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Glassy Trapping of Manifolds in Nonpotential Random Flows
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We study the dynamics of polymers and elastic manifolds in nonpotential static random flows.
Barriers are found to be generated from combined effects of elasticity, disorder, and thermal fluctuations.
This leads to glassy trapping even in pure barrier-free divergenceless flows, with anomalously small
response to an applied force. We find a new renormalization-group fixed point at finite temperature
and compute the roughness, dynamical, and response exponents for directed and isotropic manifolds.
[S0031-9007(98)05374-5]
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There is a lot of current interest in nonequilibrium dy- particle studies [12], new features emerge such as the cru-
namics, ranging from the growth of domains of an orderecial role of internal elasticity in generating barriers. While
phase to driven dynamics of systems with broken symmebeing consistent with the Hartree resul{s— «) for long
tries [1]. Additional quenched disorder usually leads torange (LR) disorder [10], our present study yields new uni-
much slower dynamics [2]. The competition between theversal fixed points for short range (SR) disorder. It also
elasticity arising from the internal order, and the quenchedjeneralizes the dynamics of self-avoiding manifolds [13]
disorder gives rise to complex phenomena such as pirto a quenched disorder situation, although self-avoidance
ning and glassy behavior with ultraslow dynamics ands perturbatively less relevant in most regimes studied here.
an anomalously small response to external perturbation§.or real polymers, or gels, in realistic flows ours is mostly a
This happens in many experimental systems such as vortégy model which could be improved by including hydrody-
lattices in superconductors, random magnets, and chargemic forces. Nevertheless, some of the physics unveiled
density waves [3]. Up to now the study of pinning andhere will be present in more realistic situations, such as
glassy dynamics has focused potential systems [4,5], the existence of preferred regions in the flows. Inhomo-
typically an elastic manifold in a random potential [3,6]. geneities in polymer distribution and nonlinearitiesity’)
However, in many situations it is important to stusynpo-  can be investigated experimentally.
tentialdynamics in the presence of disorder, such as driven Let us illustrate how elasticity leads to a dynamical
systems on disordered substrates [7] or domain growth igeneration of barriers in a divergenceless flow. It is
the presence of shear [8]. One then expects interesting nemell known that for a single particle convected in such a
physics from the competition between, on one hand, disflow, the stationary measure At> 0 is spatially uniform
order and elasticity, which tend to create pinned or frozerand the drift velocity under an applied force is=
states, and, on the other hand, the energy pumped into thfe Remarkably as soon as one considers two coupled
system which tends to destroy glassy properties. Indeegarticles, preferred regions appeatr, e.g., in2tidlow,
the existence of pinning and_ barriers in nonpoyential sys- 2=l — 1) + ile + 8z + 71,
tems was proposed recently in the context of driven vortex (1)
lattices [7]. Related observations were made in (mostly =clz — )+ ilw — 8zn + 7,
mean field) models [9,10]. Since little is known aboutnon-, — . 1 iy, is the complex position of particlé, ¢
potential systems with disorder [11], itis of great interest tojs the elastic coupling, anty;n;) = 4T8;; is the ther-

study other examples. An outstanding question is wheth&ha| noise. Without disorders = 0, the motion is just
the effective temperature generated from the constant dis-

sipation does overwhelm static disorder.
In this Letter, we study a model of a polymer in a nonpo-
tential static random flow (a “randomly driven polymer”) @ ¢,
and its generalization to an elastic manifold. We work di- 5_\
rectly in finite dimension using a dynamical renormaliza-
tion group (RG). We study two cases: either the polymer >
is directed (each monomer sees a different flow) or it is (r
isotropic (all monomers are in the same flow); see Fig. 1.
Our main finding is that the physics is described by new / /
RG fixed points with botl” > 0 and finite disorder, lead-
ing to anomalous roughnegsand glassy trapping by the
flow [with sublinearv( f) ~ f¢]. Compared to the single FIG. 1. (a) Directed polymer; (b) isotropic chain.
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a collective rotation around the center (the matrix eigencase, except in the potential cage = 0, much studied
values areiw and —2c¢ + iw). At T > 0 there is free previously [3,6] which is preserved by RG.

