
PHYSICAL REVIEW B 87, 214201 (2013)

Exact form of the exponential correlation function in the glassy super-rough phase
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We consider the random-phase sine-Gordon model in two dimensions. It describes two-dimensional
elastic systems with random periodic disorder, such as pinned flux-line arrays, random field XY models,
and surfaces of disordered crystals. The model exhibits a super-rough glass phase at low temperature
T < Tc with relative displacements growing with distance r as 〈[θ (r) − θ (0)]2〉 � A(τ ) ln2(r/a), where
A(τ ) = 2τ 2 − 2τ 3 + O(τ 4) near the transition and τ = 1 − T/Tc. We calculate all higher cumulants and
show that they grow as 〈[θ (r) − θ (0)]2n〉c � [2(−1)n+1(2n)!ζ (2n − 1)τ 2 + O(τ 3)] ln(r/a), n � 2, where ζ is
the Riemann ζ function. By summation, we obtain the decay of the exponential correlation function as
〈eiq[θ(r)−θ(0)]〉 � (a/r)η(q) exp ( − 1

2A(q) ln2(r/a)), where η(q) andA(q) are obtained for arbitrary q � 1 to leading
order in τ . The anomalous exponent is η(q) = cq2 − τ 2q2[2γE + ψ(q) + ψ(−q)] in terms of the digamma
function ψ , where c is nonuniversal and γE is the Euler constant. The correlation function shows a faster decay
at q = 1, corresponding to fermion operators in the dual picture, which should be visible in Bragg scattering
experiments.
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I. INTRODUCTION AND MAIN RESULTS

The random-phase sine-Gordon model is the simplest
model to describe the effect of quenched disorder on a periodic
elastic system, the so-called random periodic class.1–6 It
models a host of experimental systems in presence of substrate
impurities, such as charge-density waves, vortex lattices,7,8

random-field XY models,1,9–11 and smectic liquid crystals12

in situations where topological defects are absent, or can be
ignored, allowing for an elastic description. In the simplest
situation, the displacement fields from the perfect periodic
position are encoded by a 2π periodic one-component phase
field θ (x). In a one-dimensional crystal of spacing a with
elastic displacements u(x), the phase field is θ (x) = G0u(x),
where G0 = 2π/a is the smallest reciprocal lattice vector. In
three dimensions, the random-phase sine-Gordon model was
used to predict the existence of a Bragg-glass phase, which
is a glass pinned by (weak) quenched disorder, but which
also retains topological order (no dislocations) and nearly
perfect translational order8,13–15 called quasiorder. Diffraction
experiments16 measure the spatial correlations of the field
eiqθ(x) for q = 1. In that case, the elastic description predicts
a power-law decay of these correlations due to quenched
disorder,8,13,17 characteristic of a quasiordered phase and
leading to divergent Bragg peaks in the experiments. At
stronger disorder, the presence of free topological defects is
expected to lead to an exponential decay of these correlations
with distance, as quasiorder is destroyed.

Quasiorder usually arises when the phase field deformations
θ (x) − θ (0) grow logarithmically with scale x, leading to
power law scaling for the exponential field eiqθ(x). To probe
deeper the properties of the phase field θ (x) in a quasiordered
phase, it would be useful to predict, and to measure, these
correlations for q not necessarily an integer. One example
with q = 1/2 would be a spin density wave, e.g., of XY sym-
metry S = Aeiφ , submitted to time-reversal invariant disorder,
such as random anisotropy,9 i.e., which couples to 2φ ≡ θ .
Arbitrary values of q would allow to probe the probability

distribution of the phase deformations θ (x) − θ (0) and to
characterize the multifractal properties of the exponential field.
Here, we restrict to the case of a d = 2 dimensional periodic
system, leaving the study of d > 2 for an upcoming work.18

In two-dimensional periodic systems with quenched disor-
der, thermal fluctuations play a more important role than in
three-dimensional ones. As was discovered in the pioneering
work of Cardy and Ostlund,1 they induce a phase transition
at some critical temperature Tc to a high-temperature phase
where disorder is irrelevant. For T < Tc, a glass phase exists
in this model, which has been investigated in a number of
works.1–4,19,20 A very nice realization of this model in terms
of crystal surfaces was described by Toner and DiVincenzo.2

Since it allows, in principle, to measure the exponential
correlation for any q, we now recall the basic phenomenology
of surfaces. Note that another interesting realization of the
Cardy-Ostlund model was obtained recently in the context of
a smectic with surface disorder.21,22

Perfect crystals are characterized by an ideal lattice. At high
temperatures, the thermal motion of the atoms overwhelms the
lattice potential, and the crystal melts. In the present article,
we consider physical effects that occur at significantly lower
temperatures. Consider the atoms at the surface of a crystal,
they can more easily be displaced from their equilibrium
positions by thermal fluctuations, since they reside at the
boundary between the crystal and, usually, a fluid. They feel
the periodic potential created by the bulk of the crystal, as
well as a more uniform potential from the fluid. At low
temperatures, surface atoms are not displaced significantly
from their equilibrium positions determined by the bulk
potential, the surface is flat, and the atoms are ideally arranged.
At higher temperatures, the thermal motion of surface atoms
becomes significant, and they are randomly displaced, forming
a rough fluctuating surface. The periodic potential is destroyed
by thermal effects, a phenomenon known as the roughening
transition.23,24

On the other hand, real crystals always experience some
kind of disorder that tends to diminish the infinite correlation

214201-11098-0121/2013/87(21)/214201(16) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.214201


LE DOUSSAL, RISTIVOJEVIC, AND WIESE PHYSICAL REVIEW B 87, 214201 (2013)

length of the translational order of a perfect crystal. In such
situations, atoms at the surface do not longer experience a
perfect periodic potential, but rather a disordered one created
by the bulk. At high temperatures, the disordered potential is
washed out by thermal fluctuations and thus is unimportant
for the shape of the surface—the surface is rough. On the
contrary, at temperatures T below a critical temperature Tc,
surface atoms follow the disorder potential, thereby forming a
surface that is even rougher. This phase transition is known as
the super-roughening transition.2

Using surface-sensitive scattering experiments, one can
probe the crystal surface. One directly measures the disorder
and thermally averaged correlation function

C(q,r) := 〈eiq[θ(r)−θ(0)]〉 , (1)

where θ denotes the two-dimensional height field of the
surface, in units of G0 = 2π/a. The quantity q denotes the
component of the wave vector perpendicular to the surface.

In the high-temperature rough phase, at T > Tc, the corre-
lation function C(q,r) decays at large distances as a power law
C(q,r) ∼ (a/r)η(q), where a is the lattice constant. The naive
argument is that at high temperatures the fluctuations of the
surface are effectively Gaussian, which in two dimensions
always produce quasi-long-range order characterized by a
power-law decay of C(q,r) and η(q) ∼ q2. However, despite
being an irrelevant operator at high temperatures, the lattice
potential still plays an important role and produces in fact a
nontrivial result for η(q). In their seminal paper, Toner and
DiVincenzo2 calculated C(q,r) in the high-temperature rough
phase for T > Tc. They obtained the decay as a superposition
of power laws C(q,r) � ∑∞

m=1 A2m(a/r)ηm(q) with exponents

ηm(q) = (c − b)q2 + b[(q − m)2 + m]. (2)

At sufficiently large r , the smallest power dominates, hence
they concluded that the asymptotic exponent η(q), for q > 0,
takes the form

η(q) = min
m∈N0

ηm(q) ≡ cq2 + b{[q]2 + [q](1 − 2q)} , (3)

where [q] is the integer part of q. The coefficients of Eq. (3)
are

c = 2T

Tc

(
1 + 2T σ ′

Tc

)
, b = 2T

Tc

. (4)

They are given in terms of the critical temperature Tc

and a nonuniversal off-diagonal disorder σ ′ � 0 defined in
Sec. II. While the coefficient b is a universal function of
the temperature, the coefficient c depends on σ ′ and hence
is nonuniversal. (It depends on the details of the model at short
scales, which can renormalize σ ′.) The form of Eqs. (2) and
(3) has a simple interpretation in the picture of the Coulomb
gas put forward by Cardy and Ostlund1 (see also below). In
that picture, perturbation theory to order 2p in the disorder
is equivalent to inserting p pairs of replica ±1 charges. The
vertex operator eiq[θ(r)−θ(0)] can itself be seen as inserting a
charge +q at r and a charge −q at 0 in the same replica. For
q > 1, it is then energetically advantageous to screen the vertex
operator eiq[θ(r)−θ(0)] with 2m replica charges from the disorder
leading to Eqs. (2) and (3).25 As a consequence, η(q) always
grows with q, is quadratic for noninteger q, and continuous
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FIG. 1. (Color online) The function η(q) given in Eq. (3) for
b = 3,c = 3.2 is represented by the solid line. The functions ηm(q)
of Eq. (2) for m = 0,1, . . . ,4 are given by the dashed lines.

but with a cusp at integer values of q, see Fig. 1. An interesting
possibility, suggested by the form of the perturbation theory of
Toner and DiVincenzo2 (i.e., the A2m appear to have alternating
signs) is that C(q,r) is an oscillating function, changing sign at
integer q. A simple toy model with such an oscillating behavior
is given in Appendix G. Finally, it is important to note that for
a perfect crystal (i.e., in the presence of commensuration only
and with no disorder), one has η(q) = b(q − [1/2 + q])2, i.e.,
a periodic function of q with cusps at half integers and minima
at all integers.2

