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Statistics of avalanches with relaxation and Barkhausen noise: A solvable model
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We study a generalization of the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model of a particle in a
Brownian force landscape, including retardation effects. We show that under monotonous driving the particle
moves forward at all times, as it does in absence of retardation (Middleton’s theorem). This remarkable property
allows us to develop an analytical treatment. The model with an exponentially decaying memory kernel is realized
in Barkhausen experiments with eddy-current relaxation and has previously been shown numerically to account
for the experimentally observed asymmetry of Barkhausen pulse shapes. We elucidate another qualitatively new
feature: the breakup of each avalanche of the standard ABBM model into a cluster of subavalanches, sharply
delimited for slow relaxation under quasistatic driving. These conditions are typical for earthquake dynamics.
With relaxation and aftershock clustering, the present model includes important ingredients for an effective
description of earthquakes. We analyze quantitatively the limits of slow and fast relaxation for stationary driving
with velocity v > 0. The v-dependent power-law exponent for small velocities, and the critical driving velocity
at which the particle velocity never vanishes, are modified. We also analyze nonstationary avalanches following
a step in the driving magnetic field. Analytically, we obtain the mean avalanche shape at fixed size, the duration
distribution of the first subavalanche, and the time dependence of the mean velocity. We propose to study these
observables in experiments, allowing a direct measurement of the shape of the memory kernel and tracing eddy
current relaxation in Barkhausen noise.
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I. INTRODUCTION AND MODEL

A. Barkhausen noise

The Barkhausen noise [1] is a characteristic magnetic
signal emitted when a soft magnet is slowly magnetized. It
can be measured and made audible as crackling through an
induction coil: periods of quiescence followed by pulses, or
avalanches, of random strength and duration. The statistics
of the emitted signal depends on material properties and its
state. By analyzing the Barkhausen signal, one can deduce,
for example, residual stresses [2,3] or grain sizes [4,5] in
metallic materials. Understanding how particular details of the
Barkhausen noise statistics depend on microscopic material
properties is important for such applications.

On the other hand, Barkhausen noise pulses are just one
example for avalanches in disordered media. Such avalanches
also occur in the propagation of cracks during fracture [6–8],
in the motion of fluid contact lines on a rough surface [9–12],
and as earthquakes driven by motion of tectonic plates
[13–16]. Some features of the avalanche statistics, like size
and duration distributions [17,18], are universal for many of
these phenomena [19]. Barkhausen noise is easily measurable
experimentally and provides a good way to study aspects of
avalanche dynamics common to all these systems.

A first advance in the theoretical description of Barkhausen
noise was the stochastic model postulated by Alessandro,
Beatrice, Bertotti, and Montorsi [20,21] (the ABBM model).
They proposed modeling the domain-wall position u(t)
through the stochastic differential equation (SDE),

�u̇(t) = 2Is[H (t) − ku(t) + F (u(t))]. (1)
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We follow here the conventions of Refs. [22] and [23]. Is

is the saturation magnetization and H (t) the external field
which drives the domain-wall motion. A typical choice is
a constant ramp rate c, H (t) = c t = kv t , which leads to
a constant average domain-wall velocity v = c/k [20]. k is
the demagnetizing factor characterizing the strength of the
demagnetizing field −ku generated by effective free magnetic
charges on the sample boundary [20,24]. The domain-wall
motion induces a voltage proportional to its velocity u̇(t),
which is the measured Barkhausen noise signal. Here F (u(t))
is a random local pinning force. It is assumed to be a Brownian
motion, i.e., Gaussian with correlations

[F (u) − F (u′)]2 = 2σ |u − u′|.

This choice may seem unnatural, since the physical disorder
does not exhibit such long-range correlations. It is only
recently that it has been shown [17,18,25] that the “ABBM
guess” emerges as an effective disorder to describe the
avalanche motion of the center of mass of the interface,
denoted u(t), in the mean-field limit of the field theory
of an elastic interface with d internal dimensions. This
correspondence holds both for interfaces driven quasistatically
[18,25] and for static interfaces at zero temperature [17].
The mean-field description is accurate above a certain critical
internal dimension dc. For d < dc, a systematic expansion in
ε = dc − d using the functional renormalization group yields
universal corrections to the scaling exponents [26–28] and
avalanche size [17,18] and duration [18,25,29] distributions.

For the particular case of magnetic domain walls, the pre-
dictions of the ABBM model are well verified experimentally
in certain ferromagnetic materials, for example, FeSi alloys
[21,30,31]. These are characterized by long-range dipolar
forces decaying as 1/r3 between parts of the domain wall a
distance r apart. This leads [32] to a critical dimension dc = 2
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coinciding with the physical dimension of the domain wall. In
this kind of system, as expected, the mean-field approximation
is reasonably well satisfied. Measurements on other types
of ferromagnets, for example, FeCoB alloys [31], indicate
a universality class that differs from the mean-field ABBM
model. This may be explained by short-range elasticity and a
critical dimension dc > 2. To describe even the center-of-mass
mode in this class of domain walls, one needs to take into
account the spatial structure of the domain wall. Predictions
for roughness exponents [27,28] and avalanche statistics
[17,18,25,29] for this non-mean-field universality class have
been obtained using the functional renormalization group.

On the other hand, even for magnets in the mean-field
universality class, a careful measurement of Barkhausen pulse
shapes [19,22,33,34] shows that they differ from the simple
symmetric shape predicted by the ABBM model [25,35].
This hints at a more complicated equation of motion than
the first-order overdamped dynamics usually considered for
elastic interfaces in disordered media.

In a physical interface, there may be additional degrees of
freedom. One example was studied in Refs. [36,37]. Other
examples include deformations of a plastic medium or eddy
currents arising during the motion of a magnetic domain wall.
For viscoelastic media, these can be modeled by a memory
term which is nonlocal in time [38,39]. At the mean-field
level, this is equivalent to a model with dynamical stress
overshoots [40]. Such memory terms may lead to interesting
new phenomena, like coexistence of pinned and moving states
[38,39,41]. A similar memory term, nonlocal in time, is argued
in Ref. [22] to describe the dissipation of eddy currents in
magnetic domain-wall dynamics,

1√
2π

∫ t

−∞
ds f(t − s) u̇(s) = 2Is[H (t) − ku(t) + F (u(t))].

(2)

The response function f, derived by solving the Maxwell
equations in a rectangular sample [22–24,42], is

f(t) =
√

2π
64I 2

s

ab2σμ2

∞∑
n,m=0

e−t/τm,n

(2n + 1)2ωb

. (3)

τm,n are relaxation times for the individual eddy current modes,

τ−1
m,n = (2m + 1)2ωa + (2n + 1)2ωb

ωa = π2

σμa2
, ωb = π2

σμb2
.

They depend on the sample width a, thickness b, permeability
μ, and conductivity σ . Equations (2) and (3) correspond to
Eqs. (13), (17), and (21) in Ref. [23]; we refer the reader there
for details of the derivation.

Zapperi et al. [22] showed numerically that avalanche
shapes in model (2) are asymmetric. They concluded that
eddy-current relaxation may be one way of explaining the ex-
perimentally observed skewness of Barkhausen noise pulses.
They also argue that similar relaxation effects may be relevant

for other physical situations where asymmetric pulse shapes
are observed.1

A simplification of Eq. (3) occurs when considering only
the leading contributions for small and large relaxation times.2

One then obtains [22] a natural generalization of the ABBM
equation (1):

�u̇(t) + �0

τ

∫ t

−∞
ds e−(t−s)/τ u̇(s)

= 2Is[H (t) − ku(t) + F (u(t))]. (4)

Here τ is the longest relaxation time of the eddy-current modes,
τ = τ0,0 = μσ

π2 ( 1
a2 + 1

b2 )−1. � and �0 are damping coefficients
given in Ref. [22].

B. The ABBM model with retardation

For the remainder of this work, we adopt the conventions
used in the study of elastic interfaces. Let us introduce a more
general model than (4),

ηu̇(t) + a

∫ t

−∞
ds f (t − s)u̇(s) = F (u(t)) + m2[w(t) − u(t)].

(5)

which describes a particle driven in a force landscape F (u),
with retardation. At this stage F (u) is arbitrary. Here f (t) is a
general memory kernel with the following properties:

(1) f (0) = 1 (without loss of generality, since a constant
may be absorbed into the parameter a).

(2) f (x) → 0 as x → ∞.
(3) f ′(x) � 0 for all x, i.e., memory of the past trajectory

always decays with time.
This model possesses a remarkable property for any such
kernel f (t) and any landscape F (u). It has monotonicity, i.e., it
satisfies the Middleton theorem: For non-negative driving ẇ �
0, after an initial transient period, one has u̇ � 0 at all times. A
more precise statement and a proof are given in Appendix A. It
has very important consequences both in the driven regime and
in the limit of quasistatic driving, i.e., small ẇ → 0+. In that
limit it converges to the quasistatic process u(t) → u(w(t)),
where u(w) is the (forward) Middleton metastable state,
defined as the smallest (leftmost) root of

m2u − F (u) = m2w ⇔ u = u(w). (6)

It is independent of the precise form of the kernel f (t).
Hence, the domain-wall position u(t) is uniquely determined
by the value of the driving field w(t), due to the monotonicity
property [44]. This process u(w) exhibits jumps at a set
of individual points, the avalanche locations wi , and the

1For example, the authors of Ref. [22] mention slip velocity profiles
during earthquakes [14,43]. However, it is not clear if there are
physical reasons to expect a relaxation of the form (2).

2We have f (0) ∝ ∑
m,n

1
(2n+1)2 = ∞ and

∫ ∞
0 f (t)dt ∝∑

m,n
1

(2n+1)2[(2n+1)2+(2m+1)2]
= const. Thus, for small times, f (t) is

well approximated by �δ(t) for some constant �. On the other hand,
for long times, only the mode that relaxes slowest remains. Hence,
for long times one can set f (t) ≈ �0

τ0,0
e−t/τ0,0 .
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quasistatic avalanche sizes

Si = u(w+
i ) − u(w−

i ) (7)

are, thus, independent of the retardation kernel. What depends
on the kernel is the dynamics within these avalanches, and
that is studied here. The quasistatic avalanche sizes Si have
a well-defined distribution P (S) which has been computed
for a particle in various force landscapes [45,46] and for
the nontrivial case of a d-dimensional elastic interface using
functional renormalization group (FRG) methods [29,47,48].
As long as the dynamics obeys the Middleton theorem, the
avalanche-size distribution remains independent of the details
of the dynamics [18].

While monotonicity holds for any F (u), in this article we
focus on the case of the Brownian force landscape which can
be solved analytically. As in the standard ABBM model, we
choose the effective random pinning force F (u) to be a random
walk, i.e., Gaussian with correlator given by (2).3 We call this
the ABBM model with retardation. In view of the application
to Barkhausen noise, the parameter a > 0 describes the overall
strength of the force exerted by eddy currents on the domain
wall. For a = 0, (5) reduces to the equation of the standard
ABBM model in the conventions of Refs. [45,46].

The retarded ABBM model is particularly interesting in
view of the monotonicity property. Other ways of generalizing
the ABBM model to include inertia, e.g., by a second-order
derivative [49], do not inherit this property from the standard
ABBM model (see also Appendix A). This makes the ABBM
model with retardation very special, and it will be important
for its solution in Sec. III.

When considering the particularly interesting case of
exponential relaxation motivated in [22], we set

f (t) = e−t/τ , (8)

where τ is the longest time scale of eddy-current relaxation,
as discussed above. In this approximation, (5) can be rewritten
as two coupled, local equations for the domain-wall velocity
u̇(t), and the eddy-current pressure h(t),

h(t) = 1

τ

∫ t

−∞
ds e−(t−s)/τ u̇(s), (9)

ηu̇(t) + aτh(t) = F (u(t)) + m2[w(t) − u(t)], (10)

τ∂th(t) = u̇(t) − h(t). (11)

Although most of our quantitative results will be derived for
this special case only, most qualitative features carry over to
more general kernels with sufficiently fast decay.

By rescaling u, w, and t in Eq. (5) (for details, see
Sec. III A), one finds the characteristic time scale τm = η/m2

and length scale Sm = σ/m4 of the standard ABBM model
(a = 0). They set the scales for the durations and sizes of
the largest avalanches. There are, of course, avalanches of
smaller size (up to some microscopic cutoff if one defines
it). The velocity scale is vm = σ/(ηm2) and one can define

3It can be realized as a stationary landscape, F (u)F (u′) = �0 −
σ |u − u′|, with a cutoff at scale u ∼ �0/σ , or by F (u)F (u′) =
2σ min(u,u′) (nonstationary landscape with F (0) = 0). In both cases,
F ′(u) is a white noise, and that is the important feature.

a renewal time for the large avalanches as τv = Sm/v, the
limit of quasistatic driving being τm 
 τv , equivalent to
v/vm 
 1. In the retarded ABBM model (8) one introduces
an additional memory time scale τ and various regimes will
emerge depending on how τ compares with the other time
scales (whose meaning will be changed).

Equation (11) then describes a depinning model with
relaxation, i.e., one can think of the disorder landscape as
relaxing via the additional degree of freedom h(t). This is a
feature of interest for earthquake models as discussed below.
In this context one considers the limit of well separated time
scales, τm 
 τ 
 τv .

Other features of Barkhausen noise predicted for the ABBM
model with retardation differ substantially from those of the
standard ABBM model. Zapperi et al. [22] already realized
that the inclusion of eddy currents leads to a skewness in the
avalanche shape. In this article, we go further and discuss
changes in the avalanche statistics. The relaxation of eddy
currents introduces an additional slow time scale into the
model. This leads to avalanches which stretch further in
time. In particular, avalanches following a kick (or, more
generally, an arbitrarily shaped pulse of the driving velocity
which stops at some point in time) never terminate, in
contrast to the standard ABBM model. This is because of
the exponentially decaying retardation kernel, which never
vanishes.4 Avalanche sizes, however, are not changed by
retardation in the limit of quasistatic driving, as discussed
above. In that limit, retardation leads to a breakup of avalanches
into subavalanches, which can also be called aftershocks.
Avalanches at continuous driving overlap stronger, and the
velocity threshold for the infinite avalanche (i.e., the velocity
u̇ no longer vanishes) is decreased. We now describe these
effects in detail and formulate more precise statements.

C. Protocols

Let us, first, review qualitatively the main situations that we
will study and define the terminology.

(i) Stationary driving: The driving velocity is constant,
w(t) = vt , and the distributions of the domain-wall velocity u̇

and of the eddy-current pressure h reach a steady state, which
we study. If v is large enough the velocity will never vanish
and one has a single infinite avalanche, also called “continuous
motion.” At smaller v > 0 the velocity will sometimes vanish.
That defines steady-state avalanches. These are more properly
called subavalanches of the infinite avalanche since at finite
v > 0 they immediately restart. Only in the limit v = 0+ do
they become well separated in time and then can be called
steady-state avalanches.

(ii) Avalanches following a kick: We consider an initial
condition at t = 0 prepared to lie in the “Middleton attractor”
at u = u(w(t < 0)), as discussed above. It can be obtained by
driving the system monotonously in the far past with ẇ > 0,
until memory of the initial condition is erased; then it is allowed
to relax for a long time with ẇ = 0 until time t = 0. Hence,
the initial condition is u̇(t = 0) = h(t = 0) = 0. At t = 0, one

4For a model such that f (t) = 0 for t > t0, avalanches would
remain of finite duration.
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changes the external magnetic field instantaneously by w0,
i.e., sets ẇ(t) = w0δ(t). For t > 0, the external field no longer
changes; thus, a kick in the driving velocity corresponds to
a step in the applied force. At t = ∞ the system has settled
again into the Middleton attractor at u(t = ∞) = u(w + w0),
because of the properties discussed above. One thus can
consider the total motion to define a single avalanche following
a kick, which is, thus, unambiguously defined. The total size
S = ∫ ∞

0 u̇(t) dt is the same as in the absence of retardation.
We will ask about the total duration (which becomes infinite)
and whether the velocity has vanished at intermediate times,
i.e., whether the avalanche has broken into subavalanches.

Avalanches following a kick are called nonstationary
avalanches (since driving is nonstationary). However, in the
limit of w0 → 0+ they become identical to the steady-state
avalanches obtained by stationary driving discussed above
(conditioned to start at t = 0).

D. Organization of this article

The remainder of this article is structured as follows: In
Sec. II, we discuss in more detail the phenomenology and
the qualitative physics of the ABBM model with retardation.
We discuss the splitting of a quasistatic avalanche into
subavalanches and the effects of retardation on the stationary
and the nonstationary dynamics.

In Sec. III we explain how the probability distribution of ob-
servables linear in the domain-wall velocity can be computed
by solving a nonlinear, nonlocal “instanton” equation. By this,
the stochastic model is mapped onto a purely deterministic
problem of nonlinear dynamics. This is a generalization of the
method developed in Refs. [25,46] for the standard ABBM
model with arbitrary driving.

Section IV discusses how the explicit form of the memory
kernel f (t) can be extracted in an experiment from the response
to a kick.

Section V is devoted to an analysis of the instanton
equations in the limit η

m2 
 τ . This means that eddy currents
relax much more slowly than the domain wall moves. In this
limit, we obtain the stationary distributions of the eddy-current
pressure and domain-wall velocity, as well as their behavior
following an instantaneous kick in the driving field. The
instanton solution reflects the two time scales in the problem:
A short time scale, on which eddy currents build up but do
not affect the dynamics, and a long time scale, on which they
relax quasistatically. We prove that, even after the driving has
stopped, the velocity never becomes zero permanently.

In Sec. VI we discuss the fast-relaxation limit η

m2 � τ . In
this limit, eddy currents relax much faster than the domain
wall moves. The instanton solutions again exhibit two time
scales, but now eddy currents are irrelevant for the long-time
asymptotics. Qualitative results (like the fact that the domain-
wall motion never stops entirely) are in agreement with those
for the slow-relaxation limit, considered in Sec. V.

In Sec. VII we discuss nonstationary avalanches following
an instantaneous kick in the driving. In particular, we compute
their average shape at fixed size.

In Sec. VIII, we show how to include an absorbing
boundary in the instanton solution of Sec. III. This is required
for treating avalanches during stationary driving. We then

derive the distribution of avalanche durations in the standard
ABBM model at finite driving velocity, v > 0, and the leading
corrections for weak relaxation and τ = τm. We also show
numerical results for more general situations and give some
conjectures on the modification of size and duration exponents
by retardation effects.

Last, in Sec. IX, we summarize our results. We discuss
how they can be used to learn more about the dependence of
Barkhausen noise on eddy current dissipation.

II. PHYSICS OF THE MODEL AND SUMMARY
OF THE RESULTS

A. Quasistatic driving: Subavalanches and aftershocks

Consider the system either under stationary driving at v =
0+ or following an infinitesimal kick w0 = 0+ as discussed
above, and call t = 0 the starting time of the avalanche. The
main physics can be understood from Fig. 1 and keeping in
mind Eqs. (11).

In Fig. 1(a) we represent the usual construction for u(w)
in the standard ABBM as the leftmost solution of Eq. (6) (in
the figure we set m = 1). Assuming τm 
 τv this construction
indicates the position of the domain wall as a function of
w = w(t) on time scales of order τv . At w1 the solution jumps
from u1 = u(w−

1 ) to u′
1 = u(w+

1 ) = u1 + S, corresponding
to an avalanche of size S; the latter occurs on the much
faster time scale τm. During the avalanche the velocity u̇(u)
(setting η = 1) is given by the difference in height between the
line m2w = m2w1 and the landscape m2u − F (u), providing
a graphic representation of the motion. The velocity u̇(u)
vanishes at u = u1 and u = u′

1. For illustration we have
represented a force landscape which is ABBM like at large
scales but smooth at small scales. For the continuous ABBM
model the construction is repeated at all scales and one has
avalanches of all smaller sizes.

Let us now add retardation, setting a > 0, and varying the
memory time τ . The graphical construction corresponding to
Eq. (11) is represented in Figs. 1(b) to 1(d). The difference in
height is now the sum of u̇ and aτh (in the figure we chose
a = 1), which evolves according to the second equation in
Eq. (11). It can be rewritten as

τ∂uh = 1 − h

u̇(u)
. (12)

Hence, h increases from h = 0, initially as h ≈ (u − u1)/τ
(since u̇ ∼ √

u − u1). Thus, the curve w − aτh versus u starts
with a negative slope −a.

Another way to see this is to note that for t 
 τ , the second
equation of (11) gives

τh(t) =
∫ t

0
u̇(t) + O(t/τ ) = u(t) − u1 + O(t/τ ). (13)

Inserting this into the first equation of (11), we obtain

ηu̇(t) = F (u(t)) + m2[w(t) − u(t)] − a[u(t) − u1] + · · · .

