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Universal interface width distributions at the depinning threshold
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We compute the probability distribution of the interface width at the depinning threshold, using recent
powerful algorithms. It confirms the universality classes found previously. In all cases, the distribution is
surprisingly well approximated by a generalized Gaussian theory of independent modes which decay with a
characteristic propagatorG(q)51/qd12z; z, the roughness exponent, is computed independently. A functional
renormalization analysis explains this result and allows one to compute the small deviations, i.e., a universal
kurtosis ratio, in agreement with numerics. We stress the importance of the Gaussian theory to interpret
numerical data and experiments.
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The scaling properties of driven elastic interfaces in r
dom media play an important role in a wide variety of phy
cal situations, ranging from stochastic surface growth to
main walls in disordered magnetic materials, the spread
of fluids on rough substrates, and the dynamics of cra
@1,2#. These problems share many features with critical p
nomena and provide a challenge for theoretical approac
to disordered systems and nonequilibrium phenomena@3–8#.

Here we study interfaces described by a scalar he
function h(x), wherex is thed-dimensional internal coordi
nate. We measure the deviation from the mean position
u(x)5h(x)2^h&, where^•••& stands for the spatial averag
over all x of a given interface~cf. Fig. 1!. The mean square
width of asingleinterface,w2

„$u(x)%…5^u2&, can be used to
characterize its roughness, and explore universal proper
After averaging over the ensemble of interfaces,w2 grows
with the lateral extensionL of the system as

w2̄}L2z for L→`, ~1!

wherez is the roughness exponent.
An interesting property is that for positivez, w2 fluctu-

ates even in the thermodynamic limit@9–11#. This means
that the long-range geometric features of the interface are
characterized by the roughness exponent alone, but req
the complete probability distributionP(w2). P(w2) has been
computed for several linear stochastic growth equati
without disorder as the Edwards-Wilkinson model, t
Mullins-Herring model, and the one-dimensional Kard
Parisi-Zhang~KPZ! model @10,11#. In these models, the
probability distributionP(w2) can be rescaled into a form
independent of system size and of microscopic details

P~w2!5~1/w2̄!F~w2/w2̄! for L→`. ~2!

Although w2̄ may contain a nonuniversal scale, the functi
F(z) is universal. It has been argued that the shape ofP(w2)
can thus be used as a sensitive tool, distinct fromz, to dis-
tinguish between different universality classes@9–12#. Fur-
thermore,F(z) is expected to converge to ad function
1063-651X/2003/68~3!/036128~4!/$20.00 68 0361
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above the upper critical dimensionduc. This has motivated
attempts to determineduc for, e.g., the KPZ equation@13#.
Probability distributions of order parameters have receiv
much attention for magnetic systems@14# and for related
models such as polymers, spin glasses, and random diffu
@15#. The quantity we study here,P(w2), is the distribution
of the lowest order observable which tests the whole funct
h(x) for 0,x,L. It appears as a fundamental quantity
disordered systems.

The aim of this paper is to compute the width distributi
~WD! F(z) for elastic interfaces driven in random medi
exactly at the depinning threshold, numerically and fro
field theory. As in the linear problems treated earlier,
confirm the existence of universal properties in various
mensionsd and with several functional forms of the elasti
ity. The surprising finding is that in all casesP(w2) ~i.e., its
shape! is extremely wellapproximated by a simple genera
ized Gaussian approximation~GA!, without any fit param-
eter, and depends only onz, which is determined indepen
dently. This suggests that the complicated morphology
interfaces~cracks, domain walls, etc.! may be modeled by a
simple ansatz of independent modes with a characteristic
cay. This may have important consequences for the ana
of numerical and experimental data. Our numerical res
are then placed in the context of a functional renormalizat
group calculation, detailed in a companion paper@16#.