Let us now consider low temperatures, T < Tc. In this
super-rough phase, the surface becomes even rougher2 pro-
ducing a faster decay for C(q,r) as a function of the distance
r . Although the general form for the decay of C(q,r) was cor-
rectly anticipated in Ref. 26 in the context of an N -component
extension of the random-phase sine-Gordon model, its precise
expression, including the value of the exponents, has not yet
been obtained. The aim of the present article is to fill this gap
and determine the exact form for C(q,r) in the super-rough
phase, close to the super-roughening transition. We will show
that it takes the form

C(q,r) �
(

a

r

)η(q)

exp

(
− 1

2
A(q) ln2(r/a)

)
, (5)

characterized by the anomalous exponent η(q) and an am-
plitude A(q). We obtained the exact dependence on q of
both quantities, to leading order in τ , the distance from the
transition, defined as

τ = 1 − T/Tc. (6)

For 0 < q < 1, we find, up to terms of order O(τ 3),

η(q) = cq2 + η̃(q), (7)

η̃(q) = −τ 2q2[2γE + ψ(q) + ψ(−q)], (8)

A(q) = 2q2τ 2. (9)

Here, ψ(q) is the digamma function. By η̃(q) we denote the
universal part of the exponent plotted in Fig. 2; it starts at
O(q4) at small q; together with A(q) they are universal. The
coefficient c in η(q) is nonuniversal, within our cutoff scheme
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FIG. 2. (Color online) Plot of the universal part of the anomalous
exponent, η̃(q), for 0 < q < 1.

given by

c = 2(1 − τ )[1 + 2(1 − τ )σ ′] + τ

2
+ τ 2 + O(τ 3), (10)

where σ ′ denotes a nonuniversal off-diagonal disorder defined
below.

Both the amplitude and the exponent are functions of the
temperature T , withA ≡ 0 for T � Tc; η(q) matches smoothly
at Tc to the expression (3), i.e., η̃(q) vanishes for T � Tc.
An initial guess for the amplitude may be obtained from the
variance of the height fluctuations at two points, which we
have recently calculated in Ref. 19 to two loop accuracy,

〈[θ (r) − θ (0)]2〉 � A(τ ) ln2(r/a) + O( ln(r/a)), (11)

A(τ ) = 2τ 2 − 2τ 3 + O(τ 4). (12)

This result was tested in a numerical simulation in
Ref. 20, using a dimer-model representation of the sine-
Gordon Hamiltonian. If the displacement fluctuations were
exactly Gaussian one would have

A(q)|Gaussian = A(τ )q2 (13)

for all q. Interestingly, the present more detailed calculation
confirms that property for q < 1. For q = 1, the amplitude
A(q) of the correlation function C(q,r) changes abruptly to

A(q = 1) = 6τ 2 , (14)

instead of A(q = 1−) = 2τ 2. Hence our results both for
η(q), and for A(q = 1), show deviations of the probability
distribution of θ from a Gaussian. Since the functions η(q)
and A(q) are both increasing functions of q, the correlation
function C(q,r) is a decreasing function of q for 0 � q � 1.
The amplitude A(q) jumps from 2τ 2 at q = 1− to 6τ 2 at q = 1
resulting in a much faster decay. As a precursor of this effect,
η(q) diverges as q approaches unity. Such a resonance should
be visible in Bragg scattering experiments, once the scattering
wave vector orthogonal to the surface matches G0 = 2π/a.

For q > 1 and T < Tc, one naively expects, both for η(q)
and A(q), additional resonances at wave vectors that are
integer multiples of G0, and that the screening mechanism,
which operates for T > Tc in Eq. (3), is also important there.
While a preliminary study indicates that this is the case, the

detailed study of q > 1 is more complicated and deferred to a
future publication.27

It is interesting to note that the case of integer q is
relevant for the system of two-dimensional free fermions
in a disordered potential.28,29 This model and the present
random-phase sine-Gordon model are in correspondence via
bosonization. More precisely, C(q = 1,r) can be obtained as
a four-fermion correlation function. We have performed that
calculation, and found the result to agree with our expression
(14) for q = 1. A more general study of 4q fermion correlator
that would allow us to study higher integer values of q in the
correlation function is in progress. The calculation and results
will be presented elsewhere.27

This article is organized as follows. In Sec. II, we define the
model. In Sec. III, we introduce a formalism that enables us to
produce a controlled expansion for the correlation function of
interest. In Sec. IV, we evaluate this correlation function. This
is followed, in Sec. V, by a discussion of the consequences
and conclusions. The detailed calculation of several involved
integrals and some other technical details are presented in the
Appendixes.

II. MODEL AND THE PHASE DIAGRAM

We consider the two-dimensional XY model for a real
displacement field θ (x) ∈ (−∞,∞), without vortices, and in
the presence of a random symmetry-breaking field. In the
realization of the model as a fluctuating surface of the crystal,
θ describes the two-dimensional height of the surface. We have
already considered the same model in an earlier publication;19

here, we repeat the necessary definitions for the present study.
The model is defined via its Hamiltonian

H =
∫

d2x

[
κ

2
(∇xθ )2 − h · ∇xθ − 1

a
(ξeiθ + H.c.)

]
, (15)

where κ is the elastic constant, a the lattice constant that
provides a short-length-scale cutoff, and h(x) and ξ (x) are
quenched Gaussian random fields, the first one real and the
other complex. Their nonzero correlations are given by

hi(x)hj (y) = T 2 σ

2π
δij δ(x − y), (16)

ξ (x)ξ ∗(y) = T 2 g

2π
δ(x − y), (17)

where i,j ∈ {1,2} denote the components of h and T is the
temperature.30 Note that the disorder h(x) must be introduced
as it is generated by the symmetry-breaking field under
coarse graining. We denote disorder averages by an overline.
Depending on the context, x and y will be used either to denote
two-dimensional coordinates (as in the previous equations) or
as their norms, i.e., x stands either for x or |x|. We emphasize
here that the argument of the exponent in Eq. (15) should
in principle be eiG0θ with G0 being the smallest nonzero
reciprocal lattice vector of the crystal normal to its surface
under consideration. For simplicity, we have set it to unity,
thus measuring the displacement field in units of 1/G0.

We use the replica method to treat the disorder.31 Introduc-
ing the replicated fields θα,α = 1 . . . n, where by greek indices
α,β, . . ., we denote replica indices, the replicated Hamiltonian
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reads

H rep = H
rep
0 + H

rep
1 , (18)

with the harmonic part

H
rep
0

T
=

∑
αβ

∫
d2x

{
κ

2T
δαβ[(∇xθα)2 + m2(θα)2]

− σ

4π
∇xθα · ∇xθβ

}
. (19)

The mass m is introduced as an infrared cutoff. We perform
calculations with finite m and study the limit m → 0 at the
end. The system size is infinite throughout the paper. The
anharmonic part reads

H
rep
1

T
= − g

2πa2

∑
αβ

∫
d2x cos(θα − θβ). (20)

We start by computing the correlation function for the
harmonic part (19), i.e., for g = 0. One obtains19

Gαβ(x) = 〈θα(x)θβ(0)〉 = δαβG(x) + G0(x), (21)

where 〈. . .〉 denotes an average over thermal fluctuations, while
at small distances |x|  m−1 we obtain

G(x) = −(1 − τ ) ln[c2m2(x2 + a2)], (22)

G0(x) = −2σ (1 − τ )2 ln[ec2m2(x2 + a2)]. (23)

Here, we have introduced the ultraviolet regularization by the
parameter a and c = eγE /2 with γE being the Euler constant.
The dimensionless parameter

τ = 1 − T/Tc (24)

measures the distance from the critical super-roughening
temperature

Tc = 4πκ. (25)

The model studied here possesses an important symmetry,
the statistical tilt symmetry (STS), i.e., the nonlinear part H

rep
1

is invariant under the change θα(x) → θα(x) + φ(x) for an
arbitrary function φ(x). As discussed in many works,3,4,32,33

this implies that G0(x) does not appear to any order in
perturbation theory in g in the calculation of, e.g., the effective
action.19

Let us summarize the one-loop renormalization group
equations for the model (15).1,3,4,19 In terms of the scale
� := − ln m, they read

dτ

d�
= 0, (26)

dgR

d�
= 2τgR − 2g2

R, (27)

dσR

d�
= 1

2
g2

R, (28)

where the subscript R denotes the renormalized parameters
that flow with the scale. Equation (26) is an exact result
at all orders due to the above mentioned STS. We also see
that the parameter σR does not enter any equation (again

TT c

gR

0

rough phase

super-rough

phase

FIG. 3. (Color online) Phase diagram for the model (15). The
high-temperature rough phase is characterized by zero fixed point
values of the anharmonic gR term, while the low-temperature super-
rough phase has a line of fixed points for gR having finite values. We
are primarily interested to evaluate C(q,r) in the low-temperature
phase, for T < Tc.

due to STS), apart from being created by gR as one goes
to larger scales. From Eq. (27), one reads off that the critical
temperature is at τ = 0. For T > Tc, we have scaling of gR

to zero at large scales, which denotes the rough phase. At
low temperatures T < Tc, one finds a line of nonzero fixed
points for gR that determines the super-rough phase. We see
from the above scaling equations that σR grows unboundedly
at all scales due to the nonzero fixed-point value for gR;
hence σR increases the two-point correlation function from
a rough logarithmic behavior in the high-temperature phase to
a super-rough square-logarithmic form for low temperatures.2

In Fig. 3, we show the phase diagram for the model (15). The
equations at two-loop order have been derived and studied in
Ref. 19. They do not quantitatively change the conclusions
from the one-loop analysis, but give further insight into the
two-point correlation function in the low-temperature phase.

