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We study geometrical properties of interfaces in the random-temperature q-states Potts model as an

example of a conformal field theory weakly perturbed by quenched disorder. Using conformal perturba-

tion theory in q! 2 we compute the fractal dimension of Fortuin-Kasteleyn (FK) domain walls. We also

compute it numerically both via the Wolff cluster algorithm for q ¼ 3 and via transfer-matrix evaluations.

We also obtain numerical results for the fractal dimension of spin clusters interfaces for q ¼ 3. These are
found numerically consistent with the duality !spin!FK ¼ 16 as expressed in putative SLE parameters.
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Critical interfaces are ubiquitous in two-dimensional
(2D) systems. Their geometrical properties can be studied
both in models and experiments, in pure and random
systems alike. The discovery of Schramm-Löwner evolu-
tion (SLE) has strongly revived interest in such interfaces.
It provides a rigorous classification, with a single parame-
ter !, of probability measures on noncrossing random
fractal curves, which satisfy both conformal invariance
and the domain Markov property [1]. In random systems,
the former property may hold only for appropriate disorder
averages, and it is unclear under which conditions the latter
may emerge in the thermodynamic limit.

Interfaces in pure 2D critical models are conjectured,
and in some cases proven, to satisfy both requirements in
the continuum limit. SLE hence describes such diverse
systems as percolation ! ¼ 6, self-avoiding walks ! ¼
4=3, loop-erased random walks ! ¼ 2, and level lines of
height models ! ¼ 4 [2]. It applies to the Ising and 3-states
Potts interfaces, both for spin clusters (! ¼ 3 and ! ¼
10=3, respectively) and the dual Fortuin-Kasteleyn (FK)
clusters (! ¼ 16=3 and ! ¼ 24=5), with a duality ! $
!0 ¼ 16=!. While these models have been described, prior
to SLE, using conformal field theory (CFT), SLE bridges
the gap between the algebraic approach of CFT and the
geometry of interfaces. SLE-CFT connections [2] focus on
boundary-condition changing operators, which generate
the curves. They give df ¼ 1þ !=8 for the fractal dimen-
sion of the interface, i.e., the hull of the SLE trace.
Extensions beyond nonminimal CFT [3] are rare.

Can CFT and SLE help to understand a broader class of
scale-invariant 2D complex systems, such as systems with
quenched disorder or far from equilibrium? Numerical
studies indicate that zero-vorticity lines in 2D-turbulence
[4] and domain walls in spin glasses [5] may be described
by SLE. These examples are ‘‘far’’ from any pure CFT,
thus the situation may be more favorable for models which
are ‘‘weak perturbations’’ of a known CFT. This is, e.g., the
case for the q-states Potts model, perturbed by quenched
random bond (i.e., temperature) disorder, known to exhibit
a stable weak-disorder fixed point for q > 2, perturbatively

accessible in a q! 2 expansion. This has been studied
using perturbative CFT [6,7] and transfer-matrix methods
[8]. However, geometric properties of interfaces which are
crucial for future comparison to SLE were to our knowl-
edge not investigated.
The aim of this Letter is to present results for the fractal

dimension of domain walls in the random-temperature
Potts model. These are obtained by analytical calculation
using conformal perturbation theory inspired by [6,7], and
from two types of large-scale numerics: Monte Carlo simu-
lations using the efficient Wolf-algorithm [9], which allow
to keep track of both spin and FK clusters in the same
simulation, and transfer-matrix calculations, whose advan-
tage is to make close contact with CFT. The results of all
three methods agree nicely.
Let us recall the definition of the model: In terms of the

spin variables "i ¼ f1; . . . ; qg at lattice site i, the partition
function of the q-states Potts model is

