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Interference in disordered systems: A particle in a complex random landscape
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We consider a particle in one dimension submitted to amplitude and phase disorder. It can be mapped onto
the complex Burgers equation, and provides a toy model for problems with interplay of interferences and
disorder, such as the Nguyen-Spivak-Shklovskii model of hopping conductivity in disordered insulators and
the Chalker-Coddington model for the (spin) quantum Hall effect. We also propose a direct realization in an
experiment with cold atoms. The model has three distinct phases: (I) a high-temperature or weak disorder phase,
(II) a pinned phase for strong amplitude disorder, and (III) a diffusive phase for strong phase disorder, but weak
amplitude disorder. We compute analytically the renormalized disorder correlator, equivalent to the Burgers
velocity-velocity correlator at long times. In phase III, it assumes a universal form. For strong phase disorder,
interference leads to a logarithmic singularity, related to zeros of the partition sum, or poles of the complex Burgers
velocity field. These results are valuable in the search for the adequate field theory for higher-dimensional systems.
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I. INTRODUCTION

Much progress has been accomplished in the understanding
of the thermodynamics of classical disordered systems [1,2].
Typically, the disorder is modeled by a random potential.
At low temperature, the low-lying local minima of the
resulting, rough, energy landscape become metastable states,
and dominate the partition sum of the system. The correlations
of the random potential determine the statistics of these
metastable states, and hence the physics of the model. In many
cases, for example in elastic disordered systems, the scaling of
observables can be described by a family of T = 0 fixed points
of the renormalization-group flow (most notably random-
field and random-bond), which yield characteristic, universal
roughness exponents and effective disorder correlators [3–5].

However, the picture is much less clear when quantum
interference is important. In real-time dynamics, one must
study a sum over Feynman paths, whose weights are complex
random numbers. The dominant contributions may then be
difficult to discern.

To give a specific example, hopping conductivity of
electrons in disordered insulators in the strongly localized
regime is described by the Nguyen-Spivak-Shklovskii (NSS)
model [6]. The probability amplitude J (a,b) is the sum over
interfering directed paths ! from a to b [7–11],

J (a,b) :=
∑

!

∏

j∈!
ηj . (1)

The conductivity between sites a and b (e.g., on a Zd

lattice) is then given by g(a,b) ∼ |J (a,b)|2. Each lattice site
j contributes a random sign ηj = ±1 (or, more generally, a
complex phase ηj = eiθj ).

Another example is the Chalker-Coddington model [12]
for the quantum Hall (and spin quantum Hall) effect, where
the transmission matrix T , and the conductance g(a,b) ∼
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tr T (a,b)†T (a,b), between two contacts a and b is given
by [13,14]

T (a,b) =
∑

!

∏

(ij )∈!
S(ij ) . (2)

The random variables S(ij ) on every bond (ij ) are U (N )
matrices, with N = 1 for the charge quantum Hall effect and
N = 2 for the spin quantum Hall effect. Here ! are paths
subject to some rules imposed at the vertices.

In both models, one would like to understand the dominat-
ing contributions to the sum over paths with random weights,
given by J (a,b) or T (a,b), respectively; we shall denote it by Z
in the following. In contrast to the thermodynamics of classical
models, where all contributions are positive, contributions
between paths with different phases can now cancel. One is
also interested in the expected phase transitions, i.e., critical
values for the amplitude and phase disorder above which
interference effects become important.

This is a complicated problem. In this paper, we therefore
consider a toy model motivated by the models above, for which
many computations can be done explicitly. More precisely, we
analyze a “partition sum” Z, defined in one dimension, of the
form

Z(w) =
√
βm2

2π

∫ ∞

−∞
dx e−β[V (x)+ m2

2 (x−w)2]−iθ(x). (3)

Here V (x) is a random potential and θ (x) a random phase,
both with translationally invariant correlations, and β = 1/T
the inverse temperature. This is a toy model defined in one
dimension and thus a drastic simplification compared to both
the NSS model (1) and the Chalker-Coddington model (2)
(which are usually considered in two dimensions and above).
However, a similar toy model for a random potential without
random phases reproduces many important physical features
of realistic, higher-dimensional models. For example, the
appearance of shocks and depinning are already present in
this framework [15–17]. For purely imaginary disorder, a nice
experimental realization of the sum in Eq. (3) in cold atom
physics is discussed in Sec. II B. Complex sums similar to
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Eq. (3) are also encountered in magnetization relaxation in
random magnetic fields; see, e.g. [18].

The interplay between random phases θ (x) and a random
potential V (x) similar to Eq. (3) was already studied, among
others, in [19–22]. The basic distinction of three phases, high-
temperature phase I, frozen phase II, and strong-interference
phase III, was established by Derrida in [23], and we follow
his conventions. The aim of this paper is to pursue a comple-
mentary approach to [23] based on the study of renormalized
disorder correlation functions. The latter is defined due to the
presence of the parabolic well centered at x = w in Eq. (3).
The resulting spatial structure exhibits nontrivial features such
as, in some cases, discontinuous jumps (shocks) as w is varied.
Furthermore, the renormalized disorder correlator is the central
object of the field-theoretic treatment of disordered systems
based on the functional renormalization group [16,24], and
thus the results of the toy model will give hints for a treatment
of more realistic, higher-dimensional systems.

This article is organized as follows. In Sec. II, we give
the theoretical framework for our treatment. The model (3)
is related to a complex Burgers equation, with time t = m−2,
which has generated interest in the mathematics community
recently [25]. Equal-time correlation functions of the Burg-
ers velocity field are the renormalized disorder correlation
functions&(w − w′) of our model, ∂w ln[Z(w)]∂w′ ln[Z(w′)].
The precise definition is given in Sec. II D. They encode
physical properties of the system like the appearance of shocks.
Their m → 0 (i.e., t → ∞ in the Burgers picture) asymptotics
forms the basis for the following analysis of the various phases.

We first discuss the strong-interference regime V (x) = 0
and sufficiently strong θ (x) in Sec. III. This is the regime most
directly related to the NSS model and the Chalker-Coddington
model described above. Naively, one may think, in analogy
to the case of classical disordered systems where θ (x) = 0,
that points of stationary phase take on the role of the local
minima of the energy landscape and dominate the partition
sum. We will show that this is incorrect. Instead, fluctuations
of Z(w) along the entire system are important. In our analytical
treatment using the replica formalism, this manifests itself as
a pairing of replicas. We will see that there is a finite density of
zeros of Z(w) (as already observed in [23]), which manifests
itself in a logarithmic singularity of the effective disorder
correlator &(w − w′) for w close to w′.

In Sec. IV, we consider the influence of random phases
in the frozen regime [large βV (x)], where only a few local
minima of the random potential contribute to Z(w). In the
β → ∞ limit one finds sharp jumps between these minima
as w is varied. In the Burgers velocity profile, these manifest
themselves as shocks, and their statistics are known to be
encoded in a linear cusp of the effective disorder correlator
[15,16]. We then discuss how the form of these shocks is
modified by the introduction of random phases. It turns out
that the linear cusp of the effective disorder correlator again
acquires a logarithmic singularity. This time, however, it is
related to shocks between two minima where the phase angle
difference is π , i.e., Z(w) passes through 0. This phenomenon
is dependent on the spatial structure and on the possibility to
vary w, and hence was not observed in [23].

In Sec. V, for completeness we briefly discuss the high-
temperature phase. Here, fluctuations of Z are small compared
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FIG. 1. (Color online) Phase portrait of the model. The horizontal
axis is the strength of V and the vertical axis the strength of θ .
The effective disorder correlators for points A (deep in the diffusive
phase), B (deep in the pinned phase), and C (infinitesimally small
disorder) are analyzed in Secs. III, IV, and V, respectively.

to its expectation value, and Z never becomes zero. As a
consequence, the effective disorder correlators are regular
everywhere, indicating that no shocks or poles occur in the
Burgers velocity field.

