now read

D~0!;a1b.0, ~8.5!

f c;2a.0. ~8.6!

So it is natural to look in the regime

b.2a>0. ~8.7!

There is again the fixed point

f ~x!52
1

4
1

1

2
e2x ~8.8!

which is the infinitel̂ limit of the fixed point RP of the
previous section. Sincef (x) does not go to zero at infinity a
is expected for random field disorder, and since it is unsta
along the linea521/4 it is unlikely to have any physica
relevance for the anisotropic depinning class. The other fi
point is

f ~x!52e2x ~8.9!

which has the wrong sign. One clearly has runaway flo
within the exponential subspace.

We have examined the flow of the FRG numerically. F
all initial conditions considered, which were not exactly
one of the fixed points mentioned above, we found the so
tion to explode at some finite scale, a phenomenon whic
known as theLandau pole. One issue is to identify the cor
responding direction in functional space. This issue is rela
to fixed points ind541e dimensions which we now briefly
address. The diagram for 41e is obtained by changingD
→2D and ],→2], . This means to replacea→2a and
b→2b on Fig. 6 as well as inverting the direction of a
arrows. U then controls the boundary between the stro
coupling regime of KPZ and the Gaussian fixed point
SAP between localization~attractive polymers!; the Gaussian
fixed point is multicritical and RP between branched po
mers and Gaussian. For the random field case we now h

D~u!5
1

l̂2
e f ~ul̂!. ~8.10!

The fixed point RP gives

f ~x!5
1

4
2

1

2
e2x ~8.11!

and the fixed point U is

f ~x!5e2x, ~8.12!
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which has the correct sign. It has a vanishing critical for
but is a good candidate for the critical behavior between
Gaussian phase and the strong coupling KPZ phase.

Let us now study the runaway flow ford542e. Suppose
that D1(u) is the solution of the (41e)-dimensional flow
equation ate51. Then

D,~u!ªg,D1~u! ~8.13!

leads to the flow equation for the amplitudeg,,

]g,5eg,1g,
2. ~8.14!

For the RF case one has one such point at the boundar
the physical domain, as can be seen from the flow equat

a50, ~8.15!

]b5b1b2. ~8.16!

Also note that since this mode explodes after a finite ren
malization time, it is difficult to avoid. However, we have n
yet completely ruled out another scenario, where at le
some trajectories have exponential growth. Making
ansatz

D l~u!5e@e2z l f ~u!1g~u!#, ~8.17!

this requires to find a solution to theb function at e50,
which we write symbolically

b~ f , f !50. ~8.18!

One can check that near zero such a solution is in princ
possible. There is a solution, which vanishes atu5u*
51.39895~for l51) and becomes negative beyond. O
can argue that one needs it only up tou5u0,u* , since the
linear term can no longer be neglected whenf (u) ap-
proaches zero. Notingr 5(11A5)/4 one hasf 8(0)521/r ,
f 9(0)5(112r 2)/(3r 2). In this scenarioz is determined to-
gether withg. It is unclear how this carries to higher order
since it seems to require thatf (u) is also a solution of theb
function ate50. This is however exactly what happens
the casel50 with the constant shiftD~0!. Although numer-
ics does not seem to confirm it, it is hard to disprove.
question which remains to be answered is what the basi
attraction of runaway growth and eventually of exponen
growth are.

IX. GENERAL ARGUMENTS FROM THE COLE-HOPF
REPRESENTATION AND BRANCHING PROCESSES

In the Cole-Hopf representation, it is easy to see why
exponential manifold is preserved to all orders. Let us ins

D~u!5
1

l̂2
~a1be2lu1celu! ~9.1!

in Eq. ~6.4!. The complicated functional disorder takes a ve
simple polynomial form
1-12
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S5E
xt

Ẑxt~ ĥ] t2]x
2!Zxt

2E
x
E

t,t8
ẐxtẐxt8~aZxtZxt81bZxt

2 1cZxt8
2

!. ~9.2!

Note that we have ordered the vertices in time to distingu
betweenb and c taking correctly into account that the fu
correlator for the present nonanalytic, e.g., random fie
problem is Eq.~9.1! with u replaced byuuu @if Eq. ~9.1! held
as an analytic function there would be no distinction betwe
b andc, ‘‘thus no arrow of time’’#.