collective diffusion andv = f as before. As soon as We study the time translational invariant steady state.
6 > 0 the zero mode disappears and the two particle©ne defines the radius of gyration (or roughness) expo-
converge towards the center (the eigenvaluesiare=  nent((r,, — rv)2) ~ |x — x'|*¢, the single monomer dif-
—c +iw * Jc* — 8%). This effect persists aI' > 0  fusion exponent(r,, — r.)?) ~ |t — ¢/|*”, and assumes
since one findg|z|?) = 2T(c* + 6%)/(c8?) (k = 1,2),  scaling behaviok(ry — ro0)2) ~ |x|%B(t/x%) with £ =

and thus there is a genuine bound state despite the divefy, The drift velocity under a small additional applied
genceless nature of the flow. The stationary conformaforce £ in (2) isv ~ (ry,)/t. We findv ~ £¢ at smallf,

tion is twisted sincézz;) = 2T(c + i8)/8>. Extending with ¢ > 1, and thus the polymer is trapped by the flow.
(1) to a directed chain, one finds similar results (the dewithout disorder one hagy = (2 — D)/2, v = (2 —
cay towards the center dt = 0 is exactly the problem  p)/4 for p < 2, and bounded fluctuations far > 2.

of spin depolarization [14]). Thus a directed polymer in e start with simple Flory (i.e., dimensional) estimates.

a flow will be attracted to regions where elastic energyBalancing all terms in (2) (e.g., for directed manifolds it
and dissipation are smaller (though the precise balance reeadsy /1 ~ r/x? ~ r~9/2x~P/2) yields
mains to be understood). Presumably polymers in realistic , _ 4—-D
flows will be repulsed by high vorticity regions. Nonlin- A= 20T = T4 5)
ear extensions of (1) W'".thL.’S show the generation of barTor directed and isotropic manifolds, respectively (with
riers. Similar effects exist if all monomers see the same; " tor LR disorder). This suggests that the manifold
flow (isotropic chain), reminiscent of the effectdiscoveredWiII be stretched by disorder [16]. We now study (2)
by Thual and Fauve [15]; mapping their Landau-Ginsburgand (3) using the dynamical genérating functiodal
function onto the complex positiar(x) of an elastic chain Dr DF e—Solri1=SulFF1+if? \with
in a2d nonpotential nonlinear flow, one sees that (even at[
T = 0) it may converge to stable localized (rotating and §, = f dPx dti?®(nd, — cVA)r® — nTirdire,
twisted) conformations(x, r) — zo(x)e'®’.

We now turn to our full disordered model where these 1 U (6)
effects can be studied quantitatively. We consider Lint = Y “,”,(”’xz)(wa)AaB(rxr — rom)he—y.
manifold of internal dimensionD parametrized by a o

; . e used dynamical RG methods, both via a Wilson
d-component field-*(x). The polymer corresponds t0 RG scheme (presented here) as in [7,17] and via multi-

b= I (x labels the monomers), and a single particle t015¢4| gperator product expansion as in [13,18] (detailed in
D = 0. We study the Langevin dynamics [19]). The free propagator B(x, 1) = ﬁ((rxz — r00)%o,

_ i

no;ry = cVirg + Falra,x] + {5 . (2)  and the free response functionRgx, 1) = 2(ie * ruo.
n is the friction, ¢ the elastic coefficient, and the Gauss-Equations (6) and (4) is invariant under the rescaling
ian thermal noise i ;;gff,» = 2T 8,p8(t — 1)8P(x — €'t t = &t r = eIyl } = @72 (=PRI} provided

x'). (---) denote thermal and the overbar denotes disorden — ne? 2 AL T — TR P=20TAI ¢ — cePl Also
averages. F,[r, x] is a Gaussian quenched random forcegr, — grrel* P26+ (directed case) angly;, —
field of correlations grpeld2B-@ 2l (isotropic case) witha = d every-

Folr, xJFa[r', x'1 = Aup(r — rhe—. (3) Where for SR forces. There are genericatiyeeindepen-