At any finite system size L ∼ 1
m

, there are blurred
crossovers between these phases, as shown in Fig. 1. They
become sharp transitions in the thermodynamic limit if the
variance of θ and V is rescaled with the system size L as
V 2 ∼ θ2 ∼ ln L [23]. Since we are interested in the behavior
of the disorder correlators deep inside each individual phase,
we do not follow this path but instead choose the simpler
scaling ∼ 1 or ∼ L. By doing this for V and θ individually,
we can shrink all phases but one in the phase diagram to points
respectively lines, and discuss each phase individually.

In conclusion, one significant physical result of our work
is that the introduction of random phases has quite different
effects depending on the real potential V (x). If V (x) is
sufficiently strong so that the system is in the frozen phase,
even weak random-phase disorder immediately introduces
zeros of Z(w) or turns the shocks of the real Burgers velocity
profile into poles of the complex Burgers velocity profile. In
the high-temperature phase, where V (x) is weak, this does
not happen for weak random-phase disorder, and the effective
disorder correlators remain analytic.

II. PRELIMINARIES

A. Definition of the model

To completely define the model (3), one needs to specify
the joint distribution of the random potential V (x) and the
random phases θ (x). For the purpose of this paper, we assume
that V and θ are independent and that the distribution of θ is
symmetric around 0. This is mostly for technical reasons (since
this choice makes many observables real) and is certainly true,
e.g., for centered Gaussian distributions.

Typically, one chooses V (x) to be Gaussian with mean zero,
V (x) = 0, and variance depending on the type of correlations.
Here · · · denotes averages over realizations of the disorder.
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In the absence of imaginary disorder, a short-range correlated
V (x), i.e., V (x)V (x ′) = 0 unless x = x ′, gives the so-called
Kida model [17,26,27]. If one chooses V (x) to be long-range
correlated as a random walk, [V (x) − V (x ′)]2 ∼ |x − x ′|,
one obtains the Sinai model [28]. For θ (x), we also assume
translationally invariant correlations.

For some computations, it is easier to regularize by a finite
system size L,

ZL := 1
L

∫ L

0
e−βV (x)−iθ(x)dx . (4)

The system size L can be related to the mass of the harmonic
well through L ∼ 1

m
. In the case of pure random-phase

disorder, i.e., V (x) = 0, Eq. (4) can be seen as a partition sum
of a particle in the real random potential θ (x) at imaginary
inverse temperature iβ.

B. Proposed measurement of Z in cold atoms

A direct measurement of the partition sum as given in
Eq. (3) for the strong-interference phase, i.e., with random
phases θ (x) but without a random potential V (x), is at least
in principle possible in a cold-atom experiment: prepare the
system in the ground state of a weak harmonic well (with
frequency ω), so that at t = 0 the wave function is

ψ0(x) := ψ(x,t = 0) =
(

Mω

πh̄

) 1
4

e− Mωx2
2h̄ . (5)

Then switch off the harmonic well, and instead switch on a
random potential θ (x). In situations where the kinetic term in
the Hamiltonian is negligible, such as ωt ' 1, or a large mass
M , the time evolution is approximately given by e− i

h̄
θ(x)t , i.e.,

ψ(x,t) =
(

Mω

πh̄

) 1
4

e− Mωx2
2h̄ − i

h̄
θ(x)t . (6)

Switching the potential back to the harmonic well and
measuring the overlap with the ground state gives

〈ψ0|ψ(t)〉 =
(

Mω

πh̄

) 1
2
∫ ∞

−∞
dx e− Mωx2

h̄
− i

h̄
θ(x)t . (7)

This is exactly of the form of Z(w) in Eq. (3) if one
identifies βm2

2 = Mω
h̄

. Although the overlap 〈ψ0|ψ(t)〉 cannot
be measured directly, the occupation probability of the ground
state, given by |〈ψ0|ψ(t)〉|2, could in principle be measured,
providing a direct measurement of |Z(0)|2 in the strong-
interference regime. An example of a related experiment is
given in [29].

C. Complex Burgers equation

Another application of the toy model (3) is to the complex
Burgers equation. With the mapping t := m−2, one obtains
from Eq. (3) the “equation of motion” or “renormalization
group equation” (m2 being interpreted as the infrared cutoff)
for Z,

∂tZ(w,t) = T

2
∂2
wZ(w,t) . (8)

We have added the argument t for clarity. The initial condition
at t = 0 equivalent to m2 = ∞ is

Z(w,0) = e−βV (w)−iθ(w). (9)

Using the Cole-Hopf transformation h(w,t) := −T ln Z(w,t),
we obtain the Kardar-Parisi-Zhang equation

∂th(w,t) = T

2
∂2
wh(w,t) − 1

2
[∂wh(w,t)]2. (10)

Taking one spatial derivative, one arrives at the Burgers
equation for the velocity u(w,t) := ∂wh(w,t):

∂t u(w,t) = T

2
∂2
wu(w,t) − u∂wu(w,t) . (11)

Without random phases [θ (x) = 0], u(w,t) is real and
Eq. (11) is the well-studied real Burgers equation. It has been
used, among others, to describe the formation of large-scale
structures in cosmology (the so-called adhesion model) and
in compressible fluid dynamics (for a review, see [30]). When
random phases are included, u becomes complex.

The resulting complex Burgers equation has been used to
obtain further information on the real Burgers equation through
analytic continuation to the complex plane and the so-called
pole expansion [31–34].

However, it also has very surprising new applications, e.g.,
to lozenge tilings of polygons [25]. For such tilings, the space
and time directions of Eq. (11) become two coordinate axes in
the plane. The random initial condition (9) at t = 0 (or m = ∞)
in our model corresponds to fixing the height function of the
tiling along a one-dimensional infinite boundary.

In the following, we study the small-m properties of
Eq. (3) or, equivalently, the large-t properties of the complex
Burgers equation (11). In the context of lozenge tilings, this
corresponds to the limit of large distances from the boundary
along which the height function is fixed by the random initial
condition. We shall see that, even in this limit, the roughness of
the random initial condition (measured, e.g., by the range of its
correlations) influences the structure of the Burgers velocity
field (see also the discussion in Sec. VI).

D. Effective disorder correlators

The main observables on which we base our analysis are
the so-called effective disorder correlators, which we define
now. For each realization of the random potential V (x) and
the random phases θ (x), we first define the “free energy” or
the “effective potential” by

βV̂ (w) + iθ̂ (w) := βh(w) ≡ − ln Z(w) . (12)

Note that V̂ (w) is always unique, but θ̂(w) is only defined
modulo 2π . We will thus focus on θ̂ ′(w), which is unambigu-
ous. This is also the reason why it is preferable to consider the
Burgers equation (11) instead of Eq. (10) for the potential.

The effective disorder correlators for the potential and the
phase are then defined by

&V (w1 − w2) := V̂ ′(w1)V̂ ′(w2),

&θ (w1 − w2) := θ̂ ′(w1)θ̂ ′(w2) . (13)
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The cross-correlator V̂ ′(w1)θ̂ ′(w2) vanishes since V (x) and
θ (x) are independent and due to the symmetry θ → −θ . In
more general situations, this may not hold.

The correlators defined above have a nice representation as
correlation functions. Define the normalized expectation value
of an observable O for a given w as

〈O(x)〉w := 1
Z(w)

√
βm2

2π

×
∫ ∞

−∞
dx e−β[V (x)+ m2

2 (x−w)2]−iθ(x)O(x).

(14)

By definition 〈1〉w = 1. Taking a derivative of Eq. (12) yields

−Z′(w)
Z(w)

= βV̂ ′(w) + iθ̂ ′(w) = βm2〈w − x〉w. (15)

This gives two simple relations for &V and &θ :

&ZZ(w1 − w2) := m4〈x − w1〉w1〈x − w2〉w2

= &V (w1 − w2) − β−2&θ (w1 − w2), (16)

&ZZ∗(w1 − w2) := m4〈x − w1〉w1〈x − w2〉∗w2

= &V (w1 − w2) + β−2&θ (w1 − w2). (17)

In terms of the complex Burgers equation (11), the effective
disorder correlators have the intuitive interpretation of equal-
time velocity correlation functions:

&ZZ(w1 − w2) = u(w1,t)u(w2,t),

&ZZ∗(w1 − w2) = u(w1,t)u∗(w2,t).

