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We study minimal surfaces which arise in wetting and capillarity phenomena. Using conformal coordinates,
we reduce the problem to a set of coupled boundary equations for the contact line of the fluid surface and then
derive simple diagrammatic rules to calculate the nonlinear corrections to the Joanny–de Gennes energy. We
argue that perturbation theory is quasilocal—i.e., that all geometric length scales of the fluid container de-
couple from the short-wavelength deformations of the contact line. This is illustrated by a calculation of the
linearized interaction between contact lines on two opposite parallel walls. We present a simple algorithm to
compute the minimal surface and its energy based on these ideas. We also point out the intriguing singularities
that arise in the Legendre transformation from the pure Dirichlet to the mixed Dirichlet-Neumann problem.
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I. INTRODUCTION

Minimal surfaces—i.e., surfaces of minimal area with
specified boundary conditions—are found in many areas of
physics, mathematics, and biology. Their existence, unique-
ness, and other properties �such as possible singularities or
stability� are still actively studied by mathematicians �1�. In
the laboratory, minimal surfaces are most commonly realized
as soap films bounded by a given wire frame, a problem
discussed already in 1873 by Plateau �2�. In some cases their
morphology and stability have actually been elucidated ex-
perimentally in this context �3�. Other systems where mini-
mal surfaces play a role include lipid-water solutions,
diblock copolymers, crystallography, protein structure, or
liquid crystals such as smectics �4�. They also arise as world-
sheet instantons in string theory—for example, in the semi-
classical, fixed-angle high-energy limit of scattering ampli-
tudes �5�.

The minimal surfaces that will interest us here arise in the
problem of partial wetting of a solid by a liquid �6�. In the
standard experimental situation, a liquid with free surface of
area A �liquid-air interface� wets a flat solid plane over an
area A� �liquid-solid interface�. The free surface meets the
solid plane along a line, called the contact line, at an angle �
which is defined locally. The interfacial energy is the differ-
ence E=�A−��A�, where � is the energy per unit area �or
surface tension� of the liquid-air interface and ��=�SA−�SL
is the difference in surface tension between the solid-air �SA�
and solid-liquid �SL� interfaces. The force per unit length
pushing a segment of the contact line towards the unwetted
region is thus f =−� cos �+��. Requiring that it vanish gives
Young’s �7,8� local equilibrium condition �=arccos��� /��.
The minimal-surface problem at hand is thus a problem with
mixed Neumann and Dirichlet boundary conditions. In the
idealized setting of an infinite liquid container and a per-
fectly homogeneous planar wall, there exists a simple solu-
tion to this problem: it is a planar liquid-air interface meeting
the wall along a straight contact line. Strictly speaking, as we
will discuss in Sec. II, the properties of the container at in-
finity must be carefully chosen in order not to destabilize this
solution.

Two extra forces play in fact a role in the general formu-
lation of the wetting problem. The first comes from the drop
in pressure across the liquid-air interface, which adds to the
Gibbs energy a volume term: E=�A−��A�− pV. Here p is
the pressure difference and V the volume of the fluid. The
free surfaces that minimize this energy have constant rather
than vanishing mean curvature �8�. It is quite remarkable that
the corresponding equations are �at least formally� inte-
grable; see, for instance, �9�. Note that in the special case of
an incompressible fluid, p is a Lagrange multiplier deter-
mined by the constraint that the “droplet” volume V be fixed.
The second force that plays in general a role is gravity, which
introduces an additional scale, the capillary length �−1

= �� /�g�1/2. Here � is the fluid mass density and g is the
gravitational acceleration. In this paper we will study situa-
tions where both pressure and gravity can be ignored. This is
usually valid if one concentrates on length scales ��−1 and
considers a fluid connected to an infinite reservoir so that
effectively p�0. Note that the capillary length is typically of
the order of a few millimeters, but it can be made much
larger in free-fall �e.g., space-based� experiments or if one
replaces the air by a second nonmixing fluid of roughly equal
mass density. Thus setting �� p�0 is a good approximation
in a wide range of experimentally feasible situations and we
will do so in this paper. Technically, one can further justify
that gravity be ignored at all scales if a condition, identified
below, is satisfied.

What is in fact more questionable is the assumption of a
perfectly homogeneous wall. Indeed, in most of the experi-
mental setups of wetting, roughness and impurities of the
solid substrate couple directly to the position of the contact
line, which may as a result be effectively pinned. Computing
the energy of a deformed contact line is thus a question of
foremost importance. For small deformations, as Joanny and
de Gennes �JdG� have shown �10�, the contact line obeys
nonlocal linear elasticity. These linear equations may be-
come unstable at wavelengths comparable to some global-
geometry scale, as several earlier studies have established
�11�. The issue of nonlinear elasticity, which becomes rel-
evant for larger deformations, has been addressed only re-
cently �12�. It could play a role �13� in resolving the apparent
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disagreement between recent experimental measurements of
contact-line roughness �14� and renormalization-group calcu-
lations near the depinning transition �15� or numerical simu-
lations �16� that were based on the JdG linear theory �17�. To
be sure, hysteresis and other dynamical phenomena, which
have attracted much of the recent attention �18�, may also
prove important in interpreting the above experimental data.
Nevertheless, a systematic analysis should start with a thor-
ough understanding of the nonlinear and possibly nonlocal
effects in the simpler, equilibrium situation. This is the prob-
lem that we will study here.

The area of a minimal surface bounded by a given
�closed� curve is simple when expressed in conformal coor-
dinates. Nonlinearities arise because this choice of coordi-
nates depends nontrivially on the boundary curve through the
conformal-gauge �or Virasoro� conditions. In this paper we
develop systematic methods for solving the ensuing nonlocal
and nonlinear equations, either in perturbation theory or nu-
merically. We focus, in particular, on the case of a planar
wall and derive simple diagrammatic rules that calculate the
energy of a deformed contact line to any given order in the
deformation amplitude. The method can be extended to more
complicated container geometries, but the details become
more involved. As a relatively simple illustration, we show
how to extend the rules and calculate the JdG linear theory in
the case of two contact lines lying on parallel opposite walls.
We also describe a novel algorithm which finds the minimal
surface energy with no need for surface triangulation. Fi-
nally, we discuss some general properties of these perturba-
tive expansions, which bear a fascinating similarity to prob-
lems encountered in perturbative string theory. We hope to
return to some of these questions, as well as to the implica-
tions of our results for the wetting problem, in a future pub-
lication.

The paper is organized as follows: In Sec. II we describe
our basic model, point out the need for global tadpole can-
cellation, and discuss the relation of the mixed Neumann and
Dirichlet problem to the pure Dirichlet problem. In Sec. III
we give the formal solution of the latter problem, for an
arbitrary boundary curve, in terms of conformal coordinates.
This is standard material which is included here for com-
pleteness. In Sec. IV we specialize to the case of a planar
wall, derive the corresponding nonlinear boundary equations,
and express the energy in terms of their solution. We pay
particular attention to the decoupling of the large-volume
cutoff, which as we will explain is rather subtle. In Sec. V we
solve the boundary equations perturbatively and compute the
corrections to the JdG energy up to quartic order. Section VI
describes an alternative approach using Lagrange-multiplier
fields and leading to a simple diagrammatic representation of
the perturbative expansion. The numerical algorithm is pre-
sented in Sec. VII. In Sec. VIII we extend this to the case of
two parallel walls and calculate the quadratic interaction of
the contact lines. Finally, in Sec. IX we establish the finite-
ness of the perturbative expansion order by order and point
out some intriguing directions for future work. The Weier-
strass parametrization of our fluid surfaces and a calculation
confirming the decoupling of the large-volume cutoff are de-
scribed, respectively, in Appendixes A and B.

II. THE MODEL

We consider a fluid inside a tubular container ��R,
where R corresponds to the height coordinate z and � is
some �a priori arbitrary� connected region in the �x ,y� plane,
with boundary ��. Let us for now assume that the fluid
surface has no overhangs—it can then be parametrized by
the height function z�x ,y�. We may express the energy func-
tional as the following sum of two-dimensional bulk and
boundary terms:

E = Ebulk + Ebnry

= �
�

dx dy���1 + ��xz�2 + ��yz�2 − pz +
1

2
�gz2	

− �
��

dl ���l�z , �1�

where dl is the infinitesimal length along the boundary of �.
The first term in Eq. �1� is the fluid-air interfacial energy �A,
and the second is due to the difference in pressure between
air and fluid and the third to gravity, while the last comes
from the fluid-solid interface. For convenience, we have
slightly generalized the model so that the tension of this
interface may vary along the container walls, as can be done
by design. The more general case of a �� depending on both
l and z, due, for instance, to the presence of impurities, will
be discussed below. For now �� is only a function of l.

