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Glassy Trapping of Manifolds in Nonpotential Random Flows
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We study the dynamics of polymers and elastic manifolds in nonpotential static random flows.
Barriers are found to be generated from combined effects of elasticity, disorder, and thermal fluctuations.
This leads to glassy trapping even in pure barrier-free divergenceless flows, with anomalously small
response to an applied force. We find a new renormalization-group fixed point at finite temperature
and compute the roughness, dynamical, and response exponents for directed and isotropic manifolds.
[S0031-9007(98)05374-5]

PACS numbers: 64.60.Ak, 05.40.+j, 74.60.Ge, 82.35.+ t
ru-

i-
o
]
ce
re.
a
-
ed
s
-

l
s
a

ed
There is a lot of current interest in nonequilibrium dy
namics, ranging from the growth of domains of an order
phase to driven dynamics of systems with broken symm
tries [1]. Additional quenched disorder usually leads
much slower dynamics [2]. The competition between t
elasticity arising from the internal order, and the quench
disorder gives rise to complex phenomena such as p
ning and glassy behavior with ultraslow dynamics an
an anomalously small response to external perturbatio
This happens in many experimental systems such as vo
lattices in superconductors, random magnets, and cha
density waves [3]. Up to now the study of pinning an
glassy dynamics has focused onpotential systems [4,5],
typically an elastic manifold in a random potential [3,6
However, in many situations it is important to studynonpo-
tentialdynamics in the presence of disorder, such as driv
systems on disordered substrates [7] or domain growth
the presence of shear [8]. One then expects interesting
physics from the competition between, on one hand, d
order and elasticity, which tend to create pinned or froz
states, and, on the other hand, the energy pumped into
system which tends to destroy glassy properties. Inde
the existence of pinning and barriers in nonpotential sy
tems was proposed recently in the context of driven vort
lattices [7]. Related observations were made in (mos
mean field) models [9,10]. Since little is known about no
potential systems with disorder [11], it is of great interest
study other examples. An outstanding question is whet
the effective temperature generated from the constant
sipation does overwhelm static disorder.

In this Letter, we study a model of a polymer in a nonp
tential static random flow (a “randomly driven polymer”
and its generalization to an elastic manifold. We work d
rectly in finite dimension using a dynamical renormaliz
tion group (RG). We study two cases: either the polym
is directed (each monomer sees a different flow) or it
isotropic (all monomers are in the same flow); see Fig.
Our main finding is that the physics is described by ne
RG fixed points with bothT . 0 and finite disorder, lead-
ing to anomalous roughnessz and glassy trapping by the
flow [with sublinearys fd , ff]. Compared to the single
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particle studies [12], new features emerge such as the c
cial role of internal elasticity in generating barriers. While
being consistent with the Hartree resultssd ! `d for long
range (LR) disorder [10], our present study yields new un
versal fixed points for short range (SR) disorder. It als
generalizes the dynamics of self-avoiding manifolds [13
to a quenched disorder situation, although self-avoidan
is perturbatively less relevant in most regimes studied he
For real polymers, or gels, in realistic flows ours is mostly
toy model which could be improved by including hydrody
namic forces. Nevertheless, some of the physics unveil
here will be present in more realistic situations, such a
the existence of preferred regions in the flows. Inhomo
geneities in polymer distribution and nonlinearities inys fd
can be investigated experimentally.