The effective disorder correlator (17) has an interesting
interpretation in the cold-atoms experiment proposed in
Sec. II B. Taking the overlap with the first excited state

ψ1(x) =
√

2

π
1
4

(
Mω

h̄

) 3
4

x e− Mωx2
2h̄ (18)

of the harmonic oscillator, instead of the ground state as in
Eq. (7), we obtain

〈ψ1|ψ(t)〉 =
√

Mω

πh̄

√
2Mω

h̄

∫ ∞

−∞
dx x e− Mωx2

h̄
− i

h̄
θ(x)t . (19)

Thus, with the identification βm2

2 = Mω
h̄

,

〈ψ0|ψ(t)〉 = Z(0),

〈ψ1|ψ(t)〉 = 1
√
βm2

Z′(0) .

Inserting this into Eq. (17) and using Eq. (15) gives

&ZZ∗(0) = 1
β2

Z′(0)
Z(0)

Z′(0)∗

Z(0)∗
= m2

β

|〈ψ1|ψ(t)〉|2
|〈ψ0|ψ(t)〉|2

. (20)

Thus &ZZ∗(0) is the average of the probability of a transition
to the first excited state of the harmonic oscillator, divided
by the probability of remaining in the ground state. In
the following, we shall abbreviate this ratio as the relative
transition probability to the first excited state. The average
is a disorder average, but can likewise be implemented as

an average over a large number of spatially well-separated
harmonic traps.

We will now proceed with computing &ZZ and &ZZ∗

explicitly in each of the three phases.

III. STRONG-INTERFERENCE PHASE (PHASE III)

The strong-interference phase has first been discussed in
the context of directed paths with random complex weights
in [19,21,35] and later for the random-energy model at
complex temperature [23]. In this phase, the average of Z
is essentially zero (or at least subdominant) due to strong
interference, and Z is dominated by fluctuations. The whole
system contributes to the partition sum, in contrast to the case
of a real random potential, where it is dominated by a few
points with exceptionally large moduli.

In a replica formalism, this is reflected by a pairing of the
replicas, as already observed for the NSS model in [35]. For the
two-dimensional model discussed there, an entropic attraction
between replica pairs arises at crossings of four or more
replicas due to the spatial structure. In our one-dimensional
model, the resulting replica pairs will turn out to be essentially
noninteracting and spread out over the whole system.

We will analyze this phase by setting V (x) = 0 in Eq. (3)
and consider the small-m limit. We shall show that (i) this
phase is characterized by Z(w) being a Gaussian stochastic
process in the complex plane with w as the time variable and
(ii) its two-time correlation function is universal and given by

Z(w)Z(w′) ∼ e− βm2

4 (w−w′)2
. (21)

From this, the effective disorder correlators defined above
can be computed. We shall see that &V and &θ exhibit a
logarithmic singularity around zero, describing the statistics of
zeros of Z. In contrast, &ZZ = &V − β−2&θ remains regular
around zero.

We then consider two explicit examples where the random
phase disorder is sufficiently strong to observe this phase.
Example 1 will be a model with Brownian imaginary disorder,
i.e., long-range correlated phases [θ (x) − θ (x ′)]2 ∼ |x − x ′|.
Example 2 will be a model with short-range correlated phases
uniformly distributed on [−π,π [.

A. Characterization of phase III and probability
distribution of Z

We set V (x) = 0 in Eq. (3) and consider imaginary disorder.
There is a large class of processes θ (x) such that in the limit
m → 0 the distribution of Z(w) tends to a complex Gaussian
variable due to a central limit theorem (CLT). To understand
qualitatively why, let us think of Z(w) as a discrete sum
Z(w) ≈ 1

L

∑L
j=1 zj , where each zj = eiθj is a random variable

inside the unit disk and L ∼ 1/m. The usual statement of
the CLT shows that uncorrelated variables zj belong to this
class (this is applied, e.g., in example 2, Sec. III E). In the
more general case of correlated zj , a CLT also holds under the
assumption that the correlations of the zj decay fast enough. A
precise mathematical statement of the necessary and sufficient
conditions is possible using a so-called strong mixing condition
(see [36–38]).
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More qualitatively, we require the conditions that

q± =
∫ ∞

−∞
dx eiθ(0)±iθ(x) (22)

are finite and that a similar condition for the integral of
the fourth cumulant holds. Since we assumed that θ (x) is
symmetrically distributed around 0, the q± are real. Note
that the fact that Z(w) is bounded for any realization of
θ (x) and any w by |Z(w)| ! 1 distinguishes this problem
from the real potential case, where the CLT does not hold in
general.

Thus, from now on, we consider the case where the CLT
holds and in the limit m → 0 the distribution of Z(w) tends
to a complex Gaussian variable. This happens in what we
call phases I and III. In these phases, the distribution of
Z(w) is thus determined by its mean Z(w) and its covariance
matrix, consisting of three entries: Z(w)Z(w), Z(w)Z∗(w),
and Z∗(w)Z∗(w). A similar reasoning applies to the joint
distribution of Z(w) and Z(w′).

The key difference between the strong-interference phase
III and the high-temperature phase I is the scaling of these
moments: if the mean of Z as a function of m decreases
faster than the fluctuations, Z(w)

2 ' [Z(w) − Z(w)]2 ∼ m as
m → 0, we obtain the strong-interference, fluctuation-
dominated phase III. If, on the other hand, the mean decreases
slower than the fluctuations, Z(w)

2 / m as m → 0, we obtain
the high-temperature phase I.

In the example in Sec. III D, we will take θ to be long-range
correlated, [θ (x) − θ (y)]2 ∼ |x − y|, where we will see that
Z(w)

2 ∼ e−α/m ' m. On the other hand, in Sec. III E, we
will consider an example where rotational symmetry enforces
Z(w) = 0. In both cases, we verify the general results and
assumptions presented here.

B. Second moments

The second moments of the complex process Z(w) take a
general form which we derive now. The “renormalization-

group” equation (8) describes how Z(w) evolves under
changes of t = m−2. This implies a similar equation for the
two-point function f̃ (w − w′) := Z(w)Z∗(w′),

∂t f̃t (w) = T ∂2
wf̃t (w). (23)

Here we added the index t to make the dependence of Z(w)
on the parameter m and hence the dependence of f̃ (w) on the
parameter t explicit. The general solution of Eq. (23) in terms
of the initial condition f̃0(w) = ei[θ(0)−θ(w)] is

f̃t (w) =
√

1
4πT t

∫ ∞

−∞
e− (w−w0)2

4T t f̃0(w0) dw0 . (24)

Since we assumed q− to be finite, see Eq. (22), the solution
(24) tends to a Gaussian scaling form as t → ∞,

f̃t (w) → q−

√
1

4πT t
e− w2

4T t . (25)

Note that this assumption is violated in phase I, where the
mean Z(w) contributes a constant to ft (w) even for large t . It
is also violated in phase II, where

∫ ∞
−∞ f̃0(w0)dw0 diverges.

Going back to the original variables m andβ, the asymptotic
form of Eq. (24) in phase III is

f̃m(w − w′)
m→0
−−→ q−

√
β

2π
mf [ŵ = m

√
β(w − w′)], (26)

f (ŵ) = e− 1
4 ŵ2

. (27)

Exactly the same reasoning goes through for the second
moment Z(w)Z(w′) with q− replaced by q+.

The scaling in Eq. (26) reflects the fluctuation-driven char-
acter of phase III: If the mean Z(w) were not subdominant, for
large system sizes L ∼ m−1, as compared to the fluctuations,
f̃ in Eq. (26) would be O(L0) instead of O(L−1) and not tend
to zero for large argument.