The vertices presented on Fig. 7 can be interpreted
branching processes, and we shall thus call this formbranch-
ing representation. Let us show how one reproduces the flo
equations~7.6!–~7.8!. In the time-ordered representatio
diagrams a to d of Fig. 3 have the form given on Fig. 8.
simplify notations, we setl51. Then

D~u!5a1be2u1ceu, ~9.3!

D8~u!52be2u1ceu, ~9.4!

D9~u!5be2u1ceu, ~9.5!

D~0!5a1b1c, ~9.6!

D8~01!5c2b, ~9.7!

D9~01!5b1c. ~9.8!

The diagrams have the following contributions:

dDa~u!→H da5aaI,
db5abI,
dc5acI,

~9.9!

dDb~u!→H da5~aa14bc!I ,
db52baI,
dc52acI,

~9.10!

FIG. 7. The three vertices proportional toa, b and c in

*x,t,t8ẐxtẐxt8(aZxtZxt81bZxt
2 1cZxt8

2 ).
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dDc~u!→5
da50,

db52b~a1b1c!
I

2
~ from c2!,

dc52c~a1b1c!
I

2
~ from c1!,

~9.11!

dDc~u!→H da52a~a12b!I ~ from d1 and d2!,

db52b~a1b1c!I ~ from d2!,

dc52c~a1b1c!I ~ from d1!.
~9.12!

Note that the factors of 2 come in general from contract
Zxt

2 . The nontrivial factor of 1/2 is due to the fact that the tw
rightmost points in c1 and c2 are time ordered. To relate th
integral toI, one can first symmetrize~yielding the factor of
1/2! and then freely integrate over time. Also note that on
the last diagram, d11d2 , contributes to the asymmetry be
tweenb andc.

In the same way, one can reproduce the corrections th.
The only vertex in Eq.~9.2! which contributes at leading
order is the one proportional toa: b does not allow for a
contraction andc will have bothẐ andZ at the same point,
thus only correcting the critical force.a leads to

ẐxtZxt8Rx,t2t8 ~9.13!

and after a gradient-expansion following the procedure
scribed after Eq.~6.10! we have

ẐxtŻxt~ t82t !Rx,t82t . ~9.14!

Integration overt8 leads to the correction toĥ,

dĥ

ĥ
52aI, ~9.15!

which is the same one obtained from Eq.~6.15! using Eqs.
~9.6! and ~9.8!.

Let us now exploit this representation further: It is imm
diately clear that one cannot generatee22lu which corre-
sponds to

E
x
E

t,t8
Z̃xtZ̃xt8

Zxt8
3

Zxt
~9.16!

or any other such fractions. This shows that the space
functions spanned by Eq.~9.1! is indeed closed toall orders
FIG. 8. Diagrams correcting the disorder in the branching representation.
1-13



in

lf-
rc

in
he
9
o
0
e
ll

, i
es
ce

o-
.

om

a
in
to
,

If
ar-

that
SAP
par-
ace

ase

he

r

itial

ond
se

tive

w

n-

f a

-

s for
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in perturbation theory. Also there is no renormalization tol̂,
whereas a correction to the elasticity*Ẑ]x

2Z is allowed, and
indeed shows up at 2-loop order.

Finally, note that the domain of variation ofu in the pe-
riodic case yields an action with multiplicative periodicity
Z, but this does not seem to be important here.

Let us now discuss the relation of our findings with se
avoiding polymers, branching processes and directed pe
lation.

First, on Fig. 10 we have drawn a diagram correspond
to the perturbation expansion of fixpoint SAP, which is t
only fully attractive fixed point in the phase diagram, Fig.
One easily checks that by integrating over times, one rec
ers a standardf4-perturbation theory, as depicted on Fig. 1
By first integrating over the momenta, one recovers the p
turbation expansion of self-avoiding polymers. It is we
known that this fixed point is stable. In terms of particles
can be interpreted as the world lines of diffusing particl
which are not allowed to visit twice the same point in spa
Let us now add some termsb and c. In interesting limit is
l5`, since therec can be set to zero. Adding a term pr
portional to b, the diffusing particle is allowed to branch
More precisely, two particles can meet at a timet. Then one
of the particles becomes inactive, before reappearing at s
later timet8.t. One can interprete this as

A1A→A1B, ~9.17!