III. GENERATOR OF CONNECTED CORRELATIONS

The main goal of the present study is to compute the
exponential correlation function

C(q,r) = 〈eiq[θ(r)−θ(0)]〉H = 〈eiq[θγ (r)−θγ (0)]〉H rep (29)

for the model (15) in the low-temperature phase. For actual
calculations, we use the last expression in Eq. (29) that is
obtained using replicas. By γ we denote a particular replica
index.

In order to calculate the correlation function (29), it is useful
to calculate the generator of connected correlations W (J ). It
is defined as34

eW (J ) =
∫

D[ϕ] e−H (ϕ)/T +Jϕ, (30)

where H (ϕ)/T = H0(ϕ)/T + gV (ϕ) is the reduced Hamilto-
nian. Here, H0 is the quadratic part and V some perturbation.
After performing the shift of the field as ϕ = χ + GJ , one
obtains H0(ϕ) − ϕJ = H0(χ ) − H0(GJ ), where G is the
propagator defined by H0/T = 1

2 〈ϕ|G−1|ϕ〉 where we use the
compact notation. Equation (30) then becomes

eW (J ) =
∫

Dχ exp

[
− H0(χ )

T
+ H0(GJ )

T
− gV (GJ + χ )

]
= Z0 exp

[
H0(GJ )

T

]
〈exp[−gV (GJ + χ )]〉χ . (31)
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Using the cumulant expansion, we obtain a perturbative
expansion for W (J ) that reads

W (J ) = ln Z0 + H0(GJ )

T
− g〈V (GJ + χ )〉χ

+ g2

2
〈V 2(GJ + χ )〉χc + O(g3). (32)

In the following, we calculate a perturbative expansion
for the functional W (J ) using the previous expression (32).
Having evaluated W (J ), one can immediately obtain all
connected correlation functions by differentiating the left-
and right-hand sides of its defining equation [equivalent to
Eq. (30)]

W (J ) = ln Z + ln〈exp(Jϕ)〉H (33)

an arbitrary number of times with respect to the source field J

and setting J to zero at the end. For potentials that are even,
i.e., when V (ϕ) = V (−ϕ), only terms with an even number of
ϕ fields have nonzero correlations.

A. Expressions for W ( J)

Using the derived formula (32) and applying it to our
replicated Hamiltonian (18), we obtain

W (J ) = ln Z0 + H
rep
0 (GJ )

T
+ W1 + W2 + O(g3), (34)

where the term Wj comes from the corresponding term of
Eq. (32) proportional to gj . Either directly calculating or using
the obtained results for the effective action from Ref. 19 and the
correspondence from Appendix B, we obtain the final results
for W1 and W2. We note that in models that have STS it
was shown that the two-replica parts of the functional W and
of the effective action � are identical up to the replacement
θ → GJ ,33,35 see Appendix B.

The lowest order term reads

W1 = g

2πa2
e−G(0)

∑
αβ

∫
d2x cos

{∫
d2yG(x − y)[Jα(y)

− Jβ (y)]

}
= 0. (35)

The last line is obtained in the limit we need, that is m → 0,
when the power law e−G(0) = (c2m2a2)1−τ compensates the
logarithmic divergence of G(x) under the cosine. The second
order term W2 contains several different contributions. In
Appendix A, we give a complete expression. Here, we use
only the final result taken in the limit m → 0. It reads

W2 = g2

8π2a4

∑
αβ

∫
d2xd2y

[
a2

(x − y)2 + a2

]2(1−τ )

× cos

{ ∫
d2z

[
(1 − τ ) ln

(y − z)2 + a2

(x − z)2 + a2

]
× [Jα(z) − Jβ(z)]

}
. (36)

B. Special source field

Using a source field of the form

Jα(x) = iq[δ(x − r) − δ(x)]δαγ , (37)

in Eq. (33), we obtain a relation between the correlation
function (29) and the functional W (Jα). It reads

〈eiq[θγ (r)−θγ (0)]〉H rep = 1

Z
eW (Jα ). (38)

The left-hand side of Eq. (38) is the correlation function
C(q,r), while the right-hand side of it should be evaluated.
Here, we perform a perturbative calculation in the anharmonic
coupling [defined in Eq. (20)] of W (Jα), using the expansion
(34).

For the source field (37), the lowest-order term in the
expansion of W (Jα) becomes

W0 = H
rep
0 (GJ )

T
=

∑
αβ

∫
d2xd2yJα(x)

Gαβ(x − y)

2
Jβ(y)

= −q2(1 − τ )[1 + 2(1 − τ )σ ] ln

(
r2 + a2

a2

)
. (39)

A graphical interpretation is given in Fig. 4.
The second nonzero term of W (Jα) is obtained by employ-

ing the source field (37) in Eq. (36) and by making use of the
summation formula over replica indices

∑n
α,β=1 cos[A(δαγ −

δβγ )] = n2 + 2(1 − n)(1 − cos A). In the limit n → 0, we
obtain

W2 = −g2

(
r

a

)4τ

I (r,a,q,τ ), (40)

where we have defined the following integral:

I (r,a,q,τ ) := r−4τ

4π2

∫
d2xd2y

1

[a2 + (x − y)2]2(1−τ )

×
{[

(x − r)2 + a2

(y − r)2 + a2

y2 + a2

x2 + a2

]q(1−τ )

− 1

}
. (41)

W0 = ln
0 r

W2 = − g
2

FIG. 4. A graphical representation of the nonvanishing contribu-
tions to the perturbative expansion. The white and black squares stand
for the observable eiqθγ (r) (with charge +q) and e−iqθγ (0) (with charge
−q), respectively. The replica indices are indicated by a solid line.
The interaction

∑
α �=β ei[θα (x)−θβ (x)] is coded with a white and black

circle, joined by a dashed line. There has to be as many black as white
points and circles in each given replica (charge neutrality). Charges
q1 at x1 and q2 at x2 interact with a multiplicative factor (Boltzmann
weight) of |x1 − x2|2q1q2T/Tc ; they “attract” for opposite signs, leading
to a divergent contribution as their distance goes to zero. This allows
for an intuitive visualization of the corresponding divergences in the
perturbation expansion.
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It is an even function of q, and as a function of r and a depends
only on r/a, provided it is convergent.

Finally, using Eqs. (34), (39), (40), and (38), as well as
the result Z0/Z = 1 valid in the replica limit n → 0, we
obtain the final (yet unevaluated) result for the correlation
function (29),

C(q,r) = exp

{
− q2(1 − τ )[1 + 2(1 − τ )σ ] ln

(
r2 + a2

a2

)}
× exp

{
− g2

(
r

a

)4τ

I (r,a,q,τ )

}
exp(O(g3)). (42)

Equations (41) and (42) are the starting point of the eval-
uation of the correlation function (29). One should read
them as the result of perturbation theory to leading order
in the bare coupling g. However, if we re-express g in
terms of the renormalized one gR , we obtain the result to
leading order in τ , the distance from the transition. They
are connected by the relation19 g = gR[1 + O(τ )]. In the
massless limit, equivalently, at large distances, r � a, from
the renormalization group equation (27), the renormalized
coupling reaches its fixed point value τ + O(τ 2), hence we
can replace

g → τ + O(τ 2) (43)

in the evaluation of the large distance behavior. The behavior
of gR at intermediate scales, before reaching the fixed point,
causes some nonuniversal behavior. It is easy to see, however,
that it is confined to subdominant terms, such as the part
of ln(r/a) that is proportional to q2. As a consequence of
flowing of gR toward the fixed point, the off-diagonal disorder
becomes changed at large scales. Therefore by σ ′ we denote
the nonuniversal parameter that characterizes the off-diagonal
disorder. We note that, to lowest order in g, we have σ ′ = σ . In
order to emphasize the difference between the bare parameter
σ , defined in Eq. (16), and the effective one at large scales σ ′,
we keep σ ′ in final formulas, e.g., in Eq. (10).

Thus, to leading order, we only need the integral
I (r,a,q,τ = 0), that is a function of the ratio r/a and q

only. It is clear from the definition (41) that for τ = 0 this
integral is convergent for any q: it is ultraviolet convergent
thanks to the cutoff a and infrared convergent thanks to the
substraction of 1. There are, however, ultraviolet divergences
when a/r → 0, which lead to a logarithmic behavior, and
which will be analyzed in the next section. Here we want to
point out that while for |q| < 1 they come from the first power
law factor, there is an additional ultraviolet divergence arising
from the second factor (containing r) when q = 1. Hence we
will mainly restrict to q � 1, and discuss separately the cases
|q| < 1 and q = 1. It makes physical sense that at q = 1 (and
in general any integer q) the correlation function changes
nonsmoothly, as was already the case in high-temperature
phase [see the results (3) of Toner and DiVincenzo.2]

IV. EVALUATION OF THE CORRELATION FUNCTION

In this section, we evaluate the correlation function C(q,r)
defined by Eq. (29), using its form (42), for general values of
the parameter q in the region 0 < q � 1. To achieve this, our
task is to calculate the integral of Eq. (41). Exact evaluation

of that integral is rather difficult. However, we only need the
most dominant term for large r/a, when the expression of
Eq. (41) is expected to take a universal form.

We calculate the integral using two different methods.
The first one, which we term the finite-a method, works
directly at τ = 0, but with a nonzero ultraviolet cutoff a > 0.
However, we are not able to obtain all the results using this
finite-a method. Hence we also use dimensional regularization,
which we term the dimensional method; it is quite powerful,
although a little delicate in its interpretation. In that method,
one works directly at a = 0, but keeps τ > 0, which renders
the integral convergent. From the poles in 1/τ , one extracts
the desired information. A careful comparison between the
obtained results is performed at the end.