To summarize, in the strong-interference phase III, as
m → 0, the partition function Z(w) tends to a Gaussian
process with mean zero and correlation matrix:





Z(w)Z(w) Z(w)Z∗(w) Z(w)Z(w′) Z(w)Z∗(w′)

Z∗(w)Z(w) Z∗(w)Z∗(w) Z(w)Z(w′) Z(w)Z∗(w′)

Z(w′)Z(w) Z(w′)Z∗(w) Z(w′)Z(w′) Z(w′)Z∗(w′)

Z∗(w′)Z(w) Z∗(w′)Z∗(w) Z∗(w′)Z(w′) Z∗(w′)Z∗(w′)




= m

√
β

2π





q+ q− q+f (ŵ) q−f (ŵ)

q− q+ q−f (ŵ) q+f (ŵ)

q+f (ŵ) q−f (ŵ) q+ q−

q−f (ŵ) q+f (ŵ) q− q+




. (28)

With this, we have completely characterized the m → 0
asymptotics of Z(w) in the strong-interference phase III as
a Gaussian stochastic process with the second moment given
by Eq. (26). In Secs. III D and III E, we shall explicitly check
the asymptotic form in Eq. (27) and obtain the nonuniversal
constant q± in Eq. (27).

C. Disorder correlators

Having discussed the probability distribution of Z(w), we
now turn to computing the effective disorder correlators. For

simplicity, we restrict ourselves to the case when the limiting
Gaussian distribution for Z(w) is rotationally symmetric, i.e.,
only depends on the modulus |Z(w)|. In the covariance matrix
(28), this means q+ = 0. The joint probability distribution for
two partition sums Z(w1) = a1 + ib1 and Z(w2) = a2 + ib2
is then given by

P (a1,b1,a2,b2) = 1

4π2
√

det B
e− 1

2 0xB−1 0x , (29)
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with 0x = ( a1 b1 a2 b2 ),

B = c

2





1 0 f (ŵ) 0

0 1 0 f (ŵ)

f (ŵ) 0 1 0

0 f (ŵ) 0 1




, (30)

and c = mq−

√
β

2π . We will see later that the disorder correlator
does not depend on c.

To compute the effective disorder correlators, let us recon-
sider their definition (13). Since θ̂ is the angular variable of
a two-dimensional Gaussian stochastic process, we can apply
the results of [39]. There, the two-time correlation function
for the angular “velocity” ˙̂θ (w) := ∂w θ̂ (w) of planar Brownian
motion is (cf. [39], formula 17)

˙̂θ (w) ˙̂θ(w′) = −1
2

[∂w∂w′ ln f (ŵ)] ln [1 − f (ŵ)2] . (31)

The two-point correlator of the phase (instead of its velocity)
can then be written as a double integral of Eq. (31), but no
explicit expression is known.

The two-point correlator of ln |Z| = βV̂ is obtained from
the explicit form (29) for the two-time probability distribution
as

β2V̂ (w)V̂ (w′) = ln |Z(w)| ln |Z(w′)|

=
∫ ∞

−∞

1

4π2
√

det B
e− 1

2 0xB−1 0x ln |a1 + i b1| ln |a2 + i b2|,

with B given by Eq. (30). This integral can be computed
exactly (γE denotes Euler’s constant):

β2V̂ (w)V̂ (w′) = 1
4
{(γE − ln c)2 + Li2[f (ŵ)2]}. (32)

Plugging the scaling form f (ŵ) = e− 1
4 ŵ2

into Eqs. (31) and
(32), we obtain the disorder correlators

&V (w) = −m2

4β

[
ŵ2

e
1
2 ŵ2 − 1

+ ln (1 − e− 1
2 ŵ2

)
]

,

&θ (w) = −β
m2

4
ln (1 − e− 1

2 ŵ2
) . (33)

Equivalently,

&ZZ(w) = −m2

4β
ŵ2

e
1
2 ŵ2 − 1

, (34)

&ZZ∗ (w) = −m2

4β

[
ŵ2

e
1
2 ŵ2 − 1

+ 2 ln (1 − e− 1
2 ŵ2

)
]

. (35)

Observe that &ZZ is smooth around 0, whereas &ZZ∗ has
a logarithmic singularity at w = 0. Note that all correlators
are expressed in terms of the rescaled variable ŵ defined in
Eq. (26).

The above expressions for the correlators (which are also
the two-point equal-time velocity correlators for the complex
Burgers equation) are universal and generally valid in phase III,
under the assumption of rotationally invariant disorder. The
more general case can be handled by similar methods but is
not studied here. These results were obtained using the CLT
assumption.

1 2 3 4 5
w

−0.5

0.0

0.5

1.0

1.5

∆(w∧)/β m2

∧

FIG. 2. (Color online) Effective force-force correlators for the
long-range model defined by Eq. (36). Lines (from top to bottom):
&ZZ∗ from Eq. (35); &ZZ from Eq. (34). Dots: corresponding
correlators obtained numerically using Eqs. (16) and (17) from
5 × 105 realizations of Eq. (3) with θ as in Eq. (36) for σ = 1,β = 10
and m = 0.05 (dots), m = 0.1 (crosses).

We now study two specific models where we can com-
pute the general moments (beyond the second one) using
the replica method, and check that they are consistent with
the above reasoning. As an additional check we also compute
numerically the correlators.

D. Example 1: Imaginary Brownian disorder

Consider pure random-phase disorder, V (x) = 0, and take
θ (x) to be a continuous random walk, i.e., a Gaussian stochastic
process satisfying

[θ (x) − θ (x ′)]2 = 2σ |x − x ′| . (36)

Thus, in the finite length regularization, the partition sum (4)
is the Sinai model at an imaginary temperature. We measure
numerically the effective disorder correlators using relations
(16) and (17). The results are compared in Fig. 2 against the
analytic computation in the previous section. We observe good
agreement.

1. Second moment

Here we show explicitly the validity of the scaling argument
given in Sec. III B for this model.

Using formula (3), the second moment is given by

Z(w)Z∗(w′)

= βm2

2π

∫ ∞

−∞
dx dy e− 1

2 σ |x−y|−β m2
2 [(x−w)2+(y−w′)2]. (37)

This integral (37) can be computed exactly by using the center-
of-mass variable s and the “pair separation” variable t , defined
as

s := x + y

2
,

t := x − y . (38)
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In these variables, the s and t integrals decouple,

Z(w)Z∗(w′) = βm2

2π

(∫ ∞

−∞
ds e−β m2

2 [(s−w)2+(s−w′)2]
)

×
(∫ ∞

−∞
dt e− 1

2 σ |t |+β m2
2 (w−w′)t−β m2

4 t2

)
. (39)

Both integrals can be performed analytically. In terms of the
rescaled variables,

ŵ := m
√
β(w − w′),

σ̂ := σ

m
√
β

, (40)

the second moment (39) is given by

Z(w)Z∗(w′) = 1
2e− ŵ2

4

[
e

(σ̂−ŵ)2

4 erfc
(
σ̂ − ŵ

2

)

+e
(σ̂+ŵ)2

4 erfc
(
σ̂ + ŵ

2

)]
. (41)

Taking the m → 0 limit at fixed β (i.e., the limit σ̂ → ∞), the
second moment (41) approaches the scaling form

Z(w)Z∗(w′) ∼ 2√
πσ̂

f (ŵ),

f (ŵ) = e− 1
4 ŵ2

. (42)

This is exactly the scaling form obtained in Eq. (27), and gives
a nontrivial check for the validity of that argument.

2. Higher moments

Let us now look at higher moments of Z and Z∗ given by

Z(w1) · · ·Z(wn)Z∗(w′
1) · · ·Z∗(w′

n)

=
∫ ∞

−∞
dx1 · · · dxn

∫ ∞

−∞
dy1 · · · dyn

×e− σ
4 [

∑n
i,j=1 |xi−yj |+|yi−xj |−|xi−xj |−|yi−yj |]

×e−β m2
2

∑n
i=1[(xi−wi )2+(yi−w′

i )
2]. (43)

An exact calculation does not seem feasible, but the asymptotic
behavior is understood as follows. In the limit σ̂ → ∞,
the exponent in Eq. (43) will have a sharp maximum at
configurations where the xi and yj are paired, i.e., close to
each other. We now consider configurations that are close to
such a pairing, where without loss of generality xi is paired
to yπ(i) with some permutation π . Similar to Eq. (38), we
introduce center-of-mass and separation coordinates si and ti
for each pair and rewrite the mass terms as in Eq. (39).