(14)

Effectively, for short times the mass is modified from
m2 → m2 + a. Thus, while w is fixed, the end of the
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FIG. 1. (Color online) Splitting of an avalanche into subavalanches through the retardation mechanism. We have set m2 = 1 and a = 1 and
we vary the relaxation time τ .

first subavalanche is determined not by the roots of
m2w = m2u − F (u) but by the roots of m2w = (m2 + a)u −
au1 − F (u). Equivalently, in the landscape m2u − F (u), in-
stead of looking at intersections with the horizontal curve m2w,
we should look at intersections with m2w − a(u − u1), a line
with slope −a.

At the point where this curve intersects first the landscape
m2u − F (u) we get a point us1 < u′

1, where u̇ first vanishes.
This defines the size S1 = us1 − u1 of the first subavalanche.
If τ is small this usually occurs near the end, but if τ is
larger the original avalanche (called the main avalanche) is
divided—in size—in a sequence of subavalanches S = ∑

α Sα .
The number of subavalanches in the main avalanche is finite for
a smooth landscape and infinite for the continuous Brownian
landscape. The total size S = u′

1 − u1 is, however, the same
as for a = 0, due to the Middleton theorem. For instance,
in the landscape of Fig. 1(d), the main avalanche is divided
into three large subavalanches, and for the continuous Brow-
nian landscape the intermediate segments are also divided
into smaller subavalanches ad infinitum. Figure 1 illustrates
the correlation between the subavalanche structure (in u)
and the realization of the random landscape, where larger
hills favor the breakup into subavalanches. Note also that
in intermediate regions where u̇ is very small, τh starts
decreasing again (it decreases whenever u̇ < h). The effective

driving seen by the particle then becomes m2w − aτh and
increases. This mechanism triggers a new subavalanche, and
so on.

To obtain the dynamics one must solve Eqs. (11), which
we do below. For the standard ABBM model [46], and in
the mean-field theory of the elastic interface [18,25], it was
seen that an avalanche terminates with probability 1, i.e.,
u̇(t) = 0 for t > T . This allowes us to define and compute the
distribution of avalanche durations [25,46] and their average
shape [25,35,46].

In presence of retardation, and for an exponential kernel, the
avalanche duration defined in the same way becomes infinite.
Inside one avalanche, the velocity u̇(t) becomes zero infinitely
often but is then pushed forward again by the relaxation of
the eddy-current pressure. Thus, an avalanche in the ABBM
model with retardation splits into an infinite number of
subavalanches, delimited by zeros of u̇. Each subavalanche
has a finite size Si and duration Ti with S = ∑

i Si (the same
size as in the standard ABBM model), but

∑
i Ti = ∞.

We study in detail two limits as follows:
(1) In the slow-relaxation limit τ � τm the duration of the

largest subavalanches remains of order τm, while the total
duration is of order τ . This leads to the estimate that the main
avalanche breaks into ∼τ/τm significant (i.e., nonmicroscopic)
subavalanches.
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(2) For the fast-relaxation limit τ 
 τm (=1 here) h ≈ u̇.
The correction to the domain-wall velocity u̇(u) is small in
this limit and vanishes as τ/τm → 0 (in contrast to the limit
τ/τm → ∞ discussed above). In fact, the correction due to
retardation amounts to a rescaling of the velocity as u̇ →
(1 + aτ )u̇.

Of course, in presence of driving, the total duration is
not strictly infinite since at some time scale the driving will
kick in again and lead to another main avalanche, itself again
divided in subavalanches and so on. We can call that scale
again τv but its precise value may differ from the estimate for
the case a = 0.

Thus, one main property of the retarded ABBM model
is that it leads to aftershocks, a feature not contained in
the standard ABBM model. The main avalanche is divided
into a series of aftershocks (the subavalanches) which can be
unambiguously defined and attributed to a main avalanche
(which basically contains all of them) in the limit of small
driving. This sequence of subavalanches is also called an
avalanche cluster. The aftershocks are triggered by the re-
laxation of the additional degree of freedom h. That in turn
changes the force acting on the elastic system. Relaxation
and aftershock clustering have been recognized as important
ingredients of an effective description of earthquakes; the
present model is a solvable case in this class. In some
earthquake models considered previously, relaxation was
implemented in the disorder landscape itself [50–52]. Here the
relaxation mechanism is simpler, which makes it amenable
to an analytic treatment. Note, of course, that at this stage
it is still rudimentary. First, it is not clear how to identify
the “main shock” among the sequence of subavalanches; and
while there is indeed some tendency, see, e.g., Fig. 1(d), that
the earliest subavalanche is the largest, this is not necessarily
true. Second, to account for features such as the decay of
activity in time as a power law (Omori law [53]), one needs to
go beyond the exponential kernel to a power-law one. Finally,
more ingredients are needed if one wants to account for other
features of realistic earthquakes, such as quasiperiodicity.

B. Stationary motion

In the case where the driving velocity is constant, w(t) = vt ,
the distributions of the domain-wall velocity u̇ and of the eddy
current pressure h become stationary. The distribution of u̇ for
small u̇ has a power-law form with an exponent depending
on v,

P (u̇) ∼ u̇−1+ v
vc . (15)

There is no contribution ∼δ(u̇). vc is a critical driving velocity,
which separates several different regimes:

(1) For v > vc, the velocity u̇ never becomes zero. It is not
possible to identify individual avalanches; therefore, one can
say that there is a single infinite avalanche.

(2) For 0 < v < vc, the velocity u̇ vanishes infinitely often.
The times {ti |u̇(ti) = 0} delimit individual (sub-)avalanches.5

5Note that there are no finite-time intervals where the velocity u̇

is identically zero, since otherwise the probability distribution (15)
would have a δ(u̇) part. Thus, the times ti are single points, which

Their durations Ti := ti+1 − ti and sizes Si = ∫ ti+1

ti
dt ′u̇(t ′)

have distributions Pv(T ) and Pv(S) depending on the driving
velocity v. In Sec. VIII we compute Pv(T ) for the standard
ABBM model and for a special case of the ABBM model with
retardation. For subavalanches, starting at u̇i = 0, and a fixed
value of the eddy-current pressure hi, in the limit of small a

and τ = τm, we show that

Pv(T ) ∼ T −2+v+ahi for T → 0 .

In particular, the pure ABBM power-law exponent Pv(T ) ∼
T −2+v is not modified for the first subavalanche, starting
at hi = 0. Since the typical hi goes to zero as v → 0, we
conjecture that the quasistatic exponents are still given by the
mean-field values P (S) ∼ S−3/2, P (T ) ∼ T −2.

In Secs. V C and VI, we compute vc in several limiting
regimes. For τ � τm, i.e., when eddy-current relaxation is
slow with respect to the domain-wall motion, we obtain, in
Sec. V C,

vc = σ

η(m2 + a)
+ O(τm/τ ).

This means that slow eddy-current relaxation decreases the
critical velocity. The stronger the eddy-current pressure a, the
smaller vc becomes. On the other hand, for τ 
 τm, i.e., fast
eddy-current relaxation, we obtain, in Sec. VI,

vc = σ

ηm2

[
1 − a

τ

η
+ O(τ/τm)2

]
.

Hence, fast eddy-current relaxation also decreases the critical
velocity. However, the correction in this case is small and
vanishes as the time-scale separation between τm and τ

becomes stronger.
The above regimes 1 and 2 do not change qualitatively

compared to the standard ABBM model. This means that
features like the power-law behavior of P (u̇) around u̇ = 0 are
robust towards changes in the dynamics, as long as it remains
monotonous.

C. Nonstationary driving: Response to a finite kick

Instead of continuous driving, let us now perform a kick as
defined in Sec. I C. In the standard ABBM model, like for the
quasistatic driving discussed above, this leads to an avalanche
on a time scale of order τm, which terminates with probability
1. At some time T , the domain-wall velocity u̇ becomes zero.
The domain wall then stops completely, so u̇(t) = 0 for all
t � T . This gives an unambiguous definition for the size and
duration of the nonstationary avalanche following a kick [46].
Formally, this behavior is seen by computing the probability
pu̇(t)=0. It turns out that pu̇(t)=0 > 0 for any t > 0 and tends
to 1 as t → ∞. The distribution P (u̇t ) [with u̇t ≡ u̇(t)] for
t > 0 has a continuous part and a δ-function part: P (u̇t ) =
pu̇t=0δ(u̇t ) + P(u̇t ) [46].

In the ABBM model with retardation, the situation differs.
We show in Sec. V D that pu̇t=0 = 0 following a kick, so

may, however, be spaced arbitrarily close. Scaling arguments suggest
that the set of points {ti} has a fractal dimension of v

vc
.
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FIG. 2. (Color online) Example trajectories for u̇(t) (thin red lines) and h(t) (thick yellow lines) for various parameter values. The left
column [(a1), (b1), and (c1)] corresponds to the standard ABBM model (a = 0) and the right column to the model with retardation (here
a = 1). Panels (a) and (b) correspond to stationary driving with a constant velocity, whereas the driving in (c) has a kick at t = 0. Observe that
after a kick, u̇(t) in the standard ABBM model becomes zero permanently after a certain time, see panel (c1), whereas in the ABBM model
with retardation [panel (c2)] subavalanches restart infinitely often.

the dynamics never terminates completely. If one defines the
avalanche duration T as T = min{t |u̇s = 0 for s � t}, T is
infinite. This is also seen from the example trajectories in
Fig. 2(b). However, the velocity intermittently becomes zero
an infinite number of times. Thus, the avalanche following a

kick is split into an infinite number of subavalanches, just like
a quasistatic avalanche discussed above.

On the other hand, the subavalanches become smaller and
smaller with time. In Sec. VII A, we show that the total
avalanche size S := ∫ ∞

0 dt u̇t following a kick of size w0
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is finite and distributed according to the same law as in the
standard ABBM model [45],

Pw0 (S) = w0

2
√

πσS
3
2

e
− (w0−m2S)2

4σS . (16)

This result holds independently of the memory kernel f . For
infinitesimal kicks, w0 → 0, Pw0 (S) becomes the distribution
of quasistatic avalanche sizes discussed above.

The disorder-averaged velocity u̇t following the kick
decays smoothly. In the standard ABBM model, the decay
is exponential [46]. With retardation, we show in Sec. IV that
the dependence of u̇t on t is directly related to the form of the
memory kernel f .

Another interesting observable is the mean avalanche
shape. Conventionally, it is defined at stationary driving for a
subavalanche: One takes two neighboring zeros u̇(0) = 0 and
u̇(T ) = 0 which delimit a (sub-)avalanche of duration T . The
mean avalanche shape is then the average of the domain-wall
velocity u̇(t) as a function of time in the ensemble of all
such (sub-)avalanches of duration T . It has been realized [22]
that the skewness of this shape provides information on the
relaxation of eddy currents.

However, this definition is hard to treat analytically. Instead
of considering the mean (sub-)avalanche shape at a constant
duration, we discuss the mean shape of a complete avalanche
(consisting of infinitely many subavalanches, with infinite total
duration) of a fixed size S, triggered by a step in the force at
t = 0. In Sec. VII B we give an explicit expression for this
shape at fixed size, for exponential eddy-current relaxation.
We show how it reflects the time scale of eddy-current
relaxation.

The phenomenology discussed here is expected to be
similar if, instead of a kick at t = 0, one takes some arbitrary
driving wt for t < 0, which stops at t = 0 so ẇt>0 = 0.

We see that the nonstationary relaxation properties of the
retarded ABBM model differ qualitatively from those of
the standard ABBM model. They provide a more sensitive
way of distinguishing experimentally the effect of eddy
currents than stationary observables at finite velocity and allow
one to identify the form of the memory kernel f . In the
following sections, we provide quantitative details underlying
this picture.

III. SOLUTION OF THE RETARDED ABBM MODEL

In this section, we apply the methods developed in
Refs. [18,25,46,49] to obtain the following exact formula for
the generating functional of domain-wall velocities,

e
∫
t
λt u̇t dt = em2

∫
t
ẇt ũt dt . (17)

It is valid for an arbitrary monotonous driving ẇt � 0, where
ũt is the solution of the following nonlocal instanton equation,

η∂t ũ(t) − (m2 + a)ũ(t) + σ ũ(t)2 − a

∫ ∞

t

ds f ′(s − t)ũ(s)

= −λ(t), (18)

with boundary condition ũ(∞) = 0. The important observa-
tion that allows such an exact formula is that for monotonous
driving, the motion in the ABBM model with retardation

is still monotonous, as in the standard ABBM model (see
Appendix A) as discussed above.

To prove (17) we apply the same series of arguments as in
the absence of retardation [18,25,46]. Taking one derivative of
Eq. (5) gives a closed equation of motion for u̇(t), instead of
u(t),

η∂t u̇(t) + au̇(t) + a

∫ t

−∞
dsf ′(t − s)u̇(s)

=
√

u̇(t)ξ (t) + m2[ẇ(t) − u̇(t)]. (19)

ξ (t) is a Gaussian white noise, with ξ (t)ξ (t ′) = 2σδ(t − t ′).
The term

√
u̇(t) comes from rewriting the position-dependent

white noise in terms of a time-dependent white noise,

ξ (u(t))ξ (u(t ′)) = 2σδ(u(t) − u(t ′)) = 2σ

u̇(t)
δ(t − t ′)

⇒ ξ (u(t)) = 1√
u̇(t)

ξ (t)

⇒ ∂tF (u(t)) = u̇(t)ξ (u(t)) =
√

u̇(t)ξ (t). (20)

This uses crucially the monotonicity of each trajectory. For our
model, this is assured by the Middleton property discussed in
Appendix A. This breaks down when, e.g., inertia is included
via a second-order derivative in (5), even for monotonous
driving (see Appendix A and Ref. [49]). Then, even for the
case of Brownian disorder, the correlations of the pinning force
are nonlocal in time [unlike in Eq. (20)], due to trajectories
returning to the same point (and, hence, the same pinning
force) at different times. Although some limiting cases can
be analyzed with simplifying approximations (for a detailed
analysis of the inertial case see Ref. [49]), the monotonous
motion considered here is much simpler.

Using the Martin-Siggia-Rose method, we express the
generating functional for solutions of (19) as a path integral,

e
∫
t
λt u̇t =

∫
D[u̇,ũ]e−S[u̇,ũ]+∫

t
λt u̇t

S[u̇,ũ] =
∫

t

ũt

[
η∂t u̇t + au̇t + a

∫ t

−∞
ds f ′(t − s)u̇s

−m2(ẇt − u̇t )

]
− σ

∫
t

ũ2
t u̇t . (21)

For compactness, we have noted time arguments via subscripts.
We will use this notation from now on when convenient.

As in the standard ABBM model, the action (21) is linear
in u̇. Thus, the path integral over u̇ can be evaluated exactly. It
gives a δ functional enforcing the instanton equation (18). The
only term not involving u̇ in the action is m2

∫
t
ũt ẇt , which

yields the result (17) for the generating functional. For more
details, see Sec. II in Ref. [46] and Secs. II B– II E in Ref. [18].

Similarly to the discussion in Refs. [18,46], the solution (17)
generalizes to an elastic interface with d internal dimensions
in a Brownian force landscape (i.e., elastically coupled ABBM
models). There is indeed a simple way to introduce retardation
in that model to satisfy the monotonicity property. We will not
study this extension here.

For the case of exponential relaxation, f (x) = e−x/τ ,
Eq. (19) can be simplified to a set of two local Langevin
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equations for the velocity u̇ and the eddy-current pressure h,

η∂t u̇t =
√

u̇t ξt + m2[ẇt − u̇t ] − a(u̇t − ht ), (22)

τ∂tht = u̇t − ht . (23)

The action for this coupled system of equations is

S[u̇,ũ] =
∫

t

{
ũt [η∂t u̇t + a(u̇t − ht ) + m2(u̇t − ẇt )]

− σ ũ2
t u̇t + h̃t (τ∂tht + ht − u̇t )

}
.

This action is linear in u̇t and ht . Thus, integrating over these
fields gives δ functionals enforcing a set of two local instanton
equations for ũt and h̃t ,

η∂t ũt − (m2 + a)ũt + σ ũ2
t + h̃t = −λt , (24)

τ∂t h̃t − h̃t + aũt = −μt . (25)

We then obtain the generating functional for the joint distribu-
tion of velocity u̇ and eddy-current pressure h,

e
∫
t
(λt u̇t+μtht ) dt = em2

∫
t
ẇt ũt dt , (26)

in terms of the solution to these two instanton equations. It
reduces to (17) for μt = 0.

Now the remaining difficulty for arbitrary observables is to
obtain sufficient information on the solutions of (24) and (25)
with the corresponding source terms. We shall see that this is
more difficult than in the standard ABBM model but can be
done for certain observables and certain parameter values.

A. Dimensions and scaling

Before we proceed to compute observables, let us discuss
the scaling behavior of our model and determine the number
of free parameters. The mass m can be eliminated by dividing
both sides of (19) by m2,

η

m2
∂t u̇(t) + a

m2
u̇(t) + a

m2

∫ t

−∞
ds∂tf (t − s)u̇(s)

= 1

m2

√
u̇(t)ξ (t) + ẇ(t) − u̇(t). (27)

The time derivative η

m2 ∂t u̇(t) shows that there is a natural time
scale τm = η/m2 so t = t ′τm, where t ′ is dimensionless. The
nonlinear term 1

m2

√
u̇(t)ξ (t) shows that there is a natural length

scale Sm = σ
m4 , so u = Smu′, where u′ is dimensionless. We

thus rescale velocities as

u̇(t) = σ

ηm2
u̇′(t ′), ẇ(t) = σ

ηm2
ẇ′(t ′), (28)

using the natural unit of velocity vm = Sm/τm. Multiplying
with m2η/σ , we get the equation

∂t ′ u̇
′(t ′) + a

m2
u̇′(t ′) + a

m2

∫ t ′

−∞
ds ′ ∂t ′f (t ′ − s ′)u̇′(s ′)

=
√

u̇′(t ′)ξ ′(t ′) + ẇ′(t ′) − u̇′(t ′), (29)

where the noise is now 〈ξ ′(t1)ξ ′(t2)〉 = 2δ(t1 − t2). Effectively,
for the dynamics in terms of the primed variables we have
m = σ = η = 1 (i.e., we have fixed the units of time and space
so τm = Sm = 1).

For the standard ABBM model, a = 0, and Eq. (29) is
a dimensionless equation without any free parameters. To
describe a signal u̇(t) produced by the standard ABBM model,
it thus suffices to fix the velocity (amplitude) scale vm = σ

ηm2

and the time scale τm = η

m2 .
For the ABBM model with retardation, we have an

additional time scale τ , on which the memory kernel f (t − s)
in (19) changes. The ratio of τ to the time scale of domain-wall
motion τm = η

m2 is a dimensionless parameter τ ′ := τ/τm.
Equation (29) also contains a second dimensionless parameter
a′ := a

m2 , which gives the strength of the eddy-current pres-
sure, as compared to the driving ẇ by the external magnetic
field. We thus remain with two dimensionless parameters τ ′
and a′, which cannot be scaled away.

From now on, we will use the rescaled (primed) variables
only. To simplify the notation, we drop all primes; we thus
remain with the dimensionless equation of motion,

∂t u̇(t) + au̇(t) + a

∫ t

−∞
ds ∂tf (t − s)u̇(s)

=
√

u̇(t)ξ (t) + ẇ(t) − u̇(t). (30)

This amounts to setting m = σ = η = 1 in the original
equation of motion, i.e., to working in the natural units for
the ABBM model without retardation.

IV. MEASURING THE MEMORY KERNEL f

First, we discuss how the function f in Eq. (5) can be
measured in an experiment or in a simulation. This permits
verifying the validity of the exponential approximation (4).
We consider the mean velocity u̇(t) at t > 0 following a kick
by the driving field w(t) at t = 0, i.e., ẇ(t) = w0δ(t). Our
claim is that its Fourier transform and the Fourier transform of
the memory kernel f are related via

uω :=
∫ ∞

0
dt e−iωt u̇(t) = w0

m2 + iω[η + af (ω)]
, (31)

where f (ω) := ∫ ∞
0 dt e−iωtf (t).

