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We compute numerically the sequence of successive pinned configurations of an elastic line pulled quasis-
tatically by a spring in a random bond �RB� and random field �RF� potential. Measuring the fluctuations of the
center of mass of the line allows one to obtain the functional renormalization group �FRG� functions at the
depinning transition. Following this procedure we are able to directly test the main predictions of FRG
calculations. In particular, the universal form of the second cumulant ��u� is found to have a linear cusp at the
origin, to be identical for RBs and RFs, different from the statics and in good agreement with two-loop FRG
calculations. The cusp is due to avalanches, which we visualize. Avalanches also produce a cusp in the third
cumulant, whose universal form is obtained, as predicted by FRG functions.
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Universality is often more difficult to characterize in ran-
dom systems than in their pure counterparts. Sample-to-
sample fluctuations complicate the analysis, and the nature of
the critical theory may be different. One prominent example
is the zero-temperature �T=0� depinning transition from a
pinned to a moving state, which occurs when an interface is
pulled through a random medium by an external force f be-
yond a threshold fc. Its understanding is important for
magnets,1 ferroelectrics,2 superconductors,3,4 density waves,5

wetting,6 dislocation7 and crack propagation,8 and earth-
quake dynamics.9 At the transition the interface displacement
u�x� is expected to scale as u�x�−u�0��x�, where x is the
d-dimensional internal coordinate and � the roughness expo-
nent. The analogy with critical phenomena, suggested by
mean-field theory,10 was analyzed using the functional renor-
malization group �FRG� to one loop.11,12 Two-loop FRG
studies resolved the apparent contradiction that statics �f
=0� and depinning �f = fc� cannot be distinguished at one
loop.13,14 In the earlier works,10,12 the presence of a diverging
length scale was argued to lead to the universal behavior
observed at the transition. This correlation length was ob-
served in numerics for the steady-state dynamics above fc,
but only in transients below fc.

15–18 The FRG study19 of ther-
mally activated motion below threshold showed a more com-
plex picture with additional length scales involving both stat-
ics and depinning. This is in agreement with a recent
numerical analysis of the T=0+ steady state in that regime,20

which shows that �i� there are no geometric diverging length
scales at fc

− for this steady state and �ii� the roughness is
given by the equilibrium static exponent at small scales and
by the depinning exponent at large scales for all 0� f � fc.
The physics is thus more subtle than in standard critical phe-
nomena. The two-loop FRG is a good candidate to describe
this physics as it contains a mechanism for a crossover be-
tween statics and depinning directly in the quasistatic limit
T ,v→0 �by the generation of an anomalous term in the
�-function at any f �0�. It is thus important to directly test
the central ingredients and properties of the FRG approach in

the dynamics, making contact with observables beyond criti-
cal exponents.

Recently a method to measure the fixed-point function of
the FRG for the statics of pinned manifolds was proposed.21

Exact numerical determination of ground states for interfaces
in various types of disorders22 shows a remarkable agree-
ment in the statics between the measured renormalized
pinning-force correlator ��u� and the one- and two-loop pre-
dictions from the FRG.13,23,24 This method has been extended
to the quasistatic depinning.25 The aim of the present paper is
to compute numerically these fixed-point functions for de-
pinning. Outstanding predictions of the FRG which we test
here are the existence of a linear cusp for ��u�, a single
universality class for both random-bond �RB� and random-
field �RF� disorder, the difference of ��u� between the static
and depinning fixed points, and a comparison with one- and
two-loop predictions. In addition we study the third cumu-
lant, which also exhibits a cusp. The cusps in these FRG
fixed-point functions can directly be related to “avalanches”
or “dynamical shocks.”

The main idea to study depinning, described in Ref. 25, is
to put the system in a quadratic potential and to move its
center, denoted w, monotonously and quasistatically: The
difference between the center of mass of the manifold and w
will fluctuate, and its second cumulant yields precisely the
function ��u� defined and computed in the FRG. In the con-
tinuum, the zero-temperature Langevin dynamics is de-
scribed by the equation of motion

�tu�x,t� = Fw�t�„x,u�x,t�… ,

Fw„x,u�x�… = m2�w − u�x�� + c�2u�x� + F„x,u�x�… , �1�

where Fw�x ,u� is the total force acting on the manifold, c is
the elastic constant, and m2 is the curvature of the quadratic
potential which acts as a mass for the field u. F�x ,u� is the
random pinning force. For RF disorder, F�x ,u� is short
ranged with correlations F�x ,0�F�x� ,u�=�0�u��d�x−x��. For
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RB disorder this force is derived from a short-ranged random
potential V�x ,u�, F�x ,u�=−�uV�x ,u�.

