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Can Nonlinear Elasticity Explain Contact-Line Roughness at Depinning?

Pierre Le Doussal,1 Kay Jörg Wiese,1 Elie Raphael,2 and Ramin Golestanian3
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We examine whether cubic nonlinearities, allowed by symmetry in the elastic energy of a contact line,
may result in a different universality class at depinning. Standard linear elasticity predicts a roughness
exponent � � 1=3 (one loop), � � 0:388� 0:002 (numerics) while experiments give � � 0:5. Within
functional renormalization group methods we find that a nonlocal Kardar-Parisi-Zhang-type term is
generated at depinning and grows under coarse graining. A fixed point with � � 0:45 (one loop) is
identified, showing that large enough cubic terms increase the roughness. This fixed point is unstable,
revealing a rough strong-coupling phase. Experimental study of contact angles � near �=2, where cubic
terms in the energy vanish, is suggested.
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Experiments measuring the roughness of the contact line
of a fluid wetting a disordered solid substrate have consis-
tently found a value � � 0:5 for the roughness exponent.
This result is highly reproducible from superfluid Helium
to viscous glycerol-water mixtures [1], and in situations
which can rather convincingly be argued to be at or very
near the depinning transition. Explaining this high value
for � poses a theoretical challenge. It may result in a
broader understanding of the depinning transition in other
systems, since similar values are also measured in cracks
[2].

The simplest elastic model of a contact line [3] consists
of an effective elastic energy, quadratic in the height field
h�x� (displacement in the solid plane), with nonlocal dis-
persion cjqj (long-range elasticity) due to the surface
tension of the fluid meniscus. Substrate inhomogeneities
are modeled by a random-field disorder coupling to h�x�.
The resulting model for the depinning transition of an
elastic manifold (generalized to d internal dimensions,
here d � 1) has been extensively studied, and the predic-
tions debated for some time. Functional renormaliza-
tion group (FRG) methods were developed initially to
one loop [4] predicting � � �=3 to all orders, here � �
2� d, identical to the statics of random field. Careful
analysis beyond one loop, however, revealed new irrevers-
ible terms in the renormalization group which clearly
distinguish statics and depinning, and yield � � �=3�1�
0:397�� �O��3� [5]. Novel high-precision numerical al-
gorithms found [6] � � 0:388� 0:002 midway between
the one- and two-loop results. This value is too low to
account for the experiments.

Various mechanisms have been proposed [7] such as
lateral waves or plastic-type dynamics. It is unclear
whether any of them are universal enough to explain the
robustness of the experimental values for � . More complex
dissipation mechanisms may be at play but they should not
be important for the roughness if, as believed [1], the
experiment is at quasistatic depinning.
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Before abandoning the elastic model, one must first
check for neglected effects. It has been known for some
time, for conventional linear elasticity cq2, that there is
another universality class, anisotropic depinning [8–10].
There, a nonlinear Kardar-Parisi-Zhang (KPZ) term
��rh�2 becomes relevant, resulting in a singular depen-
dence of the threshold force on rotation of the contact line
in the plane. That such a dissipative term is generated in the
equation of motion at velocity v > 0 is straightforward,
and it was shown recently within the FRG that it survives
[11] even at quasistatic depinning v! 0�, only if anisot-
ropy exists in the substrate disorder or in the motion of the
manifold. Although Ref. [11] shows that a larger exponent
is possible for long-range elasticity, an explanation based
on this term alone is problematic.

An important feature of the contact-line problem is that
at contact angles different from � � �=2 the symmetry
h! �h is absent. Thus the elastic energy contains cubic
nonlinear and nonlocal terms. The equation of motion thus
contains nonlinear terms breaking this symmetry, even in
the absence of a driving force [12]. Being different in
nature from the conventional dissipative KPZ term, it is
important to understand their effect at quasistatic depin-
ning. Their effect in the moving phase has been recently
investigated [12], and found to lead to a roughening tran-
sition analyzed in connection with the development of a
Landau-Levich film.

The aim of this Letter is to examine whether nonlinear
terms in the energy may result in a different universality
class at depinning. Although naively irrelevant, they do
generate at depinning a nonlocal Kardar-Parisi-Zhang-type
term which grows under coarse-graining. We find via a
FRG calculation two possible phases separated by a fixed
point at a critical value of the disorder. Interestingly, the
roughness exponent at this critical point is, within one-loop
accuracy, � � 0:45> 1=3. Although we do not control the
rough phase at strong disorder, this shows that � can be
increased by nonlinear terms. This growing nonlocal term
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also arises in the moving phase, with similar features and a
significantly smaller exponent. We discuss the interest of
studying the system for interfaces with contact angles in
the vicinity of � � �=2, the point where cubic terms in the
energy vanish.

