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The functional renormalization group for the random-field and random-anisotropy O(N) sigma models
is studied to 2 loop. The ferromagnetic-disordered (F-D) transition fixed point is found to next order in
d=4+ e for N> N, (N, =2.8347408 for random field, N, = 9.441 21 for random anisotropy). For
N < N, the lower critical dimension d = d). plunges below d;. = 4: we find two fixed points, one
describing the quasiordered phase, the other is novel and describes the F-D transition. d. can be obtained
in an (N, — N) expansion. The theory is also analyzed at large N and a glassy regime is found.
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It is important for numerous experiments to understand
how the spontaneous ordering in a pure system is changed
by quenched substrate impurities. One class of systems is
modeled by elastic objects in random potentials (so-called
random manifolds, RMs). Another class is O(N) classical
spin models with ferromagnetic couplings in the presence
of random fields (RFs) or anisotropies (RAs). The latter
describe amorphous magnets [1]. Examples of RFs are
liquid crystals in porous media, He-3 in aerogels, nematic
elastomers, and ferroelectrics [2]. The XY random-field
case N=2 1is common to both classes and de-
scribes periodic RMs such as charge density waves,
Wigner crystals, and vortex lattices [3]. Larkin showed
[4] that the pure fixed points (FPs) of both classes are
perturbatively unstable to weak disorder for d < d, (d. =
4 in the generic case). For a continuous symmetry (i.e., the
RF Heisenberg model) it was proven [5] that order is
destroyed below d = 4. This does not settle the difficult
question of the lower critical dimension d;. as a weak-
disorder phase can survive below d., if associated with a
nontrivial FP, as predicted in d = 3 for the Bragg-glass
phase with quasi-long-range order (QLRO), i.e., power law
decay of spin correlations [6]. For the random-
field Ising model (RFIM) N = 1, it was argued [7], then
proven [8] that the ferromagnetic phase survives in d = 3.
Developing a field theory to predict d;., and the exponents
of the weak-disorder phase and the ferromagnetic-
disordered (F-D) transition, has been a long-standing chal-
lenge. Both extensive numerics and experiments have not
yet produced an unambiguous picture. Among the debated
issues are the critical region of the 3D RFIM [9] and the
possibility of a QLRO phase in amorphous magnets [2,10].

A peculiar property shared by both classes is that ob-
servables are identical to all orders to the corresponding
ones in a d—2 thermal model [11]. This dimensional
reduction (DR) naively predicts d;. = 4 for the weak-
disorder phase in a RF with a continuum symmetry [12]
and no ferromagnetic order for the d = 3 RFIM, which is
proven wrong [8]. It also predicts d,. = 6 for the F-D
transition FP. While there is agreement that multiple local
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minima are responsible for DR failure, constructing the
field theory beyond DR is a formidable challenge. Recent
attempts include a reexamination of ¢* theory (i.e., soft
spins) for the F-D transition near d = 6 [13], and large-N
studies [14], using replica-symmetry breaking.

As for the pure O(N) model, an alternative to the soft-
spin version (near d = 6) is the o model near the lower
critical dimension (here presumed to be d = 4). In 1985,
Fisher [15] noticed that an infinite set of operators become
relevant near d = 4 in the RF O(N) model. These were
encoded in a single function R(¢) for which functional
renormalization group (FRG) equations were derived to
1 loop, but no new FP was found. For a RM problem [16] it
was found that a cusp develops in the function R(¢) (the
disorder correlator), a crucial feature which allows one to
obtain nontrivial exponents and evade DR. A fixed point
for the RF model was later found [6]ind = 4 — efor N =
2. It was noticed only very recently [17] that the 1-loop
FRG equations of Ref. [15] possess fixed points in d =
4 + € for N = 3, providing a description of the long-
sought critical exponents of the F-D transition.

In spite of these advances, many questions remain. Con-
structing FRG beyond 1 loop (and checking its internal
consistency) is highly nontrivial. Progress was made for
RMs [18,19], and one hopes for extension to RFs. Some
questions necessitate a 2-loop treatment, e.g., for the de-
pinning transition, as shown in [20]. In RF and RA models
the 1-loop analysis predicted some repulsive FPs in d =
4 + € (for larger values of N), and some attractive ones
[6,21] in d = 4 — €. The overall picture thus suggests a
lowering of the critical dimension, but how it occurs re-
mains unclear. Finally, the situation at large N is also
puzzling. Recently, via a truncation of exact RG [22] it
was claimed that DR is recovered for large N.