A. Finite-a method

We start the evaluation by setting τ = 0 and keeping a

finite in Eq. (41). This is justified as we have I (r,a,q,τ ) =
I (r,a,q,0) + O(τ ), so to lowest order in the distance from the
transition, we only need I (r,a,q,0), as discussed above.

For small q, we expand it into a Taylor series as

I (r,a,q,0) =
∞∑

j=1

q2j Ij (r/a), (44)

where we have defined the family of integrals

Ij (r) = 1

4π2(2j )!

∫
d2xd2y

1

[1 + (x − y)2]2

× ln2j

[
(x − r)2 + 1

(y − r)2 + 1

y2 + 1

x2 + 1

]
. (45)

The expansion (44) contains only even powers of q, a
consequence of the parity I (r,a,q,0) = I (r,a, − q,0). A rather
involved evaluation of the lowest-order term I1(r) of Eq. (44)
is presented in Appendix D. At small q, the result reads

I (r,a,q,0) = q2 ln2

(
r

a

)
+ q2 ln

(
r

a

)
+ r(q), (46)

where the even function r(q) at small q starts with a term
proportional to q4 and contains all the desired higher-order
terms proportional to q2j , j � 2. To determinate r(q) defined
in Eq. (46), we begin by a numerical evaluation. In Fig. 5,
we show the results for Ij (r) for j = 2,3 that determine the
two lowest-order terms of r(q) at small q, see Eqs. (44) and
(46). We notice that the data points for I2(r) and I3(r) appear
to be on a straight line on a log-linear plot, which shows that
these two functions are well described by a logarithm ln(r)
with j -dependent prefactors [2ζ (3) and 2ζ (5) in the present
case]. This leaves us with a hint that all Ij (r) for j > 1 might
asymptotically have a logarithmic behavior in the limit r � 1.
That would determine the anomalous exponent for the C(q,r)
correlation function.

We gain further knowledge about I (r,a,q,0) by consid-
ering the special case q = 1. The calculation presented in
Appendix D reveals the result

I (r,a,1,0) = 3 ln2

(
r

a

)
− 2 ln

(
r

a

)
+ O

(
a2

r2

)
, (47)

214201-6



EXACT FORM OF THE EXPONENTIAL CORRELATION . . . PHYSICAL REVIEW B 87, 214201 (2013)
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FIG. 5. (Color online) Numerical evaluation of Eq. (45) for j =
2,3. At large r , we observe that the data belong to a straight line on a
log-linear plot. The numerical coefficients [2ζ (3) and 2ζ (5) for j = 2
and 3, respectively] in front of the logarithms in the fitted straight lines
are analytically obtained by the dimensional method, see the main
text.

showing that the coefficient q2 of the leading squared
logarithmic term from the small-q expansion of Eq. (46)
changes at q = 1. As discussed above, this is expected from
physical considerations. To confirm this result for q = 1, we
have performed a calculation in the fermionic version of the
model that allows us to treat integer q only. It confirms our
result for q = 1. The calculation and results will be presented
elsewhere.27 Note that at q = 1 the prefactor in front of ln(r/a)
term in Eq. (47) takes this value for the particular cutoff
procedure we use, but is not expected to be universal in general.

Motivated by the above analysis, we introduce the anoma-
lous exponent η(q) and the amplitude A(q) and assume a
general form for the correlation function at r � a given by
Eq. (5), where

η(q) = 2q2(1 − τ )[1 + 2(1 − τ )σ ] + g2ηg(q) + O(g3),

(48)

A(q) = α(q)g2 + O(g3). (49)

For the unknown coefficients in the previous two expressions,
so far, we have established the following results:

ηg(1) = −2, (50)

α(q) =
{

2q2, q  1
6, q = 1.

(51)

B. Dimensional method

To evaluate Eq. (41) using the dimensional method, we take
the limit a → 0 of the integrand, i.e., we consider

I (r,a,q,τ ) = I (r,0,q,τ ) + O(a2)

= I (1,0,q,τ ) + O(a2), (52)

where the second line is a trivial consequence of rescaling
the coordinates by r , provided the integral is convergent. For
τ > 0, the integral I (1,0,q,τ ) is ultraviolet convergent as long
as |q|(1 − τ ) < 1; it remains infrared convergent if τ is not too
large (τ < 1/2). We thus first discuss |q| < 1. From the poles

of the evaluated expression in the limit τ → 0, we will infer
the behavior of the integral at nonzero a, as is shown below.
We rewrite

I (1,0,q,τ ) = 1

4π2
J (q(1 − τ ),τ ), (53)

where we defined

J (p,τ ) := FP
∫

d2x d2y |x − y|4(τ−1)

( |x − e||y|
|y − e||x|

)2p

. (54)

Here, e is an arbitrary unit vector, and FP means “finite part”
in the sense of dimensional regularization [in some domain of
q, this finite part is achieved by the subtraction 1 in Eq. (41),
however, it can be given a more general meaning in terms of
analytical continuation in the parameters q,τ ]. The evaluation
of the ensuing 2 × 2-dimensional integral is complicated
and the details are presented in Appendix C. Let us recall here
the main idea, which goes back to Dotsenko and Fateev:36,37

the integral (54) can be thought of as an integral over the
complex plane, both for x and y. The integral over, say, x over
the complex plane can be decomposed into two real contour
integrals, over x and its complex-conjugate x̄. Noting that (54)
can be written in the form∫

d2x d2y (1 − x)pypx2τ−1(1 − y)2(τ−1)(1 − xy)−p

× (1 − x̄)pȳpx̄2τ−1(1 − y)2(τ−1)(1 − x̄ȳ)−p , (55)

it is suggestive that deforming the contour integrals over x and
x̄ to lie on the real axis, the resulting integral will take the form

J (p,τ ) =
∑

i

BiJiJ
′
i .

The Bi’s are phase factors—typically deforming a contour
around a branch cut gives a sine-function of 2π times the power
at the branch cut. The Ji are second-generation hypergeometric
functions 3F2, e.g., the first line of Eq. (55) will naturally lead
to

Ji =
∫ 1

0
dx

∫ 1

0
dy (1 − x)pypx2τ−1(1 − y)2(τ−1)(1 − xy)−p.

Note that the integral above is restricted, both for x and y,

to the interval [0,1], but the domains [−∞,0] and [1,∞]
also contribute, the latter can then be transformed back to
the interval [0,1], leading to integrals of the same form, but
with different coefficients. This form can be recognized in the
exact result given in Appendix C, formula (C3).

The final result for 0 < q < 1 and small τ reads

I (1,0,q,τ ) = q2

8τ 2
+q2 [1−2γE − ψ(q) − ψ(−q)]

4τ
+ O(τ 0),

(56)

where ψ(x) = �′(x)/�(x) is the digamma function. The
coefficients of the poles in Eq. (56) contain all information
needed for the determination of the anomalous exponent (48)
and the amplitude (49). The precise method to extract the
information from these poles is given in the Appendix E 1.
Here we give a more intuitive derivation.

Starting from Eq. (40), which is contained in the correlation
function (42), we expand (r/a)4τ I (r,a,q,τ ) at small τ . Using
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Eqs. (52) and (56), for 0 < q < 1, we find the result(
r

a

)4τ

I (r,a,q,τ ) = q2 ln2

(
r

a

)
+ ηg(q) ln

(
r

a

)
+ O(τ ),

(57)

where the prefactor of the logarithmic term, i.e., the nontrivial
part of the anomalous exponent, reads

ηg(q) = q2[1 − 2γE − ψ(q) − ψ(−q)]. (58)

Equation (57) could also be understood as the final expression
for I (r,a,q,τ = 0) obtained via the dimensional method. At
small q, one can notice the agreement between the two results
(46) and (57) that are obtained using quite different methods.

The expression (57) should be taken with special attention.
The translation of the dimensional-method result (56) by
performing a naive expansion at small τ of the left-hand side
of Eq. (57) would contain extra terms,

q2

8τ 2
+ 1

4τ

[
2q2 ln

(
r

a

)
+ ηg(q)

]
, (59)

on the right-hand side. These two terms are divergent for
τ → 0. The terms (59) formally appear only because we
performed a small a expansion in Eq. (52), i.e., we set a = 0
in the integrand. The left-hand side of Eq. (57) should be
finite at τ = 0, and thus the right-hand one as well. Therefore
the extra terms (59) should be omitted when one relates the
dimensional result (56) to the expression for I (r,a,q,τ = 0).
We again emphasize that a more rigorous derivation is given in
Appendix E 1, while in Appendix E 2 we give an illustrative
example.

V. FINAL RESULTS AND CONCLUSION

Using Eqs. (42) and (57), we obtain the final result for the
correlation function

C(q,r) = 〈eiq[θ(r)−θ(0)]〉H , (60)

at q � 1, for the model (15). It takes the form

C(q,r) �
(

a

r

)η(q)

exp

[
− 1

2
A(q) ln2(r/a)

]
, (61)

where the amplitude is given by

A(q) =
{

2q2τ 2 + O(τ 3), q < 1

6τ 2 + O(τ 3), q = 1.
(62)

Here and below, we use the replacement g → τ as discussed
in Eq. (43), i.e., the fixed point of the renormalization group.