Starting from an arbitrary initial condition uinit�x� and a
given w=w0, the manifold moves to a locally stable state
uw0

�x�—i.e., a zero-force state Fw0
(x ,uw0

�x�)=0—which is
stable to small deformations. Increasing w, u�x� increases
slightly �and smoothly if F�u ,x� is smooth in u�, while the
configuration remains stable. At some w=w1, the state be-
comes unstable and the manifold moves until it is blocked
again in a new locally stable state uw1

�x�. We are interested in
the center-of-mass �i.e., translationnally averaged� displace-
ment u�w�=L−d�ddxuw�x�. The function u�w� exhibits jumps
at a discrete set of values of w and is in general dependent on
the initial condition. However, due to the no-passing rule,26

we can prove that there exists a w*�w0 such that the orbit
uw�w*�x� becomes independent of the initial condition uinit�x�
and w0. A stationary state is thus reached after a finite w
−w0, on which we focus.

We check these predictions numerically for a string �d
=1�. To solve Eq. �1�, we discretize the string along the x
direction, x→ j=0, . . . ,L−1, keeping uw�j� as a continuous
variable. A very efficient algorithm27 finds the exact location
of the succession of locally stable states. For RB disorder, we
generate, for each j, a cubic spline V(j ,u�j�) interpolating a
large number �102–103� of uncorrelated normal random
points, of regular spacing a, a zero derivative being imposed
at the first and last points. Once u�j� passes the last point, a
new spline is generated. For RF disorder, F(j ,u�j�) is taken
as a linear interpolation of regularly spaced normal random
points. The discretization in x, in the limit a→0, preserves
the statistical tilt symmetry �STS� of the continuum model.
�Only very small corrections to c are expected as
ma /�c�1.� The Fourier modes and center of mass of the
discretized line are defined as uq=� j=0

L−1eiqjuw�j� and u�w�
=u0 /L.

We have observed that in the transient regime w−u�w�
increases on average linearly with w and reaches a plateau in
the stationary state. There, the line is depinninglike roughly
up to a scale of the order of 1 /m where the confinement due
to the mass takes over. This is apparent on the disorder-
averaged structure factor S�q�=uqu−q plotted in Fig. 1 for
various masses: it exhibits a plateau at small q. In the steady
state the fluctuations of w−u�w� are related to the FRG func-
tions. The first cumulants are25

m2�w − u�w�� = fc�m� ,

m4�w − u�w���w� − u�w���c = L−d�m�w − w�� . �2�

Since the correlations of w−u�w� decay over a finite scale in
w, the disorder averages in Eqs. �2� can be determined as
translational averages over w. A prediction of the FRG is that
in the limit mL→� the quantities fc�m� and �m�w� in Eqs.
�2� become L independent. Here Fig. 1 shows that this holds
for Lm�5�c, as one can check that several modes are con-
fined and the correlation length is smaller than the system
size. The FRG also predicts that

fc�m� = fc + c1m2−�, �3�

��u� = m	−2��̃�um�� , �4�

where �̃�w� goes to a fixed point as m→0 �	=4−d; here,
d=1�.

We have studied the behavior of the critical force fc�m�
for the two classes of disorder. From Eq. �4� one has
���0�m�m2−�, yielding a parameter-free linear scaling
shown in Fig. 2. For large m the scaling is nonlinear, while
for smaller m it is linear up to the scale where the correlation
length becomes of the order of L �mL	5�. The critical force
of the infinite system is defined here in an unambiguous way,
as fc= fc�m=0�. The resulting c1�0; hence, the average
force exerted on the manifold is smaller than fc. One can see
in Fig. 2 that the slopes of the two curves coincide. This is
consistent with the FRG which predicts that it is a universal
amplitude, depending on microscopic details only through
the renormalized elastic coefficient c; here, c	1 for both
models of Fig. 2. The study of this and related amplitudes is
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FIG. 1. �Color online� Structure factor of the line �L=512� for
RF disorder �curves are shifted for clarity�. The crossover between
the depinning slope and the plateau determines the correlation
length �
m−1�. For m=0.01 the correlation length is larger than the
system size.
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FIG. 2. �Color online� Finite-size study of fc�m�. The extrapo-
lation fc= fc�0� corresponds to the critical force for the infinite
system.
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deferred to a future publication. Here we focus on parameter-
free fully universal functions.

