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We construct the field theory which describes the universal properties of the quasi-static isotropic depinning
transition for interfaces and elastic periodic systems at zero temperature, taking properly into account the non-
analytic form of the dynamical action. This cures the inability of the 1-loop flow-equations to distinguish
between statics and quasi-static depinning, and thus to account for the irreversibility of the latter. We prove
two-loop renormalizability, obtain the 2-loopβ-function and show the generation of “irreversible” anomalous
terms, originating from the non-analytic nature of the theory, which cause the statics and driven dynamics to
differ at 2-loop order. We obtain the roughness exponentζ and dynamical exponentz to orderε2. This allows
to test several previous conjectures made on the basis of the 1-loop result. First it demonstrates that random-
field disorder does indeed attract all disorder of shorter range. It also shows that the conjectureζ = ε/3 is
incorrect, and allows to compute the violations, asζ = ε

3
(1+0.14331ε), ε = 4−d. This solves a longstanding

discrepancy with simulations. For long-range elasticity it yieldsζ = ε
3
(1 + 0.39735ε), ε = 2 − d (vs. the

standard predictionζ = 1/3 for d = 1), in reasonable agreement with the most recent simulations. The high
value ofζ ≈ 0.5 found in experiments both on the contact line depinning of liquid Helium and on slow crack
fronts is discussed.

I. INTRODUCTION

A. Overview
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Pinning of coherent structures by quenched disorder, and
one of its most striking manifestations, the depinning tran-
sition, are important, ubiquitous and not fully understood
phenomena1–3. Even a single particle in a quenched random
potential exhibits a depinning threshold at zero temperature:
Unbounded motion occurs only when the additional external
applied forcef exceeds a critical forcefc. Depinning also
occurs for systems with many interacting particles, and de-
pending on the degree of order in the structure, it ranges from
the so-called plastic depinning4 to elastic depinning. Here we
focus on elastic depinning where the particles form a lattice
or more generally a well ordered structure. The depinning
transition is then a rather non-trivial collective phenomenon,
intrinsically out of equilibrium and irreversible: It is well
known for instance to be a source of hysteresis in magnets
and superconductors5.

For many experimental systems which exhibit a depinning
transition a modelization in terms of an elastic object pinned
by random impurities is a good starting point. The type of
disorder, which they experience, depends on their symme-
tries and their local environment. Domain walls in magnets6,
whose study is of importance to information storage technol-
ogy, behave as elastic interfaces and can experience either
random-bond disorder (RB), which is short range (SR), or
random-field disorder (RF), which has long range (LR) spatial
correlations. Dislocation lines in metals exhibit a depinning
threshold as the stress in increased7. Charge density waves
(CDW) in solids exhibit a similiar conduction threshold. If the
applied electric field becomes large enough, the CDW starts
to slide8. Being periodic objects the disorder they feel is also
periodic9. This is also the case for superconductors, where
vortex lines form, in presence of weak disorder, a quasi or-

dered periodic Bragg glass phase10,11. These systems have
similarities with (vortex free) continuous XY spins in pres-
ence of random fields, and generally constitute the random-
periodic (RP) universality class.

The contact line of a liquid helium meniscus on a rough
substrate can be thought of as an interface, but is gov-
erned by long range elasticity and so are slowly propagating
cracks2,12–15. Solid friction is another example of a depinning
phenomenon. Of course, in each of these systems it must be
checked separately whether the elastic description holds for
depinning. It is far from obvious that this is true for all rele-
vant scales. In any case, in order to be capable to confirm or
rule out such a description, it is necessary to first obtain pre-
cise theoretical predictions for the expected behavior in the
case of elastic depinning, what we aim to achieve here.

It was proposed some time ago, starting from the study of
a fully connected mean-field-type model16, that the elastic de-
pinning transition can be viewed in the framework of standard
critical phenomena. The ordered phase is then the moving
phase with forcef > fc, and the order parameter the veloc-
ity v, which vanishes asv ∼ (f − fc)β at the critical point
f = fc. The analogy with standard critical phenomena in a
pure system however has some limits: Additional fluctuation
exponents were later identified9,17, and some non-universality
was noticed in the fully connected model16,18.

It is thus important to develop a renormalization-group de-
scription of depinning. An important step in that direction
was performed within the framework of the so-called Func-
tional Renormalization Group (FRG), to 1-loop order using
the Wilson scheme17,19–21. The upper critical dimension was
identified asduc = 4, d being the internal dimension of the
elastic manifold. The peculiarity of the problem is that for
d < duc = 4 an infinite set of operators becomes relevant, pa-
rameterized by a full function∆(u), the second cumulant of
the random pinning force. This problem turns out to be closely
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related to the statics, i.e. describing the pinned state with mini-
mal energy in the absence of an applied forcef = 0 for which
the FRG was initially developed22 (there, the flowing function
is the second cumulantR(u) of the random potential). Both
problems are notably difficult due to so-called dimensional
reduction (DR) which renders the naiveT = 0 perturbation
theory useless6,23–27. Indeed toany order in the disorder at
zero temperatureT = 0, anyphysical observable is found to
beidenticalto its (trivial) average in a Gaussian random force
(Larkin) model. This phenomenon is not restricted to elastic
manifolds in disorder, but occurs in a broad class of disordered
systems as e.g. random field spin models and solving it here
may open the way to a solution in other models as well. The
FRG at depinning and in the statics seems to provide a way out
of the DR puzzle: the key feature is that the coarse grained
disorder correlator becomesnon-analyticbeyond the Larkin
scaleLc, yielding large-scale results distinct from naive per-
turbation theory, which assumes an analytic disorder correla-
tor. Explicit solution of the 1-loop Functional RG equation
(FRG) for the disorder correlatorsR(u) and∆(u) gives sev-
eral non-trivial attractive fixed points (FP)10,22and critical ex-
ponents for statics and depinning10,17,19,21,22to lowest order in
ε = 4− d. All these fixed points exhibit a “cusp” singularity,
which has the form∆∗(u)−∆∗(0) ∼ |u| at small|u|. The ex-
istence of the cusp nicely accounts for the existence of a criti-
cal threshold force19, as it is found thatfc ∼ d

du u=0+∆∗(u).
There are however several highly unsatisfactory and puz-

zling features within the 1-loop treatment, which prompted
the present and related works. First it was found that the FRG
flow equation for the statics and depinning areidenticalto one
loop (with ∆(u) = −R′′(u)). This implies for instance that,
within a given universality class (RB,RF and RP), the 1-loop
RG is a priori unable to distinguish static observables, such as
the roughness exponentζ at zero applied forcef = 0 from
those at depinningf = fc. This is a rather surprising and
unphysical result since one knows that depinning is an irre-
versible out of equilibrium process, quite different from the
statics. In an attempt to recover the expected physics, and
to extend conclusions from the 1-loop study to higher orders,
threeconjectureswere put forward17,19–21:

1. At more than 1-loop order depinning should differ from
statics.

2. At depinning the RB universality class should flow to
the RF universality class: Indeed, since forf → f+

c

the manifold does not move backward it cannot feel the
“potential” character of RB disorder.

3. The roughness exponent of the RF universality class at
depinning isζ = ε/3 to all orders (the Narayan Fisher
(NF) conjecture17,21), with ε = 4− d for standard man-
ifold elasticity andε = 2− d for LR elasticity.

While conjectures 1 and 2 seem reasonable on physical
grounds, we emphasize that they were based on qualitative
arguments: In the absence of any (renormalizable) theory be-
yond one loop, they appear putative. A 1-loop study including
the effect of a finite velocity28 indeed indicated that 2 is cor-
rect. It strongly relies on a finite velocity, and the behavior in

the limit v = 0+ was found to be subtle and difficult to fully
control within that approach.

The NF conjecture 3 is based on a study of the structure of
higher orders, but it lacks a controlled field theory argument.
With the time, it got more and more in disagreement with nu-
merical simulations and experiments, as we discuss below. In
addition, if one considers that this valueζ = ε/3 is expected
instead for thestaticsRF class, the NF conjecture seems rather
unnatural.

There are also more fundamental reasons to study the FRG
beyond one loop. In the last fifteen years since16,22, no study
has addressed whether the FRG yields, beyond one loop, a
renormalizable field theory able to predict universal results.
There have been 2-loop studies previously but they assumed
an analytic correlator and thus they only applied below the
Larkin length29–31. Doubts were even raised32 about the va-
lidity of the ε-expansion beyond orderε.

The aim of the present paper is to develop a more system-
atic field theoretic description of depinning which extends be-
yond one loop. A short summary of our study was already
published33 together with a companion study on the statics.
The main and highly non-trivial difficulty is the non-analytic
nature of the theory (i.e. of the fixed-point action) atT = 0,
which makes it a priori quite different from conventional crit-
ical phenomena. It is not even obvious whether this is a legit-
imate field theory and how to construct it. For the depinning
transition withf = f+

c , which is the focus of the present
paper, we are able to develop a meaningful perturbation the-
ory in a non-analytic disorder which allows us to show renor-
malizability at 2-loop order. Even the way renormalizability
works here is slightly different from the conventional one. To
handle the non-analyticity in the static problem is even more
challenging, and we propose a solution of the problem to 2-
loop33,34 and 3-loop35 order as well as at large-N 36.

In this paper we focus on the so-called “isotropic depin-
ning” universality class. This means that the starting model
has sufficient rotational invariance, as discussed below, which
guarantees that additional Kardar-Parisi-Zhang terms are ab-
sent. A general discussion of the various universality classes
can be found in37,38 and an application of our non-analytic
field theory (NAFT) methods to the case of ”anisotropic de-
pinning” will be presented in39.

Before we summarize the novel results of the present pa-
per, let us recall some important features about the model, the
scaling and statistical fluctuations at the depinning threshold.

B. Model, scaling and fluctuations

Elastic objects can be parameterized by aN -component
height or displacement fieldux, where x denotes thed-
dimensional internal coordinate of the elastic object (we will
useuq to denote Fourier components). An interface in the 3D
random field Ising model hasd = 2, N = 1, a vortex lat-
tice d = 3, N = 2, a contact-lined = 1 andN = 1. In
this paper we restrict our study toN = 1. In the presence of
a random potential the equilibrium problem is defined by the
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Hamiltonian:

H =
∫

q

c(q)
2

uqu−q +
∫

x

V (ux, x) (I.1)

with c(q) = cq2 for standard short-range elasticity,c(q) =
c|q| for long-range elasticity and we denote

∫
q

=
∫

ddq
(2π)d and∫

x
=
∫

ddx. Long-range elasticity appears e.g. for the contact
line by integrating out the bulk-degrees of freedom40. For pe-
riodic systems the integration is over the first Brillouin zone.
More generally a short scale UV cutoff is implied atq ∼ Λ,
and the system size is denoted byL. As will become clear
later, the random potential can without loss of generality be
chosen Gaussian with second cumulant

V (u, x)V (u′, x′) = R(u− u′)δd(x− x′) . (I.2)

Periodic systems are described by a periodic functionR(u),
random bond disorder by a short range function and random
field disorder of amplitudeσ by R(u) ∼ −σ|u| at largeu.

We study the over-damped dynamics of the manifold in this
random potential, described (in the case of SR-elasticity) by
the equation of motion

η∂tuxt = c∇2
xuxt + F (x, uxt) + f (I.3)

with friction η. In presence of an applied forcef the center
of mass velocity isv = L−d

∫
x

∂tuxt. The pinning force is
F (u, x) = −∂uV (u, x) and thus the second cumulant of the
force is

F (x, u)F (x′, u′) = ∆(u− u′)δd(x− x′) , (I.4)

such that∆(u) = −R′′(u) in the bare model. As we will
see below it does not remain so in the driven dynamics. The
“isotropic depinning” class contains more general equations
of motion than (I.3). For instance some cellular automaton
models are believed to be in this class41. They must obey
rotational invariance, as discussed in Ref.37–39, which prevents
the additional KPZ termλ(∇xuxt)2 to be generated atf =
f+

c . There is always a KPZ term generated atv > 0 from
the broken symmetryx → −x, but λ can vanish or not as
v → 0+, depending on whether rotational invariance is broken
or not. Here this symmetry is implied by the statistical tilt
symmetry (STS)42,43 uxt → uxt + gx. It also holds in the
statics and accounts for the non-renormalization of the elastic
coefficient, here set toc = 1.