The ti integrals have complicated boundaries, which yield
terms decaying as e−ασ̂ with various functions α > 0. Hence
these terms can be neglected in the limit m → 0, and the s and
t integrals decouple again:

Z(w1) · · ·Z(wn)Z∗(w′
1) · · ·Z∗(w′

n)

=
∑

π

n∏

i=1

Z(wi)Z∗(w′
π(i)) + higher orders in m. (44)

In particular, we get

[Z(w)Z∗(w′)]n = n!
[
Z(w)Z∗(w′)

]n

+ higher orders in m. (45)

A more rigorous justification that this is the leading term
in an expansion in orders of m is given in the Appendixby
considering the moments of the partition sum in a finite system
(4).

Correspondingly, the leading term for the moments
[Z(w)]n[Z∗(w′)]m for m 1= n is zero in the strong-disorder
limit, since then the replicas cannot be paired. Stated differ-
ently, the phase of Z is random, and hence only moments
invariant under the rotation Z → eiφZ are nonzero. Dropping
the higher-order terms in Eq. (44), we obtain exactly the
moments of a complex Gaussian variable. This supports the
general claim made in Sec. III A, and shows that this model is
indeed in the strong-interference phase III.

The fact that configurations with unpaired replicas are
subdominant shows that fluctuations of Z dominate over the
average. Intuitively, this happens since for σ̂ / 1 the phase of
the integrand in the expression (3) grows beyond 2π on a scale
much smaller than the width 1

m
of the parabolic well. Hence

Eq. (3) is essentially a sum of many random complex numbers
with mean zero.

This is the same behavior as in “phase III” discussed by
Cook and Derrida [19] and by Derrida [23]. Since our potential
is long-range correlated, θ (x)2 ∼ x, instead of the short-range
correlated potential θ (x)2 ∼ 1 used in [19], the complex phase
of the integrand in Eq. (3) grows much faster in our model.
Hence we do not observe “phase I” for high temperatures
(β < βc) as in [19,23], but only the fluctuation-dominated
“phase III.”

In the following, we shall show that similar results hold in
a model with uniformly distributed θ (x).

E. Example 2: A short-range correlated model with uniformly
distributed angles

Our second example is a model where the potential θ (x) in
Eq. (4) is short-range correlated and uniformly distributed. To
be more precise,

P [θ (x)] = 1
2π

, (46)

while θ (x) and θ (x ′) are uncorrelated for x 1= x ′.
As can be seen in Fig. 3, a numerical simulation yields

disorder correlators, which compare well to the general results
obtained above. As for the first example, we shall compute
moments of Z to elucidate the physics.

Invariance of the distribution of θ (x) under a phase shift,
θ (x) → θ (x) + φ, implies invariance of the distribution of Z
under Z → Z eiφ . Hence the only nonzero moments are of the
form |Z(w)|2n.

For n = 1, evaluating the second moment gives

Z(w)Z∗(w′)

= βm2

2π

∫ ∞

−∞
e−β m2

2 [(x−w)2+(x−w′)2]e−i[θ(x)−θ(x ′)] dx dx ′
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FIG. 3. (Color online) Effective force-force correlators for the
short-range model defined by Eq. (46). Lines (from top to bottom):
&ZZ∗ from Eq. (35); &ZZ from Eq. (34). Dots: corresponding
correlators obtained numerically using Eqs. (16) and (17) from
5 × 105 realizations of Eq. (3) with θ as in Eq. (46) for σ = 1,β = 10
and m = 0.05 (dots), m = 0.1 (crosses).

= βm2

2π

∫ ∞

−∞
e−β m2

2 [(x−w)2+(x−w′)2] dx

=
√
βm2

π

1
2
e−β m2

4 (w−w′)2
. (47)

Note that this is again in agreement with the general scaling
argument given in Sec. III B.

For the higher moments [Z(w)Z∗(w′)]n, the only terms
contributing are those where the 2n replica form n pairs. When
at least two pairs are at the same position, it is not clear which
replicas are pairs, leading to double-counting. However, these
contributions are subdominant and vanish with a relative factor
of at least m2. Thus the dominant term for m → 0 is

[Z(w)Z∗(w′)]n

= n!

√
βm2

2π

2n [∫ ∞

−∞
e−β m2

2 [(x−w)2+(x−w′)2]dx

]n

= n!
[
Z(w)Z∗(w′)

]n + higher orders in m.

Analogously to the derivation of Eq. (45), this formula can be
generalized to moments of Z with different positions.

Again, we observe the same behavior of the moments as for
a complex Gaussian. In total, in the limit of large m, we recover
the same phase III results as in the long-range correlated model
in Sec. III D and confirm the validity of the general arguments
in the beginning of this section once more.

IV. FROZEN PHASE (PHASE II)

For large β and sufficiently strong potential V (x), the
modulus of the integrand in Eq. (3) has a very broad
distribution. It is well known that the partition sum (in
the absence of the harmonic well) is then dominated by
a few points—the minima of V (x). This so-called frozen
phase has been extensively studied in the absence of random
phases by a variety of methods (replica symmetry breaking
[27], functional renormalization group [17], and rigorous
mathematical analysis [40]).

Distributions of V where a frozen phase occurs in the model
(3) in absence of complex phases include the following.! Long-range correlated random potentials V (x), i.e.,
V (x)V (x ′) = σ |x − x ′|. This is known as the Sinai model,
which describes the diffusion of a random walker in a one-
dimensional random static force field [28,41].! Short-range correlated random potentials V (x), i.e.,
V (x)V (x ′) = σδ(x − x ′), where the amplitude is rescaled
logarithmically with the system size, or m: σ ∼ − ln m.
Freezing occurs below some critical temperature, β > βc,
analogously to the random energy model [40].

Among the most interesting features of the frozen phase is
the appearance of jumps between distant minima of V (x) as the
position w of the harmonic well in Eq. (3) is varied [16,42–44].
These correspond to shocks [30] under the mapping to the
Burgers equation discussed in Sec. II C. In the following, we
will discuss how their structure is changed upon introduction of
random complex phases θ (x), following the standard treatment
[17,45] for the case without random phases.

A. Complex shocks

Let us first consider a fixed realization of the random
potential V (x) and the random phases θ (x). For almost all
w, the real part of the exponent, V (x) + m2

2 (x − w)2 has, as
a function of x, a single minimum at some value x = xm(w).
Then, in the low-temperature limit (i.e., β → ∞),

Z(w) = e−βV (xm)−iθ(xm)−β m2
2 (xm−w)2

, (48)

and hence

V̂ (w) = V (xm) + m2

2
(xm − w)2, (49)

θ̂(w) = θ (xm). (50)

The function xm(w) is constant over some range of w, but
then jumps to a different value at w = w∗. Denoting the two
solutions at w∗ by x1 and x2, the necessary condition for a
jump is

V (x1) + m2

2
(x1 − w∗)2 = V (x2) + m2

2
(x2 − w∗)2. (51)

In terms of the effective potential V̂ , two parabolic sections
given by Eq. (49) (with w = w1 and w2, respectively) meet
at w∗ with a linear cusp. The first derivative, V̂ ′(w), has a
discontinuity at w∗.

So far, this is the same picture as has been established for
purely real disorder long ago in the context of the Burgers
equation [15,30,46]. There, the appearance of the shocks
is succinctly encoded [16,17] in the effective force-force
correlator &(w), which extends to the broader context of
interfaces in random media. It has been computed and tested
both numerically [47,48] and experimentally [49]. It encodes
the statistics of the shocks through a linear cusp at w = 0.
At finite temperature β, the shock is smoothened in the
so-called thermal boundary layer, which extends on a scale
w ∼ T = β−1 [50,51].

The additional random phase θ (x) will in general be
different at x1 and x2. We now show that this is reflected
in the profile of V̂ (w) and θ̂ (w) for w close to a shock. This

061116-8



INTERFERENCE IN DISORDERED SYSTEMS: A . . . PHYSICAL REVIEW E 83, 061116 (2011)

modifies the form of the disorder correlator &(w) near w = 0,
more specifically in the thermal boundary layer region w ∼ T ,
where we will obtain its precise form. We find that it adds a
logarithmic singularity that depends on the statistics of the
phase jumps.