Let us describe the model of Refs. [3,12] for a fluid
wetting a flat solid in coordinates suitable for any (global)
equilibrium contact angle � � �e; see Fig. 1. The liquid-air
interface (LA) is denoted by fx; y; z�x; y�g [flat when
z�x; y� � 0], the flat solid (S) surface by fx; y;�y tan�g.
They meet at the contact line y � h�x� cos�, included
in (S), the boundary condition z�x; y � h�x� cos�� �
�h�x� sin�. The total energy is E � ELA � ESL with

ELA�z	 � �LA

Z
dx
Z
y>h�x� cos�

dyA�z�x; y�	 (1)

ESL �
Z
dx
Z
y0>h�x�

dy0��x; y0�; (2)

where A �
�����������������������������������������
1� �@xz�2 � �@yz�2

q
gives the LA area, and

the wetting area energy density � � �SL � �AS is a ran-
dom function of the in-plane position (y0 � y= cos�).
Minimizing the LA interface energy ELA for fixed
h�x� yields the equilibrium profile zh�x; y�, and one can
show that the relation between force and contact angle
holds locally, �ELA�zh	=�h�x� � �LA cos��x�. One defines
the equilibrium contact-angle value �e via the average
force, i.e., through ��x; y0� � �LA cos�e � ~��x; y0� with
~��x; y0� � 0.

Expansion of ELA�zh	 up to third order in h proceeds by
solving r2zh � 0 in the form zh�x; y� �

R
q �qe

iqx�jqjy.
Solving for the boundary conditions and inserting in
ELA�zh	 yields, up to terms of O�h4�,

ELA�h	 �
c1

2

Z
q
jqjhqh�q

�
�
2

Z
q;k
�jq k kj � qk	hkhqh�q�k (3)

with c1 � �sin2���, � � c1 cos���. The form of the cubic
term eq1;q2;q3

hq1
hq2
hq3

,
P
qi � 0, with eq1;q2;q3
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FIG. 1. The geometry of the contact line.
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i<jqiqj��qiqj� is the only possibility imposing that e

is symmetric, is homogeneous of degree 2, and vanishes for
q1 � 0 (invariance under a uniform shift h�x� ! h�x� �
cst). As expected, the symmetry hk ! �hk is restored for
� � �=2 where � � 0. To the same order the general form
of the equation of motion (EOM) is

	@thk;t � �c�k�hk;t �
1

2

Z
q
��2�q; k� q� � �3��k; q�

� �3��k; k� q�	hq;thk�q;t

�
Z
x
�F�x; h�x� � vt�� f� 	v	e�ikx (4)

where the pinning force has correlator F�x; h�F�x0; h0� �
�d�x� x0���h� h0�, and a thermal noise may be added. In
view of later renormalization group calculations, we
slightly generalize the model, defining (with normalized
vectors q̂ � q=jqj)

�i�q1;q2�� jq1j
�jq2j

�fi�q̂1 � q̂2�; c�q��c�jqj
�: (5)

The contact line corresponds to � � 1. For reasons de-
tailed below we consider the parametrization:

f2�z���3�1�g�z����0; f3�z���3�1�g�z�� (6)

where g�z� � z or more generally an odd function with
g��1� � �1. This EOM is obtained from (3) in the sim-
plest case, which assumes fast relaxation of the meniscus
and dissipation via molecular jumps [12,13]:

	@th�x; t�����������������������
1��@xh�2

p �
��E�h	
�h�x; t�

� ��cos��x; t�� cos�e	� ~��x;h�x; t��; (7)

where 	 is a dissipative coefficient (note that the above
equation neglects viscous hydrodynamic losses inside the
moving liquid wedge [14]).

At zero or vanishingly small velocity, i.e., at the depin-
ning threshold, the nonlinearity �@xh�2 on the left-hand side
can be neglected to this order, and using the form (3) one
finds (4) and (6) with �3 � �, �0 � 0 and F�x; h� �
~��x; h�. These are the microscopic values, and we show
below that (5) and (6) are preserved under renormalization
group at depinning. The crucial point is that at the Larkin
length [15], defined as the length above which disorder
dominates over elasticity, the renormalized force correlator
becomes nonanalytic, reflecting the existence of meta-
stable states. A nonzero and positive value for �0, while
forbidden at the bare level by the potential form of the
EOM 	@th � ��E=�h, will then be generated at this
scale. It corresponds to a nonlocal Kardar-Parisi-Zhang-
type term. We now analyze (4).