There are two main cases of interest. If the manifold isdent exponent, £, 8) and from them one gets

directed(e.g., a polymer oriented by an external field), then v=1{/z, ¢=C-0/Q=¢+pB), ()
hy_w = 8P(x — x'). If the manifold isisotropic (e.g., using f — feP*z )l 4y — yeld=Il Power counting
a Gaussian chain in a static flow), the force field doesit the Gaussian fixed point with no disorder = 2,
not depend on the internal coordinaig[r,x] = F,[r] B =0, { = (2 — D)/2] shows that disorder is relevant
and i, = 1. We consider a statistically rotationally when (Fig. 2)d < d%" = 4/(2 — D) for directed mani-
invariant force field with both a potentiél) (“electric’) ~ folds andd < d!*° = (4 + 2D)/(2 — D) for isotropic
and a divergence-fre€T’) part (“magnetic”). We thus manifolds ¢ < d. for LR disorder). Thus for directed
study correlatord ,5(r) = [ A;‘;Beilf-r with, at smallk ~ Polymers disorder is relevant faf <4 and for isotropi(_:
K K KK polymers ford < 6. Power counting and symmetries
AP ~ Kad[gL = 23 + gr<5a/3 - —= 2‘*)} (4)  show that the only relevant terms generated in perturbation
. K K are those in (6). To lowest ordé&r, ¢, n are corrected as
with [, = féTI)Z We are mostly interested BR corre- .. (d — Degr f b K—d
lated forcesa = d (force correlator decaying faster than nd r>0y.K
r~4). We also give results fdrR correlated forcegforce % [e,KzB(y,,) B e,Ksz]
correlator decaying as™“ with a < d). Note thatSR ’
random potentialsA ,5(K) ~ g.KoKp + §7(8apK? —
K.Kp) (formally a > d) renormalize to the random force

(8)

_ 8L 2 a—dr —K2>B(y,0) —K°B.,
Sc = —=— h,K ¥ — ,
“T2ap )" Le e
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and(d — 1)6n = (g./gr)n ST [20]. These expressions not obeyed by the exact Green'’s functions (since disorder
were simplified using the fluctuation dissipation theoremis nonpotential), it is within each scale of the RG. The FDT
(FDT) reIationG(t)%B(x, t) = TR(x,t). A useful feature Violation simply appears as a nontrivial renormalization of
of the present model is that, although the FDT relation| isl'. The relevant corrections to disorder read

— [ P Ak K+ (K AD K - SRR R, e BB (@)
x,y,7,7’ =

The smallP expansion in (9) is well behaved and becadng = €/B, attractive along the ling; = 0 (divergence-
of analyticity the only divergent terms generated are proiess flows). However, fob > 0, this line is not in the
portional tod, g yielding 6g; = dgr. One can thus take physical domain since, as discussed above, a fipiterm
the limit P — 0 [K/ = —K in (9)]. One checks explic- is generated and one flows kb, At I* one gets

itly from (9) that (i) starting withA,g(K) ~ g, K. Kz + _ _2-D

2r(8apK* — K, Kpg) with both g7 z 0andg; > OBone ¢=2+elap. L= + €/2bp).
generates SR random forces, and that (ii) a divergence-free 4—D 4 1 2/(2-D) (11)
random force field does not remain so. The RG equations bp = - —<—>

(specified to various cases below and in Table I) read 2-D D\2I[D/2]

)

d d
= = B+ Acgy, 7]—;7[ =2—-z+ B+ A8, ap = i—ng, and » and ¢ using (7) [22]. The ex-

Zdl pansion can be carried from any point of the line
ar _ 2-D -2+ B+ Arg;, d* = 4/(_2 — D). Optimizing overD™* as in [18] yields
Tdl the estimates ¢ = 0.625 = 0.02, z = 2.085 = 0.02,

g, = _ _ ) (10) ¢ =1.061 £ 0015, (d=3) and =09 *0.1,
8L (B—A)g.gr + Egy» z2=22%0.1,¢ = 1.182 = 0.08 (d = 2). For smalle,
dg, _ o S ¢ > {r and Flory is thus likely to be a lower bound [23].
i~ €sr T A+ E)ggr — Bgr (i) Directed manifolds, LR disorder—e =2 —
@ 2D)“ with ¢ < d. The novelty iség, g = 0 since the
() Directed manifolds, SR disorder-e =2 — (2 - | R part of the disorder is not renormalized [24]. The