A quantity measured in numerical simulations and exper-
iments is the roughness exponent at the depinning threshold
f = fc

CL(x− x′) = |u(x)− u(x′)|2 ∼ |x− x′|2ζ , (I.5)

which can be compared to the static oneζeq. Other expo-
nents have been introduced16,17,19–21. The velocity near the
depinning threshold behaves asv ∼ (f − fc)β ; the dynamical
response scales with the dynamical exponentt ∼ xz and the
local velocity correlation lengthξ diverges at threshold with
ξ ∼ (f − fc)−ν . There have also been some studies below

threshold9,44. The following exponent relations were found to
hold19:

β = ν(z − ζ) (I.6)

ν =
1

2− ζ
(I.7)

the latter using STS. There are various ways to measure the
roughness exponent. In some simulations45–47 it has been ex-
tracted from the critical configuration, i.e. asf is increased to
fc in a given sample it is obtained from the last blocking con-
figuration. It can also be defined as the limitv → 0+ of the
roughness in the moving state, which we will refer to as the
“quasi-static” depinning limit to distinguish it from the previ-
ous one. This is the situation studied in this paper. Although
it is widely believed that both are the same, the depinning the-
ory has enough peculiarities that one should be careful. In
particular, beyond scaling arguments and simulations, there is
presently no rigorous method capable to connect the behavior
below and above threshold.

Another peculiarity was noted in17. It was found that the
finite-size fluctuations of the critical force can scale with a
different exponent:

fc(L)− fc ∼ L−1/νFS (I.8)

and it was questioned whetherνFS = ν. The bound

νFS ≥ 2/(d + ζ) (I.9)

follows from a general argument of Ref.48. For charge density
waves whereζ = 0 one sees thatν = 1/2 and thusν and
νFS must be different ford < 4. For interfaces it was noted17

that ν = νFS is possible providedζ ≥ ε/3. If one assumes
ν = νFS, the NF-conjectureζ = ε/3 is then equivalent to
saturating the bound (I.9). We will address the question of
whetherν = νFS below.

Finally note that atf = fc the condition of equilibrium of
a piece of interface expresses that the elastic force, which acts
only on the perimeter, balances the excess force on the bulk,
yielding the scaling:

Ld−1u(a, L) ∼ (fc(L)− fc)Ld , (I.10)

whereu(a, L) ∼
√

CL(a) is the relative displacement (I.5)
between two neighbors averaged over the perimeter. This
shows that

u(a, L) ∼ L
1− 1

νFS (I.11)

thus for CDW the displacements between two neighbors
grows unboundedly49 with L for d ≤ 2. For interfaces (non-
periodic disorder), if one assumesν = νFS one obtains that
the displacements between two neighbors grows withL only
whenζ > 1.

C. Summary of results

Let us now discuss the main results of our study.
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First we show that, at depinning, 1- and 2-loop diagrams
can be computed using a non-analytic action in an unambigu-
ous and well defined way, allowing to escape dimensional re-
duction. The mechanism is non-trivial and works because the
manifold only moves forward in the steady state which allows
to remove all ambiguities. We show that the limitv → 0+

can be taken safely without additional unexpected singulari-
ties arising in this limit.

Next we identify the divergences in the 2-loop diagrams us-
ing dimensional regularization ind = 4 − ε. We identify the
1-loop and 2-loop counter-terms and perform the renormaliza-
tion program. We find that the1/ε divergences cancel nicely
in theβ-function for the disorder correlator and in the dynam-
ical exponent. The theory is finite to 2-loop order and yields
universal results.

The obtained FRG flow equation for the disorder (theβ-
function) contains new “anomalous” terms, absent in an an-
alytic theory (e.g. in the flow obtained in Ref.29,30). These
terms are different in the static theory (obtained in33) and at
depinning, showing that indeedstatic and depinning differ to
two loops. Thus the minimal consistent theory for depin-
ning requires two loops.

Next we study the fixed point solutions of our 2-loop FRG
equations at depinning. For non-periodic disorder (e.g. inter-
faces) with correlator of range shorter or equal to random-
field, we find that there is a single universality class, the
random-field class. Thus random-bond disorder does flow to
random field. Specifically we find that the flow of

∫
∆ is cor-

rected to two loops and thus
∫

∆ cannot remain at its random-
bond value, which is zero. This is explained in more detail in
section IV. The problem does not remain potential and irre-
versibility is manifest. For short range elasticity, we find the
roughness-exponent at depinning:

ζ =
ε

3

(
1 + 0.143313 ε

)
(I.12)

with ε = 4− d, and for long range elasticity:

ζ =
ε

3

(
1 + 0.39735 ε

)
(I.13)

with ε = 2 − d. Thus the NF-conjecture17,21 that ζ = ε
3 is

incorrect. We also compute the dynamical exponentz and
obtainβ andν by the scaling relations (I.6) and (I.7). We also
find thatνFS = ν holds to two loops.

For periodic disorder, relevant for charge density waves,
we find a fixed point which leads to a universal logarithmic
growth of displacements. This fixed point is however unsta-
ble, as an additional Larkin random force is generated. The
true correlations are the sum of this logarithmic growth and of
a power law growth so that the trueζ = (4 − d)/2. This is
similar to50. Then we find

ν =
1
2

(I.14)

νFS =
2
d

, (I.15)

which holds presumably to all orders.

D. Numerical simulations and experiments

Over many years, numerous simulations near
depinning19,20,51–54 accumulated evidence thatζ 6= ε/3.
In d = 1 in particular often an exponentζ > 1 was observed.
Our results show thatζ > ε/3 and thus resolve this long
standing discrepancy between numerical simulations and the
renormalization group. They are summarized in Tables IV.2
and IV.3 in Section IV, where we compare them to numerical
simulations. Of course it is not possible to give strict error
bars from the FRG calculation without further knowledge of
higher orders, but one can still give rough estimates, based on
different Pad́e-approximants.

Let us in the following discuss recent numerical results.
Following shortly our paper33, Rosso and Krauth obtained a
set of precision numerical results using a powerful algorithm
to determine the critical configuration at depinning (the last
blocking configuration) up to large sizes45–47. They obtained
results ind = 1 which, despite being far fromd = 4, compare
well with our results. For short range elasticity they find

ζ = 1.17 (I.16)

close to our 2-loop result (I.12). Note that displacement cor-
relations scaling as

uqu−q ∼ q−(d+2ζ) (I.17)

with ζ > 1 are perfectly legitimate. It simply means that

CL(x) ∼ 2
∫

q

(1− cos(qx))q−(d+2ζ) ∼ L2(ζ−1)x2 . (I.18)

The size dependent factor comes from the infrared divergence
of the integral. Thus in a simulation neighboring monomers
will be spread further and further apart, which is fine if their
attraction is purely quadratic. Of course in a realistic physical
situation their bond will eventually break, but as a model it
is mathematically well defined. For the anisotropic depinning
universality class, not studied here, they foundζ = 0.63 as
many other authors using cellular automaton models55–57.

For isotropic depinning with long range elasticity they ob-
tained:

ζ = 0.390± 0.002 , (I.19)

which lies roughly at midpoint of the 1-loop and 2-loop pre-
diction settingε = 1 in (I.13). So do their most recent
estimates58 for SR disorder. Ind = 2 this isζ = 0.753±0.002
and ford = 3 they obtain0.35 < ζ < 0.4. These results (I.16)
and (I.19) are close to estimates from the 2-loop expansion
and clearly rule out the NF-conjecture.

Another recent work59 studies an interface in the random
field Ising model in high dimension. The authors confirm that
d = 4 is the upper critical dimension. They further extract the
velocity exponentβ and compare their results with our 2-loop
FRG prediction forβ:

β = 1− ε

9
+ 0.040123ε2 . (I.20)
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FIG. I.1: Figure from Ref.59 which compares new numerical values
(black circles) and a previous one (white square) obtained for the
exponentβ with our prediction from the FRG.

The results are shown in Fig. I.1. One can see a clear curvature
downwards and that the straight line giving the 1-loop result
is well above the obtained results (the 1-loop approximation
would predictβ = 0.78 in d = 2).

Thus, although there is still some spread and uncertainty
in the results, it seems that there is now a trend towards a
convergence between theory and numerical simulations.

The situation concerning experiments is presently unclear.
Let us first outline the generic findings before analyzing
the details. The measured exponents corresponding to LR-
elasticity andd = 1 seem to be consistently in the range
ζ ≈ 0.5− 0.55. This is slightly above our 2-loop result (I.13)
but not fully incompatible with it. Our calculation holds for
quasi-static depinning, i.e.v > 0 → 0+, and most exper-
iments are also performed from the moving side, hopefully
reaching the same quasi-static limitv → 0+. On the other
hand if one believes that the numerical result I.19 (also com-
patible with our calculation, from below) obtained forf = f−c
also holds for quasi-static depinning (a rather natural, but as
yet unproved assumption) then one must conclude that the
elastic models, in their simplest form at least, may not faith-
fully represent the experimental situation. Care must how-
ever be exercised before any such conclusion is reached. One
could argue that disorder∆(u) ∼ u−α of range longer than
RF (α < 1) could produce higher exponentsζ = ε/(2 + α)
(see end of Section IV A) but that does not seem to apply to
those experiments where disorder is well controlled. Also,
since the exponentζ = 0.5 is the Larkin DR-exponent, which
should hold below the Larkin lengthLc one must make sure
thatLc is well identified and that one is not simply observing
a slow crossover to the asymptotic regime. In some of these
experimentsLc has been identified to be rather small.

Let us now examine the situation in more details.
One much studied experimental system is the contact line

of a fluid12,60. It advances on a rough substrate and is pushed

by adding fluid to the reservoir. The elasticity of the line is
short range at short scale but at larger scales it is mediated
by the elasticity of the two dimensional meniscus and thus
it becomes long range and should be compared with (I.13),
(I.19). Disorder is random-field, but one should distinguish
between microscopic disorder, which is poorly characterized,
and macroscopic one which is well controlled. The situation
has been studied for a helium meniscus on a macroscopically
disordered substrate whereζ = 0.55 was found60. Although
there are good indications that these experiments probe quasi-
static depinning (the contact line jumps from a reproducible
pinned configuration to the next one) the precise nature of the
dynamics remains open. Indeed it was found that propagation
of perturbations along the line can be as fast as avalanches,
showing inertial regime for helium68. Experiments were re-
peated for viscous liquids69 yielding ζ = 0.51 ± 0.03. There
it was checked that the system is over-damped and near depin-
ning. In both cases there is also evidence of thermal activation
effects13 characteristic of depinning (not creep). It was argued
that these may be a signature that a more complicated dynam-
ics (e.g. plastic) takes place at the very short scales and pro-
duces an effective dynamics at larger scales with complicated
non-linear (e.g. exponential) velocity and temperature depen-
dent damping. Very similar effects have also been shown to
occur in solid friction70 were the activation volume was also
found to correspond to microscopic scales.

Another class of much studied experimental systems are
crack fronts in heterogeneous media71. These are charac-
terized by two displacement fields, one out-of-plane compo-
nenth and an in-plane onef . Cracks can either be studied
stopped or slowly advancing. At the simplest level the in-
plane displacementf is expected to be described as an elas-
tic line d = 1, N = 1 with LR elasticity c|q|, at quasi
static depinning72. In experiments15,73 the observed rough-
ness is againζf ≈ 0.55. Since the crack propagates in an
elastic medium, elastic waves which can in principle affect
the roughness as the crack front advances producing a more
complicated dynamics than Eq. (I.3). Some proposals have
been put forward on mechanisms to produce higher roughness
exponents74 They rely however on a finite velocity and it is
unclear whether they can modify roughness in the quasi-static
limit. Even if instantaneous velocities during avalanches be-
come large enough, a detailed description on how these could
change the line configurations remains to be understood. Then
of course a major issue is whether the experiment, and in
which sense, is in the quasi-static limit. There again micro-
scopic dynamics could be more complex as at small scales
the material may be damaged and the notion of a single front
may not apply. Finally, since there are two components to
displacement one should also be careful to understand inter-
actions between them near depinning61.

Another interesting experimental system is a domain wall
in a very thin magnetic film62 which experiences RB disorder.
Up to now however only the thermally activated motion has
been studied, which gives a quite remarkable confirmation of
the creep law62 with RB exponents. It would be interesting
to study depinning there and to check whether it also belongs
to the isotropic universality class. In that case, the crossover
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from RB to RF resulting in overhangs beyond some scale at
zero temperature (ζ > 1) as well as the non-trivial thermal
rounding of depinning could be studied.

II. MODEL AND PERTURBATION THEORY

In this Section we discuss some general features of the field
theory of elastic manifolds in a random potential, both for the
statics and for the dynamics, driven or at zero applied force.
Some issues are indeed common to these three cases. At the
end we specialize to depinning.