1. Shock profile: general case

Let us assume a two-well picture, i.e., approximate Z(w)
by

Z(w) = e−β[V1+ m2
2 (x1−w)2]−iθ1 + e−β[V2+ m2

2 (x2−w)2]−iθ2 . (52)

The effective potential (12) can be written in terms of the
jump size s := βm2(x2 − x1), the phase difference φ := θ2 −
θ1, and w∗, solution of Eq. (51):

θ̂ ′(w) = s

2
sin(φ)

cos(φ) + cosh(s[w − w∗])
, (53)

−V̂ ′(w) = s

2β
sinh(s[w − w∗])

cos(φ) + cosh(s[w − w∗])
(54)

+m2

2
(x1 + x2 − 2w).

Some examples of shock profiles for various values of the
parameters are shown in Fig. 4. Note that as φ → ±π , a
pole appears in V̂ ′(w) at w = w∗, which is the real part of
the Burgers velocity.

To obtain the disorder correlator &θ , we need to average
θ̂ ′(w1)θ̂ ′(w2) over the disorder. Assume a small uniform
density ρ0 of shocks and average over w∗ with the measure

ρ0
∫ 1

2ρ0

− 1
2ρ0

dw∗. Since θ̂ ′(w) decays rapidly as w∗ is increased,

we can safely extend the integration limits to ±∞, allowing us
to compute the integral over the shock position w∗ analytically:

&θ (w) = ρ0

∫ π

−π

dφ

∫ ∞

0
ds P (φ,s)f (φ,s), (55)

f (φ,s) = s sin2(φ)
φ cotφ − sw

2 coth sw
2

cos 2φ − cosh sw
, (56)

where w = w1 − w2. We denote by P (φ,s) the joint distribu-
tion of the jump sizes s and the phase jumps φ. Remarkably,
&V (w) can also be calculated, by considering the difference
&V (w) − &V,φ=0(w), where&V,φ=0(w) is the correlator of the
problem without the imaginary disorder, θ (x) = 0:

&V (w) = &V,φ=0(w) + β−2&θ (w) . (57)

Thus the correlator &ZZ = &V − β−2&θ is unchanged by
the complex phases. Observe that the integrand in Eq. (55)
becomes singular for w = 0 and φ = ±π . In the following
examples (Secs. IV B and IV C), we shall see that this
singularity yields a logarithmic singularity in &V,θ around
zero. Its coefficient will be seen in Sec. IV C to be proportional
to P (φ = ±π ).

We have now discussed the effective disorder correlators&θ

and &V in a two-well approximation in a general situation. So
far, we did not make specific assumptions on the distribution
and the correlations of the disorder. These enter the final result
(55) through the joint distribution of the jump sizes s and

−2 −1 1 2
w
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2.0
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3.0
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'(w)

−2 −1 2
w

−1.5

−1.0

−0.5
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1.0

1.5

V
∧

'(w)

(a)

(b)

FIG. 4. Shock profiles from Eq. (54) for β = 5, w∗ = 0, x1 +
x2 = 0, m = 1 and φ = 0 (dotted), φ = π

2 (dashed), φ = 3
4π (dot-

dashed), φ = 9
10π (solid).

the phase jumps φ. Now, we will specialize to examples of
particular interest.

B. Example 1: Uniformly distributed random phases in a
short-range potential

Our first example is θ (x) uniformly distributed in [−π,π ]
and uncorrelated from the spatial dependence xi , i.e.,
P (φ,s) = 1

2π P (s). This allows us to perform the φ integral
in Eq. (55) analytically:

&θ (w) = ρ0

∫ ∞

0
ds P (s)

s

2

[
sw

esw − 1
− ln(1 − e−sw)

]
. (58)

To take the limit β → ∞, we write s = βm2(x2 − x1) =
βmµŝ, where µ is the jump-size scale and the distribution
P (ŝ) is known as the Kida distribution [17,26,27],

P (ŝ) = 1
2
ŝe− ŝ2

4 . (59)

The scale µ is related to the density of shocks ρ0 through [17]

1 = ρ0〈x2 − x1〉 = ρ0
µ

m

∫ ∞

0
dŝ P (ŝ)ŝ = ρ0

µ

m

√
π . (60)
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FIG. 5. (Color online) Correlator in phase II, with θ (x) uniform
in [−π,π ]. Dots: numerical results using Eqs. (16) and (17) from 1 ×
105 realizations of Eq. (3) for m = 0.01, β = 10 (crosses), m = 0.01,
β = 20 (circles), m = 0.05, β = 20 (triangles), m = 0.05, β = 40
(diamonds), m = 0.05, and β = 60 (squares). Solid red (gray) line:
Eq. (61); dashed red (gray) line: asymptotics (62). Rescaling was
performed according to Eq. (61) with µ = 0.58 (for all curves).

We thus obtain the scaling form

&θ (w) = βm2&̃θ (ŵ = βmµw), (61)

&̃θ (x) =
∫ ∞

0
dŝ

ŝ2

4
√
π

e− ŝ2
4

[
ŝx

eŝx − 1
− ln(1 − e−ŝx)

]
.

Observe that the scaling is different compared to the correlator
in the strong-interference phase III: the argument of the
scaling function is now ŵ = βmµw instead of ŵ =

√
βmw in

Eq. (33).
For small x, Eq. (61) has the asymptotic form

&̃θ (x) = 1
4

(γE − 2 ln x) + O(x). (62)

This logarithmic singularity arises from the φ = ±π limit
of the integral (55) and is hence caused by shocks where
Z(w∗) = 0.

The integral (61) can be computed numerically and com-
pared to simulations. We obtain a very good agreement with
our numerical results (see Fig. 5) for various values of m and
β, providing a nontrivial check for the scaling in Eq. (61). The
scale µ is fitted as µ = 0.58, independent of m or β in the
considered range. 1

C. Example 2: Wrapped Gaussian distribution in a short-range
potential

It is interesting to consider an example where the distri-
bution for φ is nonuniform. We take again the phase angle
θ (x) to be uncorrelated at different points. At each point,

1Actually, for the short-range random potential on a discrete
lattice considered here, µ contains corrections, which are scaling
logarithmically with m; see [17] for more details. If we were to
perform the simulations with m varying over several decades, µ

would have to be adjusted correspondingly.

0.5 1.0 1.5 2.0 2.5 3.0
w
∧0.0

0.5

1.0

1.5

2.0

∆θ(w∧)/βm2

FIG. 6. (Color online) Correlator in phase II, with θ (x) wrapped
Gaussian as in Eq. (63). Dots: simulations (from top to bottom,
the variance decreases as σ = 2, σ = 1.6, σ = 1.2, σ = 1, σ =
0.8, the mass is m = 0.01, and β = 120; correspondingly, the
probability of a jump through zero decreases as P (φ = ±π ) =
0.15,0.13,0.08,0.05,0.01), rescaled as in Eq. (61) with µ = 0.59
(for all curves). Lines: numerical integration of Eq. (55).

we assume the distribution of θ ∈ [−π ;π ] to be a wrapped
Gaussian distribution with variance σ 2:

P̃ (θ ) =
√

1
2πσ 2

∞∑

n=−∞
e− 1

2σ2 (θ+2πn)2
(63)

=
√

1
2πσ 2

e− 1
2σ2 θ

2
ϑ

(
θ

σ 2
i;

2π i

σ 2

)
.

ϑ denotes the Jacobi theta function. Note that P̃ (θ ) is periodic:
P̃ (θ + 2π ) = P̃ (θ ). From Eq. (63), the distribution of phase
jumps φ = θ2 − θ1 is

P (φ) =
∫ π

−π

P̃ (θ )P̃ (θ + φ)dθ . (64)

For the random potential, we still assume a short-range random
potential as in Sec. IV B. The distribution of jump sizes ŝ is thus
still given by Eq. (59). This allows us to obtain the full disorder
correlator &θ by computing the integral (55) numerically. The
results in Fig. 6 compare well to numerical simulations.