B→A. ~9.18!

Particle B is completely inert, and does not diffuse aw
from its position of creation, before it decays into A aga
However note that any point in the future is equally likely
see B change back to A. This is very different from, e.g.

FIG. 9. The three phases of the flow diagrams on Fig. 6.

FIG. 10. A self-avoiding polymer.
01612
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spontaneous decay. This process is depicted on Fig. 11.b can
either come with a positive sign, or with a negative sign.
the sign is positive, this can be interpreted as the two p
ticles attracting to make the branching process. It is clear
after some critical threshold, the process and the phase
becomes unstable, since the induced attraction between
ticles tends to make them collapse at the same point in sp
and then annihilate. This leads to the runaway flow in ph
B-1 on Fig. 9. On the other hand, for negativeb, even a large
ubu does not lead to a collapse. This is why on Fig. 6 in t
case ofl5` the SAP phase witha,0 extends tob→
2`. This remains valid for finitel if in the full flow equa-
tions ~7.6! to ~7.8! c50 is set from the beginning. Howeve
the situation for finitel discussed in Eqs.~7.10! and ~7.11!
maps in the language of branching processes to a finite in
ratio betweena andb, parametrized byc5be2l, which re-
mains uncorrected under renormalization. The sec
branching processc being present, it can render the pha
SAP unstable to B-2. The vertexc is interpreted as

A→C, ~9.19!

A1C→A. ~9.20!

This means that a particle A becomes spontaneously inac
at some timet. It remains at positionx until at some time
t8.t another particle A comes by to free it. The reduced flo
equations for the combined situation are given in Eqs.~7.10!
and ~7.11!, and lead to the instability of the phase SAP i
duced by the branching processc.

X. LONG-RANGE ELASTICITY

Let us now study anisotropic depinning in the case o
manifold with long range~LR! elasticity, the elastic force in
Eq. ~2.1! being, in Fourier,

cq2uq,t→~cauqua1cq2!uq,t . ~10.1!

There are now two elastic constants, the LR oneca and the
short range~SR! one c2 , and we thus define the two
dimensional regularization parameters,

e52a2d, ~10.2!

k522a. ~10.3!

The case of most interest corresponds to the parameter
the contact line depinning,d51, a51, i.e.,e5k51.

FIG. 11. Self-avoidance plus branching.
1-14
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Power counting shows that disorder is perturbatively r
evant below the critical dimensiond,dc52a. Disorder is
thus relevant for the contact line case but the crucial ques
we investigate here is whether the KPZ terms are impor
there. Study of the contact line depinning is usually p
formed within ad52a2e expansion~see Ref.@19#! at fixed
a. This is the solid line in Fig. 12. However as soon
elasticity is long range (k.0) simple power counting show
that the KPZ terms are perturbatively irrelevant ford near
dc . Working at fixeda as, e.g.,a51 is thus not the bes
method. One alternative is to study the vicinity of the po
d54, a52 and perform adouble expansionboth fore andk
small. The idea is to determine a linedKPZ(a) in the (a,d)
plane below which the KPZ terms are important and mus
included. One can determine this line near the pointd54,
a52 and, by extrapolation, find on which side of the lin
lies the interesting casee5k51 ~see Fig. 12!.

Through the replacementq2→qa in the propagators o
the 1-loop diagrams of Sec. V, it is easy to derive the 1-lo
FRG equations for a generala, in the presence of a KPZ
term as in Eq.~2.1!. First one obtains as usual thatca is
uncorrected to all orders, and thus we setca51 in the fol-
lowing. Defining the dimensionless couplings

l̃5lL,
k2z , ~10.4!

D̃~u!5L,
2z2eD~uL,

2z! ~10.5!

within a Wilson scheme whereL,5Le2, is the running UV
cutoff, we find the flow equations:

], ln l̃5z2k2l̃2D̃~0!2l̃D̃8~01! ~10.6!

],D̃~u!5~e22z!D̃~u!1uzD̃8~u!12l̃2D̃~u!22D̃8~u!2

2D̃9~u!@D̃~u!2D̃~0!#. ~10.7!

