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The functional renormalization group for the random-field and random-anisotropy O�N� sigma models
is studied to 2 loop. The ferromagnetic-disordered (F-D) transition fixed point is found to next order in
d � 4� � for N > Nc (Nc � 2:834 740 8 for random field, Nc � 9:441 21 for random anisotropy). For
N <Nc the lower critical dimension d � dlc plunges below dlc � 4: we find two fixed points, one
describing the quasiordered phase, the other is novel and describes the F-D transition. dlc can be obtained
in an (Nc � N) expansion. The theory is also analyzed at large N and a glassy regime is found.
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It is important for numerous experiments to understand
how the spontaneous ordering in a pure system is changed
by quenched substrate impurities. One class of systems is
modeled by elastic objects in random potentials (so-called
random manifolds, RMs). Another class is O�N� classical
spin models with ferromagnetic couplings in the presence
of random fields (RFs) or anisotropies (RAs). The latter
describe amorphous magnets [1]. Examples of RFs are
liquid crystals in porous media, He-3 in aerogels, nematic
elastomers, and ferroelectrics [2]. The XY random-field
case N�2 is common to both classes and de-
scribes periodic RMs such as charge density waves,
Wigner crystals, and vortex lattices [3]. Larkin showed
[4] that the pure fixed points (FPs) of both classes are
perturbatively unstable to weak disorder for d < dc (dc �
4 in the generic case). For a continuous symmetry (i.e., the
RF Heisenberg model) it was proven [5] that order is
destroyed below d � 4. This does not settle the difficult
question of the lower critical dimension dlc as a weak-
disorder phase can survive below dc, if associated with a
nontrivial FP, as predicted in d � 3 for the Bragg-glass
phase with quasi-long-range order (QLRO), i.e., power law
decay of spin correlations [6]. For the random-
field Ising model (RFIM) N � 1, it was argued [7], then
proven [8] that the ferromagnetic phase survives in d � 3.
Developing a field theory to predict dlc, and the exponents
of the weak-disorder phase and the ferromagnetic-
disordered (F-D) transition, has been a long-standing chal-
lenge. Both extensive numerics and experiments have not
yet produced an unambiguous picture. Among the debated
issues are the critical region of the 3D RFIM [9] and the
possibility of a QLRO phase in amorphous magnets [2,10].

A peculiar property shared by both classes is that ob-
servables are identical to all orders to the corresponding
ones in a d�2 thermal model [11]. This dimensional
reduction (DR) naively predicts dlc � 4 for the weak-
disorder phase in a RF with a continuum symmetry [12]
and no ferromagnetic order for the d � 3 RFIM, which is
proven wrong [8]. It also predicts duc � 6 for the F-D
transition FP. While there is agreement that multiple local
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minima are responsible for DR failure, constructing the
field theory beyond DR is a formidable challenge. Recent
attempts include a reexamination of �4 theory (i.e., soft
spins) for the F-D transition near d � 6 [13], and large-N
studies [14], using replica-symmetry breaking.

As for the pure O�N� model, an alternative to the soft-
spin version (near d � 6) is the � model near the lower
critical dimension (here presumed to be d � 4). In 1985,
Fisher [15] noticed that an infinite set of operators become
relevant near d � 4 in the RF O�N� model. These were
encoded in a single function R��� for which functional
renormalization group (FRG) equations were derived to
1 loop, but no new FP was found. For a RM problem [16] it
was found that a cusp develops in the function R��� (the
disorder correlator), a crucial feature which allows one to
obtain nontrivial exponents and evade DR. A fixed point
for the RF model was later found [6] in d � 4� � for N �
2. It was noticed only very recently [17] that the 1-loop
FRG equations of Ref. [15] possess fixed points in d �
4� � for N � 3, providing a description of the long-
sought critical exponents of the F-D transition.

In spite of these advances, many questions remain. Con-
structing FRG beyond 1 loop (and checking its internal
consistency) is highly nontrivial. Progress was made for
RMs [18,19], and one hopes for extension to RFs. Some
questions necessitate a 2-loop treatment, e.g., for the de-
pinning transition, as shown in [20]. In RF and RA models
the 1-loop analysis predicted some repulsive FPs in d �
4� � (for larger values of N), and some attractive ones
[6,21] in d � 4� �. The overall picture thus suggests a
lowering of the critical dimension, but how it occurs re-
mains unclear. Finally, the situation at large N is also
puzzling. Recently, via a truncation of exact RG [22] it
was claimed that DR is recovered for large N.