FRG starts by calculating the 1-loop corrections to (4)
and its associated dynamical action, perturbatively in ��h�
and the �i. Graphical rules are given in Fig. 2. The graphs
representing the corrections to c�, �i, ��h�, and 	 are
shown in Fig. 3. To illustrate the main ideas, we explain
2-2



FIG. 2. The graphical rules: Propagator, disorder vertex, non-
linearity 
�2, and nonlinearity 
�3.
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how the first correction to c� is computed. It is the sum of
two terms,

�c�p��
��0�0��

c2
�

Z
k

jkj�jpj�

jk�pj�jkj�
f2�k̂ � p̂��

jpj�

jkj�
f3�p̂ � q̂�;

(8)

where q � ��p� k�. These are depicted on Fig. 4 in the
order of their appearance in (8). Denominators originate
from time integrals of the bare response Rk;t �
�	��1e�c�jkj

�t=	��t�, while numerators come from the cu-
bic vertices. The factor �0�0�� is �0�v�t� t0��, taken in the
limit of v! 0� and is nonvanishing only when the cusp is
formed, i.e., beyond the Larkin length. Expanding in van-
ishing external momentum p yields

�c� � �
�0�0��

c2
�

Z
k

1

jkj�
hf2�z� � f3��z�i; (9)

where hf�z�i denotes the angular average 

R

1
�1 dz�1�

z2��d�3=2�f�z� (with h1i � 1). Appearance of the combina-
tion hf2�z� � f3��z�i � 2�3 � �0 for arbitrary odd g�z� in
all graphs is a general feature and yields the (re)definition
of the vertex explained in Fig. 4. It gives the ‘‘anomalous’’
correction (i.e., resulting from the cusp) to c� to which the
second one of Fig. 3 must be added. One shows that there is
no correction to the nonlinear vertex function f3�z� be-
cause that would involve necessarily another f3 vertex with
an external h leg at zero external momentum, yielding
f3��1� � 0 (which remains true since there is no mecha-
nism to correct it). Thus one finds ��3 � 0. In the graphs
correcting f2 (second line of Fig. 3) appearance of the
above-mentioned combination implies that only the uni-
form part of f2, i.e., �0, is corrected:

��0 � �2�3 � �0�
2

�
�2

�0�0��

c3
�

Z
k
k�� � 3

��0�

c4
�
�0

Z
k

�
:

While in standard (thermal) KPZ the two corresponding
+

+ +

+ +

FIG. 3. The diagrams correcting c� (first line), �i (second
line), ��h� (third line), and 	 (last line). Only diagrams propor-
tional to �i are shown.
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diagrams have opposite sign because of the derivatives and
� is uncorrected (a consequence of Galilean invariance),
here the presence of absolute values of the momenta results
in the same sign.

Corrections to disorder (line 3 of Fig. 3) are the same as
in Ref. [11]. Power counting then leads to the definitions
~��h� � �d�2��2�

l c�2
� ��h���l �, ~�i � ����

l c�1
� �i, where

�l � �e�l is the running UV cutoff (e.g., in a Wilson
approach). One finally obtains the following set of FRG
equations (with � � 2�� d):

@l lnc� � ~�0�0���2 ~�3� ~�0��
~��0��2 ~�3� ~�0�~�0;

@l ln ~�3 � � ���@l lnc�;

@l ~�0 � �����@l lnc��~�0� 2~�0�0���2 ~�3� ~�0�
2

� 3~��0�~�0�2 ~�3� ~�0�
2;

@l ~��h� � ��� 2� � 2@l lnc��~��h�� �h~�0�h�

�
1

2
~��h�2 ~�2

0��
~�0�h�2� ~�00�h��~��h�� ~��0��	;

@l ln	�
1

2
~�0�0��~�0�

~�00�0��:

(10)

They admit the standard attractive depinning fixed point
corresponding to linear elasticity (isotropic IS depinning
class): ~�3 � ~�0 � 0 and ~��IS�h� with � � �=3 to this order
(corrected at two loops). To order �, this FP is stable to
adding a small nonzero �3; �0 which have linear eigen-
value � � �. This fixed point (FP) controls a phase with
small �0 and �3. �0 is generated from �3 beyond the Larkin
length and the ratio �0=�3 goes to a constant in this phase.

We found a second fixed point which controls at given
disorder the transition between the small ~�0 phase and a
large ~�0 regime (strong coupling). One easily sees that
the ratio ~�3=~�0 flows to zero at this transition. To look
for the FP one can thus set ~�3 � 0 and redefine �̂�h� �
�2

0
~��h=�0�, yielding

@l�̂�h� � ��� 2�̂ � 2�̂0�0�� � 2�̂�0�	�̂�h� � �̂h�̂0�h�

�
1

2
�̂�h�2 � ��̂0�h�2 � �̂00�h���̂�h� � �̂�0��	

with @l ln ~�0 � � � �̂ and �̂ � �� 3�̂0�0�� � 4�̂�0�. The
FP function obtained numerically �̂��h� � �fa�h� is posi-
tive and short ranged, and fa depends only on a � �=�;
the associated roughness exponent is