D)2 Then/’l = 5D(y) and there is no correction to the dimensionless Coup”ng [ZELT = CgLT/T(a+2)/2 will

elastic coefﬂmenﬁc = 0 (guaranteed by the statistical tilt experience nontrivial renorrﬁa“zaﬁon’ only becauge

fﬁ/ mmetry [7|] ftor SR dand LdR dtISOI’der). tThv'Il?h: dO' and  renormalizes. Thus the rat ) & Is preserved which
ere are only two independent exponents. The dimension. . dlne of fixed pomts Thung(l) gl = ¢/B

less coupling [21] constant §;, = CA€gr /T +2/2, 2L
The RG flow is depicted in Fig. 3. There is a globally at- andg, (1) — gT This y'flds the continuously varying
exponentz = 2 + 28 o=, and { = {r holds to

tractive isotropic fixed point* atg, = g, = €/(B — A) - )
(note thatB > A) and the ling, — g, is preserved. The all ordersin ¢ in the LR case since neither the vertex aor
L g renormalize. As conjectured in [104, is found identical

potential linegr = 0 is preserved with a flow to strong o
coupling. There is anothepparentixed pointate; = 0, to the Hartree approximation [formula (12) [25] of [10]].
(iii) Isotropic manifolds (SR and LR disordes-Then

a e=D+2 - a%TD (a = d for SR disorder). The nov-
d elty is a renormalization of the elasticity of the manifold
) (it becomes stifferé¢ > 0) and thus a third nontrivial
SR disorder . K L
ierclevant exponent 3. The dimensionless constant ig;; =
4 Craraitz=r. For SR disorder the RG flow is similar to
B the directed case. There is a fully attractive (isotropic
LR bl
" d TABLE I. Coefficients of (10) One must setl = d*,
D = D*. One denoteg, = fo dt B(1,1)~%/2? with B(1,1) =
ASSY r[D/z]{(4t)(2 D)/2g=1/40 4 T2, L1} with T, =~ 1.7935.
disorder
irrelevant Ac Ay Ar B E A
H 2 2(d—1) d+2 167(d—1)
D dirSR 0 2 =22 24, 0 D D)( D )d/2
| | H 2 2(d—1) a+2
ol H 5 '3 ,4 dirtR 0 =2 22 =4, 0 0 o
. : : . iSOSR 4. o @Dl 42, - d2, 24D
FIG. 2. Regions in thed, D) plane where SR disorder is 24D d d 2 4T 2 e G e-pprr[ 2]
relevant for a directed manifold. Inset: Regiongdnd) where jsoLR ﬁ 1_1 % Q—ZZAT HEZAL p

SR or LR disorder is relevant for directed polymérs= 1.
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k' = %kc < k., where { — {y changes sign. For cutoffs (important to recover th& — 0 limit, or study
k* < k < k. the localization effects dominate. Together D > 4 where disorder is again perturbatively irrelevant
with the apparent separatrix in the flow, this suggests [7]). Here we are mostly interested i < 2, d near
two phases (a localized one and one with a continuously ~ dc. AL — =, and we can set expK’B.) =0 and

. . . ) 2D 2-D/2 .
varying ¢), which would be interesting to check by useB(x,0) = —(ZT,'A)SD(,, B(0,1) = 7(2{2')?&”),7/2 with §p =
i i 27P/2 — a— _ T'la/2] p—q
nonperturbative methods (as in [10]). s and [ e KBga=d — (47)~d/2 rEdfz%B /.

Thus elastic manifolds in static random flows are de- _ T/2] a—d/2-1(2=D\a/2 I — (7 _
scribed by new RG fixed points at finite disorder. There® ™ Wi/ff[f/f] 1+£}§1/2](47,73/2 : ( 2_) and ¢ 2
are similarities with the glass phase of manifolds in ran- D) T(a/2]5D (4) ,W'th a = dfor ESR disorder.
dom potentials[3,6], such as sublinear( f) response and 22 Continuation toD =0 yields £ =1+ 5, z =2+ ¢
anomalous roughness. The main difference is that here ~(Vith € =2 = d). Thisyieldsy = ;/z = 1/2 + O(e")

; - ) and ¢ =1 + € at I* which is the correct known result
a temperature is generated, which weakens disorder [26] ¢ e particle, obtained via a different RG [12].
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this new type of glassy behavior [27] and its consequences the crossover [12] LR-SR occurs gnot studied here).
for experimental systems such as polymers or gels in stati@5] Settingg, — %, g1 — g2 — (1 — 7)gr, and e — 5.
flows. A competition between localization and drivingwas ~ We have extended the calculation of [10] and obtained the
found for isotropic manifolds (correlated disorder). ¢ exponent for Hartree in agreement with (7).
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