Let us illustrate how elasticity leads to a dynamica
generation of barriers in a divergenceless flow. It i
well known that for a single particle convected in such
flow, the stationary measure atT . 0 is spatially uniform
and the drift velocity under an applied force isy ­
f. Remarkably as soon as one considers two coupl
particles, preferred regions appear, e.g., in the2d flow,

Ùz1 ­ csz2 2 z1d 1 isv 1 ddz1 1 h1 ,

Ùz2 ­ csz1 2 z2d 1 isv 2 ddz2 1 h2 ,
(1)

zk ­ xk 1 iyk is the complex position of particlek, c
is the elastic coupling, andkhih

p
j l ­ 4Tdij is the ther-

mal noise. Without disorder,d ­ 0, the motion is just

FIG. 1. (a) Directed polymer; (b) isotropic chain.
© 1998 The American Physical Society
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a collective rotation around the center (the matrix eige
values areiv and 22c 1 iv). At T . 0 there is free
collective diffusion andy ­ f as before. As soon as
d . 0 the zero mode disappears and the two particl
converge towards the center (the eigenvalues arel6 ­
2c 1 iv 6

p
c2 2 d2). This effect persists atT . 0

since one findskjzkj2l ­ 2T sc2 1 d2dyscd2d sk ­ 1, 2d,
and thus there is a genuine bound state despite the div
genceless nature of the flow. The stationary conform
tion is twisted sincekz1zp

2 l ­ 2T sc 1 iddyd2. Extending
(1) to a directed chain, one finds similar results (the d
cay towards the center atT ­ 0 is exactly the problem
of spin depolarization [14]). Thus a directed polymer i
a flow will be attracted to regions where elastic energ
and dissipation are smaller (though the precise balance
mains to be understood). Presumably polymers in realis
flows will be repulsed by high vorticity regions. Nonlin-
ear extensions of (1) will thus show the generation of ba
riers. Similar effects exist if all monomers see the sam
flow (isotropic chain), reminiscent of the effect discovere
by Thual and Fauve [15]; mapping their Landau-Ginsbu
function onto the complex positionzsxd of an elastic chain
in a 2d nonpotential nonlinear flow, one sees that (even
T ­ 0) it may converge to stable localized (rotating an
twisted) conformationszsx, td ! z0sxdeivt .

We now turn to our full disordered model where thes
effects can be studied quantitatively. We consider
manifold of internal dimensionD parametrized by a
d-component fieldrasxd. The polymer corresponds to
D ­ 1 (x labels the monomers), and a single particle
D ­ 0. We study the Langevin dynamics

h≠tr
a
xt ­ c=2

xra
xt 1 Fafrxt , xg 1 z a

xt . (2)
h is the friction,c the elastic coefficient, and the Gauss
ian thermal noise iskz a

xt z
b
x0t0l ­ 2hTdabdst 2 t0ddDsx 2

x0d. k· · ·l denote thermal and the overbar denotes disord
averages.Fafr , xg is a Gaussian quenched random forc
field of correlations

Fafr , xgFbfr 0, x0g ­ Dabsr 2 r 0dhx2x0 . (3)
There are two main cases of interest. If the manifold
directed(e.g., a polymer oriented by an external field), the
hx2x0 ­ dDsx 2 x0d. If the manifold is isotropic (e.g.,
a Gaussian chain in a static flow), the force field doe
not depend on the internal coordinateFafr , xg ­ Fafrg
and hx2x0 ­ 1. We consider a statistically rotationally
invariant force field with both a potentialsLd (“electric”)
and a divergence-freesTd part (“magnetic”). We thus
study correlatorsDabsrd ­

R
K D

ab
K eiK?r with, at smallK

D
ab
K , Ka2d

∑
gL

KaKb

K2
1 gT

µ
dab 2

KaKb

K2

∂∏
, (4)

with
R

K ­
R ddK

s2pdd . We are mostly interested inSR corre-
lated forcesa ­ d (force correlator decaying faster than
r2d). We also give results forLR correlated forces(force
correlator decaying asr2a with a , d ). Note thatSR
random potentialsDabsKd , g̃LKaKb 1 g̃T sdabK2 2

KaKbd (formally a . d ) renormalize to the random force
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case, except in the potential casegT ­ 0, much studied
previously [3,6] which is preserved by RG.