� � 0:450 512� (11)

for a � 1, which should be compared to the value �IS �
�=3 to the same 1-loop accuracy, demonstrating the in-
= +

FIG. 4. The first diagram from Fig. 3 correcting c�; see (8).
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crease in the roughness exponent due to nonlinearities.
Note that for linear elasticity higher-loop corrections fur-
ther increase [5] from 1=3 to the observed �IS � 0:388�
0:002 [6]. Since these corrections are also present here, it is
not unreasonable to expect a further increase of � into the
experimental range. The dynamical exponent is z � ��
@l ln�	=c�, i.e., z � 1� 0:205 213� yielding z � 0:794 87
for the physical case. As for anisotropic depinning, a third
exponent is necessary here,  � �@‘ lnc� � 0:170 449�,
and scaling yields the correlation length exponent 
 �
1=��� � �  � and the velocity-force exponent � �

�z� �� � 0:478 such that v
 �f� fc��. This fixed
point is unstable in one direction (leading eigenvalues
�1 � 0:938 and �2 � �1:23) consistent with the exis-
tence of two phases. The strong-coupling phase cannot
be accessed by the present method, but the increase of �
is likely to persist there. Since this FP is attractive in all
other directions the experiments may be susceptible to a
very long crossover dominated by this FP. This can be
tested by careful numerical integration of (10), not at-
tempted here.

The FRG equations (10) have been derived within a
double expansion in � and �. The question arises of
whether operators with more nonlocal derivatives jrj�h

jkj�h are indeed irrelevant, as suggested by power-
counting. A detailed analysis shows that in the space of
perturbations where one adds to ��hxt � hxt0 � the two
functions �2s�hxt � hxt0 ��jrj�hxt � jrj�hxt0 � � �2u�hxt �
hxt0 ��jrj�hxt � jrj�hxt0 �, the largest eigenvalue is �0:12
(for � � � � 1), indicating no additional instability of the
FP. These terms arise at the bare level for a more compli-
cated dynamics, but should not change the result in the
quasistatic limit studied here [16].

We now sketch the analysis of the moving case, very
near depinning, v > 0 small; for details see Ref. [16].
Since the generation of �0 is a new feature, we reexamine
Ref. [12]. At large scales in the moving phase the quenched
pinning force acts as a (thermal) white noise of strength 2D
(notation as in Ref. [12]) and thus 	 is uncorrected. Using
the same parametrization as above we find [17]

@l ln~c�� z���
1
4g�1�2r�;

@l ln ~�0� z���2�� 1
4g�1�2r�2;

@lg���d���g�g2�18�
3
4�1�2r�� 1

2�1�2r�2	;

(12)

with @l lnr � � 1
4 g�1� 2r�2 and we have defined ~c� �

c����z
l , ~�i � �i�

2���z���
l (i � 0; 3), ~D � D�d�2��z

l ,
g � ~c�3

�
~D~�2

0, and r � ~�3=~�0. These equations exhibit a
weak-coupling phase controlled by the g � 0 attractive
fixed point (which, in the physical case, corresponds to
logarithmic roughness � � 0) and a strong-coupling phase.
They are separated by a FP at g � g� � 8

11 �d� ��, with
universal values for the exponents z � �� 2

11 �d� �� and
� � ��d

2 �
3

11
d��

2 , i.e., for � � d � 1:

� � 0:273; z � 1:364: (13)
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This rather low value for � suggests that a scenario based
on a slowly moving contact line is not adequate to explain
the experimentally observed roughness.

In conclusion, we have examined using renormalization
group methods the effect of nonlinear elasticity for the
contact line at and near depinning. We found that even
for isotropic disorder, a nonlocal KPZ term is generated
and may, for large enough bare nonlinear elasticity and
disorder, destabilize the standard linear-elasticity depin-
ning fixed point, yielding values for the roughness expo-
nent compatible with experiments. This scenario could be
tested by high-precision numerics. It may also be explored
experimentally by carefully choosing the fluid and the
solid substrate [18]: since all odd nonlinear terms in the
elastic energy vanish at � � �=2 one can surmise that the
total effect of nonlinear terms, and hence the apparent
contact-line roughness, is minimal there [19].

We thank C. Guthmann, W. Krauth, S. Moulinet, E.
Rolley, A. Rosso, and T. Vilmin for interesting discussions.
2-4
[1] A. Prevost, E. Rolley, and C. Guthmann, Phys. Rev. B
65, 064517 (2002); S. Moulinet et al., Phys. Rev. E 69,
035103 (2004); Eur. Phys. J. E 8, 437 (2002).

[2] A. Delaplace, J. Schmittbuhl, and K. J. Måløy, Phys.
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