In the absence of gravity g=0, the minimum of the energy
E is a surface of constant mean curvature, with specified
contact angles:

�� · � �� z

�1 + 
�� z
2
	 = −

p

�
,

� n̂ · �� z

�1 + 
�� z
2
�

��

= cos ��l� =
���l�

�
, �2�

where �� = ��x ,�y� and n̂ is a unit vector normal to the bound-
ary ��. These nonlinear equations do not always admit a
global solution; see, e.g., �19�. A necessary �but not suffi-
cient� condition for a solution to exist is

Q = p � Area��� + �
��

dl ���l� = 0. �3�

This is a condition of average-force cancellation: indeed, the
left-hand side of the above equation couples linearly to the
zero mode of z�x ,y� and would lead to a runaway solution if
it did not vanish, the energy being unbounded in that case.
By analogy with string theory we may refer to this as a
global tadpole cancellation condition. Note, in particular, that
for a homogeneous wall, for which �� is constant, one must
fine-tune the ratio of perimeter to area so that it equals p /��.
If the average-force condition is satisfied, the average height
of the fluid surface becomes a free dynamical parameter of
the solution, analogous to the string-theoretic moduli. Its role
must be examined with care as it threatens a priori the sta-
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bility of any perturbative expansion at weak disorder and
may thus lead to qualitatively new behavior.

The emergence of condition �3� clearly originates from
the neglect of gravity. If g�0, it is easy to see that the
energy is always bounded from below and that the fluid will
tend to rise such that dx dyz�Q /�g, the well-known cap-
illarity effect. Hence, if Q is nonzero, one expects that the
theory studied here, obtained by setting g=0, breaks down
for wave vectors q�� �hence especially for the zero mode�.
However, the interesting point, discussed below, is that if one
imposes Q=0, then one can safely set g=0 and obtain a
theory which is well defined at all scales. This is the theory
studied here. It is illustrated in Fig. 1.

Let us consider minimizing the energy in two steps: We
first solve the bulk equations keeping the contact line fixed;
i.e., we find the surface of constant mean curvature, zh�x ,y�,
such that the restriction of zh to �� is a given function h�l�.
We denote the corresponding bulk energy �or reduced energy
functional in the language of �11�� by E�h�ªEbulk�zh�. The
energy of the equilibrium configuration is then the minimum
over all contact lines of

E�h� − �
��

��h . �4�

Thus �� plays the role of a source and the minimum energy
is just the Legendre transform of the reduced energy func-
tional. If �� were to depend also on z, the source would be
field dependent. We will comment on the subtleties of this
Legendre transformation between the Dirichlet and Neu-
mann problems in the concluding section.

Let us describe the simplest configuration studied here,
which consists of a semi-infinite fluid bounded by a homo-
geneous planar wall at x=0. We assume from now on that
p=0 and that the container at infinity has been adjusted so

that the global tadpole condition is satisfied. The unperturbed
fluid surface is then an inclined plane, making a contact
angle �0=arccos��0� /�� with the wall, as illustrated in Fig. 1.
We are choosing the origin of coordinates so that the unper-
turbed fluid surface intersects the wall along z=0, while the
perturbed contact line is given by z=h�y�. It turns out to be
convenient for the following to define

Ẽ�h� � E�h� − E�0� − � cos �0�
y

h . �5�

If the contact line deformations are concentrated in a finite
region, one expects this energy difference to also be concen-
trated in a finite region and the outer boundaries of the con-
tainer to decouple. More generally, the simple planar model
of Fig. 1 should give an adequate description of the physics
if all other distance scales of the system �including the cap-
illary length, � / p, and all geometric scales� are much larger
than the typical deformation wavelength. We will come back
to this subtle issue later on. Note that we have included in the
energy difference the contribution Ebnry of the homogeneous

wall. This means that Ẽ�h� should start out as a quadratic
functional for small h�y�.

Let us briefly mention the case of impurity disorder. In
this case the translation symmetry of the tube is in general
broken by the roughness of the wall. The effect of impurities
can then be modeled by a variable fluid-solid tension, and the
boundary term in Eq. �1� becomes

Ebnry = − �
��

dl�
0

z

d	 ���l,	� . �6�

The two-stage minimization can then be summarized as fol-
lows. One writes

���l,z� = �0��l� + 
���l,z� , �7�

where �0��l�=� cos �0�l� is some average or reference value,
and defines the shifted functional

Ẽ�h� � E�h� − E�0� − � �
��

dl cos �0�l�h�l� . �8�

Because of disorder, the impurities generate a potential for
the zero mode z0 of z�x ,y� and the condition �3� cannot hold
in general. However, we can still impose this condition “on

average” �dl �0��l�=0 and compute the corresponding Ẽ�h�.
It is this functional which is studied here: it obeys quasilo-

cality and is well defined for g=0. Once Ẽ�h� is known,
finding the �equilibrium� position of the contact line amounts
to solving in the second stage of the minimization:

min
h�l�
�Ẽ�h� − � dl�

0

h�l�

d	 
���l,	�� . �9�

This can be viewed as a generalized Legendre transforma-
tion, which we will not study here. The aim of this paper

being simply to characterize Ẽ�h� in the presence of an av-
erage contact angle. We will use expressions such as pinning

FIG. 1. A fluid surface bounded by a �shaded� planar wall,
touching it at the position of a �pinned� contact line. At distances
much larger than the capillary length 1/�, it is flat and perpendicu-
lar to the gravitational field �left�. Enlargement for distances smaller
than 1/� �right� which is the range of scales studied here. The
unperturbed surface is a plane, making an angle �0 with the wall.
When perturbed, the conformal parameters ��1 ,�2� approach Car-
tesian coordinates far from the wall, as discussed in Sec. IV.
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condition or pinned configuration in the following only to
denote the fixed-h conditions.

III. CONFORMAL COORDINATES

Computing the area of a minimal surface bounded by a
continuous closed curve v��s� is a classical problem of ap-
plied mathematics. In this section we will explain how, in
conformal gauge, it reduces to a �nonlinear and nonlocal�
equation for a function of one variable on the boundary. Let
r���1 ,�2� be an arbitrary parametrization of the surface, i.e.:
r�= �x ,y ,z� is the position of the surface � corresponding to
the values of the two �a priori arbitrarily chosen� parameters
��1 ,�2�. We will assume that � has the topology of a disk
and that the parametrization is global—i.e., that there is a
one-to-one correspondence between points of � and points in
some parameter domain D�R2. One should of course keep
in mind that, for some boundary curves, these assumptions
may have to be relaxed. In terms of the induced metric
gab=�ar� ·�br�, the area of � reads

A =� �
D

d�1 d�2
�det g . �10�

This expression is invariant under any reparametrization
with nonvanishing Jacobian—i.e., �1→ �̃1��1 ,�2� and
�2→ �̃2��1 ,�2� with det��a�̃b��0. For a surface without
“overhangs” we may use this freedom to set ��1 ,�2�= �x ,y�,
in which case Eq. �10� reduces to the expression for the area
used in Eq. �1�. This is a useful parametrization when �xz and
�yz are small, but more generally the minimization of the
area in this gauge leads to nonlinear partial differential equa-
tions in two variables, which are hard to solve.

A more convenient choice is conformal coordinates,
which are defined implicitly by the two conditions

�1r� · �2r� = 0, �1r� · �1r� = �2r� · �2r� . �11�

Put in words, the two vector fields tangent to the surface are
orthogonal everywhere and of equal, not necessarily con-
stant, length. �As the reader can easily verify, the parametri-
zation ��1 ,�2�= �x ,y� is conformal only in the special case of
constant z.� It follows from Eqs. �11� that gab=2�ab, where
2=�1r� ·�1r� is the so-called “conformal factor.” Thus in this
gauge the area can be written as

A =
1

2
� �

D
d�1 d�2 ��1r� · �1r� + �2r� · �2r�� �12�

and the variational equations are the Laplace equations in
two dimensions:

�a��det ggab�br�� = ��1
2 + �2

2�r� = 0. �13�

The embedding coordinates �x ,y ,z� are therefore harmonic
functions of ��1 ,�2� and can be written as the real parts of
analytic functions of the complex variable w= ��1+ i�2� /2:

x�w,w̄� = 2 Re X�w� ,

y�w,w̄� = 2 Re Y�w�, z�w,w̄� = 2 Re Z�w� . �14�

This property of harmonic functions is very special to two
dimensions. Our problem is now to determine X, Y, and Z for
the given boundary curve v��s�.