A. Static and Dynamical action and naive power
counting

The static, equilibrium problem, can be studied using replicas.
The replicated Hamiltonian corresponding to (I.1) is:

H
T

=
1

2T

∫
x

∑
a

[(∇ua
x)2 + m2ua

x]

− 1
2T 2

∫
x

∑
ab

R(ua
x − ub

x) , (II.1)

where, for now, we consider SR elasticity.a runs from 1 ton.
We have added a small mass to provide an infrared cutoff, and
we are interested in the large scale limitm → 0. The limit of
zero number of replicasn = 0 is implicit everywhere. Terms
with sums over three replicas or more corresponding to third
or higher cumulants of disorder are generated in the perturba-
tion expansion. These should in principle be included, but as
we will see below higher disorder cumulants are not relevant
for theT = 0 depinning studied below.

The dynamics, corresponding to the equation of motion
(I.3) is studied using the dynamical action averaged over dis-
order:

S[û, u] =
∫

xt

iûxt(η∂t − ∂2
x + m2)uxt − ηT

∫
xt

iûxtiûxt

−1
2

∫
xtt′

iûxtiûxt′∆(uxt − uxt′)−
∫

xt

iûxtfxt .

(II.2)

It generates disorder averaged correlations, e.g.〈A[uxt]〉 =
〈A[uxt]〉S with 〈A〉S =

∫
D[u]D[û]Ae−S and〈1〉S = 1, and

response functionsδ〈A[u]〉/δfxt = 〈iûxtA[u]〉S . The uni-
form driving forcefxt = f > 0 (beyond threshold atT = 0)
may produce a velocityv = ∂t〈uxt〉 > 0, a situation which
we study by going to the comoving frame (where〈uxt〉 = 0)
shifting uxt → uxt + vt, resulting inf → f − ηv. This is
implied below. In general, for any value off , we study the
steady state, which at finite temperatureT > 0 is expected
to be unique and time translational invariant (TTI) (all aver-
ages depend only on time differences). In the zero tempera-
ture limit, one needs a priori to distinguish theT = 0 TTI
theory aslimL→∞ limT→0 (e.g. the ground state in the static)
and theT = 0+ theory aslimT→0 limL→∞.

It is important to note that there are close connections, via
the fluctuation dissipation relations, between the dynamical

formalism and the statics. Indeed, at equilibrium (forf = 0
and when time translation invariance is established) any equal
time correlation function computed with (II.2) is formally
identical (e.g. to all orders in perturbation theory) to the corre-
sponding quantity computed in the equilibrium theory (which
is a single replica average). Similarly, the persistent parts, i.e.
those∝ δ(ω), of dynamical correlations involvingp mutually
very separated times, are formally identical to the correspond-
ing averages in the replica theory involvingp replicas. The
perturbative equilibrium calculations in the statics can thus be
indifferently performed either with replicas or with (II.2). It
is possible to generate all dynamical graphs from static ones,
a connection which, as will be further explained below, also
carries to some extent to the casef > 0 atT = 0.

We first study “naive” perturbation theory and power count-
ing. The quadratic partS0 of the action (II.2) yields the free
response and correlation functions, used for perturbation the-
ory in the disorder. They read

〈iûq,t′u−q,t〉0 = Rq,t−t′ =
θ(t− t′)

η
e−

(t−t′)
η (q2+m2)

〈uq,t′u−q,t〉0 = Cq,t−t′ (II.3)

respectively, with the FDT relationTRq,τ = −∂τCq,τ (τ >
0). Perturbation theory in∆(u) yields a disorder interaction
vertex and at each (unsplitted) vertex there is one conservation
rule for momentum and two for frequency. It is thus conve-
nient to use splitted vertices, as represented in Fig II.1, where
the rules for the perturbation theory of the statics using replica
are also given. For the dynamics one can also focus onT = 0
where graphs are made only with response functions and con-
sider temperature as an interaction vertex. The 1-loop and 2-
loop diagrams which correct the disorder atT = 0 are shown
in Fig. II.1 (unsplitted vertices). There are three types of 2-
loop graphsA,B, C. The graphsE andF lead to corrections
proportional to temperature.

At T = 0 the model exhibits the property of dimensional
reduction6,23–27 (DR) both in the statics and dynamics. Its
“naive” perturbation theory, obtained by taking for the dis-
order correlator∆(u) an analytic function of u (or R(u)
for the statics), has a triviality property. As is easy to show
using the above diagrammatic rules the perturbative expan-
sion of any correlation function〈

∏
i uxiti

〉S in the derivatives
∆(n)(0) yields to all orders the same result as that obtained
from the Gaussian theory setting∆(u) ≡ ∆(0) (the so called
Larkin random force model). The same result holds for the
statics, for any correlation〈

∏
i uai

xi
〉S . At T = 0 these correla-

tions are independent of the replica indicesai, their dynamical
equivalent being independent of the timesti. The two point
function thus reads to all orders:

〈uq,t′u−q,t〉DR =
∆(0)

(q2 + m2)2
. (II.4)

This dimensional reduction results in a roughness exponent
ζ = (4 − d)/2 which is well known to be incorrect. One
physical reason, in the statics, is that this amounts to solv-
ing the zero force equation which, whenever more than one
solution exists, is not identical to finding the lowest energy
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...

(i) ...
D

C B

(ii)

(iii)

E

A

G

F

FIG. II.1: (i) diagrammatic rules for the statics: replica propaga-
tor 〈uaub〉0 ≡ Tδab/q2, unsplitted vertex, equivalent splitted ver-
tex−

∑
ab

1
2T2 R(ua − ub) and (ii) dynamics: response propagator

〈ûu〉0 ≡ Rq,t−t′ , unsplitted vertex, splitted vertex̂uxtûxt′∆(uxt −
uxt′) and temperature vertex. Arrows are along increasing time. An
arbitrary number of lines can enter these functional vertices. (iii)
unsplitted diagrams to one loop D, one loop with inserted 1-loop
counter-term G and 2-loop A,B,C,E,F.

configuration. Curing this problem, within a field theory, is
highly non-trivial. One way to do that, as discussed later will
be to consider anon-analytic∆(u).

It is important to note that despite the DR, dynamical aver-
ages involving response fields remain non-trivial, even at zero
temperature. Perturbation theory at finite temperature also re-
mains non-trivial. It is thus still useful to do power counting
with an analytic∆(u), the modifications for a non-analytic
∆(u) being discussed in the following section.

Power counting at the Gaussian fixed point yieldst ∼ x2

andûu ∼ x−d. At T = 0 nothing else fixes the dimensions
of u, sinceu → λu, û → λ−1û leaves theT = 0 action
invariant. Denotingu ∼ xζ , ζ is for now undetermined. The
disorder term then scales asx4−d+2ζ . It becomes relevant for
d < 4 providedζ < (4 − d)/2 which is physically expected
(for instance in the random periodic case,ζ = 0 is the only
possible choice, and for other casesζ = O(ε)). With this
power counting the temperature term scales asx−θ with θ =
d−2+2ζ and is thus formally irrelevant near four dimension.
In the endζ will be fixed by the disorder distribution at the
fixed point22.

A more detailed study of divergences in the vertex func-
tions allows to identify all counter-terms needed to render the
theory finite. We denote by

Γû..û;u..u(q̂i, ω̂i, qi, ωi) = (II.5)
Eu∏
i=1

δ

δuqi,ωi

Eû∏
j=1

δ

δûq̂j ,ω̂j

Γ[u, û]
u=û=0

the irreducible vertex functions (IVF) withEu external fields
u (at momentaqi, ωi, i = 1, ..Eu) andEû external fields (at
momentaq̂i, ω̂i, i = 1, ..Eû). Being the derivative of the ef-
fective action functionalΓ[u, û] they are the important objects
since all averages of products ofu andû fields are expressed
as tree diagrams of the IVF. Finiteness of the IVF thus im-
ply finiteness of all such averages. The present theory has

FIG. II.2: Construction of diagrams starting from an unsplitted static
diagram via two splitted static diagrams (2-replica component) to the
corresponding dynamical diagrams as explained in the text.

the property of covariance under the well known statistical tilt
symmetry STSuxt → uxt + gx, which yields that the two
point vertexΓûu(ω = 0) remains uncorrected to all orders.
This allows to fix the elastic constantc = 1 and shows that
the mass term is uncorrected and can thus safely be used as an
IR cutoff. It also implies that all higher IVFs vanish when any
of theωi is set to zero. The DR result is a perturbative triv-
iality statement aboutΓû..û(q̂i, ω̂i) at T = 0, all other cases
remain non-trivial. In a sense we will now expand around di-
mensional reduction. Similar replica IVFs can be defined for
the statics.

Perturbation expansion of a given IVF to any given order in
the disorder can be represented by a set of one particle irre-
ducible (1PI) graphs. As mentionned above there is a simple
rule to generate the dynamical graphs from the static ones.
The static propagator being diagonal in replicas, each static
graph occurring in ap replica IVF containsp connected com-
ponents. AtT = 0 the rule is then to attach one response
field to each connected component of the static diagram, each
replica graph then generating one or more dynamical graphs.
The place where the response field is attached is theroot of
the diagram. The direction of the remaining response func-
tions is then fixed unambiguously, always pointing towards
the root. This procedure to deduce the dynamical diagrams
from the static ones isuniqueandexhaustiveand is illustrated
in Fig. II.2. A generalization exists atT > 0 but is not needed
here.

Any graph corresponding to a given dynamical IVF con-
tainsp connected components (in the splitted diagrammatics)
with 1 ≤ p ≤ Eû (p = Eû at T = 0), each one leading to a
conservation rule between external frequencies, and thus one
can write symbolically:

Γû..û;u..u(q̂i, ω̂i, qi, ωi)

= δ
(∑

q̂ −
∑

q
) p∏

i=1

δ
(∑

ω̂ −
∑

ω
)

Γ̃ . (II.6)

Let us compute the superficial degree of UV divergenceα of
such a graph withv∆ disorder vertices andvT temperature
factors contributing tõΓ ∼ Λα. Using momentum and fre-
quency conservation laws at each vertex, and since there are
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only response functionsEû + I = 2(v∆ + vT ) we obtain:

α = d + 2p− dEû + (d− 4)v∆ + (d− 2)vT . (II.7)

At T = 0 (vT = 0, p = Eû) at the critical dimensiond = 4
the only superficially UV divergent IVF are those with one ex-
ternalû (quadratic divergence) or two externalû (logarithmic
divergence LD). The STS further restricts the possible diver-
gent diagrams. One sees that only three types of counter-term
are needed a priori. One counter-terms is needed for theΛ2

divergence ofΓû(q = 0, ω = 0) (excess forcef−ηv in driven
dynamics). This is analogous to the mass in theφ4 theory, i.e.
the distance to criticality. If we are exactly at the depinning
critical point (f = fc) we need not worry about this diver-
gence. Another counter-term is associated with the LD inη
and the last one with the LD in the second cumulant of disor-
der∆(u), i.e. a full function, which makes it different from the
conventional FT for critical phenomena (e.g.φ4). One notes
that higher cumulants are formally irrelevant, as they involve
Eû > 2.

One sees from (II.7) that each insertion of a temperature
vertex yields an additional quadratic divergence ind = 4,
more generally a factorTΛd−2. Thus to obtain a theory where
observables are finite asΛ →∞ one must start from a model
where the initial temperature scales with the UV cutoff as

T = T̃m−θ
(m

Λ

)d−2

. (II.8)

This is similar to theφ4 theory where it is known that aφ6

term can be present and yields a finite UV limit (i.e. does not
spoil renormalizability) only if it has the formg6φ

6/Λd−2. It
then produces only a finite shift tog4 without changing uni-
versal properties75. Here each̃T factor will thus come with a
Λ2−d factor which compensates the UV divergence. Comput-
ing the resulting shift in∆(u) to order∆2 by resumming the
diagramsE andF of Fig. II.1 and all similar diagrams to any
number of loops has not been attempted here.

For convenience we have inserted factors ofm in the defini-
tion of the rescaled temperature, using the freedom to rescale
u by m−ζ and û by mζ . The disorder term then reads as
in (II.2) with ∆(u) replaced by∆0(u) = mε−2ζ∆̃(umζ) in
terms of a dimensionless rescaled function∆̃.

B. Non-analytic field theory and depinning in the
quasi-static limit

From now on we study the zero temperature limitT = 0.
To escape the DR triviality phenomenon, and since the fixed
points found in 1-loop studies exhibit a cusp atu = 0, we
must consider perturbation theory in anon-analyticdisorder
correlator. In this section we show how to develop perturba-
tion theory and diagrammatics in a non-analytic theory and
what are the non-trivial issues which arise.