We work to lowest order in bothe and k ~and thus neglec
the small changes in the coefficients of orderk! and define
the ratios

FIG. 12. Phase diagram in the (a,d) plane. The solid line ise
50. The dashed line corresponding to Eq.~10.11! separates the
domain where an infinitesimal KPZ term is relevant from tho
where it is irrelevant. At ordere2 this line will bend to the left, but
should not cross the pointd51 anda51.
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Of course the SR part of the elasticity is corrected:

], lnS c2

ca
D52k2l̃D̃8~01!2l̃2D̃~0! ~10.9!

and we will focus on situations where it is irrelevant~a con-
dition which must be checkeda posteriori!.

Note that since the LR elasticity is uncorrected, the
mensionless variables, contrary to Eq.~5.5!, are not divided
by c2 but by ca51 and their RG equations thus do n
contain additional contributions from the corrections toc2 .
As a resultl̃ has now nontrivial corrections and the Col
Hopf mapping no longer works, or has to be defined with
flowing l̃.

Before embarking on a more detailed analysis let us in
cate the main behavior we expect from Eqs.~10.6! and
~10.7!. For l̃50 one has the usual anisotropic depinni
fixed point studied in Ref.@19#. One can perform a linea
stability analysis of this FP for smalll̃. From Eq.~10.6! one
finds that linear stability holds provided

k.z iso5
e

3
1O~e2! ~10.10!

for the nonperiodic problem, andz iso50 for the periodic
case. This is the dashed line

dKPZ~a!55a26 ~10.11!

represented in Fig. 12. Ford.dKPZ(a) the isotropic FP is
stable. This is the case for the contact line depinning. On
other hand, one expects from Eqs.~10.6! and~10.7! that even
then, if the value ofl̃ is large enough, the RG may flow
again to KPZ strong coupling. This is the same runaway fl
as for SR elasticity. Both fixed points should be separated
an instable fixed point, of which we will show that it i
attainable perturbatively. Thus ford.dKPZ(a) we expect,
and find below,two phases: one wherel̃ flows to zero~de-
noted the ID phase! and one where the KPZ terms are im
portant~the AD phase!. The question is thus to determine th
basin of attraction of each phase and the critical~i.e., repul-
sive! fixed point which separates the two phases. Quite g
erally one expects a critical valuel̃* below whichl̃ flows to
zero and above which it runs away.

A simple argument, confirmed by the more detailed ana
sis presented below, allows to estimatel̃* for small values of
e, i.e., neard'dKPZ(a). SinceD̃(u) changes by orderl̃2 for
small l̃, the Eq.~10.6! gives the critical value

l̃k* 5
k2z iso

uD̃8~01!u
~10.12!

for small k̂2(z iso/e), whereD̃8(01)5O(e) takes its~nega-
tive! value for the isotropic depinning fixed point.
1-15
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Although analysis of the full FRG flow requires numeric
one can obtain some analytical information on the transit
between the isotropic phase and the anisotropic strong-K
coupling phase.

A. Nonperiodic systems

Let us start with nonperiodic systems and search fo
perturbative fixed point of the system~10.6!, ~10.7!. Interest-
ingly in that case, there is one, whose properties depend
tinuously onk̂5k/e.

For each value ofk̂ we can determine the FP through th
following construction. Given the reparametrization inva
ance~5.6! of Eq. ~10.7!, we can always set

D~0!5e, ~10.13!

and for each fixed value ofl̃ search numerically for a fixed
point function of Eq.~10.7! which decreases at infinity~short
range pinning force correlations of the random field typ!.
Interestingly we find, through explicit numerical integratio
that there is always one such solution, denoted byD

l̃
* (u), if

one tunesz to a value notedz(l̃). The resulting curve
z1(l̃)ªz(l̃)/e is plotted in Fig. 13. It starts atz(l̃50)
51/3 ~the isotropic value! and increases asl̃ increases.

Considering the fixed point equation of Eq.~10.7! at u
50 using Eq.~10.13! shows that the value ofD8(01) is a
simple expression:

D
l̃
* 8~01!52eA122z1~ l̃!12l̃2. ~10.14!

Thus, reporting this value, as well asD(0)5e in Eq. ~10.6!
we see that for each value ofk̂ we can determine the value o
l̃ by solving the equation

k̂5 f ~ l̃![z1~ l̃!2l̃21l̃A122z1~ l̃!12l̃2.
~10.15!