To show this, we apply (17) to express the mean velocity at
time t0 > 0 as

u̇(t0) = ∂λ|λ=0eλu̇(t0) = ∂λ|λ=0e
∫
t
dt ũ(t)ẇ(t)

= ∂λ|λ=0e
w0ũ(t=0;t0). (32)

The function ũ(t) is the solution of (18) with λ(t) = λδ(t − t0).
Since above we only need the term of order λ, and ũ(t ; t0) is of
order λ itself, the nonlinear term in (18) can be neglected.
In other words, the disorder does not influence the mean
velocity u̇(t0), and to obtain ũ(t ; t0), it suffices to solve the
linear equation

η∂t ũ(t ; t0) − (m2 + a)ũ(t ; t0) − a

∫ ∞

t

ds f ′(s − t)ũ(s; t0)

= −λδ(t − t0). (33)

Its solution is a function of the time difference t − t0 only,
ũ(t ; t0) = ũ(t − t0), which can be obtained by taking the
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Fourier transform ũ(ω) := ∫ ∞
−∞ dτ e−iωτ ũ(τ ) as

(iωη − m2 − a)ũ(ω) − aũ(ω)[−iωf (−ω) − 1] = −λ

⇒ ũ(ω) = λ

−iωη + m2 − aiωf (−ω)
. (34)

Here f (ω) = ∫ ∞
0 dt e−iωtf (t) is the Fourier transform of the

memory kernel. Inserting this relation into (32), the Fourier
transform of the mean velocity after a kick is∫ ∞

0
dt0 e−iωt0 u̇(t0) = w0

∫ ∞

−∞
dt0 e−iωt0 ũ(0 − t0)

= w0ũ(−ω), (35)

which then gives (31), as claimed. In fact, it is easy to see
from (32) that a more general relation holds for a kick of
arbitrary shape,

u̇ω :=
∫ ∞

0
dt e−iωt u̇t = w0(ω)

m2 + iω[η + af (ω)]
, (36)

where w0(ω) := ∫ ∞
0 dt e−iωt ẇ(t).

This relation allows one to obtain, at least in principle,
the memory kernel f (t) by measuring u̇(t) following a
kick. This permits verifying the validity of the exponential
approximation (11) experimentally. It also allows to test the
validity of the ABBM model. Indeed, while (36) at small w0(ω)
is simply a linear response, the fact that it holds for a kick of
arbitrary amplitude is a very distinctive property of the ABBM
model. Alternatively, it may allow to determine the frequency
range in which the model provides a good description of the
experiment.

V. THE SLOW-RELAXATION LIMIT η

m2 � τ

In order to go beyond the mean velocity and see the
influence of disorder, one needs to solve the instanton
equation (18) including the nonlinear term. Even in the special
case of exponential relaxation, where (18) reduces to the
local equations (24) and (25), their solution is complicated.
However, we can analyze the latter in the slow-relaxation limit
τm = η/m2 
 τ . In this limit, the relaxation of the domain
wall to the next (zero force) metastable state, occurring on
a time scale τm, is much faster than the relaxation of eddy
currents (occurring on a time scale τ ).6 Using the expressions
for the relaxation times derived in Ref. [22], one sees that this is
the case for very thick or very permeable samples. To simplify
the expressions, we rescale u̇ as discussed in Sec. III A. This
amounts to setting m = σ = η = 1. Thus, the time scale of
domain-wall motion becomes τ � 1.

In the following sections, we will compute stationary
distributions of the eddy-current pressure ht and domain-
wall velocity u̇t at constant driving wt = vt , as well as
their behavior following a kick. A similar calculation for
position differences at constant driving velocity is relegated
to Appendix B.

6In the pure ABBM model, the small-dissipation limit η → 0, i.e.,
τm → 0, is equivalent—up to a choice of time scale—to the limit of
quasistatic driving v → 0+. However, these two limits differ for the
retarded ABBM model which we discuss here.

A. Stationary distribution of eddy-current pressure

Using (26), the generating functional for the eddy-current
pressure h = h(t = 0) at constant driving wt = vt is

eμh = ev
∫
t
ũ(t). (37)

ũ(t) is obtained from the instanton equations (24) and (25)
with the sources μ(t) = μδ(t) and λ(t) = 0. From (25), one
sees that h̃(t) evolves on a time scale s = t/τ . On this scale,
both h̃(t) and ũ(t) have a finite limit for η

m2τ
→ 0. In this limit

they are related via

h̃(s) = −ũ(s)2 + (1 + a)ũ(s), (38)

ũ(s) = 1
2 [a + 1 −

√
(a + 1)2 − 4h̃(s)]. (39)

Equation (25) for ∂sh̃(s) reads

∂sh̃(s) = h̃(s) − aũ(s). (40)

Replacing h̃(s) on both sides of this equation using Eq. (38)
yields a closed equation for ũ(s),

[1 + a − 2ũ(s)]∂sũ(s) = ũ(s) − ũ(s)2. (41)

The boundary condition at s = 0 is fixed by the source, μ(s) =
μδ(t) = μ

τ
δ(s) =: μrδ(s) [note ũ(s > 0) = h̃(s > 0) = 0 by

causality]:

h̃(0) = μr ⇒ ũ(0) = 1
2 [a + 1 −

√
(a + 1)2 − 4μr ]. (42)

Using Eq. (41), we can now compute the generating func-
tional (37),∫ 0

−∞
ũ(t) dt = τ

∫ 0

−∞
ũ(s) ds = τ

∫ ũ(0)

0

ũ dũ

∂s ũ(ũ)

= τ

∫ ũ(0)

0

(1 + a − 2ũ(s))dũ

1 − ũ

= τ [2ũ(0) + (1 − a) ln (1 − ũ(0))]. (43)

Inserting this result into Eq. (37) we get

eμh0 = e2vr ũ0(μr )[1 − ũ0(μr )](1−a)vr , (44)

where ũ0(μr ) ≡ ũ(0) is given by (42) and we have defined a
rescaled velocity vr := vτ (i.e., the driving length during the
relaxation time).

The stationary distribution of hr := τh, obtained by invert-
ing the Laplace transform, is

P (hr ) = vr√
π

2
1
2 (a−1)vr−1h

1
2 [(a−1)vr−3]
r

× exp

{
hr − [2vr − (3 + a)hr ]2

8h

}

×
{

(a − 1)
√

2hrD(1−a)vr−1

[
(1 − a)hr + 2vr√

2hr

]

+ 2D(1−a)vr

[
(1 − a)hr + 2vr√

2hr

]}
. (45)

D is a parabolic cylinder function [54].
For small hr , the distribution (45) behaves as

P (hr ) = 1√
π

e− ((1+a)hr −2vr )2

4hr vr h
− 3

2
r

(
hr

vr

)(a−1)vr

(1 + O(
√

hr )).

(46)
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Thus, there is a small-h cutoff (due to the exponential term) and

a power-law regime with a nontrivial exponent, h
− 3

2 +vr (a−1)
r .

Note that the above results hold in the double limit v → 0
and τ → ∞ with vr = vτ fixed. Restoring units this is vr =
vτ/Sm = τ/τv fixed, with both τ,τv � τm, hence, vr compares
the two longest time scales, the driving time scale and the
eddy-relaxation time scale.

In the limit where the driving is slow compared to the eddy-
relaxation time scale, vr → 0+, the stationary distribution (45)
takes the form of a limiting (un-normalized) density ρ(hr )
proportional to

∂vr

∣∣
vr=0P (hr ) = e−ahr

2hr

(a − 1)

{
erf

[
1

2
(a − 1)

√
hr

]
+ 1

}

+ e− 1
4 (a+1)2hr

√
πh

3/2
r

.

In this limit, the small-hr behavior is a pure power law,

∂v|v=0P (hr ) = 1
√

πh
3
2
r

+ a − 1

2hr

+ O
(
h

− 1
2

r

)
. (47)

We note the resemblance of the tail of the distribution of h

and the one of the size S in the usual ABBM model with
the 3/2 exponent in both cases. If we assume that during
avalanches (subavalanches) u̇ varies much faster than the
relaxation time τ (i.e., on scales τm 
 τ ) we can rewrite
h(t) ∼ ∑

α,tα<t Sαe−(t−tα )/τ where subavalanche α occurs at
tα . Schematically h(t) integrates avalanche sizes occurring in a
time window of order τ , which could account for the similarity.

B. Eddy-current pressure following a kick

Still in the limit η

τm2 → 0, let us now discuss a nonstationary
situation: The dynamics following a kick of size w0 at t =
t0 < 0, ẇt = w0δ(t − t0). Using (26), the generating function
for the eddy-current pressure at time 0 is given by

eμh0 = ew0ũt0 , (48)

where ũt is the solution of (24) and (25) with the sources
λ(t) = 0, μ(t) = μδ(t), as in the previous section. Now we
need its time dependence and not just the total integral.
An implicit solution for ũ(t) at t < 0 is obtained from
Eq. (41),

t

τ
=

∫ ũt

ũ0

dũ

τ∂t ũ(ũ)

= (1 + a) ln
ũt

ũ0
+ (1 − a) ln

1 − ũt

1 − ũ0
. (49)

ũ0 is fixed by (42). As in the previous section, we define a
rescaled time s := t

τ
. There is no expression in closed form

for ũs for general a, but for specific values one obtains simple
expressions (see Table I). In the case a = 1, the solution is
particularly simple. Equation (48) gives

eμh(0) = ew0e
t0/(2τ )(1−√

1−μr ). (50)

Taking the inverse Laplace transform, one obtains the distribu-
tion of eddy-current pressure hr := τh(0) after a kick of size

TABLE I. Some particular solutions of the implicit equation (49)
describing the eddy-current pressure following a kick, in the limit

η

m2τ
= 0.

a = 0 ũs = 1
2 (1 − √

1 − 4es ũ0(1 − ũ0))
a = 1 ũs = e

s
2 ũ0

a = 3 ũs = ũ2
0es/2−ũ0es/4

√
ũ2

0es/2−4ũ0+4

2(ũ0−1)

w0 at time t0 < 0,

P (hr ) = w0

2
√

πh
3/2
r

exp

(
t0

2τ
− [et0/(2τ )w0 − 2hr ]2

4hr

)
. (51)

The average pressure hr = et0/(2τ )w0/2 decays exponentially
with time. Note that the limit t0 = 0− leads to a nontrivial
P (hr ) which should hold within the entire matching region
τm 
 |t0| 
 τ .

For a �= 1, we did not obtain an exact solution. However,
for any a, taking the limit μ → −∞, or equivalently ũ0 →
−∞, Eq. (49) shows that ũt → −∞. This implies that the
probability to find zero pressure, ph=0 = limλ→−∞ ew0ũt0 = 0.
Thus, after a kick at t = t0, there is no time T > 0 such that
ht = 0 for all t > T ; the eddy current pressure never stops.
A similar discussion for the domain-wall velocity follows in
Sec. V D.

Another interesting statement can be made regarding the
time integral of the eddy-current pressure following a kick.
From Eq. (11) it must equal the total avalanche size [integrating
this equation and using that for a kick h(0) = h(∞) = 0],
i.e.,

∫ ∞
0 h(t)dt = S.

C. Distribution of instantaneous velocities

The distribution of instantaneous velocities P (u̇) at sta-
tionary driving is one of the simplest observables that can be
determined from an experimental Barkhausen signal. For the
standard ABBM model, it has been obtained in Ref. [20].
For a d-dimensional elastic interface driven quasistatically
through short-range correlated disorder, this form is modified
by universal corrections below the critical dimension dc. These
corrections have been computed using the functional renor-
malization group to one loop in ε = dc − d in Refs. [18,25].
Using (26), the generating function of the instantaneous
velocity, for constant driving wt = vt , is

eλu̇ = ev
∫
t
ũt . (52)

Now ũt is the solution of the instanton equations (24) and (25)
with the sources λ(t) = λδ(t), μ(t) = 0.

To obtain the leading-order velocity distribution for τ � 1,
we need to solve (24) to order τ−1. The solution ũt , h̃t has
two time scales, which are well separated in the τ → ∞ limit:
t ∝ 1 and t ∝ τ . We thus introduce

s := t/τ (53)

and assume the scaling

ũ(t) =: ũ(b)(t) + τ−1ũ
(b)
1 (t) + O(τ−2), |t | ∝ 1, (54)

h̃(t) =: τ−1h̃(b)(t) + O(τ−2), |t | ∝ 1, (55)
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ũ(t) =: τ−1ũ(a)(s) + O(τ−2), |t | ∝ τ, (56)

h̃(t) =: τ−1h̃(a)(s) + O(τ−2), |t | ∝ τ. (57)

Physically, the first regime |t | ∝ 1 is the regime where the
eddy currents have not yet built up (h̃ 
 ũ) and are negligible.
Hence the instanton is, up to a parameter change, identical to
that of the standard ABBM model. The second regime is the
regime of quasistatic relaxation of the eddy currents built up
during the first stage. In that regime the instanton will be related
to the instanton for the eddy-current relaxation discussed in the
previous section.

The source terms enforce the boundary conditions ũ(b)(0) =
−λ, h̃(b)(0) = 0. We now construct ũ(a,b) and h̃(a,b) in turn.

1. Boundary layer: |t| ∝ 1

Let us first compute the leading term ũ(b), which is of order
1. For −τ 
 t < 0, inserting Eq. (54) into Eq. (25), the term
h̃t is subdominant compared to τ∂t h̃t and ũt . We therefore
obtain

h̃(b)(t) = a

∫ 0

t

dt ′ ũ(b)(t ′) + O(τ−1). (58)

Thus, the term h̃(t) in Eq. (24) is of order τ−1 and negligible
in this regime. This is consistent with the interpretation of the
boundary layer as the regime where the eddy currents have not
yet built up. Equation (24) reduces to

∂t ũ
(b)
t − (1 + a)ũ(b)

t + σ
(
ũ

(b)
t

)2 = −λt . (59)

This is just the instanton equation (Eq. (13) of Ref. [25]) of the
standard ABBM model but with a modified mass, m2 = 1 →
1 + a. We obtain the known solution [25,46]

ũ(b)(t) = (a + 1)λe(a+1)t

a + 1 + λ(e(a+1)t − 1)
. (60)

Consequently, for t → −∞, h̃(b)(t) is given by

h̃(b)(−∞) = a

∫ 0

∞
dt ũ(b)(t) = −a ln

(
1 − λ

a + 1

)
. (61)

To compute the correction ũ
(b)
1 of order τ−1, we need to

expand (24) to the next order. We get the linear equation

∂t ũ
(b)
1 (t) − (1 + a)ũ(b)

1 (t) + 2ũ(b)(t)ũ(b)
1 (t) + h̃(b)(t) = 0.

(62)

Using the expressions (58) and (60) for h̃(b)(t), its solution is
given by

ũ
(b)
1 (t) = a

(1 + a)[1 + a + (1 − e−(1+a)t )λ]2

{
−λe(a+1)t

[
2(1 + a − λ)

(
Li2

(
− e(a+1)t λ

1 + a − λ

)
− Li2

(
− λ

1 + a − λ

))

− (1 + a)t(1 + a − λ) + λ(e(a+1)t − 1)

]
− [(1 + a − λ)2 − λ2e2(a+1)t ] ln

(
1 + λ(e(a+1)t − 1)

a + 1

)

+ 2(a + 1)λte(a+1)t (1 + a − λ) ln

(
1 − λ

a + 1

)}
. (63)

For t → −∞, this tends to a constant,

lim
t→−∞ ũ

(b)
1 (t) = − a

1 + a
ln

(
1 − λ

1 + a

)
. (64)

Since ũ(b)(−∞) = 0, see Eq. (60), this is the dominant
contribution of the boundary-layer solution for ũ in the limit
t → −∞.

2. Long-time regime: |t| ∝ τ

Now let us consider the regime t � −τ . Inserting the
rescaled time s := t/τ into Eq. (24), we see that the term
∂t ũ(t) = τ−1∂sũ(s) is subdominant in τ−1. The instanton in
this regime is, thus, a special case of the instanton discussed in
Sec. V A. Applying Eq. (56) we see that ũ(t) ∝ τ−1 is small.
Thus, we can also neglect the nonlinear term ũ(t)2 in (24).
This gives the simple relation

ũ(a)(s) = 1

1 + a
h̃(a)(s).

Consequently, Eq. (25) reduces to

∂sh̃
(a)(s) = 1

1 + a
h̃(a)(s).

The boundary condition at s = 0 is now nontrivial and given
not by the sources but by the asymptotics of the boundary layer
as t → −∞,

h̃(a)(0) = h̃(b)(−∞) = −a ln

(
1 − λ

a + 1

)
. (65)

The resulting solution of Eq. (24) is

h̃(a)(s) = h̃(a)(0)e
s

1+a = −a ln

(
1 − λ

a + 1

)
e

s
1+a , (66)

=⇒ ũ(a)(s) = − a

1 + a
e

s
1+a ln

(
1 − λ

a + 1

)
. (67)

A nontrivial consistency check is that this expression matches
the O(τ−1) term of the t → −∞ asymptotics of the boundary
layer given in Eq. (64),

ũ(a)(0) = ũ
(b)
1 (−∞). (68)

The boundary-layer solution (60) for t ∝ 1 and the long-time
asymptotics (66) for t ∝ τ compare well to a direct numerical
solution of (24) and (25) in the corresponding regimes;
see Fig. 3.
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FIG. 3. (Color online) Instanton solution ũt , h̃t of (24) and (25)
with sources λ(t) = −δ(t), μ(t) = 0 in the slow-relaxation limit
τ � 1. Parameters are a = 1.3, τ = 2. Yellow (thick) curve: ũt ; red
(thin) curve: 1

1+a
h̃t ; black dotted curve: long-time asymptotics (66);

gray dashed curve: short-time asymptotics (60). The inset shows
details of the boundary layer |t | ∝ 1.

3. The velocity distribution

From the combined knowledge of the previous sections,
we can extract the generating function for the velocity
distribution (52). We have∫

t

ũt =
[∫ 0

−∞
dt ũ(b)(t) +

∫ 0

−∞
ds ũ(a)(s)

]

=
[
− ln

(
1 − λ

a + 1

)
− a ln

(
1 − λ

a + 1

)]

= −(1 + a) ln

(
1 − λ

a + 1

)
. (69)

Thus, the generating function for the velocity distribution (52)
is

eλu̇ =
(

1 − λ

a + 1

)−(1+a)v

[1 + O(τ )−1]. (70)

The Laplace inversion is easy to do, giving the distribution of
instantaneous velocities to leading order in τ−1 (but without
any approximation in v). Restoring units, this is

P (u̇) = e− η

σ
(m2+a)u̇

�
[

η

σ
(m2 + a)v

] 1

u̇

[
u̇

η

σ
(m2 + a)

] η

σ
(m2+a)v

. (71)

We can compare this to the distribution of the standard ABBM
model,

P (u̇) = e− η

σ
m2u̇

�
(

η

σ
m2v

) 1

u̇

(
u̇

η

σ
m2

) η

σ
m2v

. (72)

We see that the effect of eddy currents on the instantaneous
velocity distribution, in the limit of τ → ∞, is the same as if
the mass in the standard ABBM model were increased from m2

to m2 + a. In particular, this means that the transition between
intermittent avalanches and continuous motion happens for
driving velocities v reduced by a factor of (1 + a/m2). In
dimensionful units

vc = σ

η(m2 + a)
. (73)

D. Velocity following a kick

Let us now assume that the driving velocity undergoes a
kick at time t < 0, i.e., ẇ(t ′) = w0δ(t ′ − t). As discussed in
Sec. I C, we consider an initial condition at t = 0 prepared
in the “Middleton attractor” u(w) with u̇(0) = h(0) = 0. The
kick gives deterministically u̇(t+) = m2w0 =: u̇i, so the distri-
bution of velocities u̇f := u̇0 is the propagator P(u̇f,0|u̇i,t) at
zero driving velocity.7 Applying (17), the generating function
for the velocity u̇0 at time t = 0 is given by

eλu̇0 = ew0ũt . (74)

One can obtain the probability distribution of u̇0 in the slow-
relaxation limit τ � 1 by inverse Laplace transformation as
follows. There are two time regimes as follows:

(i) For |t | ∼ 1 we need to insert ũt = ũ(b)(t) + τ−1ũ
(b)
1 (t)

in (74) as given by (60) and (63). For small t we need to
use only (60) and we recover the velocity distribution and
propagator of the standard ABBM model at zero driving
velocity but with modified parameters. The propagator of the
standard ABBM model has been discussed, among others,
in Refs. [24,25,46]. Here we use the result from Eq. (24) in
Ref. [25], or, equivalently, (19) in Ref. [46], with v = 0 and
m2 → m2 + a as follows:

P (u̇) = P (u̇; 0|m2w0; t)

= m2√w0/u̇

2 sinh
[

1
2 t(a + m2)

]
× exp

{
− (a + m2)

[
u̇ + w0e

(a+m2)t
]

1 − e(a+m2)t

}

× I1

[
(m2 + a)

√
u̇w0

sinh
(

1
2 (m2 + a)t

)]
. (75)

This distribution is not normalized; formally, there is an
additional δ-function term as in Eq. (24) in Ref. [25]. This
indicates that this formula is valid for u̇ ∼ 1 only; there is
another regime u̇ ∼ 1/τ 
 1 which requires a more careful
treatment but will not be considered here.

At later times there is a complicated crossover to regime
(ii), which requires keeping the 1/τ correction, which we will
not detail here.