We now turn to the determination of the fixed-point func-
tion. Since there are two scales in ��u�, we write

��u� = ��0�Y�u/u�� , �5�

where Y�0�=1 and one determines u� such that �0
�dzY�z�

=1. The function Y�z� is universal and depends only on the
dimension of space. We have determined Y�z� from our nu-
merical data for both RF and RB disorder. For small masses
the two functions coincide within statistical errors. This
is visualized in Fig. 3. The prediction from the FRG is
that Y�z�=Y1�z�+	Y2�z�+O�	2� with 	=4−d. The one-
loop function is the same as for the statics and given by
the solution of �z=�Y1−1−ln Y1 and �=�0

1dy�y−ln y−1
	0.548 222 889 3. Since the measured Y�z� is numerically
close to Y1�z�, as in the statics, we plot in Fig. 4 the differ-
ence Y −Y1. The overall shape of the difference is very simi-
lar to the one obtained for the RF statics in d=3,2 ,0, which
exhibits only a weak dependence on d. However, the overall
amplitude is larger by a factor of about 1.25, in both the
numerics and the two-loop FRG. We have plotted the func-

tion Y2�z�= d 
 d	Y�z�
	=0 which, as for the statics, is close
to the numerical result. We also observe a cusp—i.e., Y��0�
=−0.816±0.004 for RFs and Y��0�=−0.815±0.005 for RBs.
FRG predicts Y��0�=−0.775 304−0.041 206 1	+O�	2�.

To investigate deeper the validity of FRG, we measure the
third cumulant,30 defined as

m6�w� − u�w�� − �w − u�w���3c = L−2dS�w� − w� . �6�

The lowest-order prediction21 is S�w�= 12
m2���w����0�
−��w��. To check the scaling in a parameter-free way, we
define

Q„��w�/��0�… ª 

0

w

S�w��dw��

0

�

S�w��dw�. �7�

Q�x� is expected to be universal. Indeed we find, that RB and
RF give, within statistical errors, identical results, close to
the one-loop prediction; see Fig. 5.

It is instructive to visualize the shape of the function u�w�
in a single environment as a function of the mass m, as
shown in Fig. 6. The analogous function in the statics—i.e.,
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FIG. 3. �Color online� Universal scaling form Y�z� for ��u� for
RB and RF disorder.
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FIG. 4. �Color online� The difference between the normalized
correlator Y�z� and the one-loop prediction Y1�z�. Averages over
107–108 samples were performed.
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FIG. 5. �Color online� Data collapse for the universal function
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the position of the center of mass of the ground state—
exhibits shocks. In d=0 the evolution of these shocks as m is
decreased follows a ballistic aggregation process described
by the Burgers equation. The “dynamical shocks” or ava-
lanches also follow an interesting dynamics which remains
to be studied in detail. The fact that they do not accumulate,
apparent in Fig. 6, is consistent with the linear cusp found in
the second and third cumulants.

To conclude we have analyzed the dynamics of a mani-
fold at the depinning transition in a geometry which allows a
precise and unambiguous comparison to the predictions from
the functional RG. By moving the quadratic well quasistati-
cally, we cleanly define the avalanches at the threshold. The
center-of-mass fluctuations become universal and are de-
scribed by the FRG fixed-point functions. The main and non-
trivial predictions of two-loop FRG are confirmed: namely, a

scale-invariant fixed-point function ��u� with a linear cusp
and a single universality class for RB and RF disorder. The
precision of the data allows for a quantitative comparison
with the statics, in agreement with the FRG. A more detailed
analysis of other universal observables is deferred to a future
publication.28 Our results make it important to attempt direct
measurement of the FRG functions in experiments. As dis-
cussed in Ref. 25 this is possible in a variety of systems,
such as magnetic interfaces in an applied field gradient or
contact line depinning,29 where capillarity naturally provides
the harmonic well.
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