We consider the zero temperature equation of motion
an interface given by

FIG. 1. Example of a 111-dimensional periodic interfaceh(x)
~random walk! with mean valuê h& andu(x)5h(x)2^h&.
©2003 The American Physical Society28-1
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] th~x,t !52
]E

]h~x,t !
5 f 1h„x,h~x,t !…2

]Eel

]h~x,t !
, ~3!

where the functionalE($h,x%) represents the total energ
comprising potential energy due to the driving forcef, the
short-range correlated disorder forceh(x,h), as well as its
internal convex elastic energyEel . Equation~3! is nonlinear
and has not been solved exactly. We are interested in
depinning limit (f 5 f c) where the velocity of the elasti
manifold goes to zero. We use periodic boundary conditi
and recall that the WDF(z), although independent of sma
scale details, does depend on the boundary condition at l
scale.

For our numerical study we use very efficient algorithm
@17,18# which directly determine critical forcesf c as well as
the critical interfacehc(x) for a wide range of models. In
particular we calculate the WD for interfaces of dimensio
d51 andd52, where the elastic energy has the harmo
form Eel($h,x%);(“h)2. We have also tested the universa
ity of F(z) in d51, by means of a directed polymer mod
with an anharmonic quartic elasticity and for a lattice mo
with hard local constraint, which have the samez50.63
@19#. As expected,F(z) is always size independent and th
WD associated to nonharmonic models can be distinguis
from the one resulting from a harmonic elasticity. The h
monic models, in fact, have an exponentz51.2, and thus
belong to a different universality class.

For our field theory calculation we use the function
renormalization group method~FRG! originally developed to
one loop to describe the model with harmonic elasticity a
correct the predictions of dimensional reduction@4,5#. Re-
cently a renormalized field theory was constructed to 2-lo
order @7# which overcomes the deficiencies of the 1-lo
analysis; notably, it distinguishes between statics and dri
dynamics, and accounts for the large values of the rough
exponentz measured, e.g., in Refs.@18–20# in contrast to an
earlier conjecture@5# z5(42d)/3. We find that the FRG
yields the GA as a lowest order approximation ine542d
and allows one to compute universal ratios which probe h
cumulants ofP(w2) as well as deviations from the GA
These ratios provide a more sensitive analysis of the de
of the universality class. The simplest of them is the gen
alized kurtosis

R5

E
x,y

@u~x!2u~y!2#
c

2E
x,y

@u~x!u~y!#
2

, ~4!

where the superscriptc indicates the connected expectati
value.R is found to be small but nonzero. This proves th
the correct description of interfaces must go beyond
independent-mode picture.

To introduce the Gaussian approximation in the most
ementary way, we first recall@9# the simple periodic random
walk of sizeL, with a Fourier expansion
03612
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u~x!5 (
n51

`

an cosS 2pn

L
xD1bn sinS 2pn

L
xD . ~5!

The standard Gaussian probability measure associated
u, i.e., P@u#}exp@21

2*0
Ldx@]u(x)/]x#2# gives

P@u#}expF2 (
n51

`
~pn!2

L
~an

21bn
2!G . ~6!

The probability distribution

P~w2!5E D@u#d~w22^u2&!P@u# ~7!

is obtained from the generating function of its moments

W~l!5E
0

`

dw2 P~w2!e2lw2
. ~8!

Writing Eq. ~8! as an integral overan andbn , we obtain

Z~l!5 )
n51

` E dandbn e2[(pn)2/L](an
2
1bn

2)e2(l/2)(an
2
1bn

2),

~9!

W~l!5
Z~l!

Z~0!
5 )

n51

` S 11
l

2

L

~pn!2D 21

.

For the random walk Eq.~6!, P(w2) can be obtained exactly
by inverse Laplace transform of Eq.~9!:

P~w2!5
4p2

L (
n.0

n2~21!n11e22w2(pn)2/L. ~10!

Using w2̄52dW/dlul505L/12, Eq.~10! can be written in
a scaling form

F~z!5w2̄P~w2!, z5w2/w2̄

5
p2

3 (
n.0

n2~21!n11e2(p2/6)zn2
. ~11!