(ii) For long times |t | ∼ τ , ũt is given by (56) and (67).
This gives

eλu̇0 =
(

1 − λ

a + 1

)− aw0
(a+1)τ exp( t

τ (a+1) )

. (76)

Inverting the Laplace transform, one obtains the velocity
distribution and propagator,

P (u̇) � (a + 1)εt e−u̇(1+a)

�(εt )u̇1−εt
, εt := aw0

(a + 1)τ
e

t
τ (a+1) . (77)

It approaches rather quickly a (normalized and regularized)
power-law distribution proportional to 1/u̇. Note that for
an infinitesimal kick we recover the limiting density ob-
tained from the stationary motion ρ(u̇) = ∂w0 |w0=0P (u̇) =

7In this section, we still keep η = 1 but restore units of m2 in some
places for clarity.
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τ−1
typ ∂v|v=0P

stat(u̇) ∼ u̇−1e−(1+a)u̇, where P stat(u̇) was obtained
in (71) and τtyp is a typical time scale.

In general, the velocity distribution P (u̇) following a kick
can be decomposed as

P (u̇) = pu̇=0δ(u̇) + Preg(u̇), (78)

where pu̇=0 is the probability that the domain wall has come
to a complete halt. From (77) one sees that in the ABBM
model with retardation, pu̇=0 = 0 and the domain-wall motion
following a kick never stops completely. This is in contrast
to the standard ABBM model, where one has (cf. Ref. [46],
Eq. (28))

pu̇=0 = exp

(
− w0

e−t − 1

)
.

This can also be seen directly from the instanton solution ũ:
The decomposition (78) implies

eλu̇ =
∫

u̇

eλu̇P (u̇)
λ→−∞−−−−−→ pu̇=0. (79)

Since eλu̇ = ew0ũt , we can conclude that pu̇=0 is zero if and only
if limλ→−∞ ũt = −∞. This is the case in the retarded ABBM

model, where (67) shows that ũt ∝ − ln(1 − λ
1+a

)
λ→−∞−−−−−→

−∞. However, it is not the case in the standard ABBM model,
where limλ→−∞ ũt = 1

1−e−t is finite (cf. Ref. [46], Eq. (14)).
We conclude that in the ABBM model with retardation, the

velocity following a kick never becomes zero permanently,
even though its mean decays exponentially in time over time
scales of order τ , with, for t � −τ ,

〈u̇0〉 = aw0

(a + 1)2τ
e
− |t |

(a+1)τ . (80)

Although the calculation above was done at leading order in
τ−1, we expect the phenomenology to be similar for arbitrary
τ . To make this explicit, we now consider the opposite limit
of fast relaxation, τ 
 η

m2 , in which analytical progress is also
possible.

VI. THE FAST-RELAXATION LIMIT τ � η

m2

We can also consider the limit τ 
 τm = η/m2, where the
eddy currents relax much faster than the domain-wall motion.
Experimentally, this limit is even more relevant than the slow-
relaxation limit discussed in Sec. V: As a function of sample
thickness b, the eddy-current relaxation time τ ∝ b2, whereas
the domain-wall motion occurs on a time scale η

m2 ∝ ab. For
typical experimental setups [22,55] a � b and, hence, τ 

η/m2.

We now discuss the stationary velocity distribution, and
the velocity following a kick in the driving velocity, in the
fast-relaxation limit. As in Sec. V C, we need to construct the
instanton ũ, h̃ solving Eqs. (24) and (25) with sources λ(t) =
λδ(t), μ(t) = 0. Now, however, τ and not τ−1 is a small pa-
rameter. We expect a two-scale solution: A boundary layer for
|t | ∝ τ around t = 0 and an asymptotic regime for |t | ∝ 1. We

thus introduce the rescaled time s := t/τ and make the ansatz

ũ(t) =: ũ
(b)
0 (t) + τ ũ

(b)
1 (t) + O(τ )2, |t | ∝ 1, (81)

h̃(t) =: h̃
(b)
0 (t) + O(τ ), |t | ∝ 1, (82)

ũ(t) =: ũ
(a)
0 (s) + τ ũ

(a)
1 (s) + O(τ )2, |t | ∝ τ, (83)

h̃(t) =: h̃
(a)
0 (s) + O(τ ), |t | ∝ τ. (84)

A. Leading order

At order τ 0, the instanton equations (25) and (24) reduce in
the asymptotic regime to

∂t ũ
(b)
0 (t) − (1 + a)ũ(b)

0 (t) + [
ũ

(b)
0 (t)

]2 + h̃
(b)
0 (t) = 0

− h̃
(b)
0 (t) + aũ

(b)
0 (t) = 0,

with boundary condition ũ0(0) = λ. This gives the leading-
order solution

ũ
(b)
0 (t) = λ

λ + (1 − λ)e−t
, h̃

(b)
0 (t) = aũ

(b)
t . (85)

In the boundary layer, the corresponding solution is ũ
(a)
0 (s) =

ũ
(b)
0 (0) = λ, and Eq. (24) gives

∂sh̃
(a)
0 (s) − h̃

(a)
0 (s) + aλ = 0, ⇒ h̃

(a)
0 (s) = aλ(1 − es).

B. Next-to-leading order

We obtained in Eq. (85) the leading-order solution ũ0(t),
valid in both regimes. Expanding around it, setting ũ(t) =
ũ0(t) + τ ũ1(t) + O(τ )2, we get an equation for ũ1(t)

∂t ũ1(t) − (1 + a)ũ1(t) + 2ũ0(t)ũ1(t) + 1

τ
[h̃(t) − aũ0(t)] = 0.

In the boundary layer, ∂t ũ1(t) = 1
τ
∂s ũ

(a)
1 (s), and

h̃0(s) − aũ0(s) = aλ(1 − es) − aλ = −aλes.

Hence, the next-to-leading-order contribution ũ
(a)
1 (s) in the

boundary layer satisfies

∂sũ
(a)
1 (s) = aλes ⇒ ũ

(a)
1 (s) = −aλ(1 − es). (86)

On the other hand, Eq. (25) gives in the asymptotic regime

∂t h̃
(b)
0 (t) = h̃

(b)
1 (t) − aũ

(b)
1 (t). (87)

Inserting this relation into Eq. (24) gives

∂t ũ
(b)
1 (t) − ũ

(b)
1 (t) + 2ũ

(b)
0 (s)ũ(b)

1 (t) + a∂t ũ
(b)(t) = 0

⇒ ũ
(b)
1 (t) = aλet (λt − t − 1)

(λet − λ + 1)2
. (88)

Here we used the matching condition ũ
(b)
1 (0) = ũ

(a)
1 (−∞) =

−aλ, as given by Eq. (86).
The next-to-leading order corrections (86) and (88) com-

pare well to a direct numerical solution of Eqs. (24) and (25);
see Fig. 4.
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FIG. 4. (Color online) Instanton solution ũ, h̃ of Eqs. (24) and (25)
with sources λ(t) = −δ(t), μ(t) = 0 for fast eddy-current relaxation,
τ 
 η/m2. Parameters are a = 5, τ = 0.1. Yellow (thick) curve: ũ(t);
red (thin) curve: 1

a
h̃(t). Black dotted curve: Leading-order result (85),

corresponding to the standard ABBM model. Gray dashed curve:
Solution (85) plus next-to-leading order correction (88) in the long-
time regime |t | ∝ 1. The inset shows details of the boundary layer
|t | ∝ τ . Blue dot-dashed curve (inset only): Solution (85) plus next-
to-leading order correction (86) in the boundary layer.

C. Stationary velocity distribution

With the above analysis, we can obtain some results on the
velocity distribution. The integral over the instanton solution
gives∫

t

ũ(t)dt =
∫ 0

−∞
dt ũ

(b)
0 (t) + τ

∫ 0

−∞
dt ũ

(b)
1 (t) + O(τ )2

= − ln(1 − λ) + aτ

[
λ

λ − 1
− ln(1 − λ)

]
+ O(τ )2.

(89)

Inserting this result into Eq. (52) for the generating functional
of instantaneous velocities gives

eλu̇ = (1 − λ)−v(1+aτ )eavτ λ
λ−1 +O(τ )2

. (90)

To the same order in τ , this can also be rewritten as∫
t

ũ(t)dt = −(1 + aτ ) ln

[
1 − λ

1 + aτ

]
+ O(τ )2

⇒ eλu̇ =
[

1 − λ

(1 + aτ )

]−v(1+aτ )

+ O(τ )2. (91)

This makes it clearer that, to leading order, the form of the
velocity distribution is not modified; only the parameters
entering it are rescaled. The only change is the replacement
of the typical velocity scale vm = σ

ηm2 of the standard ABBM
model (in units of which the instantaneous velocity u̇ and the
driving velocity v are measured, cf. Sec. III A) by

vc = σ

ηm2

[
1 − a

τ

η
+ O

(
τ

η/m2

)2 ]

= σ

m2(η + aτ )
+ O

(
τ

η/m2

)2

. (92)

In particular, (91) indicates that, in the fast-relaxation limit,
the instantaneous velocity distribution P (u̇) has a power-law
behavior for small u̇

P (u̇) ∼ u̇−1+v(1+aτ+O(τ )2) ∼ u̇−1+v/vc , (93)

with vc given in (92).
In a typical experimental measurement of Barkhausen

noise, the saturation magnetization Is , the demagnetizing
factor k, the distribution of the random pinning forces F , and
the retardation kernel which enter (4) are not known. The
velocity scale vc is, hence, usually obtained by fitting P (u̇) to
a histogram of the experimentally obtained Barkhausen signal.
With the velocity scale vc as a fit parameter, (91) shows that
no difference between the predictions of the standard ABBM
model, and the ABBM model with retardation, can be observed
to this order in τ for the stationary velocity distribution.8 On the
other hand, nonstationary observables, such as the response to
a kick discussed in Sec. IV and the average avalanche shape at
fixed avalanche size discussed in Sec. VII B, show the influence
of retardation much more clearly.

Equation (92) shows that fast eddy-current relaxation
decreases the velocity scale vc, just as in Eq. (71) for slow eddy-
current relaxation. Both formulas have the form vc = σ

m2(η+aτf )
,

where τf is the fastest time scale in the problem, τf = η/m2

for the slow-relaxation limit, and τf = τ for the fast-relaxation
limit. In contrast to Eq. (71), however, the correction we obtain
here is perturbative: It vanishes as τ → 0. In the limit τ → 0
we recover the standard ABBM model.

D. Velocity following a kick

The generating functional for the distribution of velocities
u̇(0) following a kick of size w at t < 0 can also be expressed
in terms of the instanton solution (81),

eλu̇0 = ewũ(t) = exp
[
wũ

(b)
0 (t) + wτũ

(b)
1 (t) + O(τ )2]. (94)

ũ
(b)
0 and ũ

(b)
1 are given by Eqs. (85) and (88) above. They have

a finite limit as λ → −∞:

lim
λ→−∞

ũ(b) = 1

1 − e−t
, (95)

lim
λ→−∞

ũ
(b)
1 = ate−t

(1 − e−t )2
. (96)

This would suggest that the velocity distribution contains
a term ∼δ(u̇). However, for large negative λ, the expan-
sion above breaks down, and higher orders in τ become
non-negligible. By solving the complete instanton equations
numerically one obtains Fig. 5. One observes that the leading-
order (standard ABBM) instanton (85) goes to a fixed value for
λ → −∞. The next-to-leading order correction (88) coincides
better with the numerical solution but still breaks down
around λ ≈ −10 and goes to a fixed value, too. However,
the true (numerically obtained) solution of the instanton
equations goes to −∞ as λ → −∞. Hence, limλ→−∞ eλu̇0 =

8The only exception would be if τ and a could be tuned without
modifying the other sample parameters, but this does not seem
realistic.
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FIG. 5. (Color online) Instanton ũ(t) at a fixed time t = −1,
as a function of λ, for τ = 0.1 and a = 1. Thick yellow line:
Numerical solution of (24) and (25). Thin red line: Leading-order
ABBM solution (85), corresponding to a = 0. Dot-dashed black line:
Next-to-leading order correction (88).

limλ→−∞ ewũ(t) = 0, and the distribution P (u̇0) does not have
a δ(u̇0) piece, consistent with the results obtained above in
Sec. V D in the τ → ∞ limit.

From the instanton expansion (85) and (88), valid for λ ∝ 1,
we can obtain the velocity distribution P (u̇0) following a kick
at t < 0 in the regime u̇0 ∝ 1. Using Eq. (94), we write its
generating function to order τ as

eλu̇0 = exp

(
wA − wB

λ − q
+ wC

(λ − q)2

)
, (97)

with

q = 1

1 − et

A = et

et − 1
+ τ

aet t

(et − 1)2

B = et

(et − 1)2
+ τ

aet [et (t + 1) + t − 1]

(et − 1)3

C = τ
aet [et (t + 1) − 1]

(et − 1)4
.

The inverse Laplace transform of eλu̇0 can be written as

P (u̇) = ewA−qu̇

∫ 2π

0

dφ

2π
reiφ

× exp

(
w

[
Ce−2iφ

r2
+Be−iφ

r

]
−u̇reiφ

)
. (98)

We have set λ = q + reiφ to arrive at the above formula.
We numerically checked that the integral is independent of
r . One can evaluate it analytically, if either B = 0 or C = 0,
by expanding in powers of r and retaining only terms which
scale as r0 (note rn ∼ eiφn). The final result can be written as
a convolution of the two:

P (u̇) = ewA−qu̇

∫ u̇

0
du̇1P1(u̇1)P2(u̇ − u̇1), (99)

P1(u̇) = δ(u̇) +
√

Bw

u̇
I1(2

√
Bwu̇), (100)
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FIG. 6. (Color online) Velocity distribution P (u̇0) given by (99)
(without the δ part) after a kick at time t < 0. The parameters were
chosen to be w = 1, a = 1, τ = 0.2. The time of the kick varies from
right to left as t = −0.3,−0.4,−0.7,−1.5,−2.5.

P2(u̇) = δ(u̇) + Cuw 0F2

(
3

2
,2

∣∣∣∣1

4
Cu2w

)
. (101)

Note again that formally the δ-function parts are an artifact of
our expansion, which is not valid as λ → −∞ or u̇ → 0. We
expect them to be smeared out on a scale et/τ , which goes to 0 as
t → −∞. However, physically, these velocities are extremely
small and unlikely to be observable. Thus, the δ-function term
is physically sensible and can be interpreted as the probability
that all significant avalanche activity has stopped.

Numerically, the convolution can easily be computed. An
example of the distributions for various times is shown in
Fig. 6. We see that for small times the distribution is peaked
around the value w imposed by the step in the force. Later
on the typical value of the velocity approaches 0, and the
distribution becomes monotonous. Its area decreases since part
of the probability is absorbed by the (smoothened) δ function
near u̇ = 0 (λ = −∞), which we are unable to analyze here
in more detail.

VII. AVALANCHE STATISTICS AT FIXED SIZE

In the previous section we saw, at least in the two
limits η/m2 
 τ and η/m2 � τ , that avalanches following
even an infinitesimal kick never completely stop. Computing
observables conditioned to their duration of first return to
u̇ = 0, i.e., the subavalanche duration, requires introducing an
artificial “absorbing boundary” at u̇ = 0 which will terminate
the avalanche once u̇ becomes zero.9 This task is deferred to
Sec. VIII. However, the mean velocity following a (finite or
infinitesimal) kick still decreases, and the total avalanche size
remains finite. We will now compute its distribution, and other
observables conditioned on the total avalanche size.

9The natural boundary at u̇ = 0 would be reflecting, since, if u̇t

becomes zero at some instant of time, it immediately restarts to
positive velocities due to the decrease of the eddy current pressure in
the next time step.
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A. Avalanche sizes

We define the size S of a nonstationary avalanche following
a kick of size w0 at t = 0 as S = ∫ ∞

−∞ u̇(t)dt . The Laplace
transform of the probability distribution of S is given by
Eq. (17),

eλS = eλ
∫ ∞
−∞ u̇(t)dt = ew0ũ0 . (102)

Here ũt is the solution of (18) with a time-independent source
λ(t) = λ. This means that ũt = ũ is also time independent.
Then, using f (0) = 1 and f (∞) = 0, the terms proportional
to a drop out from Eq. (18) and we get

− m2ũ + σ ũ2 = −λ. (103)

Choosing the solution which tends to 0 as λ → 0, we get

ũ = m2 − √
m4 − 4λσ

2σ
(104)

and

eλS = e
w0

m2−√
m4−4λσ
2σ . (105)

Inverting the Laplace transform gives

P (S) = w0

2
√

πσS
3
2

e
− (w0−m2S)2

4σS . (106)

with S = w0. Note that this extends to any finite kick of
arbitrary shape replacing w0 = ∫ ∞

0 dtẇ(t) [18]. This is pre-
cisely the distribution obtained for the standard ABBM model
and the mean-field theory of interfaces in Refs. [18,45,46].
Of course, this can already be seen from the fact that
the terms proportional to a drop out from (18) when ũ

is time independent. Note that this result is independent
of the shape of the memory kernel f in (5). This is a
consequence of the monotonicity of the model, as discussed
in the Introduction. In the limit of an infinitesimal kick, i.e.,
small w0, one recovers the stationary avalanche-size density.

Universal corrections to the distribution (106) are expected
when one goes beyond the mean-field limit and considers d-
dimensional elastic interfaces. Without retardation effects, the
universal corrections at slow driving were obtained to one loop
in an expansion around the critical dimension [18]. We expect
them to remain unchanged by retardation effects, as seen in
this section for the mean-field case.

B. Avalanche shape at fixed size

The avalanche shape is usually obtained by computing the
mean velocity as a function of time, in the ensemble of all
avalanches of a fixed duration [19,22,35,56]. Here we shall
instead consider the ensemble of all avalanches of a fixed size
S. In a numerical simulation or in an experiment, the shape
at fixed size is just as easily measurable as the shape at fixed
duration. However, it is easier to obtain theoretically with our
methods, and it can be defined without a microscopic cutoff.
We will thus compute the shape function defined via

s(t,S) :=
∫ ∞

0
du̇t u̇t P (u̇t |S) =

∫ ∞
0 du̇t u̇t P (u̇t ,S)

P (S)
. (107)

P (S) is the avalanche size distribution (106).

We follow the approach used in Refs. [18,45,46] to obtain
the avalanche shape in the standard ABBM model from the
Martin-Siggia-Rose field theory. The driving wt performs a
kick at t = 0, i.e., we set ẇt = w0δ(t). We then consider the
observable

ŝ(t0,λ) := u̇t0 eλS = ∂μ|μ=0e
λS+μu̇t0 . (108)

ŝ is related to the shape function s via a Laplace transform,

ŝ(t0,λ) =
∫ ∞

0
dS s(t,S)P (S)eλS. (109)

ŝ as defined in (108) can be evaluated using (17),

ŝ(t0,λ) = ∂μ|μ=0e
w0ũ0(μ), (110)

where ũ0(μ) is the solution of (18) with the source λt = λ +
μδ(t − t0). To compute (110), we need to solve the instanton
equation (18) to first order in μ. The solution for μ = 0 is the
constant ũ(λ), obtained previously in Eq. (104) for the size
distribution. The correction of order μ, ũ(1) has to satisfy the
linear (but still nonlocal) equation

∂t ũ
(1)
t − (1 + a − 2ũ)ũ(1)

t − a

∫ ∞

t

ds f ′(s − t)ũ(1)
s

= −μδ(t − t0). (111)

We now restrict ourselves to the case of an exponentially de-
caying memory term, f (t) = e−t/τ . Through the substitution
ũ

(1)
t = μ(1 − τ∂t )gt , Eq. (111) is transformed into a linear

second-order differential equation,

(∂t − 1 − a + 2ũ)(1 − τ∂t )gt + agt = −δ(t − t0). (112)

The right-hand side yields the boundary conditions g(t0) = 0,
g′(t0) = −1/τ . The resulting solution for gt is

gt = 2re(t−t0)/τ
[
e− 2a(t−t0)

r − e
r(t−t0)

2τ

]
4aτ + r2

,

where we defined r via

(2 + r)(r − 2aτ )

2rτ
= √

1 − 4λ. (113)

The shape function (110) is then

ŝ(t0,λ) = ew0ũ0(μ=0)w0ũ
(1)(0)

= e
w0
2 (1−√

1−4λ)w0[g(0) − τg′(0)]

= e
w0
2 (1−√

1−4λ)w0
4ae

2at0
r + r2e− r

2 t0/τ

4aτ + r2
e−t0/τ . (114)

The shape at fixed size S is finally obtained by inverting the
Laplace transform. This is best done using the coordinate r
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introduced in Eq. (113):∫
du̇t u̇t P (u̇t ,S)

= −
∫ r0+i∞

r0−i∞

dr

2πi
ŝ(t,λ(r))e−λ(r)S dλ

dr

=
∫ r0+i∞

r0−i∞

dr

2πi

(r − 2aτ )(r + 2)
(
4aτe

2at
r + r2e− tr

2τ

)
8τ 2r3

× exp

[
S(r + 2)2(r − 2aτ )2

16r2τ 2
− S

4
− t

τ

]

×w0 exp

[
w0

2

(
1 − (2 + r)(r − 2aτ )

2rτ

)]
. (115)

r0 fixes the location of the integration contour; it can be chosen
arbitrarily, as long as r0 �= 0.10

Our final result for the avalanche shape at fixed size
(following a kick of arbitrary strength w0) is, thus, obtained
by inserting this result into

s(t,S) = 2
√

πS3/2e
(w0−S)2

4S
1

w0

∫ ∞

0
du̇t u̇t P (u̇t ,S),

where we have used (106). On this expression the limit of
w0 → 0 is easy to take and provides the result for the stationary
avalanches.