Denotingl̃k̂
* this solution, we obtain the FP functionD

l̃
k̂
*

* (u)

and the value of the roughness exponentz1(k̂)ªz1(l̃k̂
* ).

Comparing Eqs.~10.6! and~10.9! we note that the SR elasti
part is indeed irrelevant as soon asz.0, and thus the above
analysis is consistent.

FIG. 13. z15z/e as a function ofl̃ for LR elasticity. Note that

z1(2l̃)5z1(l̃).
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The curves f (l̃), f 21(k̂) and the resultingz1(k̂)
5z(l̃k̂

* )5z„f 21(k̂)… are plotted in Figs. 14 and 15, respe
tively.

One sees that there is a solution with a positivel̃k̂
* only if

k̂.kc51/3 consistent with the linear stability analysis give
above. The roughness exponent associated to this FP
increases continuously, as shown on Fig. 15, fromz151/3 to
larger values ask̂ increases beyondk̂c . In particular, since
we are interested in the pointk51, e51 of the (a,d) plane
~see Fig. 12! it is worthwhile to give the extrapolation

z~k̂51!50.7, ~10.16!

and l̃ k̂5151.037, values which give the simplest extrapo
tion for the contact-line depinning. One should however n
expect too high a precision from this crude estimate.

Thus we have found a nontrivial FP for this problem.
continuously depends onk/e and exists only fork/e.1/3.
The simplest scenario is that this FP is associated with
critical behavior at the transition between the phase wh
KPZ is irrelevant~isotropic depinning! and the phase wher
KPZ grows~anisotropic depinning!. To confirm it and check
that this FP has only one unstable direction one needs a m
detailed numerical analysis. Note that this is also indica
by an adiabatic approximation considering Eq.~10.6! alone

FIG. 14. The functionf (x) ~light! and z1(x) ~dark! defined in
the text. One can read offz1 as a function ofk̂ as follows: The

curve y5 f (x) yields l̃k̂ ~x axis! from k̂ ~y axis! and, in turn, one

readsz1(k̂) ~y axis! from l̃k̂ ~x axis! using the curvey5z1(x). This
is indicated by the arrows. The result is plotted in Fig. 15.

FIG. 15. z1(k̂), usingz(l̃) and l̃5 f 21(k̂).
1-16
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and assuming that the disorder does not vary, which yie
that the FP is repulsive iff 8(x).0 and attractive iff 8(x)
,0.

B. Periodic systems

In the periodic case, sincez50 is requested at any FP, w
see that we cannot enforce the SR-elasticity coefficientc2 to
scale to 0 under renormalization, since the FP condition ol̃
implies that Eq.~10.9! vanishes. However if we start with
small ratio ofc2 /ca or if the flow is such that this ratio get
small before we reach the fixed point, then it is legitimate
neglect the effect ofc2 . We restrict our analysis to that cas
and study Eqs.~10.6! and ~10.7! searching for a FP. A more
detailed numerical analysis of the flow equation is feasa

It can easily be seen that the form

D~u!5
e

l̃2
~a1be2ul̃1ceul̃! ~10.17!

is not exactly preserved by the flow anymore@e.g.,],D(u)

yields a term proportional toue2ul̃],l̃, through which
variations ofl̃, flow#. One can still however search for ex
ponential fixed points since thenl̃, does not flow. Equation
~10.7! yields the conditions

a12a214bc50, ~10.18!

b14ab1b21bc50, ~10.19!

c14ac1c21bc50 ~10.20!

and we can setc5be2l̃ to ensure periodicityD(u)5D(1
2u). We obtain the following fixed points:

b5
6el̃

A1134el̃1e2l̃

, ~10.21!

a52
1

4
7

11el̃

4A1134el̃1e2l̃

~10.22!

as well as two others (a521/2,b50) and (a50,b50).
The corresponding FP condition forl̃ gives

052k̂2a22be2l̃. ~10.23!