Our aim in this Letter is twofold. We reexamine the
overall scenario for the fixed points and phases of the
O(N) model using FRG. This requires the FRG to
2 loop. Here we present selected results; details are pre-
sented elsewhere [23]. We find a novel mechanism for how
the lower critical dimension is decreased below d = 4 for
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N < N, at some critical value N,.. We obtain a description
of the bifurcation which occurs at N,, and below N, we
find rwo perturbative FPs. Thanks to 2-loop terms, d;. can
be computed in an expansion in N. — N, and the F-D
transition below d = 4 is found. A study of large N in-
dicates that some glassy behavior survives there.

Let us consider O(N) classical spins 7(x) of unit norm
> = 1. To describe disorder-averaged correlations one
introduces replicas 7i,(x), a = 1,...,k, the limit k =0
being implicit everywhere. The starting model is a non-
linear o model of partition function Z = [ D[ar]e 57

Strl = [t 5= SIVR + (Vo)
1 5 o
= Mo - 3%1%0(:1 nb)} (1)

= (o, 7,) with o,(x) = /1 — 7,(x)>. A small
uniform external field ~M(1, 0) acts as an infrared cutoff.
Fluctuations around its direction are parametrized by (N —
1) 7~ modes. The ferromagnetic exchange produces the 1-
replica part, while the random field yields the 2-replica
term Ry(z) = z for a bare Gaussian RF. RA corresponds to
Ro(z) = 2. As shown in [15], a full function R(z) is
generated under RG and marginal in d = 4.

To obtain physics at large scales, one computes pertur-
batively the effective action I'[n,(x)]. It can be expanded irr

where 71,

gradients near a uniform background configuration n%, and
split in 1-, 2- and higher-replica terms. From rotational
invariance it is natural to look for I' in the form (1) with

>

i, — ik = (o, #®), o,— of T, —
7k =27""m, To — T = To/ZT, My — My =
MO\/Z/ZT, = /My the renormalized mass of the 77,

modes, and Ry (i, n,,) — meR(ikik). Higher vertices gen-
erated under RG are irrelevant by power counting, and
hence discarded. Renormalization of T contributes to the
flow of R, and one sets 7' = 0 at the end.

One computes Z, Z7, and R perturbatively in R, and
extracts B and 7y functions B[R](z) = —md,R(z), v =
—md,, InZ, and yp = —md,, InZy, derivatives taken at
fixed Ry, Ty, My. Although calculation of the Z factors is
simplified due to DR, anomalous contributions appear
from the nonanalyticity of R(z). To compute R(z), one
chooses a pair of uniform background fields (n9, n)) for
each (a, b). We use a basis for the fluctuating fields (to
be integrated over) such that 7, = (o, M, Po)s Hp =
(a’b, nb, pp), where m lies in the plane common to
@9, nh) and p, along the perpendicular N — 2 direc-
tions; both have dlagonal propagators Denoting 797 =
cosd,,, one has figi, = cosd (o0, + M) T
sing ., (o,mp, — TpM,) T PaPp- One gets factors of (N —
2) from the contraction of g. Our calculation to 2 loops
results in the flow equation for the function R(¢) = R(z =
cose), and € = 4 — d:

I 2
OR(D) = eR(D) + LRGP ~ RIOR'D) + (N =2 3 T~ cotdgRGRTO) | + S[R'(0) ~ RO (8P
cotgp _ 5+cos2¢ " " _ " ,
+ (N - 2)Lin4¢ R(¢) WR (#)*R"(p) + sin’e R'(¢)’ dsin'eh R"(0)[2(2 + cos2¢)R'(¢)*
— 6sin2¢R'(¢p)R"($) + (5 + cos2¢)sin2¢R”(¢)2]} N;_ 2R’”(OJ’)ZR”((b) 2 cotpR" (0" )>R' ()

—2(N —2)[R"(0) —

with 9, := —md,),, and the last factor proportional to R(¢)
is —2vyr and it takes into account the renormalization of
temperature. Thanks to the anomalous terms, arising from
a nonanalytic R(¢), this B8 function preserves (at most) a
linear cusp [i.e., finite R”/(0")], and reproduces for N = 2
the previous 2-loop results for the periodic RM [18]. For
N > 2, anomalous contributions are determined following
[24]. v is found as

y= (N —-DR0) + R"(0%)?, 3)
either via a calculation of (o) [25] or of the mass correc-
tions, a result consistent with the B function (2) [26]. The
determination of yt is more delicate, and we have allowed
for an anomalous contribution y,, whose effect is minor
and discussed below [27]. The correlation exponents (stan-
dard definition [17]) are obtained as 7 =€ — 7y, n =
vt — 7 at the FP. (2) has the form