One nontrivial check of this formula is that the resulting
shape is properly normalized,∫ ∞

0
dt s(t,S)

=
∫ ∞

0
dt

∫
du̇t u̇t

P (u̇t ,S)

P (S)

=
∫ r0+i∞

r0−i∞

dr

4i
√

π

(r2 + 4aτ )

r2τ

× exp

[
S(r + 2)2(r − 2aτ )2

16r2τ 2
− S

4

]

×S
3
2 e

(w0−S)2

4S exp

[
w0

2

(
1 − (2 + r)(r − 2aτ )

2rτ

)]

=
∫ i∞

−i∞

dp

4i
√

π
S

3
2 e

(w0−S)2

4S e
Sp2

16 + w0
2 (1− p

2 )− S
4 = S,

where in the second line we used the substitution p =
(r+2)(r−2aτ )

rτ
.

The integral (115) could be calculated in closed form in the
case a = 0 of the standard ABBM model. There one finds∫

du̇t u̇t P (u̇t ,S) = (2t + w0)w0e
− S2−2Sw0+(2t+w0)2

4S

2
√

πS3/2
,

10This is in order to avoid the singularity of the integrand at r = 0.
We checked that the result of the (numerical) integration of (115) is
independent of the value and the sign of r0.
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FIG. 7. (Color online) Avalanche shape at fixed size S = 0.8,
τ = 0.5, and w0 = 0. Curves are, from top (black solid line) to bottom
(blue dot-dashed line), a = 0 [standard ABBM model, as given by
Eq. (116)], a = 1, a = 2, a = 5.

and the result for the shape,

s(t,S) = (2t + w0)e−t(t+w0)/S. (116)

In the limit of an infinitesimal kick w0 → 0 we thus obtain the
shape at fixed size for the standard ABBM model (a = 0) for
stationary avalanches as

s(t,S) = 2te−t2/S. (117)

For a > 0 we could not find a closed expression; however,
the integral (115) is easily evaluated numerically. Some exam-
ple curves are shown in Fig. 7 in the limit of small w0. Observe
that especially for large values of a, the additional time
scale introduced by the eddy-current relaxation is clearly
visible. Overall the shape stretches longer in time, and becomes
nonmonotonous, as a is increased.

1. Tail of the shape function

The behavior of the avalanche shape for long times can
also be understood analytically from Eq. (115). For simplicity,
we consider the case w0 = 0 in the following. For large t ,
the integral is dominated by its saddle point. Since we have
e

2at
r � e− tr

2τ for all times, the dominant exponential factor is

eH (r) := exp

(
S(r + 2)2(r − 2aτ )2

16r2τ 2
− S

4
− t

τ
+ 2at

r

)
.

Its maximum for large t is obtained by solving H ′(r) = 0,

rm ≈ 2
3

√
2atτ 2

S
+ 2

3
(aτ − 1) + O(t)−1/3.

Determining the location of the saddle point to higher order
in t is more complicated. The terms of O(t)−1/3 depend on
whether the subexponential terms in (115) are included in the
maximization procedure. However, to the order given here, rm

is independent of such choices.
Since the integral (115) does not depend on r0 as discussed

above, we can choose r0 = rm. Setting r = u + iv, we have
∂2
vH (r) = −∂2

uH (r) due to the Cauchy-Riemann equations.
Thus, we can approximate the integral (115) for large t and
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fixed S by

s(t,S) ≈
√

2π

H ′′(rm)

(rm − 2aτ )(rm + 2)a

4πτr3
m

eH (rm)

P (S)

≈ exp

[
− t

τ
+ 3

2

(
at

τ

)2/3 (
S

2

)1/3

+
(

at

τ

)1/3 1 − aτ

τ

(
S

2

)2/3

+ S(a2τ 2 − 5aτ + 1)

6τ 2
+ O(t)−1/3

]

×
[

S4/3a2/3

√
3(2t)1/3τ 2/3

+ O(t)−2/3

]
. (118)

Again, note that to this order both the exponent and the
prefactor are independent of whether the subexponential terms
are included in the maximization. In particular, the term of
order O(t)0 in the exponent is independent of the term of order
O(t)−1/3 in rm. We thus see that the Gaussian tail of the shape
in the standard ABBM model is replaced by an exponential tail,
decaying on a time scale τ . This is confirmed by numerical
Laplace inversion of Eq. (115); see Fig. 8. We also observe
good agreement between the asymptotic expansion and the
numerical result.

Using a similar method one can try to determine the tail
of s(t,S) for fixed t at large S. In this limit, the maximum
obtained by solving H ′(r) = 0 is

rm ≈ 2aτ + O(S)−1.

One finds

H (rm) = −S

4
+ O(S)−1, H ′′(rm) = (1 + aτ )2

8a2τ 4
S + O(S)0.

Noting that P (S) ∼ e−S/4, this means that the exponential
factor in the saddle-point contribution to s(t,S) ∼ eH (rm)/P (S)
vanishes to leading order. This indicates that s(t,S) will scale
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FIG. 8. (Color online) Tail of the avalanche shape at fixed size
S = 0.8. Blue dotted line: Gaussian ABBM tail (116). Red (thin)
and yellow (thick) lines: numerical Laplace inversion of (115) for
τ = 0.7 and τ = 0.4, respectively. Black dot-dashed and dashed lines:
Asymptotics (118) for the corresponding values. a = 1 in all cases.

as a power law for fixed t at large S. However, since the
pre-exponential factors in (115) also vanish at rm = 2aτ ,
obtaining a quantitative result requires a more controlled
approximation.

VIII. SUBAVALANCHE STATISTICS

As we saw in Sec. V D, an avalanche in the ABBM model
with exponential retardation never strictly terminates, even
after the driving has stopped. It thus is interesting to explore
the “sub”-avalanches, or aftershocks, inside an avalanche, and
their durations Ti , i = 1, . . . . Ti is defined as the time it takes
u̇ to start from u̇ = 0 at time ti−1 = ∑i−1

j=1 Tj and go to positive

values u̇ > 0 and back to u̇ = 0 at time ti = ∑i
j=1 Tj without

touching u̇ = 0 in the interval 0 ]ti−1,ti[. In other words, it
is the separation in time between successive passages of u̇ at
zero. The same question can be asked for avalanches at nonzero
driving velocity v > 0 in the standard ABBM model, which
can also be seen as subavalanches of an infinite avalanche
(there, too, u̇ never vanishes on a finite time interval).11 We
will obtain detailed results in that case.

A convenient setting to study this problem is the Fokker-
Planck approach, introducing an artificial absorbing boundary
at u̇ = 0. It can be implemented in the case of the simple
exponential relaxation (8) which reduces to two coupled
Langevin equations for u̇ and h (11). We will discover that,
with such an absorbing boundary, Eqs. (17) and (26) for the
generating functional of domain-wall velocities, as well as
some details of the instanton method, need to be modified.

A. Subavalanches in the standard ABBM model
at finite driving velocity

In order to present our approach on a simple example, let us
consider, first, the standard ABBM model with monotonous,
but otherwise arbitrary driving ẇ(t) � 0. The equation of
motion (19) with a = 0 is, due to its Markovian nature,
completely characterized by the propagator

P(u̇f ; tf|u̇i; ti) := E
[
δ
(
u̇tf − u̇f

)∣∣u̇ti = u̇i
]
. (119)

Here E means “expectation”, i.e. the average over the disorder.
As a function of the final velocity u̇f , Pt (u̇) = P(u̇f = u̇; tf =
t |u̇i; ti) satisfies the forward Fokker-Planck equation

∂tPt (u̇) = ∂2
u̇ u̇Pt (u̇) + ∂u̇(u̇ − ẇt )Pt (u̇) = ∂u̇Jt (u̇), (120)

where

Jt (u̇) := ∂u̇u̇Pt (u̇) + (u̇ − ẇt )Pt (u̇) (121)

is (minus) the probability current. As a function of the
initial condition u̇i, Qt (u̇) = P(u̇f ; tf|u̇i = u̇; ti = t) satisfies
the backward Fokker-Planck equation

−∂tQt (u̇) = u̇∂2
u̇Qt (u̇) − (u̇ − ẇt )∂u̇Qt (u̇)

= ∂2
u̇ u̇Qt (u̇) + ∂u̇(ẇt − 2 − u̇)Qt (u̇) + Qt (u̇).

(122)

11In the context of the standard ABBM models, these subavalanches
are also called pulses [57].
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The propagator also satisfies the initial condition

P(u̇f ; ti|u̇i; ti) = P(u̇f ; tf|u̇i; tf) = δ(u̇f − u̇i). (123)

In order to obtain the solution of the forward or backward FPEs,
one needs to complement them with a boundary condition at
u̇ = 0. We consider two cases:

(i) Propagator with reflecting boundary Prefl. This is the
case we studied so far in this article and in Ref. [46]. It is
defined by a vanishing probability current: Jt (u̇ = 0+) = 0 or

lim
u̇→0

∂u̇u̇Pt (u̇) + (u̇ − ẇt )Pt (u̇) = 0. (124)

Typically, this is satisfied by a power-law-like behavior P (u̇) ∼
u̇−1+ẇt for u̇ → 0 (see the examples in Refs. [20,24,46]).

(ii) Propagator with absorbing boundary Pabs. This is the
relevant case for subavalanches. The problem is characterized
by a vanishing propagator, when starting from u̇ = 0+, i.e.,
Qt (u̇ = 0+) = 0. This implies (except for pathological cases)
that the “current” for the backwards FPE vanishes,

lim
u̇→0

∂u̇u̇Qt (u̇) + (ẇt − 2 − u̇)Qt (u̇) = 0. (125)

On the other hand, for the forward Fokker-Planck equation,
Pt (u̇ = 0+) = Prefl(u̇f = 0+,tf = t |u̇i; ti) will typically be a
nonvanishing, nontrivial function of time, and the current Jt

will not vanish (as expected from physical intuition, since
trajectories touching u̇ = 0 are “absorbed”). This is why treat-
ing the absorbing boundary using the forward Fokker-Planck
equation is inconvenient; instead, the backward equation is
natural here.12

Let us now define Laplace transforms with respect to the
final velocity for P̂ and with respect to the initial velocity for Q̂,

P̂t (λ|u̇i,ti) :=
∫ ∞

0
du̇f eλu̇fP(u̇f ; tf = t |u̇i; ti), (126)

Q̂t (λ|u̇f,tf) :=
∫ ∞

0
du̇i e

λu̇iP(u̇f ; tf|u̇i; ti = t). (127)

Laplace-transforming the forward Fokker-Planck
equation (120), with the reflecting boundary condition (124),
we obtain a first-order PDE for P̂t (λ),

∂t P̂
refl
t (λ) = (λ2 − λ)∂λP̂

refl
t (λ) + ẇtλP̂ refl

t (λ). (128)

Note that while boundary terms would arise in general, the
reflecting boundary condition (124) ensures that they vanish.
Similarly, Laplace-transforming the backward Fokker-Planck
equation (122) with the absorbing boundary condition (125),
we obtain a first-order PDE for Q̂t (λ),

−∂t Q̂
abs
t (λ) = (λ2 + λ)∂λQ̂

abs
t (λ) + [(2 − ẇt )λ + 1]Q̂abs

t (λ).

(129)

12Similarly, for the reflecting boundary, Qt (u̇ = 0+) =
Prefl(u̇f,tf |u̇i = 0+; ti = t) will typically be a nonvanishing,
nontrivial function of time. So, for the reflecting boundary, the
backward equation is inconvenient and the forward equation is
natural. For the absorbing boundary it is the other way around.
This peculiar behavior is due to the nature of the ABBM noise
term, which vanishes for u̇ = 0. For a standard Brownian motion,
the absorbing boundary can be treated equally well using the
forward or the backward Fokker-Planck equation: There we have
Pabs(u̇f = 0) = Pabs(u̇i = 0) = 0.

Again, vanishing of boundary terms for the Laplace
transformation is ensured by the absorbing boundary
condition (125). On the other hand, the Laplace-transformed
equations for P̂ abs

t and Q̂refl
t are more complicated: There, the

boundary terms at u̇ = 0 do not vanish and are undetermined
functions of time. Thus, in the following, we will always
use the propagator in terms of the final condition P or its
Laplace-transform P̂ when discussing a reflecting boundary
and the propagator in terms of the initial condition Q or its
Laplace-transform Q̂ when discussing an absorbing boundary.

Now Eqs. (128) and (129) can be solved using the method of
characteristics. In the forward (reflecting boundary) case this
method was shown to provide a general connection between
the Fokker-Planck approach to the ABBM model and the
dynamical path integral (instanton equation) approach [18,49].
In the following we take a first step towards generalizing this
to the case of an absorbing boundary. The solution of (129) is

Q̂ti (û(ti)) = e
∫ tf
ti

[(2−ẇt )ût+1]dt Q̂tf (û(tf)), (130)

where û satisfies the backward instanton equation

− ∂t ût + ût + û2
t = 0, (131)

with the boundary condition û(ti) = λ.13

The initial condition (123) for the propagator gives
Q̂tf (λf ) = eλf u̇f . Inserting this into (130), we obtain∫ ∞

0
du̇i e

λu̇iPabs(u̇f ; tf|u̇i; ti)

= Q̂ti (λ) = exp

{∫ tf

ti

[(2 − ẇs)ûs + 1]ds + u̇f ûtf

}
.

(132)

It is useful to recall that the fact that this solves the problem
with an absorbing boundary is an indirect consequence of
our chain of arguments: It stems from the fact that we use
the backward instanton equation (131) which encodes the
solution (via the method of characteristics) of the Laplace-
transformed backward FPE, which itself contains no boundary
term precisely in the case of an absorbing boundary. For the
case of a reflecting boundary, the analogous formula is∫ ∞

0
du̇f eλu̇fPrefl(u̇f ; tf|u̇i; ti)

= P̂tf (λ) = exp

[∫ tf

ti

ẇs ũ(s) ds + u̇iũ(ti)

]
. (133)

As discussed in Ref. [49], this is equivalent to solving (19) as
above using the MSR field theory and the instanton equations.
For details, see Ref. [49], Sec. V C, and, in the present article,
Sec. VIII D, where we discuss this in general for the ABBM
model with retardation.

1. Propagator at constant driving

Let us now apply (132) in order to determine the propagator
of the standard ABBM model with an absorbing boundary, at
a constant driving velocity 0 < v < 1.

13Note that this equation is causal—solved by increasing the time—
in contrast to the forward instanton.
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The solution of Eq. (131) is

û(t) = λ θ (t − ti)

eti−t (λ + 1) − λ
. (134)

Inserting this into (132), we obtain the Laplace transform
(with respect to the initial condition) of the propagator with an
absorbing boundary, at a constant driving velocity v,∫

du̇i e
λu̇iPabs(u̇f ; tf|u̇i; ti)

= Q̂ti (λ) = exp

[∫ tf

ti

[(2 − v)û(t) + 1]dt + û(tf)u̇f

]

= exp

[
(2 − v)

∫ tf

ti

û(t)dt + (tf − ti) + û(tf)u̇f

]

= exp

[
λetf−ti u̇f

1 − λ(etf−ti − 1)
+ tf − ti

]
[1 − λ(etf−ti − 1)]v−2.

(135)

Inverting the Laplace transform from λ to u̇i yields the
propagator of the ABBM model with an absorbing boundary
at u̇ = 0,

Pabs(u̇f ; tf|u̇i; 0)

= exp

(
v

2
tf − u̇fe

tf + u̇i

etf − 1

)
(u̇f/u̇i)

v−1
2

2 sinh tf
2

I1−v

(√
u̇f u̇i

sinh tf
2

)
.

(136)

Here we set ti = 0 for simplicity since the result depends only
on tf − ti.

Our result is identical to Eq. (37) in the recent calculation
[58], there obtained using completely different methods (de-
composition in eigenfunctions of the Fokker-Planck operator).
The advantage of our approach is that it makes the connection
to field theory clearer and that it is easily generalizable to
situations with a nonconstant driving velocity (where the
eigenfunction method is not applicable).

It is straightforward to check explicitly that (136) sat-
isfies the backward FPE (122). Near u̇i = 0 we have
Pabs(u̇f ; tf|u̇i; 0) ∼ u̇1−v

i . For 0 � v � 1, it satisfies the absorb-
ing boundary condition Pabs(u̇f ; tf|u̇i = 0; ti) = 0 and (125).
On the other hand, near u̇f = 0,Pabs is a nonvanishing constant,
so the “forward” current (121) does not vanish. For velocities
v > 1, our assumption on the absorbing boundary condition,
Pabs(u̇f ; tf|u̇i = 0; ti) = 0 and (125), seems to break down. In
fact, the absorbing boundary becomes equal to the reflecting
one since u̇ = 0 is unreachable.14

2. Subavalanche durations in the standard ABBM model

Another simple example is the “survival probability,” i.e.,
the probability never to touch the absorbing boundary u̇ = 0
until time tf , starting at some initial u̇i at time ti,

Psurv(tf|u̇i; ti) :=
∫

du̇f Pabs(u̇f ; tf|u̇i; ti).

14In fact, for v > 1, one can still formally define avalanche-size
distributions conditioned to u̇ being close to 0 instead of precisely 0
as for 0 � v < 1; see the appendix in Ref. [45].

Its leading behavior as u̇i → 0 corresponds to the probability
of an avalanche duration T > tf − ti.

It can be obtained using (130) as in the previous section but
with the initial condition

Q̂tf (λf ) =
∫ ∞

0
du̇ eλf u̇ = − 1

λf

(137)

for λf < 0.
As above, inserting the solution (134) for û(t), we obtain

for the survival probability at time tf∫
du̇i e

λu̇iPsurv(tf|u̇i; ti)

= exp

{∫ tf

ti

[(2 − ẇs)ûs + 1]ds

} [
− 1

û(tf)

]

= −[1 + λ − λetf−ti ]v−2 (λ + 1) − λetf−ti

λ

= − [1 + λ − λetf−ti ]v−1

λ
. (138)

This is, of course, identical to the integral of (135) over
u̇f . Inverting the Laplace transform, we obtain the survival
probability at time tf > ti when starting from u̇i at ti . It is a
function of tf − ti only. For v < 1 it reads

Psurv(tf − ti|u̇i) = 1 − �
(
1 − v, u̇i

etf −ti −1

)
�(1 − v)

. (139)

It increases from 0 to 1 as u̇ increases from 0 to ∞, while for
v � 1 it is equal to unity for all u̇ > 0, i.e., there are no zeros of
the velocity. Note that this result was obtained independently
in Refs. [58,59] by completely different methods. It can also
be obtained by integrating the propagator (136) over u̇f from
0 to ∞.

The case v < 1 is considered from now on. Taking a
derivative with respect to the final time gives the probability
density of first-passage times T0 for u̇ to become zero, given
an initial velocity u̇i,

Pfirst(T0|u̇i) = u̇1−v
i

�(1 − v)(eT0 − 1)2−v
e
− u̇i

eT0 −1
+T0

. (140)

Since an avalanche always starts at u̇ = 0+, we can extract
from the leading term in small u̇i a density of durations T0,

vρduration(T0) = eT0 (1 − v)(eT0 − 1)v−2 sin(πv)

π
. (141)

In the limit v → 0, density means units of 1/u ≡ 1/w. Since
ρduration(T0) diverges like 1/T v−2

0 , hence is not normalizable for
v < 1, we have chosen to normalize it as 〈vT0〉ρ = 1. Note that
ρ has a finite limit at v = 0+ which agrees with the avalanche-
duration density obtained in Ref. [25].

The probability density for an avalanche to continue a time
T0 beyond an arbitrary chosen time ti is obtained by integrating
over the distribution of u̇0 in the stationary state Pstat(u̇0) =
u̇−1+v

0
e−u̇0

�(v) ,

Pbeyond(T0) =
∫ ∞

0
du̇i Pstat(u̇i)Pfirst(T0|u̇i)

= (eT0 − 1)v−1 sin(πv)

π
. (142)
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Note that this is a bona-fide probability distribution (normal-
ized to unity).