The anomalous exponent of Eq. (61) reads

η(q) = 2q2(1 − τ )[1 + 2(1 − τ )σ ′] + τ 2ηg(q) + O(τ 3),

(63)

where its nontrivial part determined by the anharmonic
coupling reads

ηg(q) =
{
q2[1 − 2γE − ψ(q) − ψ(−q)], q < 1
−2, q = 1.

(64)

Here, γE is the Euler constant. This produces the result (7)
displayed in the Introduction where we have separated the

universal part, η̃(q), of η(q) that starts at order q4, from the
part proportional to q2 that is nonuniversal.

The anomalous exponent η(q) rapidly increases as q

increases from zero to one. Thus C(q1,r) > C(q2,r) for
0 < q1 < q2 < 1, meaning the correlation function decreases
as q increases. When q approaches unity, η(q) � 1/(1 − q)
becomes very large and makes the correlation function C(q,r)
decay much faster, see Eq. (61). This is a precursor of the more
drastic effect that happens at q = 1 where the amplitude A(q)
jumps (from 2q2τ 2 at q → 1− to 6τ 2 at q = 1). These dips in
the correlation function C(q,r) are a remarkable and unique
feature of the super-rough phase. Note that near q = 1 there is
a growing length scale

ξq ≈ a exp

(
1

1 − q

)
, (65)

below which the η(q) ln(r/a) term in the exponential in (61)
is larger than the asymptotic ln2(r/a) term.

Our result (64) can also be expanded at small q as

ηg(q) = q2 + 2ζ (3)q4 + 2ζ (5)q6 + O(q8). (66)

This expansion precisely determines the prefactors for the
family of integrals of Eq. (45). For j � 2, we find Ij (r) =
2ζ (2j − 1) ln(r) + O(r0), which explains the data of Fig. 5.
This provides a confirmation that we have correctly extracted
the amplitudes from the dimensional method (at least for
small q).

Our result for the correlation function (60) enables us to
calculate the leading large-distance behavior of all higher
powers of the connected correlation functions in the super-
rough phase, i.e., for T < Tc (see Fig. 3). Using the cu-
mulant expansion formula ln〈exp[A]〉 = ∑∞

j=1〈Aj 〉c/j !, after
expanding (the logarithm of) Eqs. (60) and (61) at small q, one
obtains

〈[θ (r) − θ (0)]2j−1〉c = 0, (67)

(−1)j

(2j )!
〈[θ (r) − θ (0)]2j 〉c

= −2τ 2ζ (2j − 1) ln

(
r

a

)
+ O

(
τ 2 r0

a0
,τ 3

)
(68)

for j > 1. On the contrary, for j = 1 one finds

〈[θ (r) − θ (0)]2〉 = 2τ 2 ln2

(
r

a

)
+ O

[
ln

(
r

a

)]
. (69)

Expression (69) is the well-known result4,19,20 for the model
(15). This is yet another way of obtaining the result that
produced some controversies in the past, as discussed in Ref. 4.
Confirming a recently obtained correction19 to the prefactor of
the squared logarithm in Eq. (69), using the present method
would require explicit evaluation of theO(g3) term in Eq. (42),
which is a formidable task beyond the scope of the present
study.

Our main results directly apply to some physical systems, in
particular to surfaces of crystals with quenched bulk disorder2

or to a vortex lattice confined to a plane.3 In particular, the
structure factor S(q,k) = ∫

d2r C(q,r) exp(ik r) in the super-
rough phase at k = 0 is analytic and finite.2 However, we
predict that it has sudden dips once the wave vector q becomes
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an integer multiple of the reciprocal lattice vector normal to the
surface G0 (set to unity here) of the bulk crystal; we expect it to
have characteristic jumps in the amplitude and the anomalous
exponent not only at q = 1 but rather at any integer q.

To summarize, the main results of the present study
are given by Eqs. (60)–(64), or equivalently Eq. (7). They
describe the behavior of the exponential correlation function
in the super-rough phase, defined by Eq. (60). We found a
characteristic universal jump of the amplitude of the squared
logarithmic term, at q = 1, which occurs in conjunction with
the drop of the anomalous exponent. The value of the amplitude
at q = 1 is in agreement with the result in the equivalent
fermionic disordered model and will be published elsewhere.27

It would be very interesting to perform a numerical simulation,
along the lines of Ref. 20, to test the results of the present work.
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APPENDIX A: W2 TERM

In this Appendix, we provide the complete expression
for the second-order term W2 of the generator of connected
correlations, see Eq. (34). It reads

W2 = 1

2

(
g

2πa2

)2

e−2G(0)

×
∑
s=±

∑
αβγ

∫
d2xd2y

{
1

2
A1(x − y)δαγ cos[(GJαβ)(x)]

+ [
As

2(x − y)δαγ + As
4(x − y)

]
× cos[(GJαβ)(x) − s(GJγβ)(y)]

}
, (A1)

where

A1(x) = 4[2 − e−G(x) − eG(x)], (A2)

As
2(x) = 1 + e2sG(x) − 2esG(x), (A3)

As
4(x) = 2[esG(x) − 1]. (A4)

Here we introduced the abbreviation

(GJαβ)(x) ≡
∫

d2yG(x − y)[Jα(y) − Jβ(y)]. (A5)

In the limit of zero mass, m → 0, the only term that survives
in Eq. (A1) comes from the A+

2 term and reads

W2 = g2

8π2a4

∑
αβ

∫
d2xd2ye2G(x−y)−2G(0)

× cos

{ ∫
d2z[G(x − z) − G(y − z)][Jα(z) − Jβ(z)]

}
.

(A6)

The difference of propagators in the previous equation is well
behaved in the limit m → 0. Using the propagator (22), we
eventually obtain the expression (36) of the main text.

APPENDIX B: CONNECTION BETWEEN THE EFFECTIVE
ACTION � AND W

The final formula (32) resembles the expression (A17) of
Ref. 19 for the effective action, provided in the latter, one omits
all the terms that explicitly contain the propagator G and one
multiplies all the terms in Eq. (A17) by a factor −1 apart from
the harmonic part S0 (corresponding to H0/T in the present
work). We note that in general, in models that have STS, the
two-replica parts of the functional W and � are identical up to
the replacement of the form θ → GJ and a global minus sign,
see Eqs. (89) and (90) of Ref. 33.

For the model studied in the present work, we calculated
the effective action � in Ref. 19; the term �2 proportional to
g2 is given by Eq. (25) there. We notice that in Ref. 19 we used
restricted summation over replica indices (all replica indices
different), while in the present work we do not impose such
restriction. As a consequence, if one wants to use the theorem
of similarity between the functionals W and �,33,35 one should
transform the expression for � to contain summations over
unrestricted replica indices only, before applying the theorem.
On the contrary, if one directly uses the expression for �2,
Eq. (25) of Ref. 19, its two-replica part corresponds to the
two replica part of Eq. (A1), provided one omits the linear
term −pG(x) in �2 and performs the replacement θ → GJ ,
or written more explicitly:

θα(x) →
∑

γ

∫
d2yGαγ (x − y)Jγ (y), (B1)

θα(x) − θβ(x) →
∫

d2yG(x − y)[Jα(y) − Jβ(y)]

≡ (GJαβ)(x). (B2)

In the last expression, we explicitly used the fact that Gαβ(x) =
δαβG(x) + G0(x), so that only the diagonal σ -independent part
survives. This is one of the manifestations of STS where we
explicitly see through (32) that all corrections to the correlation
functions that come due to the anharmonic term (proportional
to g) are σ independent.

APPENDIX C: INTEGRAL I(r,a = 0,q,τ )

In this Appendix, we analyze and for τ > 0 calculate the
integral I (1,0,q,τ ) defined in Eqs. (41) and (52); it can be
written as

I (1,0,q,τ ) = 1

4π2
J (q(1 − τ ),τ ), (C1)

where the integral J (p,τ ) was defined in Eq. (54) in the main
text.

The integral of the type (54) was studied in Refs. 38 and 39
in the context of correlation functions in a two-dimensional
Ising model. It can be expressed in terms of the hypergeometric
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functions, defined as

pFq(a1, . . . ,ap; b1, . . . ,bq ; z) =
∞∑

k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

zk

k!
,

(C2)

where (a)k = �(a + k)/�(a), while p and q are positive
integers. In the following we use results from Ref. 39
(which are equivalent to those of Ref. 38 once one employs
some identities between the hypergeometric functions). It is
important to note that the integral J (p,τ ) diverges for p = 1
(or more generally integer p) but that the formula below
provides an analytic continuation in p away from the poles
at integer p. In turns, it gives an analytical continuation for
the original integral, which we will call Icont(1,0,q,τ ). We
now need to discuss how this continuation is relevant for the
physical problem studied here.

Our main objective, as discussed in the main text, is to
extract from the poles in 1/τ 2 and 1/τ of this integral the

logarithmic behaviors at large distance r . How to do that is
explained in Appendix E 1. In addition, we will restrict our
study to |q| � 1. As was discussed in the Introduction, the
divergences that appears at q = 1 have important physical
consequences and are related to the screening mechanism
unveiled by Toner and DiVincenzo.2 To make progress for q >

1, one needs to reexamine the entire perturbation expansion,
which we defer to a future work. The considerations directly
useful for the present work are presented in the first part of
this Appendix.

Still, it is not devoid of interest to also study (i) the analytical
continuation Icont(1,0,q,τ ) for arbitrary q and (ii) the finite
parts of the integral, even if it will not contain the universal
information sought here. These considerations are reported in
the second part of this appendix.