Our aim in this Letter is twofold. We reexamine the
overall scenario for the fixed points and phases of the
O�N� model using FRG. This requires the FRG to
2 loop. Here we present selected results; details are pre-
sented elsewhere [23]. We find a novel mechanism for how
the lower critical dimension is decreased below d � 4 for
2-1 © 2006 The American Physical Society
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N <Nc at some critical value Nc. We obtain a description
of the bifurcation which occurs at Nc, and below Nc we
find two perturbative FPs. Thanks to 2-loop terms, dlc can
be computed in an expansion in Nc � N, and the F-D
transition below d � 4 is found. A study of large N in-
dicates that some glassy behavior survives there.

Let us consider O�N� classical spins ~n�x� of unit norm
~n2 � 1. To describe disorder-averaged correlations one
introduces replicas ~na�x�, a � 1; . . . ; k, the limit k � 0
being implicit everywhere. The starting model is a non-
linear � model of partition function Z �

R
D���e�S���:

S ��� �
Z
ddx
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X
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where ~na � ��a; ~�a� with �a�x� �
�����������������������
1� ~�a�x�

2
p

. A small
uniform external field	M0�1; ~0� acts as an infrared cutoff.
Fluctuations around its direction are parametrized by (N �
1) � modes. The ferromagnetic exchange produces the 1-
replica part, while the random field yields the 2-replica
term R̂0�z� � z for a bare Gaussian RF. RA corresponds to
R̂0�z� � z2. As shown in [15], a full function R̂�z� is
generated under RG and marginal in d � 4.

To obtain physics at large scales, one computes pertur-
batively the effective action ��na�x��. It can be expanded in
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gradients near a uniform background configuration n0
a, and

split in 1-, 2- and higher-replica terms. From rotational
invariance it is natural to look for � in the form (1) with
~na ! ~nRa � ��

R
a ; ~�

R
a �, �a ! �Ra �

���������������������
1� ��Ra �

2
p

, �a !
�Ra � Z�1=2�a, T0 ! TR � T0=ZT , M0 ! MR �
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Z
p

=ZT , m �
��������
MR
p

the renormalized mass of the ~�a
modes, and R̂0� ~na ~nb� ! m�R̂� ~nRa ~nRb �. Higher vertices gen-
erated under RG are irrelevant by power counting, and
hence discarded. Renormalization of T contributes to the
flow of R̂, and one sets T � 0 at the end.

One computes Z, ZT , and R̂ perturbatively in R̂0 and
extracts � and � functions ��R̂��z� � �m@mR̂�z�, � �
�m@m lnZ, and �T � �m@m lnZT , derivatives taken at
fixed R̂0; T0;M0. Although calculation of the Z factors is
simplified due to DR, anomalous contributions appear
from the nonanalyticity of R̂�z�. To compute R̂�z�, one
chooses a pair of uniform background fields (n0

a; n
0
b) for

each (a; b). We use a basis for the fluctuating fields (to
be integrated over) such that ~na � ��a; �a; ~�a�, ~nb �
��b; �b; ~�b�, where � lies in the plane common to
( ~n0
a; ~n0

b), and ~�a along the perpendicular N � 2 direc-
tions; both have diagonal propagators. Denoting ~n0

a ~n0
b �

cos�ab, one has ~na ~nb � cos�ab��a�b � �a�b� �
sin�ab��a�b � �b�a� � ~�a ~�b. One gets factors of (N �
2) from the contraction of ~�. Our calculation to 2 loops
results in the flow equation for the function R��� � R̂�z �
cos��, and � � 4� d:
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� 2�N � 2��R00�0� � R00�0�2 � �aR000�0��2�R���; (2)
with @l :� �m@m, and the last factor proportional to R���
is �2�T and it takes into account the renormalization of
temperature. Thanks to the anomalous terms, arising from
a nonanalytic R���, this � function preserves (at most) a
linear cusp [i.e., finite R000�0��], and reproduces for N � 2
the previous 2-loop results for the periodic RM [18]. For
N > 2, anomalous contributions are determined following
[24]. � is found as

� � �N � 1�R00�0� �
3N � 2

8
R000�0��2; (3)

either via a calculation of h�ai [25] or of the mass correc-
tions, a result consistent with the � function (2) [26]. The
determination of �T is more delicate, and we have allowed
for an anomalous contribution �a, whose effect is minor
and discussed below [27]. The correlation exponents (stan-
dard definition [17]) are obtained as �� � �� �, � �
�T � � at the FP. (2) has the form