Z ¼
X

f"ig
e
#
P
hiji

Jij$"i"j

$
X

f"ig

Y

hiji
½1! pij þ pij$"i"j

&;

where the sum runs over nearest-neighbor bonds hi; ji. The
last expression is the spin-cluster expansion, noting 1!
pij ¼ e!#Jij . By expanding in pij, it can be rewritten in
terms of the FK clusters, composed by placing a bond
between neighboring sites with probability pij. The pure
ferromagnetic model has Jij ¼ J > 0, pij ¼ p, while in the
disordered one the Jij are chosen as identical indepen-
dently distributed random variables. The partition function
in the FK representation is (up to a prefactor)

Z $
X

G

pjGjð1! pÞj !GjqkGk; (1)

for the pure model, with a straightforward generalization to
the random case. Here G runs over all clusters (i.e., do-
mains connected by the above placed bonds), jGj is the
number of bonds, j !Gj the not placed bonds, and kGk the
number of connected components. The partition sum (1)
allows us to define the Potts model with noninteger q ) 0.
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For the pure model it has a continuous phase transition for
0 * q * 4, which becomes first order for q > 4.

Our analytical calculation focuses on weak disorder,
where the Jij ¼ !J þ $Jij are Gaussian random variables

of variance #2$J2ij ¼ g0 and
ffiffiffiffiffi
g0

p + # !J. Near the critical
temperature of the pure model, the continuum limit of the
random Potts model can be written [6,7] asH ¼ H pure þR

~z "ð~zÞ$Jð~zÞ where
R
~z ,

R
d2 ~z and #H pure is the action

of the pure q-state Potts model, which at criticality can be
identified with its conformal field theory, or the OðN ¼ffiffiffi
q

p Þmodel [10]. We use the Coulomb-gas representation of
the latter. The coupling constant p is related to q via

ffiffiffi
q

p ¼
2 cos½%=ð2pÞ&, so that p ¼ 2 is Ising and p ¼ 3 is 3-state
Potts. The second term inH is the deviation from the pure
critical point induced by the disorder, where "ð~zÞ is the
energy density operator of the pure model. To average over
disorder, the n-times replicated action is taken:

lne!#
P

n
a¼1

H a ¼ !#
Xn

a¼1

H a
pure þ g0

Z
~z

Xn

a;b¼1

"að~zÞ"bð~zÞ;

where everywhere below we use the shorthand notation
"ðzÞ to denote "ð~zÞ, where ~z ¼ ðz; !zÞ. The diagonal term
"aðzÞ2 is perturbatively less relevant [6] than "aðzÞ"bðzÞ,
whose dimension is 4#", i.e., 4 times the dimension of the
holomorphic part of the energy primary field "ðzÞ ,
"12ðzÞ, with #" ¼ pþ1

2ð2p!1Þ . For the Ising model, p ¼ q ¼
2, and disorder is marginally irrelevant, whereas for the
3-states Potts model p ¼ q ¼ 3 it is relevant. Since the
Coulomb gas is defined for all p, we can perturbatively
expand around the Ising model [6]. This expansion is
conceptually the same as for the &4 model, except that
Feynman diagrams are evaluated using the unperturbed
CFT (with averages denoted h. . .i0). We keep the perturbed
system on its critical manifold, s.t. only the renormaliza-
tion of the disorder g0 is left to consider, with a correction
to second order Oðg20Þ:

X

a!b

"aðzÞ"bðzÞ
X

c!d

"cðz0Þ"dðz0Þ

¼ 4ðn! 2Þ
X

b!d

"bðzÞ"dðzÞh"ðzÞ"ðz0Þi0 þ - - - : (2)

Using the unperturbed average h"ðzÞ"ðz0Þi0 ¼ 1
jz!z0j4#" one

obtains the renormalized disorder gL4#"!2 ¼ g0 þ
4%ðn! 2Þg20 L2!4#"

2!4#"
, L being the infrared cutoff, and the

# function (for q > 2) [6]:

L@Lg ¼ ð2! 4#"Þgþ 4%ðn! 2Þg2 þ - - - (3)

At n ¼ 0, #ðgÞ has an infrared fixed point at g. ¼ 1!2#"