To this end, note first that if the surface is nonsingular and
bounded, the functions X, Y, and Z must be analytic in the
interior of the domain D. They are furthermore related by the
two conformal-gauge conditions �11�, which can be com-
bined into the following equivalent form:

��1 − i�2�r� · ��1 − i�2�r� = �X��2 + �Y��2 + �Z��2 = 0, �15�

where the prime denotes differentiation with respect to w.
This rewriting makes manifest the residual freedom of ana-
lytic reparametrizations of w. Such complex-analytic
changes of coordinates preserve indeed the conformal condi-
tion �15� and can be used to map the parameter domain to
any convenient simply connected region in C. Let us assume,
for instance, that D= �w�C , 
w 
 �1� is the unit disk. We
write w=�ei� and denote by r����ªr��� ,�=1� the boundary
curve parametrized by the special conformal coordinate �.
Note that r���� has a unique harmonic extension to the inte-
rior of the disk and thus determines unambiguously the mini-
mal surface. This follows easily from the fact that the ana-
lytic function X�w� admits a Taylor expansion,

X�w� = �
n=0

�

Xnwn, �16�

so that its restriction to the boundary has no negative-
frequency Fourier modes, when identifying wn=ei�n. Thus,
to extend x��� to the interior of the disk, we need only
split it into positive- and negative-frequency parts, x���
=x+���+x−���. Then x+ can be extended to X�w� by the re-
placement ei�→w, while x−= x̄+ extends to the complex-

conjugate antianalytic function X̄�w̄�=X�w�. If x��� has a
zero mode, it must be split equally between the two parts. A
simple calculation leads in fact to the following Cauchy re-
lation between X�w� and the boundary restriction of x:

X�w� =
1

4�
�

0

2�

d�� x����
ei�� + w

ei�� − w
. �17�

Similar relations hold, of course, between Y�w� and y��� and
also Z�w� and z���. It is, furthermore, easy to check that
since X�ei��=x+���, the conformal-gauge condition �15� is
equivalent to

dr�+

d�
·

dr�+

d�
= 0 for all � � �0,2�� . �18�

Let us go back now to expression �12� for the area. If the
surface is minimal, integrating by parts and using Laplace’s
equation allows us to rewrite its area as a boundary integral:

BACHAS, LE DOUSSAL, AND WIESE PHYSICAL REVIEW E 75, 031601 �2007�

031601-4



Amin =
1

2
�

0

1

� d��
0

2�

d� ���r� · ��r� + �−2��r� · ��r��

=
1

2
�

0

2�

d� r� · ��
r�
�=1. �19�

The integrand involves the radial derivative of r�, but with the
help of Cauchy’s equation ����X=−i��X and similarly for
the functions Y and Z� we can convert this to an angular
derivative, with the result

Amin =
i

2
�

0

2�

d��r�+ ·
dr�−

d�
− r�− ·

dr�+

d�
	 = 2��

n=1

�

n
r�n
2.

�20�

Here r�n is the Fourier transform of the function on the circle
r����=�nr�nein�. For later use, we also give two alternative
�equivalent� expressions for the minimal area:

Amin = −
1

4�
�

�
�

��

dr�

d�
·

dr�

d��
ln sin2�� − ��

2
	

=
1

16�
�

�
�

��


r���� − r�����
2

�sin
1

2
�� − ����2 . �21�

The first can be obtained from Eq. �20� by Fourier transform,
while the second follows by a double integration by parts
and the fact that, thanks to the i� prescription, only the cross
term in the numerator contributes. Note that for suitably
smooth r���� these integrals are manifestly finite in the
�→�� region �hence the i� can be dropped in the final
expression—but not if one expands the square�.

We have thus succeeded to express the minimal area as an
explicit �nonlocal, but quadratic� functional of r����, so one
may think that our problem is effectively solved. This is,
however, not quite the case, because the transformation from
the original parameter of the boundary to the special confor-
mal coordinate � depends itself nontrivially on the boundary
curve. To make this relation explicit, let us write s= f���, so
that r����=v�(f���). A straightforward calculation starting
from the integral expression �17� gives

dr�+

d�
= −

i

8�
� d��

v�„f����…

sin2�� − �� + i�

2
	 . �22�

Plugging this in the gauge condition �18� leads to a nonlinear
integral equation, which can be used �in principle� to deter-
mine f��� for any given boundary curve v��s�. This is still a
nontrivial task, but we have at least reduced the minimal-
surface problem to one involving only one unknown function
of a single variable. In some cases, the problem can be sim-
plified further by using the residual freedom of conformal
transformations to map the unit disk to a suitably chosen
domain. Such is the case when the contact line lies on a
plane, as we will now see.

IV. CASE OF A PLANAR WALL

A. Boundary equations

In the configuration of Fig. 1 the contact line is restricted
to a planar wall, located at x=0. Assuming that it has no
overhangs, such a contact line is naturally parametrized by
the height function z=h�y�. We want to adapt our previous
general discussion to this special situation. The story is
somewhat simplified by using the convenient conformal co-
ordinates �reminiscent of the proper-time gauge of string
theory�

X = − icw = −
ic

2
�� + i��, so that x = 2 Re X = c� .

�23�

Here c is a positive constant and we have traded ��1 ,�2� for
the lighter notation �� ,��. In imposing condition �23� we
have used the residual freedom of conformal transformations
and the fact that X is an analytic function. Note, however,
that this choice of gauge might be obstructed globally, as we
will explain in Appendix A. Since the fluid surface extends
out to infinity, the new parameter domain is the upper-half
complex plane D= �w�C , Im w�0�. Later we will consider
a second wall at x=L, in which case D will be the infinite
strip 0���L /c. The points at infinity must actually be
treated with care: the right procedure is to first make D finite
by bounding the fluid with outer walls, then moving these
outer boundaries to infinity.

We will be here interested in surfaces that approach as-
ymptotically the inclined plane

r�0 = �sin �0�,�,− cos �0�� . �24�

It is therefore convenient to choose c=sin �0 and to define
the difference


r� = r� − r�0, with 
r� � �0, ỹ, z̃� . �25�

Note that the gauge condition �23� ensures that the first com-
ponent of 
r� is identically zero. Since the components of
both r� and r�0 are harmonic, so are those of their difference


r�. We can in fact write ỹ�w , w̄�=2 ReỸ�w� and z̃�w , w̄�
=2 ReZ̃�w�, where the new analytic functions are given by

Ỹ = Y − w, Z̃ = Z − i cos �0w . �26�

Following the same logic as in Sec. III, we also define the
restrictions of ỹ and z̃ to the real axis, ỹ���� ỹ�� ,�=0� and
z̃���� z̃�� ,�=0�. The extension of these functions to the
upper-half plane is uniquely determined by the property that
they should be both bounded and harmonic. Indeed, the ana-

lytic function Ỹ must have a Fourier-Laplace expansion in-
volving only positive-frequency modes

Ỹ�w� = �
0

� dk

2�
Ỹk e2ikw ⇔ ỹ��� = �

0

� dk

2�
�Ỹk eik� + c.c.� ,

�27�

since it would otherwise diverge when �→�. Thus, to ex-
tend ỹ��� to the upper-half plane, we must first split it into its
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positive- and negative-frequency parts, ỹ���= ỹ+���+ ỹ−���,
then extend ỹ+ analytically and ỹ− as its complex-conjugate
antianalytic function. The Cauchy integral formula relating

Ỹ�w� and ỹ��� reads

Ỹ�w� =
i

2�
�

−�

�

d�
ỹ���

2w − �
. �28�

The right-hand side is analytic in the upper-half complex
plane provided that ỹ��� vanishes at infinity. Of course a
similar formula relates also z̃��� to its analytic counterpart

Z̃�w�.
Our problem is thus reduced to that of finding the two real

functions on the real axis, z̃��� and ỹ���. These are related
by the pinning condition of the contact line:

z̃��� = h�� + ỹ���� . �29�

Furthermore, they must obey the conformal constraint �15�.
After inserting expressions �26� and using the obvious iden-

tities ỹ+���= Ỹ�� /2� and z̃+���= Z̃�� /2�, this constraint reads

dỹ+

d�
+ i cos �0

dz̃+

d�
= − �dỹ+

d�
	2

− �dz̃+

d�
	2

. �30�

The pair of coupled, nonlocal equations �29� and �30� is in
principle sufficient to determine z̃��� and ỹ��� and hence
also the complete shape of the fluid surface. In the following
sections we will discuss how to solve these equations nu-
merically or by a series expansion in powers of h�y�. First,
however, we must express the energy in terms of the two
boundary functions z̃��� and ỹ���.