The FP with a positiveb is the one of interest. It is agai
presumably the boundary between the zero and strong
phases. The value ofl̃k̂ is given by the positive root of

4k̂511
el̃27

A1134el̃1e2l̃

, ~10.24!
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which reproduces Eq.~10.12!, l̃k̂;6k̂, to lowest order ink̂.
One finds thatl̃k̂ increases monotonically withk̂ and di-
vergesl̃k̂→1` as k̂→1/2. This suggests that fork̂>1/2
only the ID phase exists.

XI. CONCLUSION

In this paper we have reexamined the functional ren
malization group approach to anisotropic depinning. T
was mandatory since nonanalytic renormalized disorder
relators were found to be crucial already for isotropic dep
ning and were neglected in previous approaches of AD.

Indeed we have shown that the nonanalyticity of disor
arising beyond the Larkin length is crucial to generate
KPZ term, a first explicit field theoretic demonstration
how these terms appear at depinning. The resulting ano
lous terms in theb function modify the flow compared to
previous approaches in interesting ways. We found sev
nontrivial fixed points and for SR elasticity a Cole Ho
transformed theory which allows us to simplify considerab
perturbation theory and indicates that the KPZ couplingl/c
is uncorrected to all orders.

For LR elasticity we have found the domains of para
eters belonging to ID and AD, respectively. We found th
for the experimentally interesting case of contact-line dep
ning, two phases exist, ID and AD, and that the KPZ co
pling ~i.e., the anisotropy! should be large enough for the AD
class to apply~otherwise the ID exponents is expecte
@18,26#!. At the transition a larger value ofz'0.7e ~with e
51 for the contact line! is obtained. This scenario could b
checked in a numerical simulation. To make the compari
with experiments more accurate one should consider
more involved structure for the KPZ terms unveiled in@25#
but this can be done by methods similar to the one int
duced here.

For SR elasticity we have found interesting new fix
points. A bit disappointingly, they possess one unstable
rection and thus correspond to transient or critical behav
and not to the asymptotic behavior which instead is c
trolled by a runaway flow to a regime not perturbative
accessible by the present method. On the other hand, an
couraging result is that we found a class of disorder corre
tors ~in the form of exponentials! which should be invariant
to all orders. These correspond to a set of branching p
cesses which look tantalizingly close to the ones introdu
to describe reaction diffusion and directed percolation. M
work is necessary to understand this simpler equivalent c
of theories at strong coupling, as they may contain the ke
this conjectured connection between anisotropic depinn
and directed percolation~in d5111) and its generalizations
in terms of blocking surfaces~in higherd! and ultimately an
understanding of the upper critical dimension for this pro
lem.

A posteriori, it is not surprising that the present approa
yields again a flow to strong coupling KPZ, as it does in t
thermal version of the problem@23,24#. It is possible that as
in the thermal problem another representation, as e.g.
directed polymer, better exposes the physics and in partic
1-17
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what is missed in the present approach. The correspon
formulation would be

Z~x,t !5E
y~ t !5x

D@y~t!#

3expF2E
t8

t

dt
1

4T S dy

dt D 2

1
1

T
V„y~t!,t…G ,

~11.1!

i.e., a directed polymer in a random potential but with t
choiceT51/ĥ and the additional self-consistency conditio

V~y,t!5
l̂

cĥ2
FS y,

1

l̂
ln Z~y,t!D , ~11.2!

which relates the random potential to the pinning force a
to the free energy of the directed polymer and makes
problem analytically far more complex. It may possess si
lar physics and thus be amenable to some extended
approach which would better account~as it does for the ther
mal problem! for the coarse grained correlations in they
direction a property clearly not taken into account by t
present method, which treats correctly only correlations
the lnZ space.
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APPENDIX A: DIAGRAMS

We use the following model settingc5h51 to simplify
notations:

S5E
x,t

hûu̇2cûDu2lû~¹u!2 ~A1!

2
1

2 Ex,t,t8
ûxtûxt8D~uxt2uxt8!. ~A2!

One also has to specify a cutoff procedure. For convenie
we choseto set a mass term. This is justified at 1-loop ord
since the results are universal, i.e., cutoff independent
second order, one would have to be more careful and
e.g., an external momentum IR cutoff.

Many of the diagrams which we need are identical to
driven manifold problem atl50. These diagrams are de
tailed in @19#. Thenewdiagrams are
01612
ng

d
e

i-
G

n

n
gh

e,
r
t
e,

e

~A3!

~A4!