4%
which determines the low-energy behavior of the random
model. Conformal symmetry is expected to be restored at
g.. To date, this method has been employed to calculate the
scaling dimension of the energy density " and of the spin
", to two- and three-loop order in [6,7], respectively. The

multiscaling properties of spin-spin correlation function
has been determined in [11].
Here we focus on geometrical properties, hence on the

operator "10ðzÞ which measures [12] the passage of one
critical curve at point ~z. Indeed, for the pure model, the
correlation function h"10ðzÞ"10ð0Þi0 ¼ jzj!4#10 gives the
probability that two points lie at the perimeter of the same
FK cluster, from which one obtains the fractal dimension
of FK domain walls dFK;puref ¼ 2–2#10, i.e., d

FK
f ¼ 8=5 for

q ¼ 3. Here we compute the corresponding probability for
the disordered system. A crucial question is whether
"10ðzÞ is still the ‘‘curve-detecting’’ operator in the disor-
dered system. This is true at the ‘‘critical dimension’’ p ¼
q ¼ 2. Increasing p deforms the operator adiabatically.
Since the latter is a physical observable, it is an eigenop-
erator of the RG. We must check if there is an operator at
p ¼ 2 which (i) has the same dimension as "1;0, and
(ii) appears in the subalgebra generated by "1;0 and "1;2.
If such an operator exists, it mixes with"1;0, and the curve-
detecting operator will be one of the eigenoperators of the
RG flow involving"10. We checked the absence of such an
operator: thus, at least for small p! 2, "10 is the curve-
detecting operator.
We now sketch the calculation of the scaling dimension

of "10, for details see [13]. There is no contribution to
order g0, since contracting the disorder operator

P
b!c"

b"c

with "10 in, say, replica a, leaves one " in replica b ! a,
thus is not proportional to "a

10. At second order, contract-
ing two disorder vertices with "a

10ðz1Þ gives

"a
10ðz1Þ

g20
2!

"X

b!c

Z
z2

"bðz2Þ"cðz2Þ
#"X

d!e

Z
z3

"dðz3Þ"eðz3Þ
#

and projecting onto "a
10ðz1Þ. Contracting using

h"cðz2Þ"eðz3Þi0 ¼ $cejz2 ! z3j!4#12 to eliminate replicas
not equal to a we obtain "a

10ðz1Þ"b¼aðz2Þ"d¼aðz3Þ, which,
projected onto "a

10ðz1Þ yields

(4)

where the OPE coefficient ð"10ðz1Þ"ðz2Þ"ðz3Þj"10ðz1ÞÞ :¼
limR!1

h"10ðz1Þ"ðz2Þ"ðz3Þ"10ðRÞi0
h"10ðz1Þ"10ðRÞi0 . This and the integral (4) are

computed using Coulomb gas techniques [14]. One 2D
integration, over one angle and one scale, is easy, and gives
a pole in 1=ðp! 2Þ. One 2D integral over say z2 is left, but
we also need a screening charge Vþ to get the four-point
function in (4). We evaluated this integral in the marginal
dimension, i.e., for p ¼ 2 (Ising) by analytical techniques
[7], and numerically [13]. The result is

Z
z2;z3

ð"10ðz1Þ"ðz2Þ"ðz3Þj"10ðz1ÞÞh"ðz2Þ"ðz3Þi

¼ !7:0710L4!8#12ð1! 2#12Þ!1; (5)
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Inserting the fixed-point value g. from above gives

dimLð"10Þ¼!2#10þð1!2#"Þ2
2%2 /7:071¼p¼3!2

5þ0:01433.
This leads to the fractal dimension of FK domain walls:

dFKf ¼ 2þ dimLð"10Þ ¼ 1:614 33: (6)

Let us note a few additional peculiar features which come
out of the calculation [13]. The four-point function

GðuÞ :¼ lim
jz4j!1

jz4j4#10h"10ð0Þ"ð1Þ"ðuÞ"10ðz4Þi (7)

at p ¼ 2, i.e., for the Ising model is

GðuÞjp¼2 ¼
$ð13Þ6
27%2
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j1! uj2
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3
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þ $ð13Þ8
54

ffiffiffi
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3
;
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3 ;