We study the time translational invariant steady state
One defines the radius of gyration (or roughness) expo
nentksrxt 2 rx0td2l , jx 2 x0j2z , the single monomer dif-
fusion exponentksrxt 2 rxt0d2l , jt 2 t0j2n, and assumes
scaling behaviorksrxt 2 r00d2l , jxj2z Bstyxzd with z ­
zn. The drift velocity under a small additional applied
forcef in (2) isy , krxtlyt. We findy , ff at smallf,
with f . 1, and thus the polymer is trapped by the flow.
Without disorder one hasz0 ­ s2 2 Ddy2, n0 ­ s2 2

Ddy4 for D , 2, and bounded fluctuations forD . 2.
We start with simple Flory (i.e., dimensional) estimates.

Balancing all terms in (2) (e.g., for directed manifolds it
readsryt , ryx2 , r2dy2x2Dy2) yields

z dir
F ­ 2ndir

F ­
4 2 D
2 1 d

(5)

for directed and isotropic manifolds, respectively (with
d ! a for LR disorder). This suggests that the manifold
will be stretched by disorder [16]. We now study (2)
and (3) using the dynamical generating functionalZ ­R

Dr Dr̂ e2S0fr ,r̂g2Sintfr ,r̂g1ifr̂ with

S0 ­
Z

dDx dt ir̂a
xtsh≠t 2 c=2

xdra
xt 2 hTir̂a

xt ir̂
a
xt ,

Sint ­ 2
1
2

Z
x,x0,t,t0

sir̂a
xtd sir̂

b
x0t0dDabsrxt 2 rx0t0dhx2x0 .

(6)

We used dynamical RG methods, both via a Wilson
RG scheme (presented here) as in [7,17] and via multi
local operator product expansion as in [13,18] (detailed in
[19]). The free propagator isBsx, td ­ 1

2d ksrxt 2 r00d2l0,
and the free response function isRsx, td ­ 1

d kir̂00 ? rxtl0.
Equations (6) and (4) is invariant under the rescalingx ­
e0t0, t ­ ezlt0, r ­ ez lr 0, r̂ ­ es22z2z 2D1bdl r̂ 0, provided
h ! hes22z1bdl , T ! Tes22D22z1bdl , c ! cebl. Also
gT ,L ! gT ,Lef42D12b2sa12dz gl (directed case) andgT ,L !

gT ,Lef412b2sa12dzgl (isotropic case) witha ­ d every-
where for SR forces. There are genericallythreeindepen-
dent exponentssz, z , bd and from them one gets

n ­ zyz, f ­ sz 2 z dys2 2 z 1 bd , (7)
using f ! fesD1z1adl , y ! yesz 2zdl . Power counting
at the Gaussian fixed point with no disorder [z ­ 2,
b ­ 0, z ­ s2 2 Ddy2] shows that disorder is relevant
when (Fig. 2)d , ddir

c ­ 4ys2 2 Dd for directed mani-
folds and d , diso

c ­ s4 1 2Ddys2 2 Dd for isotropic
manifolds (a , dc for LR disorder). Thus for directed
polymers disorder is relevant ford , 4 and for isotropic
polymers for d , 6. Power counting and symmetries
show that the only relevant terms generated in perturbatio
are those in (6). To lowest orderT , c, h are corrected as

dT ­
sd 2 1dgT

hd

Z
t.0,y,K

hyKa2d

3 fe2K2Bs y,td 2 e2K2B` g , (8)

dc ­
gL

2dD

Z
y,K

y2hyKa2dfe2K2Bs y,0d 2 e2K2B` g ,
2363
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s er
T
of
andsd 2 1ddh ­ s gLygT dhdT [20]. These expression
were simplified using the fluctuation dissipation theore
(FDT) relationustd d

dt Bsx, td ­ TRsx, td. A useful feature
of the present model is that, although the FDT relation
2364
m

is

not obeyed by the exact Green’s functions (since disord
is nonpotential), it is within each scale of the RG. The FD
violation simply appears as a nontrivial renormalization
T . The relevant corrections to disorder read
dD
ab
P ­