1. Study useful for |q| � 1 and the divergent parts

Using the results from Ref. 39, for the integral (54), one
obtains

J (p,τ ) = − sin2(πp)

2 sin2(πp + 2πτ )
{[cos(2πp) + cos(2πp + 4πτ ) − 2]B(1 − p,1 + p)2B(1 − p,1 − 2τ )2

× 3F2(1 − p,1 − 2τ,2 − 2τ ; 2,2 − p − 2τ ; 1)2

+ [cos(4πτ ) − 1] B(1 + p,2τ − 1)2B(1 + p,2τ )2
3F2(p,1 + p,2τ ; p + 2τ,1 + p + 2τ ; 1)2

− 4 sin(πp) sin(2πτ )B(1 − p,1 + p)B(1 − p,1 − 2τ )B(1 + p,2τ − 1)B(1 + p,2τ )

× 3F2(1 − p,1 − 2τ,2 − 2τ ; 2,2 − p − 2τ ; 1)3F2(p,1 + p,2τ ; p + 2τ,1 + p + 2τ ; 1)}, (C3)

where B(x,y) is the beta function. We need a simplified form
of Eq. (C3) valid at small values of τ .

The excess of the hypergeometric function
3F2(a,b,c; d,e; z) is defined as d + e − a − b − c and
for z = 1 the excess has to be positive in order for
3F2(a,b,c; d,e; z = 1) to be defined by its series (C2). A naive
expansion

3F2(1 − p,1 − 2τ,2 − 2τ ; 2,2 − p − 2τ ; 1)

= 3F2(1 − p,1,2; 2,2 − p; 1) + O(τ ) (C4)

of one of the hypergeometric functions of Eq. (C3) is not
possible. Therefore, although the hypergeometric functions of
Eq. (C3) are well defined, since they have positive excess 2τ ,
we cannot perform a Taylor expansion around τ = 0.

In the following, we use particular relations between the
hypergeometric functions in order to transform Eq. (C3) into a
suitable form that can be Taylor expanded at small τ . After
transforming 3F2(1 − p,1 − 2τ,2 − 2τ ; 2,2 − p − 2τ ; 1) of
Eq. (C3) using the one-term transformation rule40 valid for
a,s > 0,

3F2(a,b,c; d,e; 1) = �(d)�(e)�(s)

�(a)�(b + s)�(c + s)
3F2(d − a,e − a,s; b + s,c + s; 1),

s = d + e − a − b − c, (C5)

one obtains the following result valid at p < 1,

J (p,τ )

4π2
= −π2p2[cos(2πp + 4πτ ) + cos(2πp) − 2]

8 sin2(2πτ ) sin2(πp + 2πτ )
3F2(1 + p,1 − 2τ,2τ ; 1,2; 1)2

+ π2p3(2τ − 1)(p + 2τ )�(2τ − 1)2

2 sin2(πp + 2πτ )�(1 − p)2�(p + 2τ + 1)2 3F2(p,1 + p,2τ ; p + 2τ,1 +p + 2τ ; 1)3F2(1+p,1 − 2τ,2τ ; 1,2; 1)

+ p2(1 − 2τ )2 sin2(2πτ )�(1 + p)2�(2τ − 1)4�(1 − p − 2τ )2

4π2�(1 − p)2�(1 + p + 2τ )2 3F2(p,1 + p,2τ ; p + 2τ,1 + p + 2τ ; 1)2. (C6)
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The expression (C6) has a positive excess in the hypergeo-
metric functions under the two conditions τ > 0 and p < 1.
The main advantage, however, of Eq. (C6) is that it is more
convenient for Taylor expansion around τ = 0. We need to
expand the two hypergeometric functions of Eq. (C6). The first
one, 3F2(1 + p,1 − 2τ,2τ ; 1,2; 1), can be expanded safely,
since it is well-defined in the expansion limit τ → 0 for p < 1.
One obtains

3F2(1 + p,1 − 2τ,2τ ; 1,2; 1)

= 1 + 2

[
1 − γE − ψ(−p) + 1

p

]
τ + O(τ 2). (C7)

We employed the Gauss relation 2F1(a,b; c; 1) = �(c)�(c −
a − b)/[�(c − a)�(c − b)] and used the fact that 3F2 reduces
to 2F1 for τ = 0, see the definition (C2). However, the
expansion of the second hypergeometric function of Eq. (C6),
3F2(p,1 + p,2τ ; p + 2τ,1 + p + 2τ ; 1), can not be done di-
rectly, since for τ = 0 it has zero excess. To overcome this
problem, we use the following relation:41

3F2(p,1 + p,2τ ; p + 2τ,1 + p + 2τ ; 1)

= (1 + p)(1 + 2τ )

1 + p + 2τ
3F2(p,1 + p,2τ ; p + 2τ,2 + p + 2τ ; 1)

+ p(1 − 2τ )

p + 2τ
3F2(p,1+p,2τ ; 1+p + 2τ,1 + p + 2τ ; 1),

(C8)

which connects 3F2(p,1 + p,2τ ; p + 2τ,1 + p + 2τ ; 1) with
two other hypergeometric functions that have an excess of
1 + τ and hence are well defined for τ = 0. One then obtains
for the expansion

3F2(p,1 + p,2τ ; p + 2τ,1 + p + 2τ ; 1)

= 2 + 2

[
2γE + 2ψ(p) + 1

p

]
τ + O(τ 2). (C9)

Combining Eqs. (C7), (C9), and (C6), one obtains the
expanded form of Eq. (C3),

J (p,τ )

4π2
= p2

8τ 2
+ p2

4τ
[2 − 2γE − ψ(p) − ψ(−p)] + O(τ 0).

(C10)

Finally, using Eqs. (C1) and (C10), we obtain the result
reported in the text, see Eq. (56).

It is interesting to notice that Eq. (C3) satisfies the relation
J (p,τ ) = J (p,1/2 − τ ) when τ > 0 and 1/2 − τ > 0, i.e.,
for 0 < τ < 1/2. This significantly simplifies the Taylor ex-
pansion, since Eq. (C3) could easily and directly be expanded
around τ = 1/2, because the excess 2τ of the hypergeometric
functions is then always positive and hence they are well
behaved. Performing the calculation in this way, one obtains

J (p,τ )

4π2
= p2

8(1/2 − τ )2
+ p2

4(1/2 − τ )

× [2 − 2γE − ψ(p) − ψ(−p)] + O((1/2 − τ )0),

(C11)

which is in agreement with the result (C10). This observation
suggests that a more symmetric form of the expansion reads

J (p,τ )

4π2
= p2

32τ 2(1/2 − τ )2
+ p2

8τ (1/2 − τ )

× [−2γE − ψ(p) − ψ(−p)] + O(τ 0(1/2 − τ )0).

(C12)

2. Further study of the analytical continuation

We should notice that although Eq. (C10) is formally
obtained from Eq. (C6) that is valid for p < 1, Eq. (C10) is
an even function of p [as well as the starting ones of Eqs. (54)
and (C3)] and therefore Eq. (C10) holds at any p by the parity
transformation. Hence we can define the integral analytically
continued to the whole complex plane:

Icont(1,0,q,τ ) = q2

8τ 2
+ q2[1 − 2γE − ψ(q) − ψ(−q)]

4τ

+O(τ 0) for q /∈ integers. (C13)

For positive integer q = N , one can not expand the function
ψ( − q(1 − τ )) from Eq. (C10) at small τ due to the divergence
of ψ(−N ). In Fig. 6, we show a comparison between the exact
result and its small τ expanded form for the 1/τ divergent part
of I (1,0,q,τ ).

We finally notice that Eq. (C10) diverges, once p ap-
proaches an integer. Due to the parity of Eq. (C10) with respect
to p, we can restrict to the region p > 0. It is then convenient
to rewrite ψ(p) + ψ(−p) = 2ψ(p) + π cot(πp) + 1/p. As
a result, the divergence arises due to the cotangent term.
Therefore the most divergent part of Eq. (C10) at τ → 0 and
p → N with N being a positive integer, is

J (p,τ )

4π2
= p2

8τ 2
− p2

4τ
π cot(πp) + R(p), (C14)

where R(p) is the τ -independent part in Eq. (C10), contained
in O(τ 0). Direct expansion of Eq. (C3) shows that it has
a divergence of the type N2/[4(p − N )2] for any integer
N , so R(p) can be rewritten as R(p) = ∑∞

N=1
p2

4(p−N)2 +

FIG. 6. (Color online) Numerical evaluation of 1/τ divergent part
of Icont(1,0,q,τ ) for τ = 10−5. Solid line represents the data obtained
using Eq. (C13), while the dots are obtained using the exact expression
(C3) plugged in into Eq. (C1). The plotted function is even in q and
we only show the region q > 0.

214201-11



LE DOUSSAL, RISTIVOJEVIC, AND WIESE PHYSICAL REVIEW B 87, 214201 (2013)

. . . = p2

4 ψ (1)(1 − p) + . . ., taking into account only the most
divergent terms O[(q − N )−2], but not the terms that diverge
asO[(q − N )−1]. Here, . . . denotes other subleading divergent
terms when q → N . Therefore

J (N + h,τ )

4π2
= (N + h)2

8τ 2
− (N + h)2

4τ

[
1

h
+ O(h)

]
+ N2

4h2
[1 + O(h/N)]

= N2

8τ 2
[1 + O(h/N)] − N2

4τh
[1 + O(h/N)]

+ N2

4h2
[1 + O(h/N)]. (C15)

Using Eqs. (C1) and (C15) we recognize h = −Nτ , and
therefore

Icont(1,0,N,τ ) = N2 + 2N + 2

8τ 2
+ O(τ−1). (C16)

In Fig. 7, we show a numerical comparison between the
obtained results.