Finally, we obtain again the density of avalanche durations
by taking a derivative,

vρ(T ) = −∂T0 |T =T0Pbeyond(T )

= eT

(eT − 1)2−v
(1 − v)

sin(πv)

π
. (143)

This density can be interpreted as a probability vρ(T ) ≡ P (T )
in the following sense: Take a random time t = 0. The velocity
u̇0 is positive with probability 1. Thus, there is a first-passage
time −t1 at zero velocity on the left of t = 0 and a first-passage
time +t2 at zero velocity on the right of t = 0. The duration
T = t2 − (−t1) = t2 + t1 is the distance between the two. It
thus is normalized not by

∫ ∞
0 P (T )dT = 1 but rather by∫ ∞

0
dt1

∫ ∞

0
dt2 P (T = t2 + t1) = 1.

In terms of units, P (T ) is not a probability density (which
would give a dimensionless number when multiplied by a
time interval dT ) but a “double”-probability density which
gives a dimensionless number when multiplied by two time
intervals dt1, dt2. In other words,

∫
T P (T )dT = 1 since

the probability that a randomly chosen time belongs to an
avalanche is proportional to its duration T .

Note that for v → 0 Eq. (143) reduces to the result known
from Refs. [24,25,46]. The velocity-dependent power law for
small T , P (T ) ∝ T −2+v , was already predicted in Ref. [24].
A similar result for the distribution of avalanche sizes at
finite velocity in the standard ABBM model is discussed in
Appendix E.

B. Fokker-Planck equations and propagator
including retardation

Now let us go back to the more general ABBM model with
retardation.

The equations of motion (23) are equivalent to a Fokker-
Planck equation15 generalizing (144) for the joint probability
distribution P (u̇,h),

∂tPt (u̇,h) = ∂2
u̇ u̇Pt (u̇,h) + ∂u̇(u̇ − ẇt + au̇ − ah)Pt (u̇,h)

+ τ−1∂h(h − u̇)Pt (u̇,h). (144)

15To derive the forward Fokker-Planck equation (144), we set

Pt (u̇,h) = 〈δ(u̇ − u̇t )δ(h − ht )〉.
Then we apply Itô calculus to

Pt+dt (u̇,h) = 〈δ(u̇ − [u̇t + du̇t ])δ(h − [ht + dht ])〉,
with

du̇t =
√

u̇t dBt + [(ẇt − u̇t ) − au̇t + aht ]dt,

τdht = [u̇t − ht ]dt

〈dBtdBt ′ 〉 = 2δ(t − t ′)dt.

For the backward equation (145), apply Itô calculus to

Qt+dt (u̇t+dt ,ht+dt ) = Qt (u̇t ,ht ).

As discussed in Ref. [49], this forward Fokker-Planck equation
provides an alternative derivation for the generating func-
tion (26). The instanton equations (24) and (25) are equivalent
to the equations for the characteristics of the linear PDE (144),
see Ref. [49], Sec. V C, for details. The transformation
between the “real space” u̇,h and the “Laplace space” ũ,h̃

of the characteristics, i.e., instantons is a very useful tool
whenever boundary terms are absent. This is the case for a
zero probability current at u̇ = 0, i.e., for a reflecting boundary
condition.

To study the case of an absorbing boundary, as noted above
for the pure ABBM model, it is useful to consider the flow
of the probability density as a function of the initial condition
u̇,h at time ti = t , which satisfies the backward Fokker-Planck
equation15 [60]

−∂tQt (u̇,h)

= u̇∂2
u̇Qt (u̇,h) − (u̇ − ẇt + au̇ − ah)∂u̇Qt (u̇,h)

− τ−1(h − u̇)∂hQt (u̇,h)

= ∂2
u̇ u̇Qt (u̇,h) − ∂u̇(u̇ + 2 − ẇt + au̇ − ah)Qt (u̇,h)

− τ−1∂h(h − u̇)Qt (u̇,h) + (1 + a + τ−1)Qt (u̇,h).

Both (144) and (145) are linear in the probability density P or
Q. Hence, they are completely characterized by the Green
function or propagator P(u̇f,hf ; t |u̇i,hi,0), the probability
to go from u̇i,hi at ti to u̇f,hf at tf > ti. It satisfies (144)
as a function of t = tf,u̇ = u̇f,h = hf and (145) as a func-
tion of t = tf,u̇ = u̇i,h = hi; it has the initial condition
P(u̇f,hf ; ti|u̇i,hi,ti) = δ(u̇f − u̇i)δ(hf − hi).

C. Monotonicity, domains of definition, and boundaries

It is important to note that u̇ and h satisfy together a
monotonicity property: If ẇ � 0 and both u̇(t = 0) � 0 and
h(t = 0) � 0, then they remain so at all times. Although
the quadrant u̇ � 0, h � 0 is the more physical one, as we
see below it is convenient to solve the FP equations in the
half-space u̇ � 0 and then at the end restrict to the quadrant
h � 0. The reason for this is simple: No matter whether we
impose an absorbing or a reflecting boundary at u̇ = 0, one
has a finite probability of reaching u̇f > 0,hf > 0 starting
from u̇i > 0,hi < 0. So, as a function of the initial value
hi, P(u̇f,hf ; ti|u̇i,hi,ti) is smooth around hi = 0, and has a
finite value there. Its natural boundary is at hi → −∞, where
P → 0. Thus, when considering the backward equation, we
will work on the half-space u̇i � 0,hi ∈ R in the following in
order to avoid undetermined boundary terms.

Due to the aforementioned monotonicity property, we know
that the restriction to hi > 0 of the half-space propagator
obtained in this way will actually be equal to the propagator
restricted to the physical quadrant from the beginning.

By taking linear functionals of the propagator, one obtains
other observables. We give a few examples:

(i) Starting not from a fixed point, but from a distribution of
initial values Pi(u̇i,hi), the probability density of final values

Pt (u̇,h) =
∫ ∞

0
du̇i

∫ ∞

−∞
dhi Pi(u̇i,hi)P(u̇,h; t |u̇i,hi; ti)

(146)
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still satisfies the forward FPE (144). The initial condition is,
naturally, Pti = Pi.

(ii) One may be interested not in the probability density of
the final point at u̇f,hf (given by the propagator), but the actual
probability to land in a domain D, starting from an arbitrary
initial condition u̇,h. This is given by

Qt (u̇,h) =
∫ ∞

0
du̇f

∫ ∞

−∞
dhf Qi(u̇f,hf)P(u̇f,hf ; t |u̇,h; ti),

(147)

where Qi(u̇f,hf) = 1D is 1 inside D and 0 outside. Qt (u̇,h)
satisfies the backward FPE (145), with the initial condition
Qti = Qi = 1D . This can be used to determine the distribution
of avalanche durations, starting from an initial value u̇i > 0,hi.
Choosing D to be the set {u̇f > 0}, one obtains the probability
to have any positive domain-wall velocity at tf , i.e., the
probability not to have touched the boundary u̇ = 0 between
ti and tf .

As mentioned above, our instanton solution (26) is equiv-
alent to the forward propagator P(u̇f,hf ; tf|u̇i,hi,ti) from a
given initial condition u̇i = 0,hi = 0 to some final point u̇f >

0,hf > 0, with a reflecting boundary at u̇ = 0 (the boundary
at h = 0 is unreachable when propagating forward). Imposing
an absorbing boundary at u̇ = 0, as required for analyzing
subavalanche durations, is less trivial. In contrast to the
case of, e.g., a standard Brownian motion, the probability
current at the final point u̇f = 0 vanishes as soon as one
sets Pabs(u̇f = 0,hf ; t |u̇i,hi; ti) = 0. The correct propagator
with an absorbing boundary should, thus, have Pabs(u̇f =
0,hf ; t |u̇i,hi; ti) > 0, an undetermined function of time, as
confirmed by the explicit calculation in Sec. VIII A1 (see also
the discussion in Appendix D of Ref. [18]). Hence, obtaining
it from the forward FPE (144) is not easy. However, in terms
of the initial condition, as motivated for the pure ABBM
model above, we expect Pabs(u̇f,hf ; t |u̇i = 0,hi,ti) = 0. The
backward FPE (145) then is easy to analyze using Laplace
transforms, since the boundary term Q(u̇i = 0,hi) vanishes.

D. Characteristics and instantons

To solve the backward FPE, we define the Laplace trans-
form Q̂ via

Q̂t (λ,μ) :=
∫ ∞

0
du̇

∫ ∞

−∞
dh eλu̇+μhQt (u̇,h). (148)

Equation (145) then gives

−∂t Q̂t (λ,μ) = [λ2 + (1 + a)λ − τ−1μ]∂λQ̂t (λ,μ)

× [−aλ + τ−1μ]∂μQ̂t (λ,μ)

+ [(2 − ẇt )λ + (1 + a + τ−1)]Q̂t (λ,μ).

(149)

Note that to obtain this equation (with vanishing boundary
terms) we used Qt (u̇ = 0,h) = 0, and the fact that the noise
vanishes at u̇ = 0 (which is a special property of the ABBM
model).16

16Equation (149) is valid for the Laplace transform (LT) (148) defined
on the half-space u̇ � 0,h ∈ R. If one wishes to define the LT on the

We now define the characteristics ũ, ĥ via the backward
instanton equations

−∂t û(t) + (1 + a)û(t) + û(t)2 − ĥ(t) = 0, (150)

−τ∂t ĥ(t) + ĥ(t) − aû(t) = 0, (151)

−∂t q̂(t) = [(2 − ẇt )û(t) + (1 + a + τ−1)]q̂(t). (152)

The boundary conditions are û(ti) = λ, ĥ(ti) = μ/τ , q̂(ti) =
Q̂ti (λ,μ). Note that the first two equations are identical to the
standard instanton equations (24) and (25). The equation for
Q̂(λ,μ) along a characteristic simplifies to

− d

dt
Q̂t (û(t),τ ĥ(t))

= [(2 − ẇt )û(t) + (1 + a + τ−1)]Q̂t (û(t),τ ĥ(t)). (153)

Its solution is

Q̂ti (û(ti),τ ĥ(ti))

= exp

{ ∫ tf

ti

[(2 − ẇs)û(s) + (1 + a + τ−1)]ds

}
× Q̂tf (û(tf),τ ĥ(tf)). (154)

The initial condition Q̂tf depends on the observable we want to
compute. For concreteness, let us think about the propagator
Pabs. There we have

Qtf (u̇,h) = δ(u̇ − u̇f)δ(h − hf)

⇒ Q̂tf (û(ti),τ ĥ(ti)) = eu̇f û(ti)+τhf ĥ(ti). (155)

The propagator Pabs the is given by inverting the Laplace
transform∫ ∞

0
du̇i

∫ ∞

−∞
dhi e

λu̇i+μhiPabs(u̇f,hf ; tf|u̇i,hi; ti)

= Q̂ti (λ,μ)

= exp

{∫ tf

ti

[(2 − ẇs)û(s) + (1 + a + τ−1)]ds

+ u̇f û(tf) + τhf ĥ(tf)

}
. (156)

To summarize, one can say the following: The usual instanton
equations (24) and (25) encode the solution of our model with
a reflecting boundary at u̇ = 0. The backward instanton equa-
tions (150) and (151) encode the solution with an absorbing

physical quadrant u̇ � 0,h � 0, one cannot avoid a boundary term
from h = 0, since Qt (u̇,h = 0+) does not vanish. Since there is no
noise term in the evolution equation for h, the solution does not have
to be continuous, and there is no contradiction to Qt (u̇,h = 0) = 0.
One possibility to eliminate the boundary term is to add an extra
diffusion term εh∂2

hQt on the right-hand side of (145), which leads to
an additional term εμ2∂μQ̂t on the right-hand side of (149) and εĥ2

on the left-hand side of Eq. (151). Then Qt vanishes at h = 0 and is
continuous, and one can show that as ε → 0 it converges pointwise
for any h > 0 to the (discontinuous) restriction to the quadrant of
the presently considered solution in full space. We will, however, not
need to further explore this method here but can work with h on the
full real line.
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boundary at u̇ = 0, assuming the absorbing boundary indeed
satisfies Pabs(u̇f,hf ; t |u̇i = 0+,hi,ti) = 0.

It would be interesting to extend this approach to a general
retardation kernel beyond the simple exponential. In that case,
no local-in-time Fokker-Planck approach seems available. It
is tempting to conjecture that the correct generalization of the
backward instanton equation (150) is

−∂t ût + (1 + a)ût + û2
t + a

∫ t

−∞
ds f ′(t − s)ûs = −λt ,

(157)

corresponding to (18) after mapping ũ → −û. Note that (157)
reduces to (150) and (151) for the exponential kernel (8) by
setting

ĥt := a

τ

∫ t

−∞
e−(t−s)/τ ûs ds, (158)

as would be required.

E. Subavalanche durations with retardation

In order to compute subavalanche durations, we need to
eliminate the h variable from (156). This is done by integrating
over hf and fixing a value of hi.17 In Appendix F, we motivate
the following generalization of (156) for this case,∫ ∞

−∞
dhf

∫ ∞

0
du̇i e

λu̇iPabs(u̇f,hf ; tf|u̇i,hi; ti)

= exp

{ ∫ tf

ti

[(2 − ẇs)ûs + (1 + a + τ−1)]ds

+ u̇f ûtf − τhiĥti

}[
∂ĥ(tf )

∣∣
ĥ(tf )=0ĥ(ti)

]
. (159)

Now û, ĥ are solutions of the backward instanton equa-
tions (150) and (151) with the boundary conditions

ĥ(tf) = 0, û(ti) = λ. (160)

The effect of going from a fixed hf to a fixed hi is, thus, a change
in boundary conditions for ĥ and the Jacobian factor in (159).
To understand its importance, let us see how (159) reduces to
the pure ABBM solution (132) in the case of a = 0. This is
not trivial; for example, the exponential factors in (156), (159),
and (132) differ markedly.

1. Recovering the pure ABBM model

For a = 0, we can solve Eq. (151) explicitly,

ĥf = ĥie
(tf−ti)/τ . (161)

Thus, the Jacobian factor in (159) is

∂ĥ(tf )

∣∣
ĥ(tf )=0ĥ(ti) = e−(tf−ti)/τ .

17Or convoluting later with a normalized distribution of hi. In any
case, this is not the same as setting μ = 0 in (156). The latter would
be an integral over all hi, which in general diverges. For example,
in the pure ABBM model the subavalanche duration is independent
of hi.

Inserting this into (159) for a = 0 gives

∫ ∞

−∞
dhf

∫ ∞

0
du̇i e

λu̇iPabs(u̇f,hf ; tf|u̇i,hi; ti)

= exp

{ ∫ tf

ti

[(2 − ẇs)ûs + 1]ds + u̇f ûtf − τhiĥti

}
, (162)

where now ĥ, û are solutions of (150) and (151) with a = 0
and with the boundary conditions (160). Note that the Jacobian
factor was necessary to cancel the term (tf − ti)/τ of the
exponential. The solution (161) for ĥ with the boundary
condition ĥf = 0 from (160) implies that ĥt = 0 for all t .
Hence, (162) reduces to the pure ABBM solution (132), and
the equation (150) for û reduces to the pure ABBM instanton
equation (131).

As expected, we obtain that in the limit a = 0

∫ ∞

−∞
dhfPabs(u̇f,hf ; tf|u̇i,hi; ti) = Pabs(u̇f ; tf|u̇i; ti)

is independent of hi and reduces to the propagator of the
standard ABBM model.

Now let us return to the more interesting case of the
ABBM model with retardation. In the following section we
will apply (159) to determine the correction to the duration
distribution of the first subavalanche, for small a (weak
relaxation) and τ = 1. This is similar to the perturbation theory
in a performed in Appendix C. We also attempted to analyze
the backward instanton solution in the physically interesting
limits of fast and slow relaxation, as done in Secs. V and VI
for the forward (reflecting boundary) solution. However, we
encountered technical difficulties and leave this for future
work.

2. Weak-relaxation limit

Let us consider the solution of (150) and (151) with
boundary condition

ĥ(tf) = μ, û(ti) = λ. (163)

We will be interested in the limit of small μ (required for
computing the Jacobian factor in (159); the rest can be
computed at μ = 0). To this end we expand the instanton
to order a,μ as

ût = û
(00)
t + μû

(10)
t + aû

(01)
t + O(aμ,a2,μ2)

(164)
ĥt = μĥ

(10)
t + aĥ

(01)
t + aμĥ

(11)
t + O(a2,μ2).

The correction of order a to Psurv, i.e., the cumulative
distribution function for the avalanche durations, is obtained

032106-24



STATISTICS OF AVALANCHES WITH RELAXATION AND . . . PHYSICAL REVIEW E 88, 032106 (2013)

from (159) as

P̂surv(λ,hi) :=
∫ ∞

0
du̇i e

λu̇iPsurv(tf|u̇i,hi; ti) :=
∫ ∞

0
du̇i e

λu̇i

∫ ∞

0
du̇f

∫ ∞

−∞
dhfPabs(u̇f,hf ; tf|u̇i,hi; ti)

= exp

{∫ tf

ti

[(2 − ẇs)ûs + (1 + a + τ−1)]ds − τhiĥti

}[
− 1

û(tf)

] [
∂ĥ(tf )

∣∣
ĥ(tf )=0ĥ(ti)

]
= exp

{∫ tf

ti

[
(2 − ẇs)

(
û(00)

s + aû(01)
s

) + (1 + a + τ−1)
]
ds − aτhiĥ

(01)
ti

} [
− 1

û(00)(tf) + aû(01)(tf)

] [
ĥ

(10)
ti + aĥ

(11)
ti

]

= P̂ a=0
surv (λ)

{
1 + a

[ ∫ tf

ti

[
(2 − ẇs)û

(01)
s + 1

]
ds − û

(01)
tf

û
(00)
tf

+ ĥ
(11)
ti

ĥ
(10)
ti

]}
exp

[ − aτ ĥ
(01)
ti hi

]
. (165)

The pure ABBM result P̂ a=0
surv (λ) is given by (138). By time translation invariance, this expression only depends on T := tf − ti.

In Appendix D we perform the perturbative calculation and determine explicitly the functions appearing in the expansion (164)
for the case τ = 1. In Fig. 15 we show the form of the resulting backward instantons, obtained from the perturbative expansion
and a numerical solution. The case of general τ is more complicated and left for future research.

The survival probability Psurv is the probability of having a first-passage time to u̇ = 0 of T � tf − ti. The (normalized)
probability distribution of first-passage times at u̇ = 0, starting from u̇i is, thus,

Pfirst(T |u̇i,hi) = ∂tf

∣∣
tf=ti+T

Psurv(tf|u̇i,hi; ti). (166)

By time-translation invariance, this is independent of ti. For the pure ABBM model, we computed Pfirst in (140). The
(unnormalized) density of avalanche durations ρ(T ) at a fixed value of hi is the leading order of Pfirst(u̇i,hi) as u̇i → 0, in
our case,

ρ(T ) := lim
u̇i→0

u̇ahi+v−1
i Pfirst(T |u̇i,hi).

We then can express ρ(T ) as the leading order of P̂surv, as λ → −∞,∫ ∞

T

ρ(T ′)dT ′ = lim
λ→−∞

P̂ (λ,0)(−λ)−2+v+ahi

= e−ahiT

(eT − 1)1−v−ahi

{
1 + a

eT [−2(v − 1)Li2(1 − eT ) − (T 2 + 1)v + T 2 + T − 1] + (2 − v)T + v + 1

2(eT − 1)
+ O(a)2

}
.

(167)

This further simplifies for the case of a vanishing driving velocity, v → 0. There we obtain∫ ∞

T

ρ(T ′)dT ′ = 1

(eT − 1)1−ahi

[
1 + a

eT (T 2 + 2Li2(1 − eT ) + T − 1) + 2T + 1

2(eT − 1)
+ O(a)2

]
.

On the other hand, expanding (167) for small T we get

ρ(T ) = T −2+v+ahi

[
ahi + v − 1 + 1

2
(ahi + v)(1 + a)

(
v − 1 − ahi

1 + a

)
T + O(T )2

]
. (168)

We observe that the power-law behavior near T = 0, ρ(T ) ∼
T −2+v , is not modified for the first subavalanche (hi = 0) but
is modified for later ones to

ρ(T ) ∼ T −2+v+ahi (169)

to leading order in a. This is natural, since for small avalanches
h remains essentially unchanged and replaces in (19) v →
v + ahi. In order to obtain the subavalanche-duration dis-
tribution for stationary driving, one would need to average
over all hi taken from the stationary distribution P (hi|u̇i = 0).
Presumably, this would replace the correction ahi to the
exponent in (169) by a velocity-dependent correction. We leave
the details for further research.