The size dependence thus appears only through the ave

width w2̄. We can generalize Eq.~6!, where each modean ,
bn has a weight}n2, to an arbitrary function of independen
Fourier modes:

Pgauss@u#}expF2
L

4 (
n.0

~an
21bn

2!G21S 2pn

L D G , ~12!

which, in real space, corresponds to

Pgauss@u#}expF2
1

2E0

LE
0

L

dx dy u~x!Gxy
21u~y!G . ~13!

The functionGxy5u(x)u(y) is the exact disorder-average
2-point function and can be computed from numerical da
8-2
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Thus one is able to obtainPgausseven for a finite system. In
the thermodynamic limit,Pgauss@u# is obtained from the be
havior of Gxy5Gx2y for large ux2yu ~small q), where
G(q);C/qd12z. This means that a single observablez de-
terminesPgauss@u# on large scales.

We again determine the generating function for the m
ments, but this time for arbitraryz andd:

W~l!5 )
qÞ0

„112l̃G~q!…21/2, ~14!

where l̃5l/L, q52pn/L, nPZd. Due to the symmetry
q↔2q, no fractional power appears in Eq.~14!, just like in
Eq. ~9!, where the exponent21 stems from the double sum
over hean andbn . An explicit sum over poles allows one t
obtainFgauss(z) for all z andd with excellent precision. All
GA interfaces$u(x)% can be directly sampled by Mont
Carlo methods. For details, including the extension to o
boundary conditions, see Refs.@12,21#

In Fig. 2 we compare the exact scaling functionF(z) to
Fgauss(z) for different models, usingG(n)5C/nd12z. The
roughness exponentz was previously obtained using bot
field theory@7# and numerical methods@18#. The agreemen
betweenF and Fgaussis clearly spectacular. The scatter
the data, visible in Fig. 2, is mostly due to the finite width
histogram bins.

Tiny, yet significant, differences betweenF andFgaussare
best resolved in the integrated probability distribution
which need no discretization. The difference between the
tegrated distributions ofF andFgaussis

DH~z!5E
0

z

dt@Fgauss~ t !2F~ t !#, ~15!

where H(z)5*0
zdtF(t) is the fraction of samples with a

renormalized width belowz. In Fig. 3, we showDH(z) ob-

FIG. 2. Scaling functionF(z) ~points! andFgauss(z) ~lines! for:
(111) –dimensional harmonic (L5256, 23105 samples, z
51.25), left; (111) –dimensional anharmonic (L5256, 23105

samples,z50.63), middle, and (211) –dimensional harmonic (L
532, 105 samples,z50.75), right. The scatter in the numeric
data is mostly due to binning. Notice that, ford51, the typical

value ofz is much smaller than its averagez̄51.
03612
-

n

,
-

tained fromN523105 independent samples. The absence
systematic finite-size effects shows that the asymptotic
gime of large interfaces has been reached and leads u
conclude that the exact distribution for large systems is
Gaussian. In fact, statistical fluctuations in this quantity
of order 1/AN and the signal would be drowned in the noi
if the number of samples was an order of magnitude sma

We now discuss the field theoretical calculation. To lo
est order in perturbation theory, we show that the generali
Gaussian approximation appears naturally. This is instruc
since it identifies the diagrams which are obtained by ass
ing the theory to be Gaussian, albeit nontrivial, since it
volves a nontrivial roughness exponentz. Using dynamical
field theoretic methods@7#, one starts again from the Laplac
transformW(l) and expands in powers of the correlator
the pinning forceD(u). To lowest order one finds@16# that
ln W(l) is the sum of all connected 1-loop diagrams. T
loop with N disorder vertices andN insertions ofw2 is

1

2N (
q

S 22l̃D~0!