9,R = €R +B(R,R) + C(R,R R) + O(RY). (4

3N -2
8

R"(0)> + y,R"(0")*]R(¢),

2

R?Ve now discuss its solution, first in the RF case, and set-
ting vy, = 0. The 1-loop flow-equation (setting C = 0)
admits, in dimensions larger than 4, a fixed point Ry
with a single repulsive direction, argued by Feldman to
describe the F-D zero temperature transition. This is true
only for N > N_.. For N < N, this fixed point disappears
and instead an attractive fixed point Ry ro appears which
describes the Bragg glass for N = 2. We have determined
N, = 2.8347408 and the solution R.(u) which satisfies
B(R,, Rc)lN:NC = 0. It is formally the solution at € = 0.
Since the FRG flow vanishes to 1 loop along the direction
of R., examination of the 2-loop terms is needed to under-
stand what happens at N = N,.. In particular, the F-D
transition should still exist for N < N, though it cannot
be found at 1 loop. It is not even clear a priori whether it
remains perturbative.

The scenario found is perturbative, accessible within a

double expansion in +/|€| and N — N,. To this aim, we
write the leading terms in N — N, and € of (4), namely,
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9,R = €R +B.(R R) + C.(R, R, R)
+ (N = N)By(R,R)B.(- ) = B( * )| y=n,.

C(-) = CC - )ly=n,- (5)

One looks for a fixed point of (5) of the form R(u) =
gR.(u) + g>86R(u), with g>0, R”(0) = —1, and its flow.
Surprisingly, close to N = N,, the functional flow for the
disorder R is captured by an equation for its strength g:

0,8 = €g + 1.092(N — N,)g* + 2.352¢°. (6)

The solution is shown schematically in Fig. 1. Setting g =
(N, — N)f, there are three FPs (for exponents see [23]):

ﬁ ~1.092f +2352/2=0 or f=0. (7)
For N > N, the physical branch is f < 0. As seen in Fig. 1,
for d > 4 there is a ferromagnetic phase (i.e., f =0 is
attractive) and an unstable FP describing the F-D transi-
tion, given by the negative branch of (7). At N = N, one
sees from (6) that the F-D fixed point is still perturbative
but in a /€ expansion for g (and for the critical exponents).
For N < N, the physical side is f > 0 and there are two
branches in Fig. 2 corresponding to two nontrivial fixed
points. One is the infrared attractive FP for weak disorder
which describes the quasiordered ferromagnetic phase; the
second one is unstable and describes the transition to the
disordered phase with a flow to strong coupling. These two
fixed points exist only for € < €. and annihilate at €.. The
lower critical dimension of the RF model for N <N, is
lowered from d = 4 to
dRf =4 — €. ~4—0.1268(N — N.)* + O((N — N.)*).
®)
Note that the mechanism is different from the more con-
ventional criterion d — 4 + n(d) = 0 at d = d,.

The same analysis for the random anisotropy class yields
N, = 9.44121. The equivalent of (6) becomes 9,8 = €g +
0.549(N — N,.)g? + 47.6g%, leading to dRA=~4—
0.001 58(N — N_)?. Although it yields d,.(N = 3) = 3.93
and no QLRO phase in d = 3, naive extrapolation should
be taken with caution given the high value of N,.
Numerical values for dj. are changed for vy, # 0, but the
scenario is robust as long as y,, is smaller than some critical
value vy, [28].