B. Expression for the energy

The area of an infinite fluid surface is, clearly, infinite.
However, for a localized deformation of the contact line—
i.e., for h�y�→0 when y→ ±�—we expect the difference in

area, Ãmin�Amin�h�−Amin�0�, to be finite. To calculate this
difference, we will introduce as a physical cutoff a tubular
container C=��R, with � a rectangle of size Lx�Ly in the
�x ,y� plane. We define the associated characteristic function

�C�r�� ª ��x���y +
Ly

2
	��Ly

2
− y	��Lx − x�

= �1 if r� � C ,

0 otherwise,
� �31�

with ��a� the usual Heaviside step function. The difference
of the areas then reads

Ãmin =
1

2
� �

R�R
��C�r���ar� · �br� − �C�r�0��ar�0 · �br�0��ab,

�32�

where, after evaluating the right-hand side, we should take
the limit Lx ,Ly→�. Note that cutting off directly the param-
eter range could give a wrong answer, because the same
value of �� ,�� need not correspond to the same value of

�x ,y� on the planar and on the deformed surface.
Expanding the integrand of Eq. �32� in powers of 
r� and

using the fact that

�C�r�0 + 
r�� = �C�r�0� + �C�r�0�n̂ · 
r� + ¯ , �33�

where �C is the delta function localized on the boundary of C
and n̂ is the inward-pointing normal unit vector, leads to the
following expression for the area difference �see Fig. 2�:

Ãmin =
1

2
� �

D
��a
r� · �b
r� + 2�a
r� · �br�0��ab

+ �
�D


n̂ · ��r�0
−1n̂ · 
r� + ¯ . �34�

Here D= �0,Lx / sin �0�� �−Ly /2 ,Ly /2� is the parameter do-
main defined by the condition �C�r�0�=1 and �D is its
boundary. The last term in the above equation accounts for
the fact that the cutoff corresponds to a container in physical
space, rather than in the space of parameters �� ,��. The fac-
tor 
n̂ ·��r�0
−1, with ��ª n̂ ·�� a derivative in the direction
normal to �D, is the Jacobian that arises upon converting
�C�r�0� to a � function in parameter space. The neglected
terms involve higher powers of n̂ ·
r� and one or more partial
derivatives. They vanish on the outer boundary, provided


� r→0 at infinity, and on the x=0 wall where n̂ ·
� r=0 for
our choice of gauge. Note that in deriving expression �34� we
used the equality �ar�0 ·�br�0�ab=2, which follows easily from
Eq. �24�.

Using Stoke’s theorem and Laplace’s equation we can ex-
press all the terms in Eq. �34� as boundary integrals,

Ãmin = − �
�D
�1

2

r� · ��
r� + 
r� · ��r�0 − 
n̂ · ��r�0
−1n̂ · 
r�	 .

�35�

Let us consider first the �= ±Ly /2 boundaries: since n̂
= � �0,1 ,0� there, the last two terms cancel exactly one an-
other, while the term quadratic in 
r� does not contribute as
long as 
r�→0 at infinity. This term does not contribute, for
the same reason, at the �=Lx / sin �0 boundary. Finally, at
both �=0 and �=Lx / sin �0 we have n̂ ·
r�=0, since n̂

FIG. 2. The domain C and the inward-pointing normal.
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= ± �1,0 ,0� on these boundaries and, with our choice of
gauge, 
r�= �0, ỹ , z̃�. Putting all these facts together we obtain

Ãmin = �
−�

�

d� �−
1

2

�ỹ��ỹ + z̃��z̃�
�=0 + cos �0
z̃
�=0

− cos �0
z̃
�=Lx/sin �0� , �36�

where the limit Ly→� has already been taken on the right-
hand side. The � derivatives in the first term can be con-
verted to � derivatives with the help of the Cauchy equation.
As for the last two linear terms, they cancel because z̃ is
harmonic �both are proportional to the same k=0 Fourier
mode�. Thus the difference of the areas reads

Ãmin =
1

2
�

−�

�

d� �iỹ+
dỹ−

d�
+ iz̃+

dz̃−

d�
+ c.c.� . �37�

Although this calculation is correct, the cancellation of
the linear terms is, from the physical point of view, rather
misleading. It involves two opposite walls which are infi-
nitely far apart in the Lx→� limit and looks therefore highly
nonlocal. A physically more significant cancellation occurs

in the energy functional Ẽ�h�, which �as explained in Sec. II�
receives a contribution from the fluid-solid interface:

Ebnry = − �
�D

dl ��z̃

= − � cos �0�
−�

�

d��
z̃�1 + ��ỹ�
�=0 − 
z̃
�=Lx/sin �0
� .

�38�

The second equality can be understood as follows: the un-
perturbed planar surface meets the x=0, x=Lx, and y
= ±Ly /2 walls at angles equal to �0, �−�0, and � /2, respec-
tively. Young’s equilibrium condition thus requires that, in
the absence of impurities,

�� = � � cos �0 for x = 0,

0 for y = ± Ly/2,

− � cos �0 for x = Lx.
� �39�

Furthermore, along the first and last walls the invariant
length is dl=dy= �1+��ỹ�d�. Dropping the quadratic term at
x=Lx, since both ỹ and z̃ must tend there to zero, gives the

advertised equation �38�. Adding this to �Ãmin leads to our
final expression for the energy:

Ẽ�h� =
�

2
�

−�

�

d� �iỹ+
dỹ−

d�
+ iz̃+

dz̃−

d�
− cos �0z̃

dỹ

d�
+ c.c.� .

�40�

Note that the linear terms cancel here separately on each wall
and that all the contributions to the energy are “quasilocal.”
Thus the large-volume cutoff decouples, as expected, in the
calculation of the energy �but not of the separate contribu-

tions �Ãmin and Ebnry�. The only restriction on the cutoff is
that it should not destabilize the unperturbed planar surface.

We confirm these claims by a calculation in Appendix B,
which includes as an extra control parameter the inclination
angle of the outer wall.

For later use, we will also need the expression of the
energy in terms of the Fourier components of ỹ��� and z̃���.
Using Eq. �27� and doing some straightforward algebra leads
to

Ẽ�h� = ��
0

� dk

2�
k �
Ỹk + i cos �0 Z̃k
2 + sin2 �0 
Z̃k
2� .

�41�

Note that the energy is quadratic in ỹ and z̃, where the func-
tion y���=�+ ỹ��� relates the natural parametrization of the
contact line to the conformal parametrization in terms of �.
As was explained in the previous section, the problem is
nonlinear because this change of coordinate depends explic-
itly on the pinning profile.

V. PERTURBATIVE EXPANSION

The pair of equations �29� and �30� cannot be solved, in
general, in closed form. However, if the contact line is de-
formed only “slightly” �this will be made more precise later�,
then ỹ and z̃ should both be small. We may therefore expand
the right-hand side of Eq. �29� in a Taylor series,

z̃��� = �
n=0

�
dnh���

d�n

ỹ���n

n!
, �42�

where both ỹ and the derivatives of h are now evaluated at
the argument �. Furthermore, solving the quadratic equation
�30� for dỹ+ /d� and integrating gives

ỹ+��� = �
−�

�

d����1

4
− � dz̃+

d��
	2

− i cos �0
dz̃+

d��
�1/2

−
1

2
� .

�43�

Note that we have picked the solution of the quadratic equa-
tion that vanishes for z̃+→0 and we have also fixed arbi-
trarily the irrelevant �complex� integration constant. Since z̃
is small, we may expand the integrand on the right-hand side
to find

ỹ+��� = �
n=1

�
2n−1

n!
��− 1� � 1 � 3 � 5 ¯ � �2n − 3��

� �
−�

�

d���� dz̃+

d��
	2

+ i cos �0
dz̃+

d��
�n

= �
−�

�

d���− i cos �0
dz̃+

d��
− sin2 �0� dz̃+

d��
	2

+ ¯� .

�44�

Equations �42� and �44� can now be solved iteratively as
follows: one starts with the lowest-order solution of the first
equation, z̃���=h���, and inserts it into the second one to
find ỹ+=−i cos �0h+. Inserting the result into Eq. �42� gives z̃
at quadratic order in h, and from Eq. �44� we can obtain ỹ to
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the same order. Iterating the procedure gives, in principle,
the solution to any desired order in the pinning profile h.