For now the considerations apply for zero or finite applied
force. In usual diagrammatics, extracting a leg from a vertex
corresponds to a derivation. Here this can be done as usual
with no ambiguity, provided the corresponding vertex is eval-
uated at a genericu (e.g. the graphs in Fig II.2). If the vertex is

evaluated atu = 0 (here and in the following we call themsat-
urated vertices) one must go back to a careful application of
Wick’s rules. Any graph containing such a vertex and which
vanishes in the analytic theory is called anomalous. Let us
write the series expansion in powers of|u|:

∆(u) = ∆(0) + ∆′(0+)|u|+ 1
2
∆′′(0+)u2 + ... . (II.9)

Wick’s rules can then be applied but usually end up in evalu-
ating non-trivial averages of e.g. sign or delta functions.

Let us consider as an example the following 2-loop 1PI di-
agram (notede1 in what follows) which is a correction to the
effective action of the form:

3

2

1

4
= ûrτ ûrσ∆′′(ur,τ − ur,σ) (II.10)

×
∫

ti>0,ri

Rr1−r2,t1Rr1−r2,t2Rr−r1,t3Rr−r2,t4

×∆′(ur1,τ−t3 − ur1,τ−t4−t1)∆
′(ur2,τ−t4 − ur2,τ−t2−t3) .

Here four Wick contractions have been performed, as in any
of the other thirty 2-loop diagrams of the form A (studied in
the next Section). In an analytic theory performing the lo-
cal time expansion this would result in a 2-loop correction
to ∆(u) proportional to∆′′(u) but with a zero coefficient
since the∆′ functions are evaluated at zero argument. In
the non-analytic theory, inserting the expansion (II.9) yields
(upon some change of variables):

e1 = ∆′(0+)2∆′′(u)
∫

ti>0,ri

Rr1,t1Rr1,t2Rr3−r1,t3Rr3,t4Fri,ti

Fri,ti = 〈sgn(X)sgn(Y )〉 (II.11)

X = ur1,−t3 − ur1,−t4−t1

Y = u0,−t4 − u0,−t3−t2

terms of higher order in (II.9) do not contribute since we are at
T = 0 and we have exhausted the number ofû to contract (i.e
those terms would yield higher orders inT ). The remaining
average in (II.11) is evaluated with respect to a Gaussian mea-
sure, and can thus be performed. It can be defined by using the
T > 0, v > 0 Gaussian measure (uxt → vt + uxt) and taking
the limit T → 0, v → 0. The result is a continuous function
of v2/T and its value depends on how the limit is taken.

In the static theory one should takeT → 0 at v = 0. This
yields

〈sgn(X)sgn(Y )〉 =
2
π

asin(σ) (II.12)

σ =
〈XY 〉√

〈X2〉
√
〈Y 2〉

i.e. the result for centered Gaussian variables. Expressing the
averages in (II.12) using correlation functionsCq,t yields a
complicatedT = 0 expression fore1. This expression will be
discussed in a companion paper on the statics34. A list of all
anomalous diagrams is presented in Appendix K.
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The opposite limitv → 0 at T = 0 yields much simpler
expressions:

〈sgn(X)sgn(Y )〉 → sgn(t4 + t1 − t3)sgn(t3 + t2 − t4) .

More generally this procedure corresponds to the substitution:
∆(n)(ur,t−ur,t′) → ∆(n)(v(t−t′)) in any ambiguous vertex
evaluated atu = 0. That this is the correct definition of the
theory of the quasi-static depinning as the limitv = 0+ is
particularly clear here since it is well known (the no passing
property9,44) that theur,t are increasing functions of time in
the steady state. Of course it remains to be shown that the
procedure actually works and does not produce singular terms
such asδ(vt). It also remains to be shown that it yields a
renormalizable continuum theory where all divergences can
be removed by the appropriate counter-terms. This is far from
trivial and will be achieved below.

Let us comment again on the connections between dynam-
ics and statics. Consider aT = 0 dynamical diagram withp
connected components evaluated at zero external frequencies.
All response functions can be integrated over the times from
the leaves towards the root on each connected component. Us-
ing the FDT relation this replaces response by correlations and
thus exactly reproduces ap replica static diagram except that
it is differentiated once with respect to each replica field (the
sums over all possible positions of the response field repro-
duces the derivation chain rule). One simple way to establish
this rule is to consider the formal limitη → 0+ (equivalently
expansion ofRq,ω in powers of frequency), i.e. formally re-
placeRq,t,t′ → δtt′/q2 (keeping track of causality). This
reproduces exactly the zero frequencies dynamical diagrams
and treats “replicas” as “times”.

Thus thep-th derivative of ap replica static diagram gives
a set of dynamical diagrams withp connected components.
For p = 2 this ensures e.g. that the relation∆(u) = −R′′(u)
remains uncorrected to all orders. The flaw in this argument
comes from the anomalous diagrams (both in statics and dy-
namics). In the analytic theory the dynamical diagrams with
response fields on a saturated vertex vanish or cancel in pairs.
This just expresses that taking a derivative of a static saturated
vertex gives zero and the rule still works. But in the non-
analytic theory the anomalous diagrams do not vanish and
contain an additional time dependence. The above integra-
tion of response functions from the leaves to the root cannot
be performed for these anomalous diagrams. As a result they
can give non-trivial contributions both in statics and dynamics
which violate relations such as∆(u) = −R′′(u), thus allow-
ing to distinguish statics from depinning.

To conclude this Section: The perturbative calculation of
the effective action and of the IVF vertices can also be per-
formed in a non-analytic theory. It can be expressed as sums
of the same diagrams one writes in the analytic theory, with
the same graphical rules todraw and generate the diagrams
starting from the statics. However the way to compute these
diagrams and theirvaluesis differentfrom the analytic theory.
The time ordering of vertices comes in a non-trivial way and
produces results which can be different at depinningf = f+

c

(v = 0+) and in the staticsf = 0, as illustrated on the diagram
e1 above. Thus we see the principle mechanism by which

the statics and the depinning can yield different field theories,
which is a novel result. It remains to perform the actual calcu-
lation of these non-analytic diagrams, which is performed in
the following sections.

III. RENORMALIZATION PROGRAM

In this section we will compute the effective action to 2-loop
order atT = 0 for depinning. From the above analysis we
know that we only need to compute the 1- and 2-loop correc-
tions to∆(u) andη.

A. Corrections to disorder

We start by the corrections to the disorder, first at 1-loop and
then at 2-loop order.

1. One loop

b

dc

a

FIG. III.1: 1-loop dynamical diagrams correcting∆

At leading order, there are four diagrams, depicted on fig-
ure III.1. Since diagram (d) is proportional to∆′(u)∆′(0),
it is an odd function ofu, and thus does not contribute to
the renormalization of∆. However its repeated counter-term
will appear at 2-loop order. Diagram (a) is proportional to
−∆(u)∆′′(u), diagram (b) to−∆′(u)2 and diagram (c) to
∆′′(u)∆(0). All come with a combinatorial factor of1/2!
from Taylor-expanding the exponential function,1/2 from the
action and4 from combinatorics. Together, they add up to the
1-loop correction to disorder

δ1∆(u) =
4

2! 2
[
−∆′(u)2 − (∆(u)−∆(0))∆′′(u)

]
I1

I1 :=
∫

q

1
(q2 + m2)2

(III.1)

with I1 =
∫

q
e−q2

Γ(2− d
2 ) = (4π)−d/2Γ

(
2− d

2

)
.

2. Two loops

First, we have to find all diagrams correcting disorder at sec-
ond order. AtT = 0 they can be grouped in 3 classes A, B and
C for the 3 possible diagrams for unsplitted vertices. Class C
does not contribute as is shown in appendix C. We begin our
analysis with class A.
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C

A B

FIG. III.2: The 3 possible classes at second order correcting disorder
atT = 0. Only classes A and B will contribute.

a b c

d e f

FIG. III.3: Static graphs at 2-loop order in the form of a hat (class A
in figure III.2) contributing to two replica terms. Adding a response-
field to each connected component leads to the dynamic diagrams of
figure III.4.

We now need to write all possible diagrams with splitted
vertices of type A. A systematic procedure is to start from
all possible static diagrams given in Fig. III.3. This relies
on the fact that dynamics and statics are related – recall that
in general a dynamic formulation can be used to obtain the
renormalization of the statics. As mentionned in the previous
Section, to go from the statics to the dynamics, one attaches
one response field to a root on each connected component of
the diagrams a to f in figure III.3 and orient each component
towards the root. The result is presented on figure III.4. The
next step is to eliminate all diagrams which yield odd func-
tions ofu and thus do not contribute to the renormalized dis-
order. The list is the following:

a1 = a4 = c3 = d1 = d3 = d5 = d7

= e2 = e3 = f1 = f3 = f4 = f5 = 0 . (III.2)

Further simplifications come from diagrams, which mutually
cancel. Again this uses that∆′(u) is an odd function. This
gives:

c2 + c5 = d2 + d4 = d6 + d8 = 0 . (III.3)

In addition

c4 = 0 , (III.4)

since
∫

tt′
RxtRxt′∆′(t − t′) = 0. This is explained in more

details in Appendix K where the list of all anomalous (non-
odd) graphs is given together with their expressions in the
non-analytic field theory.

Thus, the only non-zero graphs which we have to calcu-
late area2, a3, b1, . . . ,b6, c1, e1 and f2. These calcula-
tions are rather cumbersome, due to the appearance of theta-
functions of sums or differences of times as a result of the
non-analyticity of the theory. The correction to disorder is

δ2∆(u) =
1
3!

2
23

3(23)
∑

(ai + bi + ..)

5

a3

b b

d d d d

d

e

f

1 4

a1 a2 4a

1 b2 3 4b b5 b6

ccccc1 2 3 4 5

d d d5 6 7 8

32

1 e2 e3

f f21 3 f4 f

FIG. III.4: Dynamical diagrams at 2-loop order of type A with two
external response fields (two connected components) correcting the
disorder; derived from the two replica static diagrams of Fig. III.3.

=
∑

(ai + bi + ..) ,

where the combinatorial factors are:1/3! from the Taylor-
expansion of the exponential function,2/23 from the explicit
factors of1/2 in the interaction, a factor of 3 to chose the
vertex at the top of the hat, and a factor of 2 for the possible
two choices in each of the vertices. Furthermore below some
additional combinatorial factors are given: a factor of2 for
generic graphs and1 if it has the mirror symmetry with respect
to the vertical axis: each diagram symbol (ai..) denotes the
diagram including the symmetry factor.

We recall that we have definedsaturatedvertices as vertices
evaluated atu = 0 while unsaturatedvertices still containu
explicitly. Diagrams with response-functions added to unsat-
urated vertices can be obtained by deriving static diagrams:

a2 + a3 = second derivative of the statics

b1 + b2 + b3 + b4 + b5 + b6

= second derivative of the statics . (III.5)

The graphs which contain external response-fields onsatu-
ratedvertices cannot be derivatives from static ones. For class
A, the hat-diagrams, the only non-zero such graph isc1.

Explicitly, this reads

a2 + a3 = −∂2
u

[
−R′′(0)R′′′(u)2

]
IA , (III.6)

where (see (A.18))

IA :=
∫

ddq1

(2π)d

ddq2

(2π)d

1
q2
1 + m2

1
q2
2 + m2

1
((q1+q2)2 + m2)2



11

=
(

1
2ε2

+
1
4ε

+ O(ε2)
)

(εI1)2 . (III.7)

Furthermore, we find

6∑
i=1

bi = −∂2
u

[
R′′(u)R′′′(u)2

]
IA (III.8)

and

c1 = 2∆′(0+)2∆′′(u)IA . (III.9)

The diagrame1 is an explicit example for the appearance of
non-trivial sign-functions resulting from the monotonic in-
crease of the displacement. It was already discussed in the
previous Section. In the quasi-static depinning limit (II.11)
gives (details are given in appendix A):

e1 = ∆′(0+)2∆′′(u)

×
∫

q1,q2

∫
t1,t2,t3,t4>0

e−[(q2
1+m2)t1+(q2

2+m2)t2+((q1+q2)
2+m2)(t3+t4)

sgn(t1 − t3 + t4) sgn(t2 − t4 + t3) . (III.10)

The result of the explicit integration is:

e1 = ∆′(0+)2∆′′(u) [Il − IA + finite] (III.11)

Il :=
∫

q1,q2

1
(q2

1 + m2)(q2
2 + m2)(q2

3 + m2)(q2
1 + q2

3 + 2m2)

=
ln 2
2ε

(εI1)2 + finite . (III.12)

The last diagramf2 also involves a sign-function and reads:

f2 = 2∆′(0+)2∆′′(u)
∫

q1,q2

∫
t1,t2,t3,t4>0

sgn(t4−t3−t2)×

×e−[(q1+q2)
2+m2)(t3+t4)+(q2

1+m2)t1+(q2
2+m2)t2]

= −∆′(0+)2∆′′(u) Il . (III.13)

In appendix A we show that (for any given elasticity) the sum
of e1 + f2 only involves the integralIA, and that the combina-
tion takes the simpler form

e1 + f2 = −∆′(0+)2∆′′(u)IA . (III.14)

We now turn to graphs of type B (bubble-diagrams).
Again diagrams, which are odd functions ofu vanish.