@‘R � �R� B�R;R� � C�R;R; R� �O�R4�: (4)
We now discuss its solution, first in the RF case, and set-
ting �a � 0. The 1-loop flow-equation (setting C � 0)
admits, in dimensions larger than 4, a fixed point R
F-D
with a single repulsive direction, argued by Feldman to
describe the F-D zero temperature transition. This is true
only for N >Nc. For N <Nc this fixed point disappears
and instead an attractive fixed point R
QLRO appears which
describes the Bragg glass for N � 2. We have determined
Nc � 2:834 740 8 and the solution Rc�u� which satisfies
B�Rc; Rc�jN�Nc � 0. It is formally the solution at � � 0.
Since the FRG flow vanishes to 1 loop along the direction
of Rc, examination of the 2-loop terms is needed to under-
stand what happens at N � Nc. In particular, the F-D
transition should still exist for N <Nc, though it cannot
be found at 1 loop. It is not even clear a priori whether it
remains perturbative.

The scenario found is perturbative, accessible within a
double expansion in

������
j�j

p
and N � Nc. To this aim, we

write the leading terms in N � Nc and � of (4), namely,
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@‘R � �R� Bc�R;R� � Cc�R;R; R�

� �N � Nc�BN�R;R�Bc�� � �� � B�� � ��jN�Nc ;

Cc�� � �� � C�� � ��jN�Nc: (5)

One looks for a fixed point of (5) of the form R�u� �
gRc�u� � g

2	R�u�, with g>0, R00c �0� � �1, and its flow.
Surprisingly, close to N � Nc, the functional flow for the
disorder R is captured by an equation for its strength g:

@lg � �g� 1:092�N � Nc�g
2 � 2:352g3: (6)

The solution is shown schematically in Fig. 1. Setting g �
�Nc � N�f, there are three FPs (for exponents see [23]):

�

�N � Nc�
2 � 1:092f� 2:352f2 � 0 or f � 0: (7)

For N > Nc the physical branch is f < 0. As seen in Fig. 1,
for d > 4 there is a ferromagnetic phase (i.e., f � 0 is
attractive) and an unstable FP describing the F-D transi-
tion, given by the negative branch of (7). At N � Nc one
sees from (6) that the F-D fixed point is still perturbative
but in a

���
�
p

expansion for g (and for the critical exponents).
For N <Nc the physical side is f > 0 and there are two
branches in Fig. 2 corresponding to two nontrivial fixed
points. One is the infrared attractive FP for weak disorder
which describes the quasiordered ferromagnetic phase; the
second one is unstable and describes the transition to the
disordered phase with a flow to strong coupling. These two
fixed points exist only for � < �c and annihilate at �c. The
lower critical dimension of the RF model for N <Nc is
lowered from d � 4 to

dRF
lc � 4� �c � 4� 0:1268�N � Nc�2 �O��N � Nc�3�:

(8)

Note that the mechanism is different from the more con-
ventional criterion d� 4� ��d� � 0 at d � dlc.

The same analysis for the random anisotropy class yields
Nc � 9:441 21. The equivalent of (6) becomes @lg � �g�
0:549�N � Nc�g2 � 47:6g3, leading to dRA

lc � 4�
0:001 58�N � Nc�2. Although it yields dlc�N � 3� � 3:93
and no QLRO phase in d � 3, naive extrapolation should
be taken with caution given the high value of Nc.
Numerical values for dlc are changed for �a � 0, but the
scenario is robust as long as �a is smaller than some critical
value �c [28].

We now discuss the FRG flow equations for N large.
From a truncated exact RG, Tarjus and Tissier (TT) [22]
found that the linear cusp of the F-D fixed point for d > 4
N = N cN > N c N < N c

dd dd 444 d lc

F F F

D
D

D

D D D

QLRO

ggg

FIG. 1 (color online). Phase diagram. D � disordered; F �
ferromagnetic; QLRO � quasi-long-range order.
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vanishes for N >N
�d�, i.e., R000�0�� � 0, and that the
nonanalyticity becomes weaker as N increases (as j�jn

with n	 N). Analytical study of the derivatives of (2)
confirms the existence of this peculiar FP to 2 loop and
predicts N
�d; 2p�, beyond which the set of fR�2k��0�g for
k 
 p admits a stable FP, with R�2k�1��0�� � 0 for k 
 p
and R�2k�1��0�� � 0 for k > p. We find