In order to write the answer in a compact form, we intro-
duce the following notation. If f±��� are the positive- and
negative-frequency parts of any real function f���, then

f � f+ + f− and i f̂ ª f+ − f−, �45�

where the second equality defines the dual function f̂���.
Note that f and f̂ are both real—this follows from the fact
that f−= �f+�*. Now the first few orders in the expansion of
the solution read

z̃ = h + cos �0
dh

d�
ĥ +

cos2 �0

2

d2h

d�2 ĥ2

−
dh

d��sin2 �0�
−�

� � dh+

d��
	2

d�� + i cos2 �0� dh

d�
ĥ	

+
+ c.c.�

+ O�h4� , �46�

ỹ+ = − i cos �0 h+ − sin2 �0 �
−�

� � dh+

d��
	2

d��

− i cos2 �0 � dh

d�
ĥ	

+
+ O�h3� , �47�

where we have stopped at one order lower in the expansion
of ỹ for a reason that will become apparent in a minute. It
will be useful to have also at hand the Fourier transforms of
these expressions. Noting that

f+g+ + f−g− =
1

2
�fg − f̂ ĝ�, i f̂ k = fk

k


k

, �48�

we find after some straightforward manipulations

iỸk = hk cos �0 +� hk1
hk2

k1k2� sin2 �0

k
��k1k2� +

cos2 �0


k2
 �
+ O�h3� , �49�

Z̃k = hk +� hk1
hk2

k1k2
cos �0


k2


+� hk1
hk2

hk3
k1k2k3� sin2 �0

k2 + k3
��k2k3� +

cos2 �0k1

2
k2k3


+
cos2 �0�k2 + k3�


k3

k2 + k3
 � + O�h4� . �50�

Here the integrals run over all kj, with normalization
dkj / �2�� and the condition that �kj =k. The step functions
��kikj� force the two momenta to have the same sign, and

we have assumed that k is positive. Recall that Ỹk enters into
expression �41� for the energy through the combination

i�Ỹk + i cos �0Z̃k� =
sin2 �0

k
� hk1

hk2
k1k2��k1k2� + O�h3� .

�51�

Since this starts out quadratically in h, the cubic corrections
contribute to the energy at O�h5�. This explains why we have
truncated the expansion of ỹ at one order lower than the
expansion of z̃.

Inserting Eqs. �50� and �51� into Eq. �41� and doing some
straightforward manipulations leads to the following expres-
sion for the energy of the deformed contact line at quartic
order:

Ẽ�h� = E2 + E3 + E4 + O�h5� ,

where

E2 = � sin2 �0�
0

� dk

2�
k 
hk
2, �52�

E3 = � cos �0 sin2 �0� hk1
hk2

hk3


k1
k2k3


k3


� − � cos �0 sin2 �0� hk1
hk2

hk3
k1k2��k1k2� , �53�

E4 =
�

2
� hk1

hk2
hk3

hk4
k1k2k3k4�sin4 �0���k1k2���k3k4�


k1 + k2


+
2k1


k1

��k3k4�
�k3 + k4�� + sin2 �0 cos2 �0� k1k4


k2k3k4


+
k2

2 − k1
2


k1

k4

k1 + k2
�� . �54�

The integrals in Eqs. �53� and �54� run over all kj with the
condition that �kj =0. As a check, note that for �0=� /2 the
energy is invariant under reflection, h→−h, of the contact
line. Note also that the expressions multiplying �hkj

inside
the integrals are invariant under the combination of complex
conjugation and change of sign of all the momenta, consis-

tently with the fact that Ẽ�h� should be real. The expression
for E3 agrees with the one derived in �12� by a different
method.

The Joanny–de Gennes linear theory �10� corresponds to
the leading term of the above expansion. Comparing E2 with
the energy of an elastic rod, E�k2
hk
2, one notes a soften-
ing of short-distance modes and corresponding hardening of
long-distance modes, due to the interactions mediated by the
surface. In real space, the JdG energy can be written as �see
the discussion in Sec. III�

E2 =
�

4�
sin2 �0� � d� d��

�h��� − h�����2

�� − �� + i��2 . �55�

This quadratic, nonlocal functional has appeared in a variety
of other contexts—e.g., in simple models of quantum-
mechanical dissipation �20,21�. Note that E2 is invariant un-
der SL�2,R� transformations—i.e., under conformal trans-
formations that preserve the upper-half complex plane, �
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→ a�+b
c�+d , h→h, with a ,b ,c ,d real and ad−bc=1. The full

energy is not only translationally invariant, but it also trans-
forms covariantly under rescalings of the physical space:

Ẽ�h���� = �2Ẽ�h� if h����y� � �h��−1y� . �56�

This implies that the perturbative expansion is really an ex-
pansion in derivatives, as should be expected from the fact
that the classical problem has no intrinsic length scale. We
will return to this point later on.

It will be useful, for comparison with the following sec-
tion, to rewrite the quartic contributions to the energy differ-
ently. First, we note that the two terms multiplying sin4 �0
are equal up to a factor of −2. This follows from the follow-
ing chain of replacements, which are allowed upon symme-
trization of the integrand:

2k1


k1

��k3k4�
�k3 + k4�

→ − �s1 + s2�
��k3k4�
�k1 + k2�

→ − �1 + s1s2�
��k3k4�

k1 + k2


.

Here sj =kj / 
kj
 is the sign of the momentum kj, and in the
second step we have used the fact that the sign of �k1+k2� is
the same as the sign of either k1 or k2, since the expression is
multiplied by �1+s1s2�=2��k1k2�. Likewise, one can justify
the following replacement:

k1


k1

��k3k4�
�k3 + k4�

→
k1k4


k1

k4

k1 + k2

,

k2
2 − k1

2


k1

k4

k1 + k2

→

�k2
2 + k3

2� − �k1
2 + k4

2�
2
k1

k4

k1 + k2


.

Putting all these facts together, using that � jkj =0, and doing
some straightforward rearrangements leads to the following
alternative expression for the quartic energy:

E4 =
�

2
sin2 �0� �

j=1

4

�kjhkj
��−

��k1k2���k3k4�

k1 + k2


+ cos2 �0� k1k4


k2k3k4

−

k2k3


k1

k4

k1 + k2
�� . �57�

This somewhat more economical expression will be easier to
compare with the diagrammatic expansion, to which we will
now turn our attention. Note that the expression for E4 in the
particular case �0=� /2 was also found in �13� using the
perturbative solution of the nonlinear equation �not using
conformal coordinates�. It is possible, though cumbersome,
to extend the method to arbitrary �0 �22�.

VI. DIAGRAMMATIC METHOD

The perturbative expansion of the energy can be orga-
nized efficiently by using a Lagrange-multiplier field to im-
pose the pinning constraint of the contact line. One starts
with the following variational principle for the area:

Amin = extrA��,r�� ,

with

A��,r�� =� �
D

d2��det g − �
�D

ds��s��z�s� − h„y�s�…� .

�58�

Here s parametrizes the boundary of the domain D and � is
a Lagrange-multiplier field that transforms under reparam-
etrizations such that ��s�ds remains unchanged. Since
A�� ,r�� is reparametrization invariant, we are free to choose
the conformal gauge and to set x=sin �0� as before. Thus D
is the upper-half plane ��0 and we may choose s=� for the
boundary parameter. We also define y=�+ ỹ and z=
−cos �0�+ z̃, and we subtract from A the area of the flat fluid

surface. This gives Ãmin=extrÃ, where

Ã��, ỹ, z̃� =
1

2
� �

��0
��aỹ�aỹ + �az̃�az̃�

− �
�=0

���z̃ − h�� + ỹ�� − cos �0z̃� . �59�

The last term in the above expression comes from the cross
term �az0�

az̃=−cos �0��z̃ in the area difference. This is a total
derivative, which is why it only contributes a boundary term.
Note that, in the light of our discussion in Sec. IV, all con-
tributions from the boundaries at infinity have been dropped.
This is legitimate since we are ultimately interested in the
energy �40� rather than in the area of the fluid surface. Alter-

natively, one can view Ã�� ,r�� as an action and consider the
path integral over the fields r� and �.1 Since we are doing
only a tree-level calculation, there is no need to worry about
Fadeev-Popov ghosts, which would be important for the
study of thermal or quantum fluctuations. Fluctuating sur-
faces �23� are beyond the scope of the present study.

It looks, at first sight, rather odd that in the above formu-
lation the conformal-gauge conditions are not explicitly im-

posed. The extrema of Ã�� , ỹ , z̃� should therefore obey these
conditions automatically. To see why, note that the variation
of Eq. �59� leads to the boundary equations

��ỹ = ����h��� + ỹ�, ��z̃ = − ���� + cos �0 at � = 0.

�60�

From the above boundary equations and from the pinning
constraint z=h�y�, we deduce

��r� = „sin �0,����h��y�,− ����…, ��r� = „0,��y,h��y���y… .

�61�

Thus, on the boundary, the condition ��r� ·��r�=0 holds. This
implies that the function �wr� ·�wr�, which is analytic in the
upper-half plane and vanishes at infinity, has zero imaginary

1For calculational convenience the choice of convention here—
see the propagators in, e.g., Eq. �65�—corresponds to a weight

exp�−Ã�� ,r���. This choice is immaterial since we are doing only a
tree-level calculation. One can equally well use the more physical

choice exp�Ã�� ,r��� with �→ i� and positive signs in all propaga-
tors, with identical final results at the tree level.
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part on the real axis. From the Cauchy-Poisson integral for-
mula �24� we conclude that it vanishes everywhere, so that
the conformal gauge conditions �15� are indeed satisfied.