We now discuss the FRG flow equations for N large.
From a truncated exact RG, Tarjus and Tissier (TT) [22]
found that the linear cusp of the F-D fixed point for d > 4

N=N,

FIG. 1 (color online). Phase diagram. D = disordered; F =
ferromagnetic; QLRO = quasi-long-range order.

vanishes for N > N*(d), i.e., R"(0*) =0, and that the
nonanalyticity becomes weaker as N increases (as |¢|”
with n ~ N). Analytical study of the derivatives of (2)
confirms the existence of this peculiar FP to 2 loop and
predicts N*(d, 2p), beyond which the set of {R?¥(0)} for
k = p admits a stable FP, with RZ*~D(0*) =0 fork < p
and RZ*~D(0*) # 0 for k > p. We find

N*(d) = N*(d,4) = 18 + 49¢/5 + - - -, )

which yields a slope roughly twice the one of Fig. 1 of [22].
This remarkable FP raises some puzzles. Although weaker
than a cusp its nonanalyticity should imply some (weaker)
metastability in the system. It is thus unclear whether DR is
fully restored: to prove it one should rule out feedback
from anomalous higher-loop terms in exponents or the
function. Finally, one also wonders about its basin of
attraction. As shown in Fig. 3, the FRG flow for R"(0)
is still to large values if its bare value is large enough,
indicating some tendency to glassy behavior.

To explore these effects we now study the F-D phase
transition at large N and d > 4. We obtain, at both large N
and fixed d (extending Ref. [19]), and to 1 loop, the flow
equation for the rescaled R(z = cos¢) = NR(¢p)/|el:

- I o 1.
R =—R+2R\R—R\R'z + ER’Z = 0. (10)

We denote y(z) = R'(z), yo = R'(1) = —NR"(0)/|€|, and
r4 = NR"(0)/|€|. There are two analytic FPs R(z) = z —
1/2 and R(z) = z?/2, corresponding both to y, = 1 and to
ry = 1 and ry = 4, respectively. This agrees with the flow
of the derivatives for analytic R(®): 9;y9 = yo(yo — 1),
and at yo = 1: 9;ry = 1 (ry — 1)(r4 — 4). The first FP is
the large-N limit of the TT fixed point; the second FP is
repulsive and divides the region where r, — o0 [nonana-
lytic R(¢)] in a finite RG time [, (Larkin scale). For y, > 1,
we find a family of nonanalytic fixed points with a linear
cusp, parametrized by an integer n = 2, such that y, =
n/(n—1),z=y— (yo — 1)(y/y)". The solutions with n

v T_NC)Q

% 02 03

\\0\

FIG. 2 (color online). Parametric plot for solutions of (5) for
N < N, (solid circles) for RFs, equivalent to (6) (solid line,
parabola) and flow (arrows). f parametrizes disorder, and only
f = 0 is physical. Compare with Fig. 1, right panel.
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FIG. 3 (color online). Flow for R""(0)/|e| ford =4 — e > 4
as a function of N. The two branches behave as 1/N and 4/N at
large N.

[i.e., z(¥)] odd correspond to random anisotropy (R'(¢) =
R'(¢p + 7). The n=2 RF fixed point is R(¢) =

2 cos(¢) + %Esin*%(d) /2) — %. To elucidate their role, we
obtained the exact solution for the flow both below [, i.e.,
7= % + (yg — I)CD(%) [P(x) parametrizes the bare disor-
der, (1) = 0], and above /., with an anomalous flow for
vo. Matching at [. yields the critical manifold for RF
disorder, defined from the conditions that ®'(w) =
®d(w)/w =1 has a root 0 =<w = 1. It is different from
the naive DR condition y, = 1, valid for small 4. The n =
2 FP corresponds to bare disorder such that the root w = 0.
Hence it is multicritical. Generic initial conditions within
the critical F-D manifold flow back to the TT FP; i.e., the
linear cusp decreases to zero [29], however, only at an
infinite scale. Hence we expect a long crossover within a
glassy region, characterized by a cusp, and metastability on
finite scales. (The physics associated with a similar re-
entrant crossover for RM for d >4 is discussed in
Appendix H of [30].) The large-N limit is subtle. Taking
N — o0 at fixed volume on a bare model with Ry(z) = z
yields only the analytic FP, equivalent to a replica-
symmetric saddle point. Higher monomials z” are gener-
ated in perturbation theory, at higher order in 1/N. Thus,
for N large but fixed and an infinite size, one must first
coarse grain to generate a nontrivial function Ry(z), before
taking N — oo.

In conclusion, we obtained the 2-loop FRG functions for
the random field and anisotropy o models. We found a new
fixed point and a scenario for the decrease of the lower
critical dimension. This rules out the scenario left open at
1 loop that the bifurcation close to d = 4 simply occurs
within the (quasi)ordered phase.

We thank G. Tarjus and M. Tissier for pointing out that
the n = 2 FP is multicritical.
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