N
�d� � N
�d; 4� � 18� 49�=5� � � � ; (9)

which yields a slope roughly twice the one of Fig. 1 of [22].
This remarkable FP raises some puzzles. Although weaker
than a cusp its nonanalyticity should imply some (weaker)
metastability in the system. It is thus unclear whether DR is
fully restored: to prove it one should rule out feedback
from anomalous higher-loop terms in exponents or the �
function. Finally, one also wonders about its basin of
attraction. As shown in Fig. 3, the FRG flow for R0000�0�
is still to large values if its bare value is large enough,
indicating some tendency to glassy behavior.

To explore these effects we now study the F-D phase
transition at large N and d > 4. We obtain, at both large N
and fixed d (extending Ref. [19]), and to 1 loop, the flow
equation for the rescaled ~R�z � cos�� � NR���=j�j:

@l ~R � � ~R� 2 ~R01 ~R� ~R01 ~R0z�
1

2
~R02 � 0: (10)

We denote y�z� � ~R0�z�, y0 � ~R0�1� � �NR00�0�=j�j, and
r4 � NR0000�0�=j�j. There are two analytic FPs ~R�z� � z�
1=2 and ~R�z� � z2=2, corresponding both to y0 � 1 and to
r4 � 1 and r4 � 4, respectively. This agrees with the flow
of the derivatives for analytic R���: @ly0 � y0�y0 � 1�,
and at y0 � 1: @lr4 �

1
3 �r4 � 1��r4 � 4�. The first FP is

the large-N limit of the TT fixed point; the second FP is
repulsive and divides the region where r4 ! 1 [nonana-
lytic R���] in a finite RG time lc (Larkin scale). For y0 > 1,
we find a family of nonanalytic fixed points with a linear
cusp, parametrized by an integer n � 2, such that y0 �
n=�n� 1�, z � y� �y0 � 1��y=y0�

n. The solutions with n
-0.1 0.1 0.2 0.3

-0.2

FIG. 2 (color online). Parametric plot for solutions of (5) for
N < Nc (solid circles) for RFs, equivalent to (6) (solid line,
parabola) and flow (arrows). f parametrizes disorder, and only
f � 0 is physical. Compare with Fig. 1, right panel.
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FIG. 3 (color online). Flow for R0000�0�=j�j for d � 4� � > 4
as a function of N. The two branches behave as 1=N and 4=N at
large N.
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[i.e., z�y�] odd correspond to random anisotropy (R0��� �
R0��� ��). The n � 2 RF fixed point is R��� �

2 cos��� � 8
��
2
p

3 sin3��=2� � 4
3 . To elucidate their role, we

obtained the exact solution for the flow both below lc, i.e.,
z � y

y0
� �y0 � 1��� yy0

� [��x� parametrizes the bare disor-
der, ��1� � 0], and above lc, with an anomalous flow for
y0. Matching at lc yields the critical manifold for RF
disorder, defined from the conditions that �0�w� �
��w�=w � 1 has a root 0 
 w 
 1. It is different from
the naive DR condition y0 � 1, valid for small r4. The n �
2 FP corresponds to bare disorder such that the root w � 0.
Hence it is multicritical. Generic initial conditions within
the critical F-D manifold flow back to the TT FP; i.e., the
linear cusp decreases to zero [29], however, only at an
infinite scale. Hence we expect a long crossover within a
glassy region, characterized by a cusp, and metastability on
finite scales. (The physics associated with a similar re-
entrant crossover for RM for d > 4 is discussed in
Appendix H of [30].) The large-N limit is subtle. Taking
N ! 1 at fixed volume on a bare model with R̂0�z� � z
yields only the analytic FP, equivalent to a replica-
symmetric saddle point. Higher monomials zp are gener-
ated in perturbation theory, at higher order in 1=N. Thus,
for N large but fixed and an infinite size, one must first
coarse grain to generate a nontrivial function R̂0�z�, before
taking N ! 1.

In conclusion, we obtained the 2-loop FRG functions for
the random field and anisotropy �models. We found a new
fixed point and a scenario for the decrease of the lower
critical dimension. This rules out the scenario left open at
1 loop that the bifurcation close to d � 4 simply occurs
within the (quasi)ordered phase.

We thank G. Tarjus and M. Tissier for pointing out that
the n � 2 FP is multicritical.
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