These are:

h1 = h2 = i1 = j1 = k2 = k3 = l2 = l3 = l4 = 0 . (III.15)

Two other diagram mutually cancel:

k1 + l1 = 0 , (III.16)

as discussed in Appendix K.

4gg g g

h

h

h

h

h

h

i i i

j j

k k k

l l l l

1 2 3

1 2 3

654

1 2 3

1 2

1 2 3

1 2 3 4

FIG. III.5: 2-loop dynamical diagrams of type B (see figure III.2).

The diagrams that are second derivative of the static have
all their response-fields on their unsaturated vertices. These
are:

g1 + g2 + g3 + g4 = ∂2
u

[
1
2
∆(u)2∆′′(u)

]
I2
1

h3 + h4 + h5 + h6 = ∂2
u

[
−∆(0)∆(u)∆′′(u)

]
I2
1

i2 = j2 = ∂2
u

[
1
4
∆(0)2∆′′(u)

]
I2
1 .

The surprise is thati3, which is not the second derivative of
a static diagram, since it has both response fields on saturated
vertices, is non-trivial:

i3 = −∆′(0+)2∆′′(u)I2
1 . (III.17)

To summarize, for the driven problem atT = 0 in perturba-
tion of ∆ ≡ ∆(u), the contributions to the disorder to one and
two loops, i.e. the corresponding terms in the effective action
Γ[u, û] are:

δ1∆(u) = −
[
∆′(u)2 + (∆(u)−∆(0))∆′′

]
I1 (III.18)

δ2∆(u) =
[
(∆(u)−∆(0))∆′(u)2

]′′
IA

+
1
2
[
(∆(u)−∆(0))2∆′′(u)

]′′
I2
1

+∆′(0+)2∆′′(u)(IA − I2
1 ) . (III.19)

Curiously, even though two diagrams contain contributions
proportional toIl ∼ ln 2, these contributions cancel in the
final result for the corrections to the disorder.

B. Corrections to the friction η

We now calculate the divergent corrections toη, which will
require a counter-term proportional toiûu̇. Let us illustrate
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FIG. III.6: 1-loop dynamical diagram correcting the friction.

their calculation at leading order. We start from the first order
expansion of the interactione−Sint , which can be written as∫

t>t′,x

iûxt ∆(uxt − uxt′) iûxt′ . (III.20)

Contracting oneiûxt′ leads to:∫
t>t′,x

iûxt ∆′(uxt − uxt′)Rr=0,t−t′ . (III.21)

The response function contains a short-time divergence,
which we deal with in an operator product expansion. Ex-
panding∆′(uxt − uxt′) to the necessary order yields∫

t>t′,x

iûxt

[
∆′(0+) + (uxt−uxt′)∆′′(0+) + . . .

]
Rr=0,t−t′ .

(III.22)
The first term of this expansion, proportional to∆′(0+), is
strongly UV-divergent and non-universal and gives the criti-
cal force to lowest order in disorder. Since we tunef to be
exactly at the depinning threshold we do not need to consider
it. The second contribution, proportional to∆′′(0+), corrects
the friction: due to the short-range singularity in the response-
function, we can expand(uxt−uxt′) in a Taylor-series, of
which only the first term contributes. (III.22) becomes:∫

t>t′,x

iûxt

[
(t− t′)u̇xt + O(t− t′)2

]
∆′′(0+)Rr=0,t−t′ .

(III.23)
The correction to friction at leading order thus is

δη = −∆′′(0+)
∫

t

tRr=0,t . (III.24)

Here, the response-function is taken at spatial argument 0. In
momentum representation, the same expression reads

δη = −∆′′(0+)
∫

t

∫
q

tRq,t

= −∆′′(0+)
∫

q

t e−t(q2+m2)

= −∆′′(0+)
∫

q

1
(q2 + m2)2

= −∆′′(0+) I1 (III.25)

with the already known integralI1, equation (III.1).
We now turn to the 2-loop corrections. There are seven

contributions, drawn on figure III.7. Their contribution toη is

δη = −1
8
× 4× 2 [a + b + c + d + e + f + g] . (III.26)

The combinatorial factor is1/8 from the interaction, 4 from
the time-ordering of the vertices, and an additional factor of

2 for the symmetry of diagrams a, b, e, f and g. Details of
the calculation of diagrams a to g are given in appendix D.
Grouping diagrams, which partially cancel, we find:

a + g = −∆′′(0+)2I2
1 (III.27)

b + c + d = −1
2
∆′′′(0+)∆′(0+)I2

1 (III.28)

e = −∆′′′(0+)∆′(0+)Iη (III.29)

f = −2∆′′′(0+)∆′(0+)IA − 2∆′′(0+)2IA .(III.30)

This involves the non-trivial diagramIη

Iη :=
∫

q1,q2

1
(q2

1 + m2)(q2
2 + m2)2(q2

2 + q2
3 + 2m2)

=
(

1
2ε2

+
1− 2 ln 2

4ε

)
(εI1)2 + finite (III.31)

calculated in appendix E.

C. Renormalization program to two loops and
calculation of counter-terms

1. Renormalization of disorder

Let us now discuss the strategy to renormalize the present the-
ory where the interaction is not a single coupling-constant, but
a whole function, the disorder-correlator∆(u). We denote by
∆0 the bare disorder – this is the object in which perturba-
tion theory is carried out – i.e. one consider the bare action
(II.2) with ∆ → ∆0. We denote here by∆ the renormal-
ized dimensionless disorder i.e. the corresponding term in the
effective actionΓ[u, û] is mε∆.

We define the dimensionless bilinear 1-loop and trilinear 2-
loop symmetric functions (see (III.18) and (III.19)) such that:

δ(1)(∆,∆) = mεδ1∆ (III.32)

δ(2)(∆,∆,∆) = mεδ2∆ (III.33)

thus extended to non-equal argument usingf(x, y) :=
1
2 [f(x + y, x + y)− f(x, x)− f(y, y)] and a similar expres-
sion for the trilinear function. Whenever possible we will use

g

a b c d

e f

FIG. III.7: 2-loop dynamical diagrams correcting the friction. They
all have multiplicity8 except (c) and (d) which have multiplicity4.
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the shorthand notationδ(1)(∆) = δ(1)(∆,∆) andδ(2)(∆) =
δ(2)(∆,∆,∆). The expression of∆ obtained perturbatively
in powers of∆0 at 2-loop order reads:

∆ = m−ε∆0 + δ(1)(m−ε∆0) + δ(2)(m−ε∆0) + O(∆4
0) .

(III.34)
It contains terms of order1/ε and1/ε2. This is sufficient to
calculate the RG-functions at this order (In principle, one has
to keep the finite part of the 1-loop terms, but we will work
in a scheme, where these terms are exactly 0, by normalizing
all diagrams by the 1-loop diagram). Inverting this formula
yields:

∆0 = mε
[
∆− δ(1)(∆)− δ(2)(∆) + δ(1,1)(∆) + . . .

]
,

(III.35)
whereδ(1,1)(∆) is the 1-loop repeated counter-term:

δ(1,1)(∆) = 2δ(1)(∆, δ(1)(∆,∆)) . (III.36)

Theβ-function is by definition the derivative of∆ at fixed∆0.
It reads:

−m∂m∆
∆0

= ε
[
m−ε∆0 + 2δ(1)(m−ε∆0)

+3δ(2)(m−ε∆0) + . . .
]

.(III.37)

Using the inversion formula (III.35), theβ-function can be
written in terms of the renormalized disorder∆:

−m∂m∆
∆0

= ε
[
∆ + δ(1)(∆)

+2δ(2)(∆)− δ(1,1)(∆) + . . .
]

.(III.38)

In order to proceed, let us calculate the repeated 1-loop
counter-termδ1,1(∆). We start from the 1-loop counter-term
(III.18), which has the bilinear form

δ(1)(f, g) = −1
2

[
2f ′(u)g′(u) + (f(u)− f(0))g′′(u)

+ (g(u)− g(0))f ′′(u)
]
Ĩ1

(III.39)

with the dimensionless integralĨ1 := I1 m=1
; we will use the

same convention for̃IA := IA m=1
. Thusδ1,1(∆) reads

δ(1,1)(∆(u)) = 2δ(1)
(
∆, δ(1)(∆)

)
=
[
(∆(u)−∆(0))2∆′′(u)

+(∆′(u)2 −∆′(0)2)(∆(u)−∆(0))
]′′

Ĩ2
1

(III.40)

Note that this counter-term is non-ambiguos foru → 0. Fi-
nally, as discussed at the end of the previous section at any
point we can rescale the fieldsu by mζ . This amounts to write
theβ-function for the functioñ∆(u) = m−2ζ∆(umζ) which
will be implicit in the following (in addition we will drop the
tilde superscript).

The 2-loopβ-function (III.38) then becomes with the help
of (III.40)

−m∂m∆(u) = (ε− 2ζ)∆(u) + ζu∆′(u)

−1
2
[
(∆(u)−∆(0))2

]′′
(εĨ1)

+
[
(∆(u)−∆(0))∆′(u)2

]′′
ε
(
2ĨA − Ĩ2

1

)
+∆′(0+)2∆′′(u) ε

(
2ĨA − Ĩ2

1

)
. (III.41)

One of our main results is now apparent: the1/ε2-terms can-
cel in the corrections to disorder. If it had not been the case it
would lead to a term of order1/ε in theβ-function and thus
to non-renormalizability. Thus theβ-function is finite to two
loops a hallmark of a renormalizable theory. Note that this
happened in a rather non-trivial way since it required a consis-
tent evaluation of all anomalous non-analytic diagrams. Fur-
thermore the precise type of cancellation is unusual: usually
the 2-loop bubble diagrams of type B are simply the square of
the 1-loop ones. Here the easily missed and non-trivial bubble
diagrami3 was crucial in achieving the above cancellation.

In order to simplify notations and further calculations, we
absorb a factor ofεĨ1 in the definition of the renormalized
disorder (or equivalently in the normalization of momentum
or space integrals). With this, theβ-function takes the simple
form:

−m∂m∆(u) = (ε− 2ζ)∆(u) + ζu∆′(u)

−1
2
[
(∆(u)−∆(0))2

]′′
+

1
2
[
(∆(u)−∆(0))∆′(u)2

]′′
+

1
2
∆′(0+)2∆′′(u) . (III.42)

Note several interesting features of this 2-loopβ-function.
First it contains a non-trivial so called “anomalous term” (the
last one) which is absent in an analytic theory. Second, it
can be shown to exhibit irreversibility, precisely due to this
term. Although, surprisingly, it can be formally be integrated
twice overu the resulting flow equation for the double prim-
itive of ∆(u) does not, however, have the required property
for the flow of a potential function, i.e. a second cumulant
of the random potential in the static. This will be shown in
details in the next Section IV where we find that the fixed
points of the above equation are manifestly non-potential. In
Ref.33 we have obtained the corresponding beta function for
R(u) in the statics. The corresponding force force correlator
∆stat(u) = −R′′(u) obeys the same equation than (III.42)
but with the opposite sign for the anomalous term! This shows
that statics and depinning are indeed two different theories at
two loops.

2. Renormalization of friction and dynamical exponent z

In section III B, we have calculated the effective (renormal-
ized) friction coefficientηR as a function of the bare oneη0

and the bare disorder∆0:

ηR = η0Z[m−ε∆0]−1 . (III.43)
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This identifies the renormalization groupZ-factor as

Z−1[m−ε∆0] = 1 − ∆′′
0(0+)I1

+
[
∆′′

0(0+)
]2 [

I2
1 + 2IA

]
+ ∆′′′

0 (0+)∆′
0(0

+)
[
1
2
I2
1 + 2IA + Iη

]
.