One again observes a distinctive logarithmic singularity at
w = 0. This arises from the φ = ±π limit of the integral (55).
More precisely,

∫ π

−π

dφ P (φ) sin2(φ)
φ cotφ − sw

2 coth sw
2

cos 2φ − cosh sw

= −πP (φ = ±π ) ln w + O(w0). (65)

The integral over ŝ is normalized since
∫ ∞

0
ŝ2

2
√
π
e−ŝ2/4dŝ = 1,

and hence

&̃θ (x) = −πP (φ = ±π ) ln x + O(x0) . (66)

For a uniform distribution of θ , P (φ = ±π ) = 1
2π and we

recover the ln part of the result (62). The constant coefficient
of order w0 is harder to obtain.

In general, the coefficient of the logarithmic singularity
at w = 0 is proportional to the probability of phase jumps
by an angle of φ = ±π . Thus, intuitively, this singularity
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FIG. 7. (Color online) Renormalized disorder correlators in the
high-temperature phase. Dots: numerical results from 1 × 105 re-
alizations of Eq. (3) for β = 0.1,σV = 1, σθ = 0.25, and m = 0.5.
Solid red (gray) lines (from top to bottom): &V and &θ , as obtained
from Eq. (73). No fit parameter.

is caused by shocks between minima of V (x), where Z(w∗

− 0+) changes to Z(w∗ + 0+) = −kZ(w∗ − 0+), where k is
a positive number. Note that, at any temperature T > 0, i.e.,
β < ∞, the function Z(w) is smooth, and thus passes through
zero in our two-well approximation. This means that the
Burgers velocity profile has a pole. Observe that, according to
Eq. (66), the logarithmic singularity is present as soon as there
is a finite probability of jumps with an angle of φ = ±π ,
however small it may be. This shows that, in our model, there
is no “sign phase transition” in the frozen or pinned phase. This
is in agreement with a recent result for a higher-dimensional
model [52], where only θ = 0 and θ = π , i.e., plus and minus
signs were considered.

It is straightforward to repeat the analysis above with long-
range correlated random potentials V (x). For example, in the
case of the Sinai model, explicit expressions for the probability
distribution (59) for the jump sizes s are known (see [17]), but
lead to complicated integrals.

Note that the two-well model is only expected to be
valid asymptotically for β → ∞. At low but nonzero tem-
perature, we expect subdominant contributions from higher-
lying minima, which may provide additional rounding of the
singularities discussed above.

In the following, we shall see that the behavior in the high-
temperature phase is quite different.

V. HIGH-TEMPERATURE PHASE (PHASE I)

For completeness, we also discuss the disorder correlators
in the high-temperature phase. In this phase, Z is dominated
by the average Z and fluctuations are subdominant. As a
consequence, for example, the quenched average of the free
energy is equal to the annealed average of the free energy.

In our one-dimensional model, this phase occurs for
sufficiently weak random potentials [for example, short-range
correlated V (x) below a critical value of β, which increases
with system size] and sufficiently weak random-phase disorder
[for example, short-range correlated θ (x) with finite variance,
e.g., a wrapped Gaussian distribution].

To compute the leading-order term for the correlators, let us
take the example of short-range real and imaginary disorder,
with

V (x) = θ (x) = 0, (67)

V (x)V (x ′) = σV δ(x − x ′), (68)

θ (x)θ (x ′) = σθδ(x − x ′). (69)

For smallσV andσθ , we can expand the partition sum in powers
of V and θ :

Z(w) (70)

=
√
βm2

2π

∫ ∞

−∞
dx[1 − βV (x) − iθ(x) + · · ·]e−β m2

2 (x−w)2
.

The leading order for the effective potential thus becomes

V̂ (w) =
√
βm2

2π

∫ ∞

−∞
V (x)e−β m2

2 (x−w)2
dx, (71)

θ̂ (w) =
√
βm2

2π

∫ ∞

−∞
θ (x)e−β m2

2 (x−w)2
dx. (72)

From this, we obtain the leading order for the disorder
correlators in the high-temperature phase:

&V (w) = σV

(βm2)
3
2

8
√
π

(2 − ŵ2)e− ŵ2
4 , (73)

&θ (w) = σθ
(βm2)

3
2

8
√
π

(2 − ŵ2)e− ŵ2
4 . (74)

Here ŵ = m
√
βw.

Another way to understand these correlators is through
the so-called exact renormalization-group equations following
[17]. From Eqs. (12) and (3), we obtain a flow equation of the
form

−m∂mV̂ (w) = 1
βm2

∂2
wV̂ (w) − 1

m2
[∂wV̂ (w)]2. (75)

For the correlator R(w − w′) := V̂ (w)V̂ (w′), this gives

−m∂mR(w) = 2
βm2

∂2
wR(w) + 2

m2
S110(0,0,w). (76)

Here S(w1,w2,w3) := V̂ (w1)V̂ (w2)V̂ (w3) is the third cumu-
lant and the subscript S110 indicates derivatives with respect
to the first two arguments (notations as in [17]). Without the
nonlinear term, Eq. (76) is the same as Eq. (23), solved by
Eq. (25) with initial conditions (68), i.e.,

R(w) = σV

√
βm2

4π
e− ŵ2

4 . (77)

The feeding term for S is of order RR ∼ β, and thus subdom-
inant in β for high T , and Eq. (77) is the complete solution.
Taking two derivatives, one obtains &V (w) = −∂2

wR(w) in
agreement with Eq. (73).

These results can be compared to simulations in the
high-temperature region. As can be seen in Fig. 7, they show
excellent agreement.

We thus observe that the behavior of the model when ran-
dom phases are added is very different in the high-temperature
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phase from what was observed in the frozen phase (Sec. IV).
For small random-phase disorder, i.e., small σθ , the disorder
correlators stay regular at zero and do not develop any cusp
or logarithmic singularity. An intuitive, physical explanation
for this can be given: in the high-temperature phase, the
fluctuations of Z are subdominant compared to the average Z
in the m → 0 limit. Hence, even if there is a finite probability
for fluctuations with opposite phases, a macroscopic number of
them would need to occur simultaneously in order to cancel the
average Z and lead to a zero of Z(w). This becomes infinitely
improbable in the m → 0 limit. On the other hand, in the frozen
phase, Z can be approximated by a two-well picture, even in
the m → 0 limit. Then there is a finite probability for the two
minima to have opposite phases, and thus a finite probability
for a shock where Z passes through zero.

VI. SUMMARY AND CONCLUSION

In this paper, we have discussed interference effects in toy
models of disordered systems. We considered one-dimensional
models, where interference is included through a random
complex phase on each lattice site.

We have obtained the scaling behavior and asymptotic
analytic expressions for the effective disorder correlators in
the three phases of the model. For high temperatures, small
random phases do not change the physics, but strong random-
phase disorder leads to a new strong-interference phase. This
phase is characterized by a Gaussian distribution of Z centered
around zero, and hence a finite density of zeros of Z. For low
temperatures, the system is frozen. Introducing random phases
changes the structure of the shocks, which are observed when
a particle is “dragged” through the random potential. There,
also, zeros of Z or, equivalently, poles of the complex Burgers
velocity field can occur. This physical characterization is seen
in the effective disorder correlators as a logarithmic singularity
around zero.

In the proposed realization of our model in a cold-atom
experiment (Sec. II B), the real part of the disorder is zero and
hence only phases I and III can be observed. Equation (20)
allows us to interpret the results from Secs. V and III in this
context: in phase I, where no shocks occur, &ZZ∗ (0) is finite
[cf. Eq. (73)]. Hence the relative transition probability to the
first excited state is finite. On the other hand, in phase III,
&ZZ∗ (0) diverges logarithmically [cf. Eq. (35)], and so does
the relative transition probability to the first excited state. This
means that for sufficiently strong disorder (in the sense that it
satisfies the criteria for phase III), in some realizations even
after a short time, the occupation probability of the ground state
is zero, while the occupation probability of the first excited
state is finite. This consequence of our preceding analysis on
phases I and III of the toy model may possibly even be verified
experimentally.