Z
x,y,t,t 0

Z
K ,K 0­P2K

fDab
K sK ? DK 0 ? Kd 1 sK 0 ? Da

Kd sK ? D
b
K 0dgRx,tRy,t0 hx2yeK?K 0sBx,t1By,t0 d. (9)
e

ic
The smallP expansion in (9) is well behaved and becaus
of analyticity the only divergent terms generated are pr
portional todab yielding dgL ­ dgT . One can thus take
the limit P ! 0 [K 0 ­ 2K in (9)]. One checks explic-
itly from (9) that (i) starting withDabsKd , g̃LKaKb 1

g̃T sdabK2 2 KaKbd with both g̃T . 0 and g̃L . 0 one
generates SR random forces, and that (ii) a divergence-f
random force field does not remain so. The RG equatio
(specified to various cases below and in Table I) read

dc
cdl

­ b 1 AcgL,
dh

hdl
­ 2 2 z 1 b 1 AhgL ,

dT
Tdl

­ 2 2 D 2 2z 1 b 1 AT gT ,

dgL

dl
­ egL 2 sB 2 Ad gLgT 1 Eg2

L ,
(10)

dgT

dl
­ egT 1 sA 1 Ed gLgT 2 Bg2

T .

(i) Directed manifolds, SR disorder.—e ­ 2 2 s2 2

Dd d
2 . Thenhy ­ dDs yd, and there is no correction to the

elastic coefficientdc ­ 0 (guaranteed by the statistical tilt
symmetry [7] for SR and LR disorder). Thusb ­ 0 and
there are only two independent exponents. The dimensio
less coupling [21] constant isgT ,L ­ CLegT ,LyT sd12dy2.
The RG flow is depicted in Fig. 3. There is a globally at
tractive isotropic fixed pointIp at gL ­ gT ­ eysB 2 Ad
(note thatB . A) and the linegL ­ gT is preserved. The
potential linegT ­ 0 is preserved with a flow to strong
coupling. There is anotherapparentfixed point atgL ­ 0,

FIG. 2. Regions in thesd, Dd plane where SR disorder is
relevant for a directed manifold. Inset: Regions insa, dd where
SR or LR disorder is relevant for directed polymersD ­ 1.
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gT ­ eyB, attractive along the linegL ­ 0 (divergence-
less flows). However, forD . 0, this line is not in the
physical domain since, as discussed above, a finitegL term
is generated and one flows toIp. At Ip one gets

z ­ 2 1 eyaDp , z ­
2 2 D

2
1 eys2bDp d ,

bD ­
4 2 D
2 2 D

2
4
D

µ
1

2GfDy2g

∂2ys22Dd
,

(11)

aD ­
21D
22D bD, and n and f using (7) [22]. The ex-

pansion can be carried from any point of the lin
dp ­ 4ys2 2 Dpd. Optimizing overDp as in [18] yields
the estimates z ­ 0.625 6 0.02, z ­ 2.085 6 0.02,
f ­ 1.061 6 0.015, sd ­ 3d and z ­ 0.9 6 0.1,
z ­ 2.2 6 0.1, f ­ 1.182 6 0.08 sd ­ 2d. For small ,
z . zF and Flory is thus likely to be a lower bound [23].

(ii) Directed manifolds, LR disorder.—e ­ 2 2
s22Dda

2 with a , d. The novelty isdgL,R ­ 0 since the
LR part of the disorder is not renormalized [24]. The
dimensionless coupling [21]gL,T ­ CgL,T yT sa12dy2 will
experience nontrivial renormalization only becauseT
renormalizes. Thus the ratiogLsld

gT sld ­ gL

gT
is preserved which

leads to aline of fixed points. ThusgT sld ! gp
T ­ eyB

andgLsld !
gL

gT
gp

T . This yields the continuously varying
exponentz ­ 2 1 2 gL

gT

e

s21ad sd21d , and z ­ zF holds to
all orders in in the LR case since neither the vertex norc
renormalize. As conjectured in [10],n is found identical
to the Hartree approximation [formula (12) [25] of [10] ].