(III.44)

The dynamical exponentz is then given by

z = 2 + m
d

dm
lnZ(m−ε∆0) . (III.45)

Equation (III.44) yields

lnZ−1 = − ∆′′
0(0+)I1

+ ∆′′
0(0+)2

[
1
2
I2
1 + 2IA

]
+ ∆′′′

0 (0+)∆′
0(0

+)
[
1
2
I2
1 + 2IA + Iη

]
(III.46)

and thus (remind thatI1 ∼ m−ε andIA ∼ Iη ∼ m−2ε)

m
d

dm
lnZ−1 = ∆′′

0(0+)(εI1)−∆′′
0(0+)2 ε

(
I2
1 + 4IA

)
+∆′′′

0 (0+)∆′
0(0

+) ε
(
I2
1 + 4IA + 2Iη

)
(III.47)

We now have to express∆0 in terms of the renormalized dis-
order∆ using (III.35). For the second-order terms, this rela-
tion is simply∆0 = mε∆. The non-trivial term is∆′′(0+).
Using (III.18), derived twice at0+, we get (with the factor of
(εI1) absorbed into the renormalized disorder

∆′′
0(0+) = (εI1)−1×

×
[(

∆′′(0+) + Ĩ1(4∆′′′(0+)∆′(0+) + 3∆′′(0+)2
)]

(III.48)

Putting everything together, the result is

m
d

dm
lnZ−1 = ∆′′(0+) + ε

(
2
ε2
− 4IA

(εI1)2

)
∆′′(0+)2

+ε

(
3
ε2
− 4IA

(εI2
1 )
− 2Iη

(εI2
1 )

)
∆′′′(0+)∆′(0+)

(III.49)

Again there is a non-trivial cancellation of the1/ε terms, an-
other manifestation of the renormalizability of the theory. In-
serting the values of the integralsIA andIη, the dynamical
exponentz becomes:

z = 2−∆′′(0+)+∆′′(0+)2 +∆′′′(0+)∆′(0+)
[
3
2
− ln 2

]
.

(III.50)

D. Finiteness and scaling form of correlations and
response functions

To complete the 2-loop renormalizability program one must
check that all correlation and response functions are rendered
finite by the above counter-terms. In a more conventional the-
ory that would be more or less automatic. Here however there
are additional subtleties. The disorder counter-term is a full
function and is purely static. This counter-term, and its asso-
ciated FRG equation (III.42) cannot be read atu = 0 because
of the non-analytic action (this point is further explained in
Appendix K). Indeed, this equation and the cancellation of
divergent parts was established only foru 6= 0. It remains to
be checked that irreducible vertex functions which areu = 0
quantities are also rendered finite by the above staticu 6= 0
counter-terms.

We first examine the two point correlation function. We will
first show that it ispurely static. Then, in appendix K we show
that it is finite and perform its calculation in the renormalized
theory. One has

〈uqωu−q−ω〉 = RqωR−q,−ωΓiûiû(qω) , (III.51)

whereRqω is the (exact) response function. We will thus only
computeΓiûiû(qt) (in time variable). The 1-loop counter-
term for η is absent in thisO(∆2) calculation of the proper
vertex but it enters the calculation of〈uqωu−q−ω〉 (it dresses
the external legsRqω into Rqω). In fact since we find that
Γiûiû(qt) is static (independent oft) we will need only the
exact response at zero frequency, which is the bare one be-
cause of STS.

To one loop, the proper vertexΓiûiû(qω) is the sum of the
graphsa, b, c andd of Fig. III.6 evaluated at finite frequency
and momentum, so we writeΓiûiû(qω) = a + b + c + d.
The suma + b yields after two Wick contractions and short
distance expansion a term proportional to∫

k,ti

iûtiût′∆′′(ut − ut′)∆(ut1 − ut2)

×(Rk,t′−t2 −Rk,t−t2)(Rk,t−t1 −Rk,t′−t1) , (III.52)

where we have kept all times explicitly to resolve any ambigu-
ity. Expressing∆ in a series as in (II.9), the lowest order term
is purely static (since one can integrate freely overt1, t2), and
proportional to∆′′(0+)∆(0)

∫
k
k−4, but vanishes from the

cancellation between graphsa andb. As explained in detail in
Appendix K there can be a priori another contribution coming
from 2∆′(0+)2δ(u)u in the expansion of∆′′∆. It produces
a termδ(v(t− t′))v|t1 − t2| which vanishes when multiplied
with the above response function combination (since it van-
ishes att = t′).

Thus the only contribution comes fromc + d. There the∆′

yields sign functions and there are no ambiguities. One finds:

d = −2∆′(0+)2
∫

τ1,τ2>0

[sgn(t− τ2) + sgn(−t− τ2)]

×
∫

k

e−k2τ2e−(k+q)2τ1

= −2∆′(0+)2
∫

k

1
k2(k + q)2

e−k2|t|/η
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b = ∆′(0+)2
∫

τ1,τ2>0

sgn(τ1 + t/η) sgn(τ2 − t/η)

×
∫

k

e−k2τ2e−(k+q)2τ1

= ∆′(0+)2
∫

k

1
k2(k + q)2

(
2e−k2|t|/η − 1

)
,

where we have accounted for the extra combinatoric factor of
2 for graphd and used∫

τ>0

e−q2τ sgn(τ − t) =
1
q2

(
θ(t)(2e−q2t − 1) + θ(−t)

)
.

(III.53)
We thus find that although each graph is time dependent,

this time-dependence cancels in the sum. Thus we find a static
result:

Γiûiû(qω) = δ(ω)
[
∆(0)−∆′(0+)2

∫
k

1
k2(k + q)2

]
.

(III.54)
The static 1-loop counter-term should thus be sufficient to
cancel the divergence of (III.54). This is further analyzed in
Appendix J where the full correlation-function is computed.

We have thus found the commutationΓiûiû(u = 0, q) =
Γiûiû(u = 0+, q). Note that if all correlation functions are
purely static, i.e. strictly time-independent, it implies the com-
mutation of the limits. Then it also implies the finiteness
since these static divergences have been removed. We have
not pushed the analysis further but we found a simple argu-
ment which indicates that all correlations are indeed static.
We found that the time dependence in diagrams cancels by
subsets, noting63 that graphs can be grouped in subsets (e.g.
pairsac, bd, ef in Fig. III.3) which vanish by shifting the end-
point of an internal line within a splitted vertex.

Finally, let us note that our result that correlations at the
quasi static depinning are purelystatic for v = 0+ is at vari-
ance with previous works19,20. Thus the only functions where
the dynamical exponent comes in are response function.

E. Long range elasticity

As was discussed in the Introduction there are physical sys-
tems where the elastic energy does not scale with the square
of the wave-vectorq asEelastic ∼ q2 but asEelastic ∼ qα. In
this situation, the upper critical dimension isdc = 2α and we
define:

ε := 2α− d . (III.55)

The most interesting case, a priori relevant to model wetting
or crack-front propagation isα = 1, thusdc = 2.

In order to proceed, we have again to specify a cut-off pro-
cedure. For calculational convenience, we choose the elastic
energy to be

Eelastic ∼ (q2 + m2)
α
2 . (III.56)

This changes the response-function to

Rq,t = Θ(t) e−(q2+m2)
α
2 t . (III.57)

Since contributions proportional toIl, see (A.26), cancel, the
only integrals which appear in theβ-function are:

I
(α)
1 =

∫
q

1
(q2 + m2)α

= m−ε Γ(ε/2)
Γ(α)

∫
q

e−q2
(III.58)

I
(α)
A =

∫
q1,q2

1
(q2

1 + m2)
α
2 (q2

2 + m2)α((q1 + q2)2 + m2)
α
2

(III.59)

The important combination is again2I
(α)
A −(I(α)

1 )2. One finds
(see appendix F)

X(α) :=
2 ε(2I

(α)
A − (I(α)

1 )2)

(εI(α)
1 )2

=
∫ 1

0

dt

t

1 + t
α
2 − (1 + t)

α
2

(1 + t)
α
2

+
Γ′(α)
Γ(α)

−
Γ′(a

2 )
Γ(a

2 )
+O(ε) . (III.60)

Since this term is finite, theβ-function is finite; this is of
course necessary for the theory to be renormalizable. For the
cases of interestα = 1 andα = 2, we find

X(2) = 1 (III.61)

X(1) = 4 ln 2 . (III.62)

Since there is only one non-trivial diagram at second order, all
2-loop terms in theβ-function get multiplied byX(α):

−m∂m∆(u) = (ε− 2ζ)∆(u) + ζu∆′(u)

−1
2
[
(∆(u)−∆(0))2

]′′
+

X(α)

2
[
(∆(u)−∆(0))∆′(u)2

]′′
+

X(α)

2
∆′(0+)2∆′′(u) . (III.63)

The diagrams involved in the dynamics also change. Besides
I
(1)
1 andI

(1)
A given above we need

I(1)
η :=

∫
q1,q2

1
(q2

1+m2)
1
2 (q2

2+m2) [(q2
2+m2)

1
2 + (q2

3+m2)
1
2 ]

=
(

1
2ε2

+
ln 2− π

4

ε

)(
εI

(1)
1

)2 + finite (III.64)

calculated in appendix G.
Starting from (III.49), the dynamical exponentz is then in

straightforward generalization of (III.50) given by

z = α−∆′′(0+) + X(α)∆′′(0+)2 + Y (α)∆′′′(0+)∆′(0+)
(III.65)

with X(α) given above and

Y (α) = X(α) +
2I

(α)
η −

(
I
(α)
1

)2

ε
(
I
(α)
1

)2 (III.66)

Y (1) = 6 ln 2− π

2
(III.67)

Y (2) =
3
2
− ln 2 . (III.68)
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The caseα = 2 reproduces (III.50). Since bothX(1) andY (1)

are finite, we have checked that also in the case of long-range
elasticity the theory is renormalizable at second order.

IV. ANALYSIS OF FIXED POINTS AND
PHYSICAL RESULTS

The FRG-equation derived above describes several different
physical situations: periodic systems (such as charge den-
sity waves) where the disorder correlator is periodic and non-
periodic systems (such as a a domain-wall in a magnet).
Within the latter, SR (random bond) and LR (random field)
disorder must a priori be distinguished. In our analysis of the
FRG-equations, we have to study these situations separately.

Before we do so, let us mention an important property, valid
under all conditions: If∆(u) is solution of (III.63), then

∆̃(u) := κ2∆(u/κ) (IV.1)

is also a solution. We can use this property to fix∆(0) in
the case of non-periodic disorder. (For periodic disorder the
solution is unique, since the period is fixed.)

A. Non-periodic systems

We now start our analysis with non-periodic systems, either
with random field disorder or any correlator decreasing faster
than RF. Let us first recall that at the level of thebaremodel
the static RF obeysR(u) ∼ −σ|u| at large |u| and thus∫∞
0

du∆(u) = R′(0+)−R′(∞) = −σ (σ is the amplitude of
the random field) while RB or any correlator decaying faster
than RF satisfies

∫
∆ = 0.

Let us first integrate the disorder flow equation (III.63) from
u = 0+ to u = +∞. We obtain

−m∂m

∞∫
0

∆(u) du = (ε− 3ζ)

∞∫
0

∆(u) du−X(α)∆′(0+)3 .

(IV.2)
The only assumption that we have made here is thatu∆(u)
goes to zero atu = +∞, which is the case both for RB and
RF.

Let us first recall the 1-loop analysis, where in the FRG
equation there is no distinction between statics and depinning.
The last term in (IV.2) is then absent. Thus one finds either
fixed points with

∫
∆ = σ > 0 with ζ = ε/3, the RF univer-

sality class, or others with
∫

∆ = 0 for ζ < ε/3 which cor-
responds to disorder with shorter range correlations than than
RF. This includes the RB fixed point with exponentially de-
caying correlator andζRB = 0.208ε. It also includes a contin-
uous family of intermediate power law fixed points32,36 with
decay at largeu as∆(u) = −R′′(u) ∼ (α − 2)(α − 1)u−α

with α∗ > α > 1. These haveζ(α) = ε/(2+α) (from solving
the linear part of the FRG equation) andζ(α∗) = ζRB .

The last term in (IV.2) shows that things work differently to
two loops at depinning. the condition

∫
∆ = 0 is no longer

possible at the fixed point. Starting from RB one develops a
positive value for

∫
∆, i.e. a random field component. The

natural conclusion is then that all correlations shorter range
than RF flow to the RF universality class76. Furthermore the
fixed point condition (III.63) equals0 implies a unique well
defined value forζ identical for all ranges shorter than RF
(including RB). This value takes the form:

ζ =
ε

3
− X(α)∆′(0+)3

3
∞∫
0

∆
=

ε

3
+ ζ2ε

2 + O(ε3) , (IV.3)

whereζ2 > 0 can be obtained from the knowledge of the 1-
loop fixed point∆ ∼ O(ε) only.