4
3

!1; 0

&
þ c:c:

#

G is the Meijer G function, which has a logarithmic
divergence at u ¼ 0,

G2;0
2;2

%
u

$$$$$$$$
1
3 ;

4
3

!1; 0

&
¼ 1

3
$
%
1

3

&
2

2F1

%
! 1

3
;
2

3
; 2;u

&
lnðuÞ þ . . . ;

dropping regular terms. The structure of the result and the
logarithmic divergence remain valid for larger values of p,
with the parameters replaced by rational functions of p.
This behavior is consistent with the appearance of opera-
tors of canonical dimensions 1 and 0 (different from the
identity) in the OPE of "with"1;0 as discussed in a similar
case in [15]. Logarithms are known to appear for operators
on the boundary of the Kac table [16] and in disordered
systems [17].

We tried to compute also the fractal dimension of spin
interfaces, using the operator "01 as curve detector.
Surprisingly, the analogue of (7) does not seem to exist:
we were unable to construct a four-point function, which
satisfies the differential equation induced by the 0-vector
condition associated to " ¼ "12 at level 2, is one-valued,
and reproduces the correct OPE in the limit of u ! 1.

We now discuss our numerical results. For the
Monte Carlo simulations we use the Wolff cluster algo-
rithm [9]. The random bonds are taken from the symmetric
bimodal distribution J1; J2 with # such that ð1!
expð!#cJ1ÞÞð1! expð!#cJ2ÞÞ ¼ q which ensures that
the system is at its critical point [18]. We use J1=J2 ¼ 10
for the random-bond disordered system. The Wolf algo-
rithm allows us to track both spin and FK clusters. In the
simulations, the spins were constrained differently along
two parts of the boundary, creating a domain wall extend-
ing between the midpoints of two opposite sides of the
square [19]. The various conformally invariant boundary
conditions thus obtained—‘‘fluctuating’’ (a= !a), ‘‘fixed’’
(a=b), and ‘‘free’’ (a=free)—all gave the same result in
the large-size limit.

We measured the fractal dimension from the average
length l of the domain wall as a function of the linear size L

of the lattice hli ’ Ldf , where h- - -i denotes the thermal
average and - - - the disorder average [20]. The results
presented here are obtained with a thermal average over
’106' for the pure system and a disorder average over
’105 configurations for the disordered system. ' is the
autocorrelation time which was first determined for each
size, see [13] for details. Our simulations show that for the
pure system, all these domain walls have asymptotically
the same fractal dimension, with the exception of the
common domain wall for fixed BC, which has dimension
one. In Fig. 1 we plot the effective fractal dimension versus
L. As L ! 1 the fractal dimensions of the pure system
converge to the values predicted by conformal field theory,

dspinf ¼ 17
12 , and dFKf ¼ 8

5 , corroborating partial results by

Gamsa and Cardy [19]. Our estimate from all BC, extrapo-

lated to an infinite system gives dspinf ¼ 1:4160 0:002 and

dFKf ¼ 1:5990 0:002. For the disordered system we find

dspinf ¼ 1:4010 0:003; dFKf ¼ 1:6140 0:003: (8)

The latter is in excellent agreement with our analytical
result (6). We have also checked the SLE duality rela-
tion !!0 ¼ 16. Using d! ¼ 1þ !