In the applications to lozenge tilings discussed in Sec. II C,
shocks of the complex Burgers equation manifest themselves
as boundaries between frozen regions of the tiling (where
the orientation of the tiles is fixed uniquely, and the height
function is flat) and liquid regions of the tiling (where the
orientation of the tiles is not fixed uniquely, and the height
function has a nontrivial, curved limiting shape) [25,53]. Our
results lead to the hypothesis that different roughness of the

tiling boundary leads to different behavior far away from it.
One possibility is that frozen and liquid regions can both
persist, implying the presence of shocks akin to phases II
or III in our toy model. Intuitively, we expect this to happen
for sufficiently rough boundaries. Another possibility is that
no shocks occur for large distances from the tiling boundary,
meaning that only a liquid region remains. We expect this to
occur for weakly disordered boundaries, i.e., some version
of the high-temperature phase I. Unfortunately, the results
of our toy model do not directly allow a classification of
this kind, since the distribution of V (x) and θ (x) required to
model a random tiling boundary is more complicated than the
ones we restrict ourselves to in section II and in the rest of
the paper. However, elucidating the details of this connection
and verifying this hypothesis would be an interesting field for
further work.

A few other directions in which the present discussion
could be continued come to mind. The most physically
important aspect would be, certainly, to relate the phenomena
observed here to higher-dimensional, more realistic models of
interfering quantum systems. In principle, one should be able
to obtain the effective disorder correlators from field theory
in the frozen phase, e.g., from functional renormalization-
group methods [5]. The main technical difficulty, as apparent
from our toy model and a preliminary study [54], is the
behavior at zero: instead of a rounding of the linear cusp
at finite temperature, we may see a logarithmic singularity.
This makes the derivation of a field theory for the frozen
phase in the presence of random phases a challenging
problem.

Another direction, which would be interesting to understand
better, is the relationship of the present results on the
abundance of poles of the Burgers velocity profile to the pole
expansion method for the solution of the Burgers equation
[31–34] and the pole condensation phenomena observed in
[33].

Note added. After completion of this paper, we became
aware of a very recent report [55] by Gredat, Dornier, and Luck,
which also treats imaginary Brownian disorder motivated by a
connection to reaction-diffusion processes. While the focus is
different, i.e., they study the so-called Kesten variable, which
amounts to a linear potential regularization, while we study a
quadratic well, there is agreement whenever the results can be
compared.
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APPENDIX: MOMENTS OF THE PARTITION SUM WITH
FINITE SYSTEM SIZE L AND LONG-RANGE

CORRELATED DISORDER

Let us consider Eq. (4) with V (x) = 0 and θ (x) as defined
in Eq. (36). In this appendix, we calculate explicitly moments
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of ZL. We also discuss how they can be organized to extract
the dominant contributions for large L.

First, we need to make some technical remarks. Consider
the integral

IL
n (λ1, . . . ,λn) :=

∫ L

0
dx1 · · ·

∫ xn−1

0
dxn e

∑n
i=1 λi xi (A1)

=
n∑

k=0

e
∑k

j=1 λj L(−1)n−k

k∏

l=1

1
∑k

j=l λj

n∏

l=k+1

1
∑l

j=k+1 λj

.

By introducing the partial sums µk :=
∑k

j=1 λj , the formula
(A1) can be rewritten as

IL
n (λj ) =

n∑

k=0

eµkL

n∏

l=0
l 1=k

1
µk − µl

. (A2)

Taking a Laplace transform (LT) with respect to L, this is
further simplified to

LT{In(λj )}(s) =
∫ ∞

L=0
e−sLIL

n (λj )dL

= I∞
n+1(−s,λ1, . . . ,λn)

=
n∏

l=0

1
s − µl

. (A3)

Let us now return to the moments of ZZ∗. We would like to
evaluate

(ZZ∗)n =
∫ L

0
dx1 · · ·

∫ L

0
dxn

∫ L

0
dy1 · · ·

∫ L

0
dyn

e− σ
4 (

∑n
i,j=1 |xi−yj |+|yi−xj |−|xi−xj |−|yi−yj |).

If we assume an ordering of the 2n variables xj and yj , the
exponent is a linear combination of these variables. Hence it
is of the form of the integral (A1). Each ordering of the x’s
and y’s can be mapped bijectively to a directed path from the
lower left to the upper right corner in an n × n lattice: The
choice of an x corresponds to going up and the choice of a y
to going right.2

Each ordering 2 can be defined by a vector 2x with 2n
entries given by

2x
j =

{
1 if j th variable is x,
0 if j th variable is y,

(A4)

or equivalently by a vector 2y with 2n entries,

2
y
j =

{
1 if j th variable is y,
0 if j th variable is x.

(A5)

Then the resulting values of the λj for the ordering 2 in the
definition (A1) are

2
σ
λ2j = (−1)2

x
j

[

2

(
j∑

l=1

2x
j −

j−1∑

l=1

2
y
j

)

− 1

]

. (A6)

A few examples for n = 2 and n = 3 are given in Table I.

2This generalizes straightforwardly to general moments like
Zn(Z∗)m, which give directed paths on an n × m lattice.

TABLE I. λj and µj for some orderings 2.

Ordering 2
σ
λj

2
σ
µj

xyxy (−1,1,−1,1) (0,−1,0,−1,0)
xyyx (−1,1,−1,1) (0,−1,0,−1,0)
xxyy (−1,−3,3,1) (0,−1,−4,−1,0)
xyxyxy (−1,1,−1,1,−1,1) (0,−1,0,−1,0,−1,0)
xyxxyy (−1,1,−1,−3,3,1) (0,−1,0,−1,−4,−1,0)
xxxyyy (−1,−3,−5,5,3,1) (0,−1,−4,−9,−4,−1,0)

In order to apply Eq. (A2), we now need the partial sums
µk:

2
σ

µ2
k := 2

σ

k∑

j=1

λj =
k∑

j=1

(−1)2
x
j

[

2

(
j∑

l=1

2x
j −

j−1∑

l=1

2
y
j

)

− 1

]

= −
[

k∑

l=1

(
2x

j − 2
y
j

)]2

. (A7)

Again, see Table I for a few examples.
Using formula (A3), the Laplace transform of the moments

can be written as

(ZZ∗)n = (n!)2
∑

2

I2n(λ2j ) = (n!)2
∑

2

2n∏

l=0

1
s − µ2

l

. (A8)

In the interpretation of2 as a directed path! = (w0, . . . ,w2n),
with wj on the square n × n lattice and w0 = (0,0), w2n =
(n,n), the formula (A7) obtains a direct interpretation: 2

σ
µ2

k

is −d2, with d the distance to the diagonal. We thus obtain
the interesting formula (setting σ = 2 for simplicity in the
following)

(ZZ∗)n = (n!)2
∑

!

path (0,0)→(n,n)

∏

w∈!

1
s + d2

w

, (A9)

with dw the distance of w to the diagonal.
For the inverse Laplace transform, no closed formula

is evident. However, from Eq. (A9), we can observe the
following.

The Laplace transform of (ZZ∗)n has poles at s = 0, s =
−1, s = −4, s = −9, etc. Hence (ZZ∗)n as a function of L can
be written as a sum of terms of order 1, e−L, e−4L, e−9L, etc.

For large system sizes, the terms suppressed exponentially
with L are irrelevant, and hence only the pole at s = 0 needs
to be discussed.

For each path, the pole at s = 0 has the form 1
sz+1 , where z is

the number of crossings of the diagonal. Its Laplace transform
yields Lz

z! . Hence the dominant term for large L is given by the
paths with the maximum number of diagonal crossings.

These are exactly the paths where the xi and yi are
paired, i.e., xyxyxyxy... or xyyxxyxy..., etc. There are 2n such
configurations.
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The final result is

(ZZ∗)n = n!(2L)n + O(Ln−1) + O(e−L).

This argument provides a somewhat more detailed ex-
planation of why the only configurations contributing
to moments of the form (ZZ∗)n are those where the

replica are pairwise bound. When regularizing the sys-
tem by a harmonic well with mass m, we expect sim-
ilar results, with—morally speaking—L replaced by 1

m
.

However, we have not found a way to perform a
more detailed computation using the regularization with a
mass.
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