Before we computeζ2 and obtain the depinning fixed point
to two loop, let us note that in the static case33 the last term in
(III.63) has the opposite sign and, integrating overu one finds
that there is thus no term proportional to∆′(0+) in (IV.2).
Thus for the RF disorder0 <

∫
∆ < +∞ one can again

conclude that

ζRF
eq =

ε

3
(IV.4)

to (at least) second order. In fact, as discussed in33 this is
expected to be exact to all orders due to the potentiality re-
quirement of the static FRG equation, which also implies that∫

∆ = 0 holds to all orders at the static RB fixed point. The
corresponding value forζRB

eq is given to orderε2 in33.
We now want to find the fixed-point function of equation

(III.63). Using the reparametrization-invariance (IV.1), we set
(with the factors1/3 and1/18 chosen for later convenience)

∆(u) =
ε

3
y1(u) +

ε2

18
y2(u) + O(ε3) (IV.5)

y1(0) = 1 (IV.6)

y2(0) = 0 , (IV.7)

wherey1(u) is the 1-loop fixed point function for the RF case.
It was obtained in Ref.22 and further studied in Ref.28. Let us
recall its properties. To lowest order inε the 1-loopβ-function
(III.63) reads:

ε

3
∆(u) +

ε

3
u∆′(u)− 1

2

[
(∆(u)−∆(0))2

]′′
= 0 (IV.8)

inserting (IV.5) the functiony1(u) must satisfy:

[uy1(u)]′ =
1
2

[
(y1(u)− y1(0))2

]′′
, (IV.9)

which can be first integrated to

uy1(u) = (y1(u)− 1) y′1(u) , (IV.10)

using (IV.6) in the last line. A second integration with the
boundary conditions implied by (IV.6) yields:

y1(u)− ln y1(u) = 1 +
1
2
u2 . (IV.11)

The derivatives ofy1(u) at u = 0 will be needed below. De-
riving (IV.10) successively w.r.t.u, we find

y1(0) = 1 , y′1(0
+) = −1

y′′1 (0+) =
2
3

, y′′′1 (0+) = −1
6

. (IV.12)
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FIG. IV.1: The fixed-point functiony1(u) at 1-loop order for non-
periodic disorder.

We have also determined the fixed-point function at second
ordery2(u), which is given in appendix H.

In order to extractζ from (IV.2), we need

√
2γ =

∫ ∞

0

y1(u) du , (IV.13)

which was computed in Ref.28. The method is to convert
(IV.13) into an integral overy := y1:∫ ∞

0

y du = −
∫ 1

0

y
du

dy
dy = −

∫ 1

0

y

y′
dy

= −
∫ 1

0

dy
y − 1√

2
√

y − ln y − 1
, (IV.14)

where in the last equality (IV.11) has been used. Integrating
by parts, this yields

γ =
∫ 1

0

dy
√

y − ln y − 1 ≈ 0.5482228893.. . (IV.15)

Combining the definition of∆(u) in (IV.5) with (IV.12) and
(IV.15), we find

ζ2 =
X(α)

27
√

2γ
(IV.16)

and thus forζ

ζ =
ε

3
+

X(α)ε2

27
√

2γ
+ O(ε3) . (IV.17)

This result violates the conjecture of21, thatζ = ε
3 to all orders

in ε. To compare (IV.17) with simulations, we have to specify
to the cases of interest: First, for short-range elasticity, i.e.
α = 2, we find

ζ =
ε

3

(
1 +

ε

9
√

2γ

)
=

ε

3

(
1 + 0.143313 ε

)
. (IV.18)

Our results are in excellent agreement with the numerical sim-
ulations, see figure IV.2. For long-range elasticity, i.e.α = 1,

exponent dim 1-loop 2-loop estimate simulation

d = 3 0.33 0.38 0.38±0.02 0.34±0.0119,20

ζ d = 2 0.67 0.86 0.82±0.1 0.75±0.0251

d = 1 1.00 1.43 1.2±0.2 1.25±0.0164

1.25±0.0551

d = 3 1.78 1.73 1.74±0.02 1.75±0.1519,20

z d = 2 1.56 1.38 1.45±0.15 1.56±0.0651

d = 1 1.33 0.94 1.35±0.2 1.42±0.0451

1.54±0.0564

d = 3 0.89 0.85 0.84±0.01 0.84±0.0219,20

β d = 2 0.78 0.62 0.53±0.15
0.65±0.0551

0.64±0.0219,20

0.66±0.0452

d = 1 0.67 0.31 0.2±0.2
0.35±0.0453

0.4± 0.0564

0.25±0.0351

d = 3 0.58 0.61 0.62±0.01

ν d = 2 0.67 0.77 0.85±0.1 0.77±0.0452

d = 1 0.75 0.98 1.25±0.3 1±0.0553

1.1±0.164

FIG. IV.2: Depinning exponents,α = 2. First column: Exponents
obtained by settingε = 1 in the 1-loop result. Second column: Ex-
ponents obtained by settingε = 1 in the two-loop result. Third col-
umn: Conservative estimates based on three Padé estimates, scaling
relations and common sense. Fourth column: Results of numerical
simulations obtained directly without using scaling relations.

equation (IV.17) reads

ζ =
ε

3

(
1 +

4 ln 2
9
√

2γ
ε

)
=

ε

3

(
1 + 0.39735 ε

)
. (IV.19)

This is in reasonable agreement with simulations, as shown on
figure IV.3.

We now turn to the calculation of the dynamical expo-
nent z. As can be seen from the general result of equation
(III.65), we need∆′(0+), ∆′′(0+) and∆′′′(0+) at leading or-
der, which can be inferred from (IV.5) and (IV.12). We further
need∆′′(0) at second order. Expanding (III.63) to orderε3,
and Taylor-expanding to second order inu, we can solve for
y′′2 (0), which yields

∆′′(0) =
ε

3
y′′1 (0) +

ε

18
y′′2 (0) (IV.20)

exponentsone looptwo loop estimate simulation

ζ 0.33 0.47 0.5± 0.1 0.390± 0.00245

z 0.78 0.66 0.7± 0.1 0.74± 0.0365

β 0.78 0.59 0.4± 0.2 ???

ν 1.33 1.58 2.± 0.4 ???

FIG. IV.3: Depinning exponents,α = 1. First column: Exponents
obtained by settingε = 1 in the 1-loop result. Second column: Expo-
nents obtained by settingε = 1 in the two-loop result. Third column:
Conservative estimates based on three Padé estimates together with
scaling relations between exponents.
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=
2ε

9
+

ε2

3

(
10X(α)

27
− ζ2

)
. (IV.21)

Specializing to the SR-case (α = 2) yields with the help of
(III.50)

z = 2−∆′′(0+) + ∆′′(0+)2 + ∆′′′(0+)∆′(0+)
(

3
2
− ln 2

)
= 2− 2ε

9
+ ε2

(
ζ2

3
− ln 2

54
− 5

108

)
= 2− 0.222222ε− 0.0432087ε2 . (IV.22)

The agreement with the numerical simulations given on figure
IV.2 is again good. Finally, the exponentsβ andν are obtained
from scaling relations. Forα = 2 (SR) they read

β =
z − ζ

2− ζ

= 1− ε

9
+ ε2

(
ζ2

6
− 1

24
− ln 2

108

)
= 1− ε

9
+ 0.040123ε2 (IV.23)

ν =
1

2− ζ
=

1
2

+
ε

12
+ ε2

(
ζ2

4
+

1
72

)
=

1
2

+
ε

12
+ 0.0258316 ε2 . (IV.24)

We now turn to long range elasticityα 6= 2. The general
formula forz reads

z = α− 2
9
ε + ε2

(
ζ2

3
− 2X(α)

27
+

Y (α)

54

)
. (IV.25)

Specifying toα = 1 yields

z = 1− 2
9
ε + ε2

(
ζ2

3
− π + 20 ln 2

108

)
= 1− 2

9
ε− 0.1132997ε2 . (IV.26)

Againβ andν are obtained from scaling as (α = 1)

β =
z − ζ

1− ζ
= 1− 2

9
ε + ε2

(
ζ2

3
− 2

27
− π + 20 ln 2

108

)
= 1− 2

9
ε− 0.1873737ε2 (IV.27)

ν = 1 +
ε

3
+ ε2

(
1
9

+ ζ2

)
= 1 +

ε

3
+ 0.24356ε2 . (IV.28)

Numerical values are given on figure IV.3.
Note that to two loops at the RF fixed point there does not

appear to be any unstable direction. We thus conclude, as in21

that

νFS = ν . (IV.29)

Finally, for depinning there should also be a family of fixed
points corresponding to correlations of theforce which are

long range with∆(u) ∼ u−α andα ≥ α∗ ≥ 1. The linear
part of the FRG equation implies thatζ(α) = ε/(2 + α) and
a crossover from the RF fixed point occurs whenζ(α∗) =
ζRF = ε

3 + ζ2ε
2 + O(ε3). We have not studied these LR fixed

points in details.

B. Periodic systems

exponentdimension1-loop 2-loop estimate simulation

d = 3 0.83 0.78 0.78±0.03 0.81±0.03
0.84±0.05

β d = 2 0.67 0.44 0.52±0.08 0.63±0.06
0.68±0.07

d = 1 0.5 0. 0.2±0.2

FIG. IV.4: Depinning exponents for CDW. First column: Exponents
obtained by settingε = 1 in the 1-loop result. Second column: Ex-
ponents obtained by settingε = 1 in the two-loop result. Third col-
umn: Conservative estimates based on three Padé estimates, scaling
relations and common sense. Fourth column: Simulations from9.

For periodic∆(u) as e.g. CDW depinning17,21, there is an-
other fixed point of (III.63). It is sufficient to study the case
where the period is set to unity, all other cases are easily
obtained using the reparametrization invariance of equation
(IV.1). This means, that no rescaling is possible in that direc-
tion, and thus the rescaling factor is

ζ = 0 . (IV.30)

The fixed-point function is then periodic, and can in the inter-
val [0, 1] be expanded in a Taylor-series inu(1 − u). Even-
more, the ansatz

∆(u) = (a1ε + a2ε
2 + . . .) +

(
b1ε + b2ε

2 + . . .
)
u(1− u)

(IV.31)
allows to satisfy the fixed-point equation (III.63) to orderε2,
with coefficients

∆∗(u) =
ε

36
+

ε2X(α)

108
−
(

ε

6
+

ε2X(α)

9

)
u(1−u) . (IV.32)

In the physically interesting situation of charge density waves,
the elasticity is short range, i.e.α = 2 andX(α) = 1 which
yields:

∆∗(u) =
ε

36
+

ε2

108
−
(

ε

6
+

ε2

9

)
u(1− u) . (IV.33)

This fixed point is manifestly non-potential, i.e. it describes
a force-force correlation-function, where the forces can not
be derived from a potential. In a potential environment, the
integral of the force over one period must vanish, and so must
the force-force correlation-function. In contrast we find here∫ 1

0

du ∆∗(u) = −ε2X(α)

108
α→2
−−−−→ − ε2

108
. (IV.34)

Thus to two loop the fixed point correctly accounts for the
irreversibility in the driven system, which becomes manifest
beyond the Larkin-length. This was not apparent to one loop.
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An important feature of the periodic case is that the fixed
point isunstable. The direction of instability is simply adding
a constant to∆(u) and its eigenvalue is trivial equal toε to two
loops and presumably to all orders. The full stability analysis
is performed in appendix I but it can be seen already from:

−m∂m

1∫
0

∆(u) du = ε

1∫
0

∆(u) du− 2X(α)∆′(0+)3

(IV.35)
obtained by integration of the 2-loop FRG equation on the
interval [0+, 1−]. One sees that

∫
∆ flows away if it does not

coincide with its fixed point value (IV.34).
Thus the asymptotic flow as the dimensional parameter

m → 0 takes the simple form

∆m(u) = ∆∗(u) + cm−ε (IV.36)

c = mε
0

1∫
0

(∆m0 −∆∗) (IV.37)

i.e. it takes the fixed point form shifted by a growing constant.
In the statics

∫ 1

0
du ∆m =

∫ 1

0
du ∆∗ = 0 from potentiality (

the last term in (IV.35) is absent ) and thusc = 0. At depin-
ning c is non-zero at 2-loop order (c ≈ −

∫ 1

0
∆∗ > 0) using

that the bare disorder has zero integral) and this has several
consequences. First one obtains the static deformations as the
sum

(ux − u0)2 = Bnl(x) + BRF(x) (IV.38)

of a universal logarithmic growth-term

Bnl(x) = Ad ln |x| (IV.39)

Ad =
1
18

ε +
2X(α) − 3

108
ε2 (IV.40)

(the calculation ofAd is presented in Appendix J as an exam-
ple of an explicit calculation of a correlation function in the
renormalized theory); and of the contribution of the generated
“random force” of the Larkin type

BRF(x) ∼ c|x|4−d , (IV.41)

which completely decouples from the other one. This is very
similar to what was found in other driven systems where a
random force is generated50,66. In particular this implies that
the true roughness-exponent at depinning is notζ = 0 but

ζdep =
4− d

2
. (IV.42)

Another consequence is that the the two exponentsν and
νFS are different. We find:

ν =
1

2− ζ
=

1
2

(IV.43)

νFS =
1

2− ζdep
=

2
d

(IV.44)

and given the generality of the above argument this should
holds to all orders. Note then that the CCFFS-bound48 for
νFS is saturated. This is very different to the case of interfaces
(saturation of the bound there would lead to the incorrect re-
sult ζ = ε/3).