8 , we find for the pure
system !spin ¼ 3:3280 0:016, !FK ¼ 4:7920 0:016, and
!spin!FK ¼ 15:950 0:13. For the disordered system, we
find !spin ¼ 3:2080 0:024, !FK ¼ 4:9120 0:024, and
!spin!FK ¼ 15:760 0:20.
In the transfer-matrix approach, we studied the FK

clusters in the equivalent loop formulation [21]. The loops
are defined on the medial lattice as the external and internal
hulls of the FK clusters. The random bonds were again
drawn from a bimodal distribution, with an equal number
of strong and weak bonds [22]. The strength of the disorder
is conveniently characterized by the parameter s [23]
defined by J1=J2 ¼ lnð1þ s

ffiffiffi
q

p Þ= lnð1þ ffiffiffi
q

p
=sÞ, with q ¼

3. For a given fixed realization of the random bonds on long
cylinders of length M ¼ 105 and circumference L ¼
4; 6; . . . ; 12 lattice spacings (for the medial lattice) the
corresponding free energy fjðLÞ, normalized per lattice
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17/12

FIG. 1 (color online). Fractal dimension of FK clusters (top)
and spin clusters (bottom), both for the pure (green or light gray)
and disordered (red or gray) system, using the Wolff algorithm.
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site, was computed from the leading Lyapunov exponent of
the corresponding product of random transfer matrices.
The transfer direction was taken axial with respect to the
medial lattice (hence diagonal with respect to the original
square lattice supporting the Potts spins) [21]. Three differ-
ent topological sectors were considered, corresponding to
enforcing j ¼ 0, 2, 4 loop segments to propagate along the
length direction of the cylinder. The fluctuations of these
free energies were studied by averaging over at leastM0 ¼
105 independent cylinders.

Conformal field theory predicts [24] that f0ðLÞ ¼
f0ð1Þ ! %c

6L2 þ A
L4 þ - - - , where c is the effective central

charge and A a nonuniversal constant. Applying this to
three consecutive L gives estimates cðL! 4; L! 2; LÞ
shown in the left panel of Fig. 2. The fixed-point value s.

of the disorder strength corresponds to the locus of the
maximum of c, and is estimated as s. ¼ 4:00 0:3 (using
also data not shown here), improving on the value s. ¼
3:50 0:5 reported earlier [23]. The effective central charge
of the disordered model is estimated as cðs.Þ ¼ 0:80240
0:0003, in excellent agreement with the three-loop pertur-
bative result [7] c ’ 0:8025.

Correlation functions GjðMÞ are defined as the proba-
bility of having j loop segments propagate over a distance
M along the cylinder axis without joining up. They are
related to the free energy gaps through #fjðLÞ , fjðLÞ !
f0ðLÞ ¼ !1

ML lnGjðMÞ. Their disorder-averaged nth mo-
ment can be extracted from the cumulant expansion [8]

lnðGjÞn ¼ nlnGj þ 1
2 n

2ðlnGj ! lnGjÞ2 þ - - - , where the
quantities on the right-hand side are self-averaging. Only
the first two cumulants contribute significantly. CFT pre-

dicts [25] that !1
ML lnðGjÞn ¼ 2%xj

L2 þ B
L4 þ - - - , where the

n-dependent conformal weights xj are related to the de-
sired (multi)fractal dimensions via dj ¼ 2! xj. For n ¼
1, we have d2 ¼ dFKf defined above; d4 gives the dimension

of ‘‘red bonds’’ (whose removal disconnects a cluster). As
seen from the right panel of Fig. 2, the effective values of
dj depend strongly on s, so accuracy for s. is important
[23]. Using s. ¼ 4:00 0:3 we estimate d2 ¼ 1:6150
0:002, in excellent agreement with (6) and (8).
To conclude, our analytical and numerical results for the

fractal dimension of FK domain walls agree well. Fractal
dimensions of spin interfaces have been determined from
numerics and seem in agreement with the duality relation
suggested by SLE. Pending questions under investigation
are possible multiscaling, the fractal dimensions of spin
interfaces and SLE type observables.
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FIG. 2 (color online). Effective central charges cðLÞ and frac-
tal dimensions dFKf ðLÞ versus disorder strength s, for s ¼ 3:5,

4.0, 4.5. The linear interpolation is only a guide to the eye. Each
curve has been normalized so that finite-size effects are absent
for s ¼ 1 (no disorder). Horizontal lines give corresponding
exact (respectively perturbative) values for the pure (respectively
disordered) system.
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