In order to develop simple diagrammatic rules, we first
solve the harmonic equation for the “bulk” fields keeping
their restrictions to the boundary, ỹ���ª ỹ�� ,0� and z̃���
ª z̃�� ,0�, fixed. As has been already discussed, this leads to
the replacement

1

2
� �

��0
�aỹ�aỹ →

i

2
�

�=0
�ỹ+

dỹ−

d�
− ỹ−

dỹ+

d�
	 =

1

2
�

k


k
ỹkỹ−k

�62�

and likewise for the field z̃. Next, we solve the linear equa-
tions for z̃���, thus eliminating it entirely from expression
�59�. The new variational functional, expressed in terms of
Fourier components, reads

Ã��, ỹ� =
1

2
�

k


k
ỹkỹ−k −
1

2
�

k

1


k

��k��−k + �

k

�−kHk,

�63�

where �k=cos �02���k�+��k and Hk is the Fourier trans-
form of H���=h��+ ỹ����. This result also follows if one
uses the path integral formulation and integrates over the
fields ỹ and z̃ in the bulk: more explicitly,

Hk = hk +� ik1hk1
ỹk2

+
1

2
� �ik1�2hk1

ỹk2
ỹk3

+ ¯ , �64�

where the integrals run over �kj =k. The extremum of the
functional �63� can be computed by summing tree-level dia-
grams of a one-dimensional field theory. The one-point func-
tion and propagators read

�65�

while the first few vertices, deriving from the last term of Eq.
�63�, are as follows:

�66�
Note that all of these vertices are proportional to the ampli-
tude of the pinning profile. Furthermore, wiggly lines, corre-
sponding to the field ỹ, can only terminate on another vertex
in a vacuum tree diagram. Thus only a finite number of ver-
tices contribute to a given order in the expansion in h. Solid
lines corresponding to the Lagrange-multiplier field � may
end at the tadpole ��k�=cos �02���k�, which carries no extra
power of h. Note also that at the vertice momentum is in-

jected by hk, which has to be taken into account for momen-
tum conservation.

Using the above diagrammatic rules, one can compute

any desired order in the expansion of Ẽ�h�. This is obtained
by multiplying the extremum of Eq. �63� with � and then
subtracting the linear contribution of the wall, Ebnry=��h
=� cos �0h0 �see Sec. IV�. This contribution cancels pre-
cisely the tadpole diagram

�67�

in agreement with the fact that the unperturbed, planar fluid
surface should be stable. Denoting by En the nth-order term

in the perturbative expansion of Ẽ�h� one finds the following.
Order 2:

�68�
so that

�69�
which is precisely the Joanny—de Gennes quadratic energy.

Order 3:

�70�

�71�
These two contributions are of the same form. To see why,
one must symmetrize the integrands over all permutations of
�123� and then use the identities that follow from momentum
conservation:

1

2
s1s3k2

2 + perms = s1s3�k1
2 + k1k3� + perms

= − s1s3k1k2 + perms,

where sj =kj / 
kj
 is the sign of kj. Thus, the sum of the two
diagrams gives

�72�

which agrees with the calculation �53� of the previous sec-
tion.
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Order 4:

�73�

�74�

�75�

�76�

�77�

�78�

Note that the power of cos �0 corresponds to the number of
“hooks” of a given diagram. For cos �0=0 only the first of
these diagrams contributes. Using the replacements

s1s4


k1 + k2

→

�s1 + s2��s3 + s4�
4
k1 + k2


= −
��k1k2���k3k4�


k1 + k2

,

one can check that this diagram agrees with our previous
result �57�. To show that expression �57� also agrees with
E4=���73�+ �74�+ �75�+ �76�+ �77�+ �78�� for arbitrary con-
tact angle �0 we proceed as follows: the first diagrams �74�
and �77� can be combined to reproduce the second term in
Eq. �57�. To see why, one must replace 1

3k4
2=− 1

3k4�k1+k2

+k3�→−k1k4 in the integrand of the diagram �77�. Second,
one can show that for cos�0=1 the sum of the remaining
diagrams, �73�+ �75�+ �76�+ �78�, is exactly zero. Indeed,
writing the integrands of these diagrams in the order of their
appearance we find

k1k2k3k4


k1

k4

k1 + k2

�k1k4 + 2k2k4 + �k1 + k2�2 + k2k3�

=
k1k2k3k4


k1

k4

k1 + k2

�k1k4 + 2k2k4 − �k1 + k2��k3 + k4� + k2k3�

=
k1k2k3k4


k1

k4

k1 + k2

�k2k4 − k1k3�

=
k1k2k3k4


k1

k4

k3 + k4

�k2k4 − k1k3� , �79�

where in the first and third equalities we have used the con-
servation of momentum. Since the last two expressions are
equal, they can be replaced by their average. The result is
antisymmetric under the exchange of 1 with 4 and 2 with 3,
so after multiplication with hk1

hk2
hk3

hk4
it gives zero as

claimed. We are thus free to subtract this vanishing expres-
sion times 1

2cos2 �0 from the sum of all diagrams. This re-
moves the contributions �75� and �76� and changes the coef-
ficients of Eqs. �73� and �78� to those of the corresponding
terms in Eq. �57�. This completes the proof that Eq. �57�
agrees with the diagrammatic calculation of the energy.

The diagrammatic expansion can be extended to higher
orders. As an illustration, let us consider the case of a per-
pendicular contact angle, in which case the tadpole vanishes.
The symmetry under h→−h guarantees that only even pow-
ers appear in the expansion of E�h�. The sixth- and eighth-
order terms are given by

�80�

where

�81�

and

�82�

We will comment further on these results in the final sec-
tion.
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VII. NUMERICAL ALGORITHM

As was shown in Sec. IV, the problem of determining the
deformed fluid surface with a pinned contact line on a planar
wall reduces to that of solving the pair of equations for the
real functions ỹ��� and z̃���:

z̃��� = h�� + ỹ���� ,

dỹ+

d�
+ i cos �0

dz̃+

d�
= − �dỹ+

d�
	2

− �dz̃+

d�
	2

. �83�

We recall that f± are the projections onto positive-
�negative-� momentum Fourier components of the function f .
Continuing f+ as an analytic function F in the upper-half w
= ��+ i�� /2 plane determines the unique harmonic extension
of the function, f =2 ReF. The conformally parametrized
minimal surface is

�x,y,z� = �sin �0�,� + ỹ,− cos �0� + z̃� , �84�

and it has a total energy given by Eq. �40� and �41�.
Equations �83� can be solved by iteration, starting with

the initial configuration

ỹ�0���� = 0, z̃�0���� = h��� . �85�

Let ỹ�n� and z̃�n� be the solution of the equations after n steps.
We extract z̃+

�n� by doing a double Fourier transform. Plug-
ging the result in Eqs. �83� then gives the improved values of
the unknown functions:

ỹ+
�n+1� = �

−�

�

d����1

4
− �dz̃+

�n�

d��
	2

− i cos �0
dz̃+

�n�

d��
�1/2

−
1

2
� ,

z̃�n+1� = h�� + ỹ�n+1�� . �86�

Using Eq. �41� yields an approximation En to the true energy
E�. We have used this iterative algorithm for h�y�=�f�y�
with f�y� various trial pinning profiles. We found that it con-
verges rapidly to the perturbative result for small � and that
it breaks down at some critical � where the function y���
stops being monotonic. We believe this signals a coordinate,
rather than a real geometric, singularity, as is observed in
Appendix A. If so, it would be very interesting to develop
alternative algorithms that could circumvent this problem.

In Fig. 3 we show the convergence of the algorithm at

�=� /2 for a profile h�y� given in Fig. 4, together with the
corresponding functions y��� and z���. One sees in Fig. 4
already the emergence of a linear cusp at the tip of
z��=1/2�, which signals for larger � the breakdown of the
algorithm.

VIII. INTERACTION BETWEEN CONTACT LINES

As another application of the general approach, we will
now calculate the interaction between the two contact lines
of a liquid surface bounded by parallel walls. For an analo-
gous calculation in open string theory see Ref. �25�. Suppose
that wall 1 is located at x=0 and wall 2 at x=L, and let �1�
=−�2�=� cos �0. In the absence of impurities the equilibrium
configuration is thus an inclined planar surface making a
contact angle �0��−�0� with the first �second� wall. We use
conformal coordinates and set x=sin �0�, so that the param-
eter domain is the infinite strip 0���L / sin �0��0. Repeat-
ing the same steps as in the previous section leads to the
following variational functional for the minimal area:

Ã��K, ỹ, z̃� =
1

2
� �

0����0

��aỹ�aỹ + �az̃�az̃�

− �
�=0

��1�z̃ − h1�� + ỹ�� − cos �0z̃�

− �
�=�0

��2�z̃ − h2�� + ỹ�� + cos �0z̃� . �87�

FIG. 3. �Color online� Convergence of the energy En for a Gaussian with almost maximal amplitude, as function of iteration n. Also
plotted are the perturbative results E2=0.00951444 and E2+E4=0.00837429. The second plot shows convergence on a log10 scale. Conver-
gence improves considerably for smaller amplitude of h.