(iii) Isotropic manifolds (SR and LR disorder).—Then
e ­ D 1 2 2 a

22D
2 (a ­ d for SR disorder). The nov-

elty is a renormalization of the elasticity of the manifold
(it becomes stifferdc . 0) and thus a third nontrivial
exponent b. The dimensionless constant isgT ,L ­
C

gT ,L

T s21ady2cs22ady2 . For SR disorder the RG flow is similar to
the directed case. There is a fully attractive (isotrop

TABLE I. Coefficients of (10). One must setd ­ dp,
D ­ Dp. One denotesIa ­

R1`

0 dt B̃s1, td2ay2 with B̃s1, td ­
1

GfDy2g hs4tds22Ddy2e21ys4td 1 Gf D
2 , 1

4t gj with Ĩd­6 ø 1.7935.

Ac Ah AT B E A

dirSR 0 2
d

2sd21d
d

d12
2 AT 0 16psd21d

dsd22d s22Dd s SD
4p ddy2

dirLR 0 2
d

2sd21d
d

a12
2 AT 0 0

isoSR 1
2dD

Id

d
sd21dId

d
d12

2 AT
d22

2 Ac
2sd21dGf D

22D
g2

dsd22d s22Dd2Gf 2D
22D

g
isoLR 1

2dD
Ia
d

sd21dIa

d
a12

2 AT
a22

2 Ac 0
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FIG. 3. RG flows (a) directed manifolds with SR disorde
The physics is controlled by a fixed pointIp at gT ­ gL.
(b) Isotropic manifolds LR disorder. The flow is along straig
lines, with a line of fixed pointsL and an apparent separatrix
z 2 z0 changes sign suggesting progressive localization.

disorder) fixed pointIp at gT ­ gL ­ 1ysB 2 E 2 Ad.
As before, LR disorder is not renormalized, the flo
lines are gLsld

gT sld ­
gL

gT
­ k, and there is a line of fixed

points gT ­ eysB 2 kEd, gL ­ kgT parametrized
by k. The general formula for the exponent isz ­
s2 2 Ddy2 1 esAT 2 kAcdy2sB 2 kE 2 Ad, z ­ 2 1

kesAh 2 AcdysB 2 kE 2 Ad, and b ­ 2keAcysB 2

kE 2 Ad, with the values given in Table I (and se
k ­ 1 for SR). For SR disorder this yields forD ­ 1,
z ­ 0.5 1 0.13e, z ­ 2 1 0.04e, b ­ 20.015e.
Extrapolations as in [18] suggestz ­ 0.85 6 0.1,
z ­ 2.1 6 0.1, b ­ 20.025 6 0.01 for polymers in
d ­ 3. For LR disorder the line of fixed points is no
parallel to the axis any more (Fig. 3), and there isno
fixed point for k . kc ­ ByE. There is even a value
kp ­

a22
a12 kc , kc, where z 2 z0 changes sign. For

kp , k , kc the localization effects dominate. Togeth
with the apparent separatrix in the flow, this sugge
two phases (a localized one and one with a continuou
varying z ), which would be interesting to check b
nonperturbative methods (as in [10]).

Thus elastic manifolds in static random flows are d
scribed by new RG fixed points at finite disorder. The
are similarities with the glass phase of manifolds in ra
dompotentials[3,6], such as sublinearys fd response and
anomalous roughness. The main difference is that h
a temperature is generated, which weakens disorder
[and renders the fixed point perturbatively accessible
the coupling isgyT sd12dy2]. Numerical simulations would
also help to check present results and further investig
this new type of glassy behavior [27] and its consequen
for experimental systems such as polymers or gels in st
flows. A competition between localization and driving w
found for isotropic manifolds (correlated disorder).
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