~A5!

~Note that D↔2p2.) Dots indicate omitted subleadin
terms

~A6!

~A7!

~A8!
1-18



d

s at
/

ave
in a

ith

pic
w

FUNCTIONAL RENORMALIZATION GROUP FOR . . . PHYSICAL REVIEW E 67, 016121 ~2003!
~A9!

. ~A10!

Therefore, we have the following corrections toc, h, l andd
~settingIª*k@1/(k21m2)2#, dropping finite terms ine, but
for the moment keeping the explicitd dependence!:

dc/c5F2~22d!

d
D8~01!l2

4

d
D~0!l2G I , ~A11!

dh/h52lD8~01!I , ~A12!

dl/l5F2
4

d
lD8~01!2

8

d
D~0!l21

4

d
D~0!l2G I ,

~A13!

dD~u!52D~u!2l2I . ~A14!

The coupling constant isl̂ªl/c. Note that its flow vanishes
at leading order in 1/e. We now check cancellations beyon
the leading order. We use

E
k
5AdE

0

`

dk kd21. ~A15!

The two diagrams proportional toD8(01) are

~A16!

. ~A17!

The sum~which gives the renormalization ofl̂) exactly van-
ishes.

The corrections proportional toD~0! are
01612
~A18!

~A19!

. ~A20!

The sum of the above three terms is

Ad

~42d!~d22!p cscS dp

2 D
24me . ~A21!

Note that

p cscS dp

2 D5
2

d24
1

p2~d24!

12
1

7p4~d24!3

2880
1¯ .

~A22!

So, working in a massive scheme, there are correction
order e, compared to the leading term which would be 1e.
We see that the fixed point of Stepanow@22# is—even if one
would accept his scheme—incorrect. However, as we h
already stated above, one should do the calculations
massless scheme.

APPENDIX B: LONG RANGE DISORDER

In this appendix we give a quick study of the case w
long range disorder in internal spacex. We show that one
recovers the Flory estimate of Sec. IV in the case of isotro
depinning. For anisotropic depinning we find a runaway flo
and cannot conclude.

We study

SDO5
1

2 Extx8t8
ẐxtẐx8t8l̂

2D~uxt2ux8t8! f ~x2x8!, ~B1!

f ~x!;x2a. ~B2!

We find the FRG equation for the LR disorder:

]D5eD1D~0!D91~22m!@lD8~01!1l2D~0!#D
~B3!
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with e542a, d large enough (d.a or more!. We have
absorbedeA in D with

A5E
q
C~q!2f ~q!. ~B4!

This is because the graphs leading to twoD(u)2 functions or
more do not contribute. This remains true to all orders;
spection forl50 shows that to two or three loops no co
rections arise, except anomalous terms~which, as we will see
are not needed as we find analytic fixed points!. So for l
50 the one loop result is probably exact to all orders.

The coefficientm comes from the corrections to the gr
dient term

@lD8~01!1l2D~0!#B, ~B5!

B5
1

2d Ex
x2f ~x!C~x!, ~B6!

m52B/A5
2~d24!

d
, ~B7!

with a54, d.4 ~note that it goes to 2 whend goes to
infinity!.

One easily finds the fixed points forl50. For periodic
disorder one has
v

s

E.

E.

s-
s

,

v.

,

ng

01612
-

D~u!5g cos~2pu!, ~B8!

]g5eg2~2p!2g2. ~B9!

The correlations are

^uu&5D̂~0!
f ~q!

q4 ;q2~d12z! ~B10!

with z5e/2 as if D~0! was uncorrected.
For nonperiodic disorder, rescalingD gives

D̃~u!5D̃~0!e2eu2/„6D̃~0!…, ~B11!

z5e/3. ~B12!

Thus the Flory estimate is exact. Note that the fact that
LR correlatorD̃(u) is analytic is not puzzling, since it gen
erates in turn a SR part which should be nonanalytic in or
to, e.g., successfully generate a depinning threshold forc

On the other hand, forl.0 we find that

D~u!5g cos~2pu!, ~B13!

]g5eg2~2p!2g21gl2g2 ~B14!

and there is thus a criticall beyond which there is no fixed
point. This seems also to be the case for RF. Because of
runaway flow we cannot conclude.
int

Z
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f
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