FIG. 4. �Color online� A periodically repeated Gaussian for h�y�,
with no 0 mode: 0

1 dy h�y�=0. The corresponding functions y���
and z��� on the boundary are also given. One remarks that z almost
has a cusplike singularity at �=1/2. Further increasing the ampli-
tude of h and z will develop this cusp, which signals the breakdown
of our parametrization.
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Here hJ�y� �for J=1,2� are the deformations of the two con-
tact lines away from their equilibrium configuration and �J
are the corresponding Lagrange-multiplier fields. The mini-

mal area difference is Ãmin=extrÃ, where one must extremes

Ã over the bulk fields ỹ�� ,�� and z̃�� ,�� and the boundary
fields �J���.

First we solve the harmonic equations for ỹ and z̃, keeping
their values on the boundary fixed. Let, for example,
ỹ�� ,0�= ỹ1��� and ỹ�� ,�0�= ỹ2���. Eliminating the field in
the interior gives

1

2
� �

0����0

�aỹ�aỹ →
1

4�
�
J,J�
�

�
�

��

dỹJ

d�
GJJ��� − ���

dỹJ�

d��
,

�88�

where

GJJ��� − ��� = �− ln sinh2� �

2�0
�� − ���� if J = J�,

− ln cosh2� �

2�0
�� − ���� if J � J�.�

�89�

One way of establishing this formula is to start from the
analogous expression for the unit disk, Eq. �21�, and then
apply the conformal transformation that maps the unit disk
onto the infinite strip:

v � � + i� =
�0

�
ln�i

1 − w

1 + w
	 ⇔ w � � ei� = tanh� i�

4
−

�v
2�0

	 .

�90�

Notice that the two unit-radius semicircles �=1 and �
� �0,�� or �� �� ,2�� are indeed mapped onto the two
boundaries of the strip, Im v=0 or Im v=�0. On these bound-
aries,

ln sin2�� − ��

2
	 = ln sinh2� �

2�0
�v − v��� − ln cosh��v

�0
	

− ln cosh��v�

�0
	 , �91�

up to an irrelevant constant. The terms depending only on v,
or only on v�, will drop out when inserted in the double
integral �21�. Setting finally v−v�=�−�� �or v−v�=�−��
− i�0� for points on the same �or opposite� boundaries of the
infinite strip leads to expressions �88� and �89�, as claimed.
An alternative derivation of this result using the massless
propagator on the strip is

G11��� = �
n=−�

� � dk

2�

eik�

k2 + �n�/�0�2

=� dk

2�

eik�

k2 + 2
�0

�
�
n�0

1

n
e−n�
�
/�0

= − 
�
 −
2�0

�
ln�1 − e−�
�
/�0� , �92�

G12��� = �
n=−�

� � dk

2�

�− 1�neik�

k2 + �n�/�0�2

=� dk

2�

eik�

k2 + 2
�0

�
�
n�0

�− 1�n

n
e−n�
�
/�0

= − 
�
 −
2�0

�
ln�1 + e−�
�
/�0� . �93�

These formulas agree with Eq. �89� up to an irrelevant con-
stant.

It will be useful to write these expressions in Fourier
space. This can be done by using the identities

�
n=−�

�
1

b2 + n2 =
�

b
coth��b�, �

n=−�

�
�− 1�n

b2 + n2 =
�

b sinh��b�
.

�94�

To lighten the notation, we will suppress the label of the
boundaries and use boldface letters for the corresponding
vectors and matrices. Thus ỹ will stand for the two-
component vector �ỹ1 , ỹ2� and G for the 2�2 matrix-valued
kernel GJJ�. With the help of the above formulas one finds

1

4�
�

�
�

��

dỹt

d�
G�� − ���

dỹ

d��
=

1

2
�

k

ỹk
t Ĝ�k�ỹ−k, �95�

where t indicates the transpose of a vector and

Ĝ�k� ª k2�
−�

�

d� eik�G���

= � k coth��0k� − k/sinh��0k�
− k/sinh��0k� k coth��0k�

	 . �96�

Since det Ĝ�k�=k2, the inverse matrix takes also a simple
form

Ĝ�k�−1 =
1

k
� coth��0k� 1/sinh��0k�

1/sinh��0k� coth��0k�
	 . �97�

As a check note that in the limit of an infinitely wide strip

�L��0→�� one finds Ĝ�k��
k 
 �12�2. This is indeed the
kernel for two separate, half-infinite planes.

Returning to the variational functional �87�, it can be re-
placed by

Ã�a, ỹ, z̃� =
1

2
�

k

�ỹk
t Ĝ�k�ỹ−k + z̃k

t Ĝ�k�z̃−k�

+ �
k

�ak · H−k − �ak · z̃−k� , �98�

where a���1 ,�2� is the vector of Lagrange-multiplier fields,
�a�a− �a�= ��1−cos �0 ,�2+cos �0�, and Hk is the Fourier
transform of the �vector of� composite fields hJ��+ ỹJ����.
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Solving the linear equations for z̃ and inserting the solution
in the above functional gives

Ã�a, ỹ� =
1

2
�

k

ỹkĜ�k�ỹ−k −
1

2
�

k

�akĜ�k�−1�a−k + �
k

ak · H−k.

�99�

We can now read off the Feynman rules that generalize the
ones of the previous section. The propagators and one-point
functions for the vector fields are

�100�

The vertices do not mix fields on opposite boundaries and
are thus two copies of the vertices in Eq. �66�.

Using these rules we may calculate the energy to any
desired order in the h expansion. The leading, quadratic en-
ergy that generalizes the JdG result reads

�101�

Since both terms inside the integral are positive definite, it is
energetically favorable for h1,k and h2,k to have the same
phase. Thus the interaction between the two contact lines is
attractive. Note that if we fix h1 and allow h2 to freely adjust,
we find that the minimum of the energy is obtained for

h2�k� =
h1�k�

cosh�kL/sin �0�
. �102�

The energy for given h1 and free h2 thus reads


E2
strip
free h2

= � sin2 �0�
0

� dk

2�
k
h1,k
2 tanh� kL

sin �0
	 .

�103�

In the limit of L→�, we recover our previous expression
�52� as expected.

Taking the same limit in Eq. �101� shows that the inter-
action decays exponentially, as �exp�−2kL / sin �0�. This ex-
ponential decay also applies for fixed L and very small con-
tact angle, since the actual separation of the �unperturbed�
contact lines is L / sin �0. In the opposite limit of a thin strip,
or equivalently of very long-wavelength deformations, we
find

E2
strip � � sin �0L�

0

� dk

2�
�
h1,k − h2,k
2� sin2�0

L2 −
k2

6
	

+
k2

2
�
h1,k
2 + 
h2,k
2� + O�k4�� . �104�

The leading term has a simple geometric interpretation: It is
proportional to the increase in area of a planar strip, whose
boundaries undergo a relative displacement h1−h2 along the
walls, with which it made initially an angle �0. For h1=h2,

the next term in the above quadratic energy corresponds to
an elastic rod with effective tension �eff=�L sin �0. This has
also a simple geometric interpretation: The rod is in fact a
thin strip, of width L / sin �0, which is deformed by an
amount h1�y�sin �0 in the transverse direction.

IX. DISCUSSION

In the previous sections we have shown how to calculate
the energy of a deformed, almost rectilinear, contact line to
any desired order in perturbation theory. We would now like
to discuss some general properties of this expansion. One
important point is that perturbation theory is quasilocal; i.e.,
the total energy is concentrated in a region of size equal to
the typical wavelength of the deformation. We indeed saw
that, as long as the large-volume cutoff has been fine-tuned
so as to cancel the global tadpole, it decouples from any
localized perturbation. One would expect the same to be true
for all other geometric length scales of the system, such as
the wall’s inverse curvature. If this is true, at sufficiently
short distances perturbation theory should be scale covariant,
as was pointed out in Sec. V. In momentum space, the scal-
ing symmetry �56� reads

Ẽ�h���� = �2Ẽ�h� for hk
��� = �2h�k. �105�

Inspection of Eqs. �68�–�82� shows that this indeed holds at
each order of the expansion and even for each individual
diagram. Note, in passing, that the scaling symmetry does
not imply conformal invariance, as would have been the case
if the one-dimensional theory were truly local.

Finiteness of the JdG quadratic energy requires that
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khk → 0, for both k → � and k → 0. �106�

In other words, h�y� must be continuous everywhere and
finite, and it must vanish as y→ ±�. A more stringent con-
dition is, in fact, required to prove ultraviolet finiteness at all
higher orders. It reads

k2hk → 0 for k → � ⇔ hk
��� → 0 for � → � .