~q2!2 D N

, ~16!

where the sums overq thus run over ad-dimensional lattice
with spacing 2p/L, and the zero mode is excluded, as a
propriate for periodic boundary conditions. Resumming E
~16! over q would give Eq.~14! with G(q);1/q4, i.e., the
dimensional reduction~Larkin! result. In fact, the FRG tells
us that the calculation should be performed with the runn
disorderD(0)→D l(0)5e(e22z) lD̃* (0), whereD̃* (0) is the
~nonuniversal! value of the fixed point@7#. For the present
case of periodic boundary conditions and momentum in
red cutoff, one can replacel→ ln(1/q), and finally obtain Eq.
~14! with G(q)5C/qd12z. This calculation is valid to domi-
nant order ine542d, i.e., neard54. When the same clas
of diagrams are resummed in anyd it leads to the GA, as we
now illustrate considering, e.g., the second connected cu
lant of the WD. This cumulant isnot connectedwith respect
to h, and thus there is an exact relation:

FIG. 3. Difference between the integrated distribution functio
of F andFgauss~with z51.25) obtained from 23105 independent
interfaces atL5256 ~continuum line! and L564 ~dashed line!, in
the d51 harmonic model.
8-3
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~w2!2
c
5~w2!22~w2!

2
52~11R!E

x,y
Gxy

2 . ~17!

The first term results from Wick’s theorem and would be t
full result if the measure were Gaussian. Analogous formu
exist for higher cumulants, and if the measure ofh is purely
Gaussian can be resummed into Eq.~14!. Even though the
GA is not exact, the deviations, given by the last term in E
~17! are expected to be small; indeed they are of ordere4.
Thus the GA is already exact to thetwo lowest leading or-
derse2 ande3, which explains why it is so accurate even
low dimension.

The calculation of the deviations using the field theory
delicate@16#. The kurtosisR in Eq. ~4!, which characterizes
the importance of non-Gaussian effects is found to beR5
20.13e2 to lowest order for smalle542d. It is easy to see
that this strongly overestimatesR in low dimensions. An-
other method is to work in fixed dimension and to truncate
one loop, yielding R520.036 (d53), R520.048 (d
52), R520.01 (d51). In view of the numerical results
given below, this seems to underestimateR. The small values
obtained in low dimensions arise from kinematic constrai
in the diagrams, presumably a genuine effect indicating la
corrections from higher orders ine to the aboveO(e2) even
in d53. Note that thesign of the result indicates a distribu
tion more peaked than a Gaussian and is in agreement
the only other known exact result@22# for the ~random field!
statics ind50, R520.080 865 . . . .

We have computed from Eq.~4! the generalized kurtosi
function, in a model-independent way. We have checked
the one-dimensional harmonic model that likeF(z), R is not
affected by finite-size effects and using 106 samples we find:
R520.05460.002 ~1D harmonic L5256); R520.067
60.002 ~1D anharmonicL564); R520.05360.002 ~2D
harmonicL532). As proven by FRG calculations,R is small
,
.

.
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,
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but definitely different from zero. Direct information on th
non-Gaussian effects can also be obtained from the Fou
transforms of the interfacesu(x) in Eq. ~5!. In Fourier space,
for d51, the expression ofR is

R5

(
n1 ,n2

~an1

2 1bn1

2 !~an2

2 1bn2

2 !
c

2(
n

~an
21bn

2!
2

. ~18!

We remark thatR detects correlations in the disorde
averaged fourth momentsuu(q1)u2uu(q2)u2, which cannot
simply be expressed through the second momentsuu(q)u2.

To summarize, we have computed both numerically a
within field theory the width distribution of critical configu
rations at depinning, with consistent results. The shape
the distributions are strongly dominated by the value of
roughness exponentz. On the other hand, it will be difficult
to distinguish different universality classes from the forms
F(z) if their roughness exponents are similar. Other univ
sal quantities, such as the kurtosis defined here, directly
volve the non-Gaussian part of the distribution. Their prec
determination still requires more work, both numerically a
within field theory. Also, since the WD is so tightly linked t
z, finite-size effects in both quantities are connected. Fin
size effects will need to be well understood in order to
solve open issues@6,20,23# concerningduc for the aniso-
tropic depinning class. It would be interesting to carry o
similar calculations on other pure and disordered models
particular for the equivalent static system.
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