In Figs. 9 and 10, we compare the result (167) to numer-
ical simulations of the original model. One observes good
agreement for small a but larger deviations starting around
a ≈ 0.5. In Fig. 11 we verify numerically the result (169) for
the sub-avalanche-duration exponent as a function of hi. The
agreement is very good, even for a = 1.

3. Numerical results

Since the analytical results we obtained above for sub-
avalanche sizes and durations are rather limited, we also give
a few qualitative numerical results. In this section we neglect
the difference between densities and probability distributions
and use P instead of ρ everywhere.

032106-25



DOBRINEVSKI, LE DOUSSAL, AND WIESE PHYSICAL REVIEW E 88, 032106 (2013)

1.0 10.05.02.0 20.03.01.5 15.07.0
1 10 4

2 10 4

5 10 4

0.001

0.002

0.005

0.010

T1

P
a

T
1

T
1

FIG. 9. (Color online) Duration distribution of an avalanche
starting at u̇ = 0,h = 0 and τ = 1,v = 0.6. Crosses, diamonds, and
circles: Results from numerical integration of (19) for a = 0, a = 0.3,
a = 0.5 with time step dt = 10−5 (for details, see Appendix H).
Lines: Expansion in a, (167). Yellow (thick) line: Pure ABBM model,
a = 0. Red (dashed) line: a = 0.3. Black (dotted) line: a = 0.5.

(1) Subavalanches at fixed initial u̇i, hi = 0 and v = 0.
In (168), we derived that the ABBM power-law P (T ) ∝ T −2

for small T [see (143)] remains unchanged in this case, at least
for τ = 1 and small a. In Fig. 12 we consider the subavalanche
sizes and durations for general values of a,τ . We see that the
mean-field zero-velocity power laws P (S) ∼ S−3/2,P (T ) ∼
T −2 are clearly visible even when varying a,τ . For large a and
small τ , there is an interesting crossover in the shape of the
distributions, showing a similar power law but with different
amplitudes, depending on a,τ . The case of large τ is equivalent
to a modification of the mass, i.e., of the large-avalanche cutoff,
as discussed in Sec. II A.

(2) Subavalanches at fixed u̇i, and hi taken from the
stationary distribution at the driving velocity. We observe
in Fig. 13 that this leads to a modification of the ABBM
power-law exponent. However, the variation in the exponent
due to retardation becomes smaller as the driving velocity
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FIG. 10. (Color online) Correction to the duration distribution
of an avalanche starting at u̇ = 0, h = 0 due to retardation,
[P a(T ) − P a=0(T )]/[aP a=0(T )]. τ = 1,v = 0.6. (Yellow) Circles,
(red) squares: Results from numerical integration of (19) for a = 0.1,
a = 0.3 with time step dt = 10−4 (for details, see Appendix H).
Dashed line: (167).
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FIG. 11. (Color online) Duration distribution of the first sub-
avalanche as a function of hi. τ = 1, a = 1, v = 0. (Yellow) Crosses,
(red) diamonds, (blue) circles, and (gray) squares correspond to
numerical simulations of (19) for hi = 0, hi = 0.1, hi = 0.2, and
hi = 0.3 with time step dt = 10−5 (for details, see Appendix H).
Solid, dashed, dot-dashed, and dotted lines correspond to power laws
P (T1) ∼ T −2

1 ,T −1.9
1 ,T −1.8

1 ,T −1.7
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decreases. This is expected from (169), since the typical value
of hi (and, hence, the correction to the exponent) decreases as
v → 0.
From these numerical results we conjecture that subavalanche
durations in the ABBM model with retardation, at constant
driving, satisfy

P (T ) ∼ T −2+v(1+cT ), P (S) ∼ S−3/2+v/2(1+cS ).

Here cT ,cS depend on a,τ , and vanish as a → 0 and/or
τ → 0. In other words, we conjecture that the zero-velocity
exponents are unchanged, and only the driving-velocity-
dependent part is modified. This is also consistent with
our analytical results in Secs. V and VI for the velocity
distribution P (u̇). Verifying these conjectures in more detail,
numerically or analytically, would be an interesting task for the
future.

IX. CONCLUSION AND OUTLOOK

In this article we have analyzed in detail a general ABBM
model with retardation. We showed that it satisfies the
Middleton property (monotonicity of the dynamics). Using
this, and the Brownian nature of the ABBM disorder, we have
been able to reduce the calculation of the expectation value of
a general observable in the presence of monotonous driving to
the problem of solving retarded nonlinear instanton equations.
These equations can be implemented numerically for arbitrary
retardation kernels and are much simpler than the original
model with quenched disorder. To obtain analytical results,
we focused on a model with exponential relaxation, which
reduces to two coupled “instanton” equations, local in time.
We have derived explicit forms for a number of observables
at stationary and nonstationary driving. We mostly focused
on the two limits of fast relaxation (describing eddy current
effects in magnetic Barkhausen noise) and slow relaxation (of
interest for earthquake models).

In the limit of slow relaxation, the main physics is the
splitting of a single avalanche of size S of the standard
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FIG. 12. (Color online) First subavalanche sizes (right) and durations (left) from numerical simulation of the ABBM model with retardation,
starting from u̇i = 0,hi = 0, at v = 0 (for details, see Appendix H). Gray (dashed) lines: power laws P (S) ∼ S−3/2,P (T ) ∼ T −2. Yellow (thick)
line: pure ABBM model a = 0. Red (dashed) line: a = 60,τ = 0.05. Blue (thin) line: a = 5,τ = 10.

ABBM model into a “cluster of aftershocks” of the same
total size S = ∑

α Sα but of much longer duration (strictly
infinite for an exponential retardation kernel). This splitting is
sharp in the limit of quasistatic driving and strong time-scale
separation. Although we have been able to quantify some of
these ideas, a more detailed analysis of the statistics of these
subavalanches remains an important challenge for future work.
In particular, if these ideas are to be extended to realistic
earthquake dynamics, one needs to investigate power-law
retardation kernels motivated by the Omori law of decay of
activity. Still, it is of great interest to have found a tractable
model with aftershocks, given that the standard ABBM model,
which also models interfaces within mean-field theory (at
the upper critical dimension), yields independent avalanches
following a Levy process [17,18,29].18 Another recent study
on the effects of slow relaxation processes on avalanche
statistics [62] shows that these can lead to quasiperiodic
avalanche bursts, such as also observed in crystal plasticity
[62] and earthquakes in certain seismogenic regions [63,64].
This so-called avalanche oscillator [62] approaches criticality
when no large avalanches occur and departs from criticality
after a large avalanche, leading to stick-slip behavior. It would
be interesting to see what minimal ingredients need to be added
to the ABBM model with retardation discussed here, in order
to observe similar quasiperiodic behavior (and whether this
can be done preserving its useful analytical properties, such as
monotonicity).

In the context of magnetic systems, the retardation describes
the influence of eddy currents on the statistics of Barkhausen
noise pulses. Experimentally, the time scale of eddy current
relaxation is much shorter than that of the domain-wall motion,
motivating our study of the fast-relaxation limit. In this limit,
the effects of retardation are perturbative and vanish when the
eddy-current relaxation-time tends to zero. We have obtained
the leading corrections to the stationary velocity distribution,
as well as the decay following a kick in the driving velocity.

18While this work was completed we learned of an independent work
by Jagla and Rosso [61]. These authors consider several variants of
earthquake models, and one of them is similar to the retarded model
considered here.

In both the slow-relaxation and the fast-relaxation limit,
the influence of retardation turned out to be most pronounced
in nonstationary observables. For example, we computed
explicitly the tail of the avalanche shape at fixed size. While
it is Gaussian in the standard ABBM model, in the ABBM
model with retardation it decays exponentially. Furthermore,
we showed that, formally, the avalanche activity following
a kick in the driving velocity never stops (even if, in the
fast-relaxation limit, all significant avalanche activity still
ceases), also in strong contrast to the pure ABBM model.

One important direction for future theoretical investigations
is the role of the internal dimension of the interface. Here we
reduce the description of the magnetic domain wall, which
is a two-dimensional elastic interface in a three-dimensional
medium, to a single degree of freedom (its center of mass).
This mean-field description has been argued [32] and recently
shown in detail [18,25] to be accurate for the center of
mass of the interface above a critical internal dimension dc.
For certain soft magnets, due to long-range elastic forces,
one has dc = 2 [24,32]. Hence, some realistic domain walls
have just the critical internal dimension. In that situation the
internal degrees of freedom of the interface contribute only
logarithmic corrections to the mean-field behavior as described
in detail in Ref. [18]. Other ferromagnets are known to be
in a non-mean-field universality class [31]. There, correctly
describing the details of Barkhausen noise requires combining
the eddy current modifications discussed in this article with a
treatment of the spatial degrees of freedom, for example, using
the functional renormalization group as in Refs. [18,25,65].

Another important avenue for further work is a detailed
comparison of the analytical results discussed here with
experiments on real magnetic domain walls. Considering the
above results, nonstationary observables seem most promising.
For example, the avalanche shape discussed in Sec. VII B
shows a clear qualitative difference to the result of the standard
ABBM model. As recognized in Refs. [19,22] this is an inertial
effect due to an effective negative domain-wall mass. However,
inertia can be modelled in different ways—for example, the
retarded ABBM model considered here and in Ref. [22],
the ABBM model with second-order dynamics considered in
Ref. [49], and the mean-field model with stress overshoots
considered in Ref. [40]. We believe the avalanche shape allows
identifying not just the existence and the sign of inertial effects
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FIG. 13. (Color online) Subavalanche sizes from numerical simulation of the ABBM model with retardation, in a steady state with v = 0.3
(left) and v = 0.02 (right). For details, see Appendix H. Yellow (dashed) lines: power laws P (S) ∼ S−(3−v)/2; left: S−1.35; right: S−1.49.
Red (dotted) lines: power laws; left: S−1.2, right: S−1.47. Crosses: pure ABBM model a = 0. Diamonds: a = 1, Circles: a = 2. In all cases,
τ = 1.

but their precise form. To this end, more precise analytical and
experimental results (which go beyond a single “skewness”
quantity and consider the entire shape) are necessary.
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APPENDIX A: MONOTONICITY OF THE DOMAIN-WALL
MOTION IN THE RETARDED ABBM MODEL

The model defined in (5) satisfies Middleton’s theorem [44]:
If the driving is monotonous, wt � ws for t � s, then so is the
motion of the domain wall.19

To prove this, note, first, that the velocity u̇t is continuous.
Hence, before any negative velocities can occur, there would
be an instant t > 0, where u̇t becomes zero for the first time.
Then, using (5), we get

η∂t u̇t = u̇tF
′(ut ) + m2[ẇ(t) − u̇(t)] − au̇(t)

− a

∫ t

−∞
dsf ′(t − s)u̇(s)

= m2ẇ(t) − a

∫ t

−∞
dsf ′(t − s)u̇(s) > 0.

The first term is ẇ(t) � 0 by monotonicity of the driving
w. The second term is �0, since a > 0, f ′(t − s) � 0, and
u̇s > 0 for all s < t . Similarly, one checks that if üt = 0,
then ∂t üt � 0. In other words, at any time where u̇t = 0,
the first nonvanishing derivative of u̇t is positive. Thus, the
domain-wall motion is monotonous.

19Note this is not true for models where domain-wall inertia is
included by adding a second-order derivative in the ABBM equation
of motion [49]. This makes the retarded ABBM model considered
here quite special.

Note that the vanishing of u̇F ′(u) for u̇ = 0 is ensured
if F (u) is smooth. In the case of the ABBM Brownian
landscape, F ′(u) is a white noise. One can then consider a
version smoothed at short scale and take the continuum limit.
Alternatively, one sees on the formulation u̇F ′(u) ↔ √

u̇ξ (t)
in (20) that this is not a problem.

When an inertial term, i.e., a second-order derivative is
included in (5), this monotonicity property no longer holds. In
particular, near the end of an avalanche the trajectory converges
to a shallow minimum (metastable state) by oscillating around
it indefinitely, with decreasing amplitude [49] [in contrast
to (5), where it approaches the minimum monotonously from
one side]. Furthermore, Middleton’s no-passing theorem [44]
fails: two trajectories u(1), u(2) starting from initial points
u

(1)
ti � u

(2)
ti and subject to the same disorder and the same

driving, in the presence of inertia, do not necessarily satisfy
u

(1)
t � u

(2)
t for all t � ti. This is since the trajectory which

was initially on the left can gain sufficient kinetic energy
by rolling down from a large potential “hill” to overtake
the trajectory which was initially on the right. In particular,
the domain wall can overshoot a metastable state. The state
reached asymptotically at long times for a fixed value of w,
even for monotonous driving, depends on the history of the
motion and not just on the final value of w.

APPENDIX B: POSITION DIFFERENCES
IN THE SMALL-DISSIPATION LIMIT

As discussed in Sec. V C, instantaneous velocities u̇t are
almost surely 0 in the small-dissipation limit η = 0. However,
the distribution of position differences uT − u0 has a finite
limit. The generating function of position differences at
constant driving velocity v is given by (26),

eλ(uT −u0) = e
∫ T

0 dt λu̇t = ev z(λ,T ), (B1)

where z(λ,T ) = ∫
t
ũt . ũt is given by the instanton equa-

tions (24) and (25) with sources λ(t) = λθ (t)θ (T − t), μ(t) =
0. In the dissipation-less limit η = 0, (25) and (24) give an
instanton equation similar to (41),

(1 + a − 2ũt )∂t ũt = ũt − ũ2
t + λ′

t − λt . (B2)
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FIG. 14. (Color online) (a) z at λ = −1.4, as a function of T . Solid blue line: standard ABBM model (B6). Red (dashed), green (dotted),
yellow (dot-dashed) lines: ABBM model with retardation for a = 1, 2.3, 5.3. (b) z at T = 1, as a function of λ. Dashed blue line: standard
ABBM model (B6). Solid blue line: standard ABBM model (B6). Red (dashed), green (dotted), yellow (dot-dashed) lines: ABBM model with
retardation for a = 1, 2.3, 5.3. Generating function for position differences z(λ,T ) as defined in (B1).

Here we thus work in the limit τm 
 τ,τv(=Sm/v), i.e., we set
η = 0. We express all times in units of τ , i.e., our variable t is
the variable s in Sec. V A. In other words, we set τ = 1, while
space units remain such that Sm = 1. For t < 0, the sources
vanish and the solution is identical to that in Sec. V A. Thus,
the integral over ũ in that region has the closed form (43),∫ 0

−∞
ũt dt = 2ũ0− + (1 − a) ln (1 − ũ0− ) . (B3)

Similarly, the integral over ũ in the region 0 < t < T is∫ T

0
ũt dt =

∫ ũT −

ũ0+

1 + a − 2ũ

ũ − ũ2 − λ
ũ dũ

=
[
−1

2
(a − 1) ln (λ + (ũ − 1)ũ)

+
(a + 4λ − 1) tanh−1

(
2ũ−1√
1−4λ

)
√

1 − 4λ
+ 2ũ

]T −

0+
. (B4)

The relationship between ũ0+ and ũT − is given implicitly by

T =
∫ T

0
ds =

∫ ũT −

ũ0+

1 + a − 2ũ

ũ − ũ2 − λ
dũ

=
[

2a tanh−1
(

2ũ−1√
1−4λ

)
√

1 − 4λ
+ ln (λ + (ũ − 1)ũ)

]T −

0+
. (B5)

The relationship between ũ0+ and ũ0− , as well as between ũT −

and ũT + = 0, is given by the matching conditions[
(1 + a)ũ0+ − ũ2

0+
] − [

(1 + a)ũ0− − ũ2
0−

] = λ

− [
(1 + a)ũT − − ũ2

T −
] = −λ.

Altogether, this gives a complete (albeit implicit) solution for∫
t
ũt in terms of T ,λ. This allows us to plot the generating

function (B1), Fig. 14. It can also be compared to the result of
the standard ABBM model,

z0(λ,T ) = T

2
(1 − √

1 − 4λ). (B6)

While the result (B6) holds in the small-dissipation (equiv-
alently large-time) limit τm 
 T , a more general result was
obtained in Ref. [18] (Sec. II F) for the standard ABBM model
in the case where τm and T are comparable.

In Fig. 14(b) one observes that the slope ∂λ|λ=0z(T ,λ) = T

is independent of the value of a. This is also seen from the
explicit solution above: The instanton equation (B2), to linear
order in λ (equivalently to linear order in ũ), simplifies to

(1 + a)∂t ũt = ũt + λ′
t − λt . (B7)

Its solution is

ũt = 1

1 + a

∫ ∞

t

ds e−(s−t)/(1+a)(λ′
s − λs), (B8)

and its integral is∫ ∞

−∞
dtũt =

∫ ∞

−∞
ds(λ′

s − λs) = λT . (B9)

Thus, z(T ,λ) = λT + O(λ)2. This means that the average
displacement, (uT − u0) = v∂λ|λ=0z(T ,λ) = vT . Of course,
this is consistent with the fact that the mean velocity of the
domain wall is fixed by the harmonic well m2(ut − vt).

On the other hand, from Fig. 14(b) one also sees that the
curvature ∂2

λ |λ=0z(T ,λ) decreases with increasing a. Thus, the

fluctuations (uT − u0)2
c

are decreased by retardation effects.
This is in agreement with the intuition of eddy currents slowing
the domain wall down when it is moving fast and pushing it
forward when it is moving slowly.

APPENDIX C: DIRECT PERTURBATION THEORY IN a

Instead of looking at the slow-relaxation limit τ � τm or
fast-relaxation limit τ 
 τm discussed in Secs. V and VI, one
may attempt to determine the corrections to the stationary
velocity distribution for a 
 1 through a direct perturbation
expansion in a. For this, we need to solve the instanton
equations (24) and (25) for λ(t) = λδ(t), μ(t) = 0. We take
τ fixed but a 
 1 and work, as in most of the article, in the
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units where τm = 1, Sm = 1. We set

ũ(t) = ũ0(t) + aũ1(t) + O(a)2, h̃(t) = ah̃1(t) + O(a)2,

(C1)

where ũ0(t) is the known instanton for the standard ABBM
model [25],

ũ0(t) = λ

(1 − λ)e−t + λ
θ (−t).

h̃1(t) for t < 0 is then determined by (25),

h̃1(t) = 1

τ

∫ 0

t

ds e−(s−t)ũ0(s)

= 2F1

(
1,τ−1; τ−1 + 1; e−t/τ

(
1 − 1

λ

))

− et/τ
2F1

(
1,τ−1; τ−1 + 1; 1 − 1

λ

)
.

To obtain ũ1(t) for t < 0, we need to solve the linear equation

ũ′
1(t) − ũ1(t) − ũ0(t) + 2ũ1(t)ũ0(t) + h̃1(t) = 0, (C2)

with ũ1(0) = 0. One simple case is τ = 1, where

h̃1(t) = λ

1 − λ
et ln (λ + e−t (1 − λ)) (C3)

and

ũ1(t) = λet

2(λ − 1)[λ(et − 1) + 1]2

[
2(λ − 1)2Li2

(
λ

λ − 1

)
+ (λ − 1)

{
− λ − 2(λ − 1)Li2

(
etλ

λ − 1

)
+ (λ − 1)(t − 2)t

+ 3(λ − 1) ln (λ(et − 1) + 1) + 2t ln

(
et

1 − λ

)
+ 2λt ln (e−t (1 − λ))

}

+ λ2e2t ln (λ − (λ − 1)e−t ) − λ(λ − 1)et (4 ln (λ − (λ − 1)e−t ) − 1)

]
.

This solution has the asymptotics

lim
λ→−∞

ũ1(t) = et (2t − 4et + e2t + 3)

2 (et − 1)2 ln(−λ).

We see that ũ1(t) → −∞ as λ → −∞ for any fixed t < 0.
Consistent with the discussion in Secs. V C and V D,
we recover the result that there is no δ(u̇) contribu-
tion, pu̇=0 = 0 following a kick, and avalanches never
end.

Instead of the stationary velocity distribution, one can also
consider the stationary distribution of eddy-current pressure as
in Sec. V A. In contrast to (C1), the contribution h̃0(t) of order
O(a)0 to h̃ does not vanish. To order O(a)0 the expressions (24)
and (25) in dimensionless units reduce to

∂t ũ0 − ũ0 + ũ2
0 + h̃ = 0

τ∂t h̃0 − h̃0 = −μδ(t).

Thus,

h̃0(t) = μ

τ
et/τ θ (−t),

and the equation for ũ0 becomes

∂t ũ0 − ũ0 + ũ2
0 = −μ

τ
et/τ θ (−t). (C4)

It is the instanton equation for the standard ABBM model
(a = 0), but with a time-dependent source λt = μ

τ
et/τ θ (−t).