�107�

Stated differently, the profile function h�y� must also have a
continuous first derivative. That this is indeed necessary fol-
lows by considering for instance the “comb” diagrams, the
first few being �78�, �80�, and �81�. As the reader can check,
a power falloff slower than �107� would make the comb dia-
grams with a large enough number of vertices diverge. To
show that this condition is also sufficient, it is convenient to
assign the scaling dimensions �k�=1 and �hk�=−2 to the fac-
tors entering in a diagram. Because k2hk→0 at high momen-
tum, the degree of divergence of any partial integration is
bounded from above by the corresponding scaling dimen-
sion, in which one only counts elements that depend on the
integrated momenta. The scaling symmetry �105� implies
that the overall scaling dimension of any tree diagram is −2,
so there is no divergence from the integration region where
all the momenta go to infinity. Keeping one �or more� of the
momenta fixed amounts to removing from the counting a
factor dkkmhk and, at most, one solid and m curly propagators
that emanate from the corresponding vertex. This can only
lower the scaling dimension, so all the partial integrations
are also ultraviolet finite. Q.E.D.

Infrared finiteness is trickier to establish diagrammati-
cally. Condition �106� suffices to ensure that there is no di-
vergence when the momenta flowing into individual vertices
go to zero. The dangerous diagrams are, however, those for
which such momenta add up to zero along some curly line.
Inspection of expression �54� shows, nevertheless, that the
result is finite up to quartic order, thanks to the Heaviside
functions that multiply such dangerous terms. To prove fi-
niteness at all higher orders, it is more convenient to go back
to the pair of classical equations �29� and �30�. Let ỹ�n����
and z̃�n���� be the solutions of these equations at nth order. It
is then straightforward to check that, if these functions van-
ish at y→ ±� for all n�N, they will continue to do so for
n=N+1. This is in turn sufficient to guarantee the infrared
finiteness of the energy at all orders.

What about nonperturbative effects? To fix ideas, let
h�y�=�f�y� with f�y� a given profile function and � the pa-
rameter controlling the perturbative expansion. One expects
that the radius of convergence of this expansion is finite,
since at large enough � the solution to Eqs. �29� and �30�
should stop being analytic. This could signal either one of
the following two things: �i� that our parametrization is sin-
gular or �ii� that the surface develops real geometric singu-
larities or that there is a change in topology. It would be very
interesting to find some general criteria which could distin-
guish between these two possibilities. Note that a topological
transition may occur if it is energetically favorable to drill

two holes in the fluid surface and to replace the correspond-
ing disks by a cylinder. In any case, the following simple
�though rather crude� linear bound

Ẽ�h� � ��
y


h
 + ����
y

h� �108�

shows that the energy of a pinned contact line stays finite.
Furthermore, localized microscopic perturbations always
have a vanishingly small energy and should decouple from
the physics at longer scales.

This brings us to our final remark �26�: as was explained
in Sec. II, the purely Dirichlet minimal surface problem is
related to the mixed Dirichlet-Neumann problem, relevant
for capillary phenomena, by a Legendre transformation. A
Legendre transformation looks at first sight rather benign,
but it drastically modifies the nature of perturbation theory.
This is best illustrated by the following spectacular phenom-
enon �27�: A wedge in the tubular contour �� of Sec. II, with
opening angle less than 
�−2�0
, is a local geometric ob-
struction which forces the capillary surface to develop a sec-
ond sheet. This has been observed in microgravity experi-
ments. Notice that the wedge can be of microscopic
transverse size, but it should extend to all values of the
height coordinate z. It is the latter assumption which is re-
sponsible for the apparent nondecoupling of short-distance
scales. The story is reminiscent of the role played by worm-
holes in theories of quantum gravity. This analogy, as well as
the possible impact of wedge defects on the problem of wet-
ting, deserves further investigation.
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APPENDIX A: WEIERSTRASS PARAMETRIZATION

In Sec. IV we have parametrized the minimal surfaces in

terms of two functions Ỹ�w� and Z̃�w�, which are related by
the conformal-gauge condition �30�. The parametrization is
global provided the two functions are analytic everywhere in
the upper-half complex plane. This is indeed the case in per-

turbation theory, but more generally, for a given analytic Z̃,

the solution of Eq. �30� will not give an analytic function Ỹ.
A constructive solution of the conformal-gauge condition,
which guarantees analyticity, is given by the Weierstrass rep-
resentation

�X

Y

Z
��w� = �

0

w

dv f � � 2g

− i�1 + g2�
1 − g2 � , �A1�

where f�v� and g�v� are holomorphic functions in the upper-
half plane. To go to the special gauge, Eq. �23� of Sec. IV,
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one sets 2f = ic /g. The surfaces are then parametrized by a
single function:

�X

Y

Z
��w� =

ic

2
�

0

w

dv � − 2

i�g + 1/g�
g − 1/g

� . �A2�

Clearly, this special parametrization is nonsingular if and
only if g has no zeros in the upper-half complex plane. Since
in expression �A1� both f and g are allowed to have any
number of zeros, this shows that the condition �23� need not
always define a good global gauge.

To describe the deformed surfaces of Sec. IV we write

g = g0 + g̃, with g0 =
cos �0 − 1

sin �0
. �A3�

The unperturbed planar surface corresponds to g̃=0. Other
choices of g̃, which are holomorphic in the upper-half plane
�including the point at infinity� and for which g0+ g̃ has no
zeros, describe globally parametrized deformed fluid sur-
faces. As a simple example, let �0=� /2 and take

g�v� = − 1 − � e2iv ⇒ �Ỹ�w� =
i

4
�− � e2iw + ln�1 + � e2iw�� ,

Z̃�w� = −
1

4
�� e2iw + ln�1 + � e2iw�� , �

�A4�

where � is a real parameter between 0 and 1 and in the

expressions for Ỹ and Z̃ we have dropped an irrelevant con-
stant �which can be absorbed in a redefinition of the origin of
coordinates�. For small �, this function describes a periodic
minimal surface with period 
y=2� and with a deformed
contact line given by h�y�=� cos y+O��2�. For � finite, the
contact-line profile is a complicated function given implicitly

by Eq. �A4� and plotted in Fig. 5. Inserting the above Ỹ and

Z̃ in expression �40� for the energy gives

Ẽ/period =
��

4
��2 − ln�1 − �2�� . �A5�

This reduces to the JdG energy at small � and can also be
verified numerically. Note that when �→1 the surface be-
comes singular and the energy per period diverges.

APPENDIX B: MORE GENERAL LARGE-VOLUME
CUTOFF

In this appendix we will repeat the calculation of the en-
ergy of Sec. IV using a more general container with an outer
wall at an arbitrary inclination angle. The characteristic func-
tion �C�r�� now reads

�C�r�� = ��x���y +
Ly

2
	��Ly

2
− y	

���Lx − x cos � + z sin �� . �B1�

The inclination angle � of the outer wall is a control param-
eter, which should drop out in the Lx ,Ly→� limit. The con-
tact angle of the planar surface with this outer wall is equal
to �−�−�0, so Young’s equilibrium condition requires that
the corresponding solid-fluid tension be ��=−cos��+�0�.
Repeating the same steps as in Sec. IV leads to the general
expression for the energy

Ẽ�h� = −
�

2
�

�D


r� · ��
r� − � �
�D


r� · ��r�0

+ � �
�D


n̂ · ��r�0
−1n̂ · 
r� + Ebnry, �B2�

where D= �0,�0�� �−Ly /2 ,Ly /2� is the parameter domain
defined by �C�r�0�=1, �� is the derivative in the inward nor-
mal direction to �D, and n̂ is the three-dimensional vector
normal to the container boundary.

We can now verify that the inclined wall does not contrib-
ute to the above expression. This follows from a fine cancel-
lation between the three last terms in Eq. �B2�:

− � cos �0�
�

z̃ +
� sin �

sin�� + �0���

z̃

− � �� sin �0

sin�� + �0���

z̃�
�=�0

= 0. �B3�

We here used the normal vector n̂= �−cos � ,0 , sin ��, which
implies that 
n̂ ·��r�0 
 =sin ��+�0�, as well as some three-
dimensional geometry which is required to extract the con-
tribution of Ebnry. Doing some straightforward trigonometry
and using the fact that ��=cos ��+�0�, one can check that
the three terms �B3� indeed cancel. This confirms the decou-
pling of the large-volume cutoff, as was announced in
Sec. IV.

FIG. 5. �Color online� Parametric plot of �A4� for �
=0.1,0.5,0.9,0.999. Increasing � increases the amplitude of h�y�
and leads to a singularity at �=1. The function Z̃�w� has been
shifted so that h�0�=0.
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