In order to get the O(τ−1) term in the previous formula,
one should evaluate the O(τ 2) terms in (C7) and (C9) that we
have not succeeded. However, we have verified the following
two results:

Icont(1,0,1,τ ) = 5

8τ 2
− 1

2τ
+ O(τ 0), (C17)

Icont(1,0,2,τ ) = 5

4τ 2
− 4

τ
+ O(τ 0). (C18)

q2 2q 2

q2

0.5 1.0 1.5 2.0 2.5 3.0
q

5

10

15

20

25
8Τ2Icont 1,0,q,Τ

0.96 0.98 1.00 1.02 1.04

0

2

4

6

FIG. 7. (Color online) Numerical evaluation of 1/τ 2 divergent
part of Icont(1,0,q,τ ) for τ = 10−3. For noninteger q values,
8τ 2Icont(1,0,q,τ ) equals q2, while for integer q it is q2 + 2q + 2,
as indicated by the dashed lines. The dots represent values obtained
using the exact expression (C3) plugged in into Eq. (C1) at particular
values q = 0.5,1,1.5,2,2.5,3. By solid line we show the result
(C14) plugged in into Eq. (C1). The inset shows the zoomed result
around q = 1, and we notice a very good agreement between the
results (C3) and (C14). For special q values such that p = q(1 − τ )
approaches unity or any other integer, we notice the divergence of
τ 2Icont(1,0,q,τ ).

APPENDIX D: INTEGRAL I(r,a,q,τ = 0)

In this Appendix, we consider the integral (41) from the
main text at τ = 0, i.e.,

I (r,a,q,τ = 0) = 1

4π2

∫
d2xd2y

1

[a2 + (x − y)2]2

×
{[

(x − r)2 + a2

(y − r)2 + a2

y2 + a2

x2 + a2

]q

− 1

}
,

(D1)

and evaluate it for q = 1 and in the limit q → 0. We notice
the invariance I (r,a,q,0) = I (r/a,1,q,0) and therefore we set
a = 1, recovering a in the final result.

1. The case I(r,a,q = 1,τ = 0)

We start with the integral (D1) in the case q = 1. We
represent the two-dimensional vectors x and y in polar
coordinates. After performing the two angular integrations,
and then the integration over x, the result can be expressed in
the following form:

I (r,1,1,0) =
∫ ∞

0
dy[j1(r,y) + j2(y) + j3(r,y)], (D2)

where

j1(r,y) = 1

2y(y2 + 4)

[
2 − y2

+ (y2 + 1)(y2 − 2r2 − 2)√
r4 − 2r2(y2 − 1) + (y2 + 1)2

]
, (D3)

j2(y) = − 2

(y2 + 4)3/2
arctanh

(
y
√

y2 + 4

y2 + 2

)
, (D4)

j3(r,y)

= 1

y2(y2 + 4)3/2

[
(y2 + 1)(r2y2 + 2y2 + 2r2 + 2)√

r4 − 2r2(y2 − 1) + (y2 + 1)2
− 2

]

× arctanh

(
y
√

y2 + 4

y2 + 2

)
. (D5)

After introducing a new variable t = y2 + 2, one easily
performs the integration of j1(r,y) and obtains∫ ∞

0
dyj1(r,y)

= −1

4
ln

(
r2 + 1

8

)
− 3r2 + 9

8
√

(r2 + 1)(r2 + 9)

× ln

[
(r2 + 5)

√
(r2 + 1)(r2 + 9) + r4 + 10r2 + 17

8

]
= −2 ln(r) + 3

2
ln 2 + O

(
1

r2

)
. (D6)

The function j2(y) is r-independent and gives a constant
contribution ∫ ∞

0
dyj2(y) = − ln 2. (D7)

The remaining yet unevaluated integral is
∫ ∞

0 dy j3(r,y). We
notice that it contains a r-independent part [the term −2 from
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the square brackets in Eq. (D5)], which is necessary to make
j3(r,y) nonsingular at y → 0. From the square root of the
denominator of Eq. (D5), we conclude that j3(r,y) is sharply
peaked when y takes values around r , with the height of the
peak equal to ln(r) in the limit of large r . Therefore we split
j3(r,y) in the following form:

j3(r,y) = j31(r,y) + j32(r,y), (D8)

where

j31(r,y) =
r2arctanh

( y
√

y2+4
y2+2

)
y
√

r4 − 2r2(y2 − 1) + (y2 + 1)2
. (D9)

In the last equation, we keep y in the denominator in
order make j32(r,y) decaying faster than 1/y at large y. We
emphasize here that the special choice (D9) for the first term
of Eq. (D8) is not unique. For example, another possibility
would be 2r2 ln(y+1)

y
√

r4−2r2(y2−1)+(y2+1)2
, which is equally good, as it

is integrable and describes well the function j3(r,y) around its
maximum. For simplicity, in the following we use the choice
given by Eq. (D9).

The subleading part of j3(r,y) contained in j32(r,y) =
j3(r,y) − j31(r,y) can be safely expanded at large r , as its
main contribution in the integral comes from small values of
y, i.e., from the region y  r . Using Eqs. (D5), (D8), and
(D9), one obtains

j32(r,y) =
[

y2 + 3

(y2 + 4)3/2
− 1

y

]
arctanh

(
y
√

y2 + 4

y2 + 2

)
+O

(
1

r2

)
; (D10)

therefore∫ ∞

0
dyj32(r,y) = −π2

6
− ln 2

2
+ O

(
1

r2

)
. (D11)

We perform the remaining integration
∫ ∞

0 dy j31(r,y) in the
following way. We first calculate

J31(r,y) =
∫

dr
j31(r,y)

r

=
arctanh

( y
√

y2+4
y2+2

)
2y

ln[1 + r2 − y2

+
√

r4 − 2r2(y2 − 1) + (y2 + 1)2]. (D12)

Then, we expand J31(r,y) at large r at lowest order in r and
get

J a
31(r,y) =

arctanh
( y

√
y2+4

y2+2

)
y

ln r + · · · , (D13)

where by . . . we denote the subleading terms at large r .
The expansion of Eq. (D13) is a good approximation of
J31(r,y) of Eq. (D12) only for y � r . For y > r , the function
J31(r,y) sharply drops to zero, contrary to its expanded form
(D13), as one can see from the expansion of J31(r,y). In the
vicinity of r , at leading order one obtains J31(r,y = r + δ) =
(ln2 r/r)[1 − δ/ ln r] for δ  1. Such an expansion determines
a very large slope O(1/ ln r) for the deviation of the function

J31(r,y) around the point y = r . Therefore we integrate the
expanded result (D13) over y in the interval [0,r] and get∫ r

0
dyJ a

31(r,y) = −Li2

[
− 1

2
r(r +

√
r2 + 4)

]
ln(r)

− 1

4
ln(r) ln2

(
2

r2 + r
√

r2 + 4 + 2

)
+ · · ·

= ln3 r + π2

6
ln r + O

(
1

r2

)
+ · · · . (D14)

The subleading terms of Eq. (D14), denoted by . . ., originate
from the subleading terms of Eq. (D13), which do not change
the stated result in Eq. (D14), as one can check, e.g., numeri-
cally. Finally, assuming the following form

∫ ∞
0 dy j31(r,y) =

A ln2 r + B ln r + C + · · · , one obtains∫
dr

∫ ∞

0
dy

j31(r,y)

r
= A

3
ln3 r + B

2
ln2 r + C ln r + · · · .

(D15)

After comparing the last expression with Eq. (D14), one gets
A = 3,B = 0, and C = π2/6. Combining this result with Eqs.
(D8) and (D11) one obtains∫ ∞

0
dyj3(r,y) = 3 ln2 r − ln 2

2
+ O

(
1

r2

)
. (D16)

Collecting the obtained results (D6), (D7), and (D16) and using
(D2), one obtains

I (r,a,1,0) = 3 ln2

(
r

a

)
− 2 ln

(
r

a

)
+ O

(
a2

r2

)
, (D17)

where we have recovered the parameter a.

2. The case I(r,a,q → 0,τ = 0)

The leading order term at q → 0 of Eq. (44) is given by
I1(r) of Eq. (45). We could evaluate it using a procedure similar
to the one employed during the evaluation of I (r,a,1,0), see
Appendix D 1. First, one performs the two angular integrations,
where one employs the following nonelementary integral∫ 2π

0
dθ ln(c − cos θ ) = −2π ln(2c − 2

√
c2 − 1), (D18)

which can, e.g., be obtained by making use of the Jensen
formula.42 After performing one spatial integration, one
obtains the result of the form

I1(r) =
∫ ∞

0
dy

[
y2 + 2√
y2 + 4

arctanh

(
y
√

y2 + 4

y2 + 2

)
− y ln(y2 + 1)

]
(D19)

ln

[
r2 + y2 + 1 +

√
r4 − 2r2(y2 − 1) + (y2 + 1)2

2(y2 + 1)

]
. (D20)

For the last integral, one could use a procedure similar to the
one employed above for the integral (D2). The final result
reads

I1(r) = ln2(r) + ln(r) + O(r0), (D21)
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and therefore

I (r,a,q,0) = q2

[
ln2

(
r

a

)
+ ln

(
r

a

)
+ O

(
r0

a0

)]
+ O(q4).