This is natural, stating that to O(a)0, the distribution of
μh(t = 0) is the distribution of the observable

∫
t
λt u̇t =

μ

τ

∫ 0
−∞ dt et/τ u̇t in the pure ABBM model.

The solution of (C4) is ũ0(t) = ψ ′(t)
ψ(t) , where

0 = τψ ′′(t) − τψ ′(t) + μet/τψ(t)

⇒ ψ(t) = [c1 J−τ (2et/(2τ )√μτ )

+ c2 Jτ (2et/(2τ )√μτ )]et/2.

Fixing c1/c2 using the boundary condition ũ0(t = 0) = 0, we
obtain ∫

dt ũ0(t) = ln
ψ(0)

ψ(−∞)
= − ln 0F1(τ,−μτ ).

Thus, the generating function of the stationary distribution of
h is

eμh = [ 0F1(τ,−μτ )]−v[1 + O(a)]. (C5)

We can now make contact with the result of Sec. V A. Defining
μ := τμr , vr := vτ and using that

lim
τ→∞

1

τ
ln 0F1(τ,−μrτ

2) = −1 +
√

1 − 4μr

− ln
1

2
(1 +

√
1 − 4μr ),

Equation (C5) in the limit τ → ∞ reduces to the a = 0 limit
of (44). Its Laplace inverse is given by (45) for a = 0. However,
computing the Laplace inverse of (C5) for general τ,v seems
to be doable only numerically. Likewise, we did not manage
to obtain simple expressions for ũ1,h̃1 at the next-to-leading
order, O(a).

In the limit v → 0+ one defines the density ρ(h) =
∂vP (h)|v=0+ and one finds

hρ(h) = −LT−1
s→h

∂s[0F1(τ,sτ )]

0F1(τ,sτ )
, (C6)
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FIG. 15. (Color online) Numerical solution and perturbative ex-
pansion of (150) and (151) for a = 0.2, τ = 1. Boundary conditions
are (160) with ti = 0, tf = 3.5, μ = 0, λ = −1.5. Thick (yellow) line:
ût from numerical solution. Thin (red) line: ĥt /a from numerical
solution. Gray (dashed) line: Pure ABBM instanton û

(00)
t , given

by (134). Blue (dot-dashed) line: ĥ
(01)
t given by (D11). Black (dotted)

line: û
(00)
t + aû

(01)
t given by (134) and (D12).

where we defined s := −μ; for the following suppose s > 0.
For half-integer values of τ (C6) can be expressed in terms of
elementary functions, for instance, for τ = 1/2,

hρ(h) = LT−1
s→h

tanh(
√

2s)√
2s

=
∞∑

k=1

LT−1
s→h

1
π2(2k−1)2

8 + s

=
∞∑

k=1

e−π2(2k−1)2h/8 = 1

2
θ2

(
0; e−hπ2/2

)
,

where θ2 is the Jacobi θ function. For small h it diverges as
ρ(h) � 1√

2π
h−3/2, similarly to the result (47) found in the limit

of large τ and fixed (not necessarily small) a.

APPENDIX D: PERTURBATION THEORY
IN a FOR THE BACKWARD EQUATION

In this section, we compute the six functions û
(00)
t ,û

(10)
t ,û

(01)
t

and ĥ
(10)
t ,ĥ

(01)
t ,ĥ

(11)
t used in the perturbative expansion (164)

for subavalanche durations. Expanding (150) and (151) in a

and μ, and inserting the ansatz (164), we obtain the following
set of equations:

−∂t û
(00)
t + û

(00)
t + (

û
(00)
t

)2 = −λδ(t − ti), (D1)

−τ∂t ĥ
(10)
t + ĥ

(10)
t = δ(t − tf), (D2)[−∂t + 1 + 2û

(00)
t

]
û

(10)
t − ĥ

(10)
t = 0, (D3)

−τ∂t ĥ
(01)
t + ĥ

(01)
t − û

(00)
t = 0, (D4)[−∂t + 1 + 2û

(00)
t

]
û

(01)
t + û

(00)
t − ĥ

(01)
t = 0, (D5)

−τ∂t ĥ
(11)
t + ĥ

(11)
t − û

(10)
t = 0. (D6)

Some numerical solutions, and their comparison to this
perturbative expansion, can be seen in Fig. 15.

Equation (D1) shows that û
(00)
t is given by the pure ABBM

solution (134). Similarly, (D2) shows that ĥ
(10)
t is also given

by the expression from the pure ABBM model (161),

ĥ
(10)
t = e−(tf−t)/τ . (D7)

The term û
(10)
t can still be computed at order a0 by solving (D3)

with the boundary condition û
(10)
ti = 0. The solution reads

û
(10)
t = −

∫ t

ti

ds1 exp

{∫ t

s1

ds2
[
1 + 2û(00)

s2

]}
e−(tf−s1)/τ

= τe− tf
τ

(τ 2 − 1) [λet − (λ + 1)eti ]2

{−λ2(τ − 1)et( 1
τ
+2) + 2(λ + 1)λ(τ 2 − 1)e

t
τ
+t+ti

− [2λ(λ + 1)τ 2 + 2λτ + τ + 1]et+ ti
τ
+ti + (λ + 1)2(τ + 1)e

t
τ
+2ti

}
. (D8)

On the other hand, ĥ
(01)
t is obtained by solving (D4) with the boundary condition ĥ

(01)
tf = 0. The solution reads

ĥ
(01)
t = − 1

τ

∫ t

tf

ds1 e(t−s1)/τ λ

eti−s1 (λ + 1) − λ

= λe
t
τ
−ti

(λ + 1)(τ − 1)

[
e

(τ−1)tf
τ 2F1

(
1,

τ − 1

τ
; 2 − 1

τ
;
etf−tiλ

λ + 1

)
− e

t(τ−1)
τ 2F1

(
1,

τ − 1

τ
; 2 − 1

τ
;
et−tiλ

λ + 1

)]
. (D9)

Obtaining the higher-order terms for arbitrary τ > 0 is now complicated, due to the appearance of hypergeometric functions.
However, the latter simplify significantly in the limit τ → 1. From now on, we will consider this limit only. We then have

û
(10)
t = et−tf

2 [λet − (λ + 1)eti ]2 {−λ2e2t + 4(λ + 1)λet+ti + e2tiλ [−3λ − 2(λ + 2)t + 2(λ + 2)ti − 4] − 2e2ti (t − ti)}, (D10)

ĥ
(01)
t = λet−ti

λ + 1

[
tf − t + ln

(λ + 1)eti − λet

(λ + 1)eti − λetf

]
. (D11)
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To obtain û
(01)
t , we need to solve (D5) with the boundary condition û

(01)
ti = 0. The solution reads

û
(01)
t =

∫ t

ti

ds1 exp

{∫ t

s1

ds2
[
1 + 2û(00)

s2

]} (
û(00)

s1
− ĥ(01)

s1

)
. (D12)

This integral can be evaluated in closed form and gives a lengthy expression in terms of logarithms and dilogarithms. However,
the expression (165) for the avalanche duration only depends on

∫ tf
ti

dt û
(01)
t and on û

(01)
tf . These two terms depend only on

T := tf − ti and are simpler,

û
(01)
tf =

∫ tf

ti

ds1 exp

{∫ tf

s1

ds2
[
1 + 2û(00)

s2

]} (
û(00)

s1
− ĥ(01)

s1

)

= eT λ

2(λ + 1)(−eT λ + λ + 1)2

[
−T 2(λ + 1)2 − T (λ2 − 2) − (eT − 1)λ(λ + 1) + (2T − 3)(λ + 1)2 ln

(
1 − eT λ

λ + 1

)

+ λ(3λ + 4) ln(−eT λ + λ + 1) + 2(λ + 1)2Li2

(
eT λ

λ + 1

)
+ 3(λ + 1)2 ln

(
1

λ + 1

)
− 2(λ + 1)2Li2

(
λ

λ + 1

)]
,

(D13)∫ tf

ti

dt û
(01)
t = 1

2(λ + 1)[(eT − 1)λ − 1]

{
λ[T λ + eT (T (T λ + T − 2) + λ + 1) + 2T − λ − 1]

+ [2eT λ((λ + 1) ln(λ) − (λ + 1) ln(λ + 1) + 1) + 1] ln[−eT λ + λ + 1]

− 2eT λ(λ + 1)

[
Li2

(
1

λ + 1

)
− Li2

(
1 − eT λ

λ + 1

)]}
. (D14)

To obtain ĥ
(11)
t , we need to solve (D6) with the boundary condition ĥ

(11)
tf = 0. Note that the formula (165) for the avalanche

duration only contains ĥ
(11)
ti . The result for this value again only depends on T := tf − ti,

ĥ
(11)
ti = 1

2
e−T

[
T 2(λ + 1)2((eT − 1)λ − 1) + T λ(eT (λ2 − 2) − (λ + 1)(3λ + 4)) + (eT − 1)λ(2λ + 3)(λ + 1)

(λ + 1)2(−eT λ + λ + 1)

− (2λ + 3) ln(−eT λ + λ + 1)

(λ + 1)2
+ 2T ln

(
1 − eT λ

λ + 1

)
+ 2Li2

(
eT λ

λ + 1

)
− 2Li2

(
λ

λ + 1

)]
. (D15)

Finally, ĥ
(01)
ti is obtained from (D11) as

ĥ
(01)
ti = λ

1 + λ
[T − ln(1 + λ − λeT )]. (D16)

In Fig. 15, we show that these perturbative expressions
compare well to a direct numerical solution of the backward-
instanton equations.

In order to apply (165) we need to compute the leading
behavior as λ → −∞. We get

lim
λ→−∞

ĥ
(11)
ti = T

eT − 1
− 1

2
e−T [2Li2(1 − eT )

+ (T + 1)(T + 2)], (D17)

lim
λ→−∞

∫ tf

ti

dt û
(01)
t = eT T 2 + 2eT Li2(1 − eT ) + T + eT − 1

2(eT − 1)
,

(D18)

lim
λ→−∞

û
(01)
tf = − eT

2(eT − 1)2
[T 2 + 2Li2(1 − eT )

+ T + eT − 1], (D19)

lim
λ→−∞

(−λ)ahi exp
(−ahiĥ

(01)
ti

) = (1 − e−T )−ahi . (D20)

Inserting these results into (165), we obtain (167).

APPENDIX E: AVALANCHE SIZES AT FINITE DRIVING
VELOCITY v IN THE STANDARD ABBM MODEL

Similarly to the computation of avalanche durations in
the standard ABBM model at finite driving velocity in
Sec. VIII A2, we can also compute the avalanche sizes. The
discussion follows closely Ref. [45] where some explicit
expressions were obtained in the small-m limit (at fixed
x = v/vm). Let us now consider the stochastic process u̇(u),
i.e., the domain-wall velocity as a function of its position. Its
first-passage distribution was derived in Ref. [45] [equivalent
to formula (E30) there]20 and later in Ref. [59],∫ ∞

0
du eλuPu̇(u|u̇0)

= e− 1
2 (1−√

1−4λ)(u̇0−u̇)
U

[
v
2

(
1 − 1√

1−4λ

)
,v,

√
1 − 4λu̇0

]
U

[
v
2

(
1 − 1√

1−4λ

)
,v,

√
1 − 4λu̇

] .

(E1)

20v and v′ must be replaced by v in the first argument of the
hypergeometric function there.
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As u̇ → 0, this has a finite limit for v < 1 (the first-passage
distribution at u̇ = 0),∫ ∞

0
du eλuP0(u|u̇0)

= e− u̇0
2 (1−√

1−4λ)
U

[
v
2

(
1 − 1√

1−4λ

)
,v,

√
1 − 4λu̇0

]
�(1 − v)/�

[
1 − v

2

(
1 + 1√

1−4λ

)] .

Integrating this over the stationary distribution for u̇0(u),
P (u̇0) = 1

�(v+1) u̇
v
0e

−u̇0 , we get the Laplace-transformed cu-
mulative distribution of avalanche sizes in the form∫ ∞

0
eλu P (S � u)∫ ∞

0 dS ′S ′P (S ′)
du = − (1 − 4λ)

1−v
2

λvB
[
1 − v, v

2

(
1 − 1√

1−4λ

)] .

(E2)

Here, B(x,y) is the usual Beta function. (E2) is valid since
the probability that u = 0 belongs to an avalanche of size
S is SP (S)/

∫ ∞
0 dS ′S ′P (S ′) and the conditional distribution

of u is then P (u|S) = θ (S − u)/S. Putting this together
produces (E2). One can check that, taking the large-λ limit
and Laplace inverting, one recovers exactly the formula below
(E28) in Ref. [45], valid in the small-m limit (at fixed
x = v/vm).

The Laplace transform of the avalanche density ρ(S) =
P (S)/[

∫ ∞
0 dS ′S ′P (S ′)] is obtained by integration by part

of (E2),∫ ∞

0
dS(eλS − 1)ρ(S) = − (1 − 4λ)

1−v
2

vB
[
1 − v, v

2

(
1 − 1√

1−4λ

)] .

(E3)

A nontrivial check of (E3) is that it satisfies the normalization
condition

∫
dS Sρ(S) = 1 automatically.

Using standard relations for the Beta function [54], one can
rewrite (E3) as∫ ∞

0
dS(eλS − 1)ρ(S) = sin πv

2π
(1 − 4λ)−

v
2 (1 + √

1 − 4λ)

×B

[
v,−v

2

(
1 + 1√

1 − 4λ

)]
.

(E4)

Using the substitution r := 1 + √
1 − 4λ, we can write the

inverse Laplace transform in the compact form

ρ(S) =
∫ r0+i∞

r0−i∞

dr

2πi

sin(πv)

4π

× re
1
4 (r−2)rS(r − 1)1−vB

(
v,

rv

2 − 2r

)
,

where r0 > 1.
For the case v = 0, (E3) reduces to the known expression

[17,18] ∫ ∞

0
dS (eλS − 1)ρ(S) = 1

2
(1 − √

1 − 4λ),

which leads to the standard ABBM avalanche-size density
ρ(S) = 1

2
√

πS3/2 e
−S/4.

For any 0 < v < 1, we can obtain the behavior of ρ(S) at
small S from the λ → −∞ limit of (E4). In this limit, the Beta
function tends to a constant and we obtain∫ ∞

0
dS (eλS − 1)ρ(S)

= sin πv

2π
(−4λ)

1−v
2 [1 + O(|λ|)−1/2]B

(
v,−v

2

)
.

Inverting the Laplace transform, we see that near S = 0

ρ(S) = S−(3−v)/2

[
(v − 1)�(−v/2) sin(πv)

4π3/2
+ O(S)1/2

]
.

(E5)

This is in agreement with previous results [24,45,55] and
extends them by giving the prefactor of the power law.

APPENDIX F: FIXING INITIAL CONDITIONS
INSTEAD OF FINAL CONDITIONS

In this section, we discuss how to transform (156), a formula
with a fixed value of hf and a Laplace transform taken with
respect to hi, into (159), a formula with a fixed value of hi and
a Laplace transform taken with respect to hf .

We start by integrating (156) over hf ,

∫ ∞

−∞
dhf

∫ ∞

0
du̇i

∫ ∞

−∞
dhi e

λu̇i+μhiPabs(u̇f,hf ; tf|u̇i,hi; ti) = exp

{∫ tf

ti

[(2 − ẇs)ûs + (1 + a + τ−1)]ds + u̇f ûtf

}
(2π )δ[iτ ĥ(tf)].

(F1)

We now invert the Laplace transform from μ = τ ĥ(ti) to hi using a complex integral,∫ ∞

−∞
dhf

∫ ∞

0
du̇i e

λu̇iPabs(u̇f,hf ; tf|u̇i,hi; ti)

=
∫ i∞

−i∞
dμ exp

{∫ tf

ti

[(2 − ẇs)ûs + (1 + a + τ−1)]ds + u̇f ûtf

}
δ
(
ĥtf

)
exp

(−τ ĥtihi
)

= exp

{∫ tf

ti

[(2 − ẇs)ûs + (1 + a + τ−1)]ds + u̇f ûtf − τhiĥti

} [
∂ĥ(tf )

∣∣
ĥ(tf )=0ĥ(ti)

]
.

032106-33



DOBRINEVSKI, LE DOUSSAL, AND WIESE PHYSICAL REVIEW E 88, 032106 (2013)

This now is Eq. (159). Due to the δ function, the only value of
ĥ(ti) that contributes is the one which leads to ĥ(tf) = 0. So, the
effect of going from a fixed hf to a fixed hi in the propagator is
a change in the boundary conditions for the pair of backward
instanton equations (150) and (151). When integrating over all
hf , we have to impose the boundary conditions (160)

ĥ(tf) = 0, û(ti) = λ.

In addition, we get the “Jacobian” factor in (159). In the pure
ABBM case a = 0, as discussed in Sec. VIII E1, it just cancels
the (tf − ti)/τ factor in the exponential. For a > 0 it is more
complicated.

APPENDIX G: SOME EXACT RELATIONS
FOR THE PROPAGATOR

Finding general solutions to the forward instanton
equations (24) and (25) and the backward instanton equa-
tions (150) and (151) is difficult. However, simple particular
solutions exist, where the instanton is constant in time. These
imply exact relations on particular observables in the ABBM
model with retardation, which we discuss below.

1. Forward instanton

A particular solution of (24) and (25) is

λt = δ(t − tf), μt = aτδ(t − tf),
(G1)

ũt = θ (tf − t), h̃t = aθ (tf − t).

To see the significance of this solution, consider starting at
fixed u̇i,hi at t = 0, and driving with a constant velocity ẇt =
v for 0 < t < tf . Using (26), and accounting for the initial
condition as in Ref. [46], Eq. (4), we get

eu̇(tf )+aτh(tf ) = eu̇iũ0+τhih̃0+
∫ tf

0 dt ẇt ũt = eu̇i+aτhi+vtf . (G2)

This implies the following exact relation on the propagator of
the ABBM model with retardation at constant driving velocity
v,∫ ∞

0
du̇f

∫ ∞

0
dhf eu̇f+aτhfP(u̇f,hf ; tf|u̇i,hi; 0) = eu̇i+aτhi+vtf .

(G3)

For the case a = 0 (pure ABBM model), this relation can
be checked explicitly using the formula for the ABBM
propagator, Eq. (19) in Ref. [46]. It generalizes similarly to
the case of arbitrary driving ẇ.

2. Backward instanton

Now let us apply the same idea to the backward instanton,
used in Sec. VIII, in order to perform calculations with an
absorbing boundary at u̇ = 0. A particular solution of (150)
and (151) is

λt = −δ(t − tf), μt = −aτδ(t − tf),
(G4)

ût = −θ (tf − t), ĥt = −aθ (tf − t).

To see the significance of this solution, consider the density to
arrive at u̇f,hf at t = tf , while driving with a constant velocity
ẇt = v for 0 < t < tf , as a function of the initial condition at
t = 0. Using (154), we get

e−u̇(0)−aτh(0) = eu̇f ûtf +τhf ĥtf +
∫ tf

0 dt (2−ẇt )ût+(1+a+τ−1)

= e−u̇f−aτhf+(v−1+a+τ−1)tf . (G5)

This implies the following exact relation on the propagator of
the ABBM model with retardation at constant driving velocity
v, with an absorbing boundary at u̇ = 0:∫ ∞

0
du̇i

∫ ∞

−∞
dhi e

−u̇i−ahiPabs(u̇f,hf,tf|u̇i,hi,0)

= e−u̇i−ahi+(v−1+a)tf . (G6)

Again, for the pure ABBM model a = 0, this relation can
easily be checked using the expression (136) for the propagator
with an absorbing boundary at u̇ = 0.

APPENDIX H: NUMERICAL METHODS

Here we give some details on the numerical simulations
shown in Figs. 9–13. Since all these simulations concern
the case of exponential relaxation, instead of the nonlocal
SDE (19) we simulate the local SDEs (23). This is done
using the simple Euler-Maruyama method with a sufficiently
small time step. The time steps we used were dt = 10−5 for
Figs. 9, 11, 12 (left), and 13 (right); dt = 10−4 for Figs. 10
and 12 (right); dt = 10−3 for Fig. 13 (left).

For Figs. 9–12, we consider subavalanches with a fixed
initial condition u̇i, hi. In this case, after a subavalanche
terminates (i.e., at the first time step where u̇ becomes � 0),
u̇ and h are reset to their initial values. For Fig. 13, we
consider subavalanches at stationary driving with a fixed
driving velocity v. In this case, after a subavalanche terminates,
u̇ is reset to 0 but the value of h is kept. The subavalanche sizes
for the histograms in Fig. 13 are collected after a sufficiently
long transient (of order v−1) in order to ensure that the
stationary state is reached.
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