(D22)

APPENDIX E: CONNECTION BETWEEN THE FINITE-a
AND THE DIMENSIONAL METHODS

1. From poles to logarithms

Let us define Ĩ (r̃ ,τ ) := r̃4τ I (r,a,q,τ ) and r̃ = r/a [com-
pare with the expression for W2 of Eq. (40)]. Hence the limit
a → 0 is the same as r̃ → ∞. The dimensional method gives,
at fixed τ > 0:

Ĩ (r̃ ,τ ) �r̃→∞ r̃4τ

[
b2(q)

τ 2
+ b1(q)

τ
+ O(1)

]
, (E1)

where b2(q) and b1(q) are even functions of q with a regular
Taylor expansion in q at q = 0. On the other hand, from the
finite-a method, we know that

Ĩ (r̃ ,τ = 0) �r̃→∞ B2(q) ln2 r̃ + B1(q) ln r̃ + O(1). (E2)

To match the two, we first observe that the integral

(r̃∂r̃ )2Ĩ (r̃ ,τ ) (E3)

is not divergent and can be calculated at τ = 0, giving 2B2(q)
from Eq. (E2), or directly calculated from Eq. (E1) in the limit
τ → 0 is gives 16b2(q). Identifying the two coefficients, one
gets

B2(q) = 8b2(q), (E4)

which was used in the main text.
When b2(q), B2(q) are nonzero one cannot get in full

generality a universal result for B1(q),b1(q). It is easy to
see, since by simply changing the cutoff a by a finite scale,
B1(q) changes. However, in the present case, we can use the
extra parameter, q, and we note that b2(q) = q2/8. Hence the
integral

Î (r̃ ,τ ) =
(

1 − 1

2
q2∂2

q

)∣∣∣∣
q=0

Ĩ (r̃ ,τ ) = r̃4τ b̃1(q)

τ
+ O(1),

(E5)

where b̃1(q) = (1 − 1
2q2∂2

q )|q=0b1(q) has a Taylor expansion
starting at O(q4). In the finite-a method, this new integral can
have only a logarithmic divergence at large r̃ , namely,

Î (r̃ ,τ ) = B̃1(q) ln r̃ + O(1), (E6)

and applying the same reasoning as above to the finite integral
r̃∂r̃ Î (r̃ ,τ ), we obtain

B̃1(q) = 4b̃1(q). (E7)

Hence, in conclusion, if b2(q) = q2/8 we conclude that

Ĩ (r̃ ,τ = 0) � r̃→∞ q2[ln2 r̃ + γ (ln r̃)] (E8)

+ 4b̃1(q) ln r̃ + O(1), (E9)

where γ is nonuniversal, as used in the text.

2. An illustrative example

In this Appendix, we study an example the connection
between the two approaches used, the first one which keeps
a finite ultraviolet cutoff a but uses τ = 0, and the second
dimensional method where a = 0 but τ > 0. In order to
understand the connection, let us consider the following
example:

K(r,a,τ ) =
(

r

a

)2τ

r−2τ

∫
|x|<L

d2x
1

(x2 + a2)1−τ
, (E10)

which, although being simple, resembles the structure of the
terms we encountered in Eqs. (40) and (41) and gives the
essence of the difference of the two methods. The exact
evaluation of Eq. (E10) is elementary and one obtains

K(r,a,τ ) = 2π

(
r

a

)2τ

r−2τ (L2 + a2)τ − a2τ

2τ
. (E11)

Now we evaluate Eq. (E10) using the finite-a method. There,
one first expands the integrand at small τ , followed by the
integration. Doing these two steps, one obtains

Ka(r,a,τ ) =
∫

|x|<L

d2x
1

x2 + a2
+ O(τ )

= 2π ln

(
1 + L2

a2

)
+ O(τ ). (E12)

In the dimensional method, one first expands the integrand
at small a, and then performs the integration. For τ > 0,
this procedure leads to a convergent integral, since the short-
distance divergence is avoided by keeping τ finite. In such a
way, one obtains

Kdim(r,a,τ ) =
(

r

a

)2τ

r−2τ

[ ∫
|x|<L

d2x
1

(x2)1−τ
+ O(a2)

]
= 2π

(
r

a

)2τ

r−2τ

[
L2τ

2τ
+ O(a2)

]
. (E13)

In the final step of the dimensional method, one expands at
small τ the result (E13), finding

Kdim(r,a,τ ) = 2π

[
ln

L

a
+ 1

2τ
+ O(τ )

]
+ O(a2−2τ ). (E14)

The obvious discrepancy, at small a, between the two results of
Eqs. (E12) and (E14), is contained in the term π/τ in the latter;
it arises due to setting a = 0 in the integrand of Eq. (E13),
which is reminiscent of setting a to zero in the last term of the
exact result (E11). As a consequence, the divergence at τ → 0
in Eq. (E14) remains, which would have been canceled had we
kept a finite a in the dimensional method. Therefore, in order
to compare the two results of the finite-a and the dimensional
method, one must neglect all the terms that are divergent in
the limit τ → 0 in the final result of the dimensional method.

We note finally that expressions of the form aτ , which
appear in the integral (E10) and in similar ones, are treated
differently in the finite-a method and in the dimensional one. In
the former, one encounters the limit τ = 0 and therefore aτ =
1. In the latter, one considers the limit a → 0, and therefore
aτ = 0. This difference must be taken into account if one wants
to compare the results obtained by the two methods.
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APPENDIX F: FROM MOMENTS TO DISTRIBUTION

In principle, the knowledge of the cumulants (67) of the
relative phase displacements � = θ (r) − θ (0) allows to learn
about the probability distribution function (PDF) of �, which
could be measured directly, e.g., in numerical simulations.

The presence of poles in η(q) at q = 1, and presumably
other integers, as well as the (related) mechanism of screening
discussed in the introduction precluded us, for now, to have
a complete knowledge of A(q) and η(q) for all q, hence we
are not able to fully characterize the PDF. In a more modest
attempt, hopefully avoiding some of these problems, let us
focus on the correlation at imaginary q = −ip, for which our
result reads

〈ep�〉 � exp{p2τ 2�2 + [cp2 − g(p)τ 2]�}, (F1)

g(p) = p2[2γE + ψ(ip) + ψ(−ip)], (F2)

where � = ln(r/a) and g(p) is a positive even function,
increasing for p > 0, which behaves as O(p4) at small p and
as 2p2 ln p at large p. Note that there are no poles on the
real p axis. At this stage, (F1) is just the generating function
of all cumulants of � and the explicit form (F1) provides a
resummation of the Taylor series in the vicinity of p = 0. It
is not obvious whether this equality holds more globally, i.e.,
whether additional nonperturbative terms are also present, as is
the case along real q. However, it is maybe less likely for real p.

To test this, we must verify that (F1) is first of all an
increasing function of p. Clearly, since g(p) � 2p2 ln p, this
fails at fixed � for some large enough p. So this formula cannot
extend to τ 2 ln p > c� + τ 2�2. It is probable that for such large
p one leaves the domain of validity of the (renormalized)
perturbative expansion and a different calculation must be
performed (such as an instanton calculation for real p).

Let us point out an interesting interpretation. Let us rewrite,
to the same accuracy at large �:

〈ep�〉 � exp[cp2� + p2τ 2�2e−h(p)/�], (F3)

where h(p) = g(p)/p2 ∼ O(p2) at small p and h(p) ∼ 2 ln p

at large p. From the large p � 1 behavior, we can rewrite

〈ep�〉 �p�1 exp(cp2� + τ 2�2p2− 2
� ), (F4)

i.e., indicating some deviations from the Gaussian behavior.

APPENDIX G: A TOY MODEL

Here, we give results for a toy model that shows oscillatory
behavior in C(q) as a function of q. We write the energy for a
particle in a parabola plus a cosine, which has a random shift
ξ ∈ [−1/2,1/2],

H[θ ] = 1
2θ2 − g0 cos(2π [θ + ξ ]). (G1)

For simplicity, we consider the limit of g0 → ∞. This restricts
θ to −ξ plus an integer m. The expectation of eiqθ , given ξ can
then be written as

〈eiqθ 〉|ξ =
∑∞

m=−∞ eiq(m−ξ )− (m−ξ )2

2T∑∞
m=−∞ e− (m−ξ )2

2T

= e− q2T

2 ϑ3
(
π (ζ − iqT ),e−2π2T

)
ϑ3

(
πζ,e−2π2T

) , (G2)
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FIG. 8. (Color online) The correlation function C(q) for T =
1/5 (thick, green, dotted), T = 1/20 (red, thick, solid), and in the
limit of T → 0 (black, thin, dashed). In the latter case, it approaches
C(q)|T =0 = 2 sin(q/2)/q.

where ϑ3 is the elliptic θ function and ζ = −ξ . Then

C(q) = 〈eiqθ 〉 =
∫ 1/2

−1/2
dξ 〈eiqθ 〉

∣∣∣∣
ξ

. (G3)

We have plotted the result in Fig. 8. For T → 0, we can restrict
the sum in Eq. (G2) to m = 0. This yields

C(q)
∣∣∣
T =0

=
∫ 1/2

−1/2
dξ eiqξ = 2

q
sin

(
q

2

)
. (G4)

The corresponding probability distribution is

P (θ )|T =0 = �

(
− 1

2
< θ <

1

2

)
. (G5)

This means that θ is uniformly distributed between −1/2 and
1/2. For higher temperatures, the distribution will be smeared
out. It then reads

P (θ ) = e− θ2

2T√
2π

√
T ϑ3(πθ,e−2π2T )

(G6)

This is plotted in Fig. 9.
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FIG. 9. (Color online) The probability distribution (G6), for T =
1/100 (blue, dashed), T = 1/20 (red, solid), and T = 1/5 (green,
dotted).
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