The dynamical exponentz is

z = α− ε

3
− ε2X(α)

9
α→2
−−−−→ 2− ε

3
− ε2

9
. (IV.45)

Curiously, it does not depend on the diagramIη or equiva-
lently Y (α).

In CDW depinning, the best observable quantity isβ. From
the scaling relation17,19–21β = (z − ζ)/(2 − ζ), andζ = 0,
we findβ = z/2 and thus for CDW (α = 2)

β = 1− ε

6
− ε2

18
. (IV.46)

This expansion is however ill-behaved, at least at largeε. It
therefore seems advisable, to use one of the Pade-variants.
The only one which respects common sense down tod = 1
and even beyond, is the Pade (0,2), reading

β =
1

1 + ε
6 + ε2

12

. (IV.47)

Again simulations are in reasonable good agreement with our
theoretical predictions, as can be seen on table IV.4. Further
simulations would be welcome.

V. CONCLUSION

To conclude we have constructed a consistent field theory of
isotropic depinning at zero temperature to 2-loop order. While
the 1-loop flow-equations for statics and driven dynamics are
identical, our 2-loop equations distinguish these physically
different situations, yielding different universal predictions for
both cases. This is an encouraging progress. The non-analytic
field theory that we have developed here will be discussed in
companion studies34,35 for the static theory to two and three
loops.

A lot remains to be done and understood. If universality is
to hold at depinning then a renormalizable theory should exist
to any number of loops. We have not attempted a proof to all
orders here, and the mechanism in which the1/ε-divergences
cancel is non-trivial. We have however checked the applica-
bility of formal constructions like the subtraction operatorR
on sample diagrams. This could further be tested in a 3-loop
calculation. Although short time singularities (δ(vt) terms)
did not appear their role to any order remains to be clarified.
Next, effects of temperature have not been included here. One
expects that although atT = 0 the statics and the depinning
should be two distinct field theories, this distinction becomes
blurred at finite temperature. How this will work out is not yet
elucidated. Some efforts in that direction are reported in77.
Similarly it would be quite interesting to understand how to
describef = f−c , i.e. the approach to the threshold from be-
low. From the considerations here this appears to be quite
non-trivial.
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Extension of the present method to systems withN > 1
is also far from trivial. The monotonous increase ofut

does not apply to all components, which leads to complica-
tions. The large-N limit of the static FRG was solved exactly
recently36and it would be interesting to extend it to the dynam-
ics. Finally the threshold dynamics of other systems, such as
random field spin models, which can be described by the FRG,
is of interest.

From the point of view of simulations our results together
with recent more powerful algorithms offer hope that more
precise comparisons could be made, not only for exponents
but also for other universal quantities which offer stronger
tests such as scaling functions, amplitudes or finite size ef-
fects. The exponentνFS should be measured independently.
We encourage further precise numerical studies on both man-
ifolds and CDW with a comparison to theory in mind. Agree-
ment between numerics and theory would allow to rule out or
to accept elastic models for the description of more complex
experimental situations.

APPENDIX A: CORRECTIONS TO
DISORDER: DIAGRAMS OF TYPE A

In the following, we give explicit expressions for the diagrams
contributing to the renormalization of disorder. To simplify
notations, we have introducedq3 := q1 − q2 and set the mass
m to zero. The mass-dependence can easily be reconstructed
by replacingq2

i by q2
i + m2. We start with the diagrams of

class A, given on figure III.4. For illustration, we show the
complete calculation of the first non-vanishing diagrama2:

τ
2

1

43

σ

= −
∫

q1,q2

∫
t1,t2,t3,t4>0

e−q2
1t1−q2

2t2−q2
3(t3+t4)

×∆′′′(uτ − uσ)∆′(uτ−t2 − uσ−t1)
×∆(uτ−t3 − uτ−t2−t4) . (A.1)

For the fieldu, we have given the time-arguments, but sup-
pressed the spatial arguments, since the result is taken at con-
stant background field. We also do not write explicitly the two
response-fields. The given configuration is forτ − σ large,

and we can setu := uτ ′ − uσ′ for all τ ′ = τ ± someti,
σ′ = σ ± someti since theti are small (due to the exponen-
tially suppressing factors) compared to the difference ofτ−σ.
Finally, since∆ is continuous,∆(uτ−t3 − uτ−t2−t4) can be
replaced by∆(0). Integrating over all times leads to

a2 = −2∆(0)∆′(u)∆′′′(u)
∫

q1,q2

1
q2
1q2

2q4
3

. (A.2)

Similarly, we find

a3 = −2∆(0)∆′′(u)2
∫

q1,q2

1
q2
1q2

2q4
3

(A.3)

a2 + a3 = −∂2
u

[
∆(0)∆′(u)2

∫
q1,q2

1
q2
1q2

2q4
3

]
(A.4)

b1 = 2∆′(u)2∆′′(u)
∫

q1,q2

1
q2
1q2

2q4
3

(A.5)

b2 = 2∆(u)∆′(u)∆′′′(u)
∫

q1,q2

1
q2
1q2

2q4
3

(A.6)

b3 = ∆(u)∆′′(u)2
∫

q1,q2

1
q2
1q2

2q4
3

(A.7)

b4 = ∆′′(u)∆′(u)2
∫

q1,q2

1
q2
1q2

2q4
3

(A.8)

b5 = 2∆′′(u)∆′(u)2
∫

q1,q2

1
q2
1q2

2q4
3

(A.9)

b6 = ∆(u)∆′′(u)2
∫

q1,q2

1
q2
1q2

2q4
3

. (A.10)

The contribution of thebi’s can be summed as

6∑
i=1

bi = ∂2
u

[
∆(u)∆′(u)2

∫
q1,q2

1
q2
1q2

2q4
3

]
. (A.11)

Diagramc1 is

c1 = 2∆′(0+)2∆′′(u)
∫

q1,q2

1
q2
1q2

2q4
3

. (A.12)

All these diagrams contain the hat-diagram known from the statics andφ4 theory. It can be calculated as follows:

=
∫

q1,q2

1
(q2

1 + m2)(q2
2 + m2)2((q1 + q2)2 + m2)

=
∫

α,β,γ>0

βe−α(q2
1+m2)−β(q2

2+m2)−γ((q1+q2)
2+m2)

=
(∫

q

e−q2
)2 ∫

α>0,β>0,γ>0

βe−m2(α+β+γ)

[
Det

(
α + γ γ

γ β + γ

)]−d/2

=
(∫

q

e−q2
)2 ∫

α>0,β>0,γ>0

βγ3−de−m2γ(α+β+1)(α + β + αβ)−d/2

=
(∫

q

e−q2
)2

Γ(4− d)m−2εJ , (A.13)
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where we split the divergent integralJ in pieces, which are either finite or where the divergence can be calculated analytically:

J =
∫ ∞

0

dα

∫ ∞

0

dβ
β

(α + β + αβ)2
(α + β + αβ)

ε
2

(α + β + 1)ε
= J1 + J2 + J3 (A.14)

J1 =
∫ ∞

0

dα

∫ 1

0

dβ
β

(α + β + αβ)2
(α + β + αβ)

ε
2

(α + β + 1)ε
= ln 2 + O(ε) (A.15)

J2 =
∫ ∞

0

dα

∫ ∞

1

dβ

(
β

(α + β + αβ)2
(α + β + αβ)

ε
2

(α + β + 1)ε
− 1

(1 + α)2−
ε
2 β1+ ε

2

)
= − ln 2 + O(ε) (A.16)

J3 =
∫ ∞

0

dα

∫ ∞

1

dβ
1

(1 + α)2−
ε
2 β1+ ε

2
=

2
ε

+ 1 + O(ε) (A.17)

This gives the final result for the hat-diagram

IA = =
(∫

q

e−q2
)2

Γ(4− d) m−2ε

(
2
ε

+ 1 + O(ε)
)

=
(

1
2ε2

+
1
4ε

)(
εI

(α)
1

)2

. (A.18)

We now turn to the non-trivial diagrame1. At finite velocity
v, the diagram is

3

2

1

4
=
∫

q1,q2

∫
t1,...,t4>0

∆′′(u)∆′(v(t1 + t4 − t3))

×∆′(v(t2 + t3 − t4))e−t1q2
1−t2q2

2−(t3+t4)q
3
3

(A.19)

In the limit of vanishing velocityv → 0, we can replace
∆′(v(t2 + t3 − t4)) by ∆(0+)sgn(t2 + t3 − t4) a.s.o. Let
us stress that this replacement is correct both before and after
reaching the Larkin length. Its result is

e1 = ∆′(0+)2∆′′(u)

×
∫

q1,q2

∫
t3,t4>0

e−q2
3(t3+t4)I(t3, t4, q1, q2) (A.20)

I(t3, t4, q1, q2) =
∫

t1,t2

θ(t1)θ(t2)sgn(t1 + t4 − t3)

× sgn(t2 + t3 − t4)e−(q2
1t1+q2

2t2) .

(A.21)

Using thate−(q2
1t1+q2

2t2) = 1
q2
1q2

2
∂t1∂t2e

−(q2
1t1+q2

2t2) and inte-
gratingI by parts int1 andt2 yields

I(t3, t4, q1, q2) =
1

q2
1q2

2

×

×
[
2θ(t3 − t4)e−q2

1(t3−t4) + 2θ(t4 − t3)e−q2
2(t4−t3) − 1)

]
(A.22)

The integral over the two remaining timest3 andt4 in (A.20)
gives

∫
t3,t4>0

I(t3, t4, q1, q2) =

1
q2
1q2

2

(
1

q2
3(q2

1 + q2
3)

+
1

q2
3(q2

2 + q2
3)
− 1

q4
3

)
(A.23)

and thus

e1 = ∆′(0+)2∆′′(u)×

×
∫

q1,q2

1
q2
1q2

2q2
3

(
1

q2
1 + q2

3

+
1

q2
2 + q2

3

− 1
q2
3

)
(A.24)

with q3 = q1 − q2. In presence of a mass this reads:

e1 = ∆′(0+)2∆′′(u)×

×
∫

q1,q2

1
(q2

1 + m2)(q2
2 + m2)(q2

3 + m2)(
1

q2
1 + q2

3 + 2m2
+

1
q2
2 + q2

3 + 2m2
− 1

q2
3 + m2

)
(A.25)

We now calculate the new integral. It is relatively simple,
since it has only a single pole in1/ε:

Il :=
∫

q1,q2

1
(q2

1 + m2)(q2
2 + m2)(q2

3 + m2)(q2
1 + q2

3 + 2m2)

=
∫

q1,q3

∫
α>0,β>0,γ>0,δ>0

e−α(q2
1+m2)−β((q1+q3)

2+m2)−γ(q2
3+m2)−δ(q2

1+q2
3+2m2)
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=
(∫

q

e−q2
)2 ∫

α>0,β>0,γ>0,δ>0

e−m2(α+β+γ+2δ)

[
Det

(
α + β + δ β

β β + δ + γ

)]−d/2

=
(∫

q

e−q2
)2 ∫

α>0,β>0,γ>0,δ>0

e−m2δ(α+β+γ+2)δ3−d(1 + γ + α + 2β + αβ + αγ + βγ)−d/2

= Γ(4− d)
(∫

q

e−q2
)2 ∫

α>0,β>0,γ>0

(1 + γ + α + 2β + αβ + αγ + βγ)−d/2
[
m2(α + β + γ + 2)

]d−4

=
(∫

q

e−q2
)2 1

ε
m−2ε

∫
α>0,β>0,γ>0

(1 + γ + α + 2β + αβ + αγ + βγ)−2 + finite

= 2 ln 2
(∫

q

e−q2
)2 1

ε
m−2ε + finite

=
ln 2
2ε

(εI1)2 + finite (A.26)

This gives the final result fore1

e1 = ∆′(0+)2∆′′(u) (2Il − IA) . (A.27)

The last non-vanishing diagram isf2:

f2 = 2∆′(0+)2∆′′(u)
∫

q1,q2

e−q2
3(t3+t4)−(q2

1t1+q2
2t2) ×

× sgn(t4 − t3 − t2) . (A.28)

Integrating first overt4 and then over the remaining times
gives

f2 = −2∆′(0+)2∆′′(u)
∫

q1,q2

1
q2
1q2

2q2
3(q2

2 + q2
3)

. (A.29)

The integral has already been calculated in (A.26), yielding
the result

f2 = −2∆′(0+)2∆′′(u)Il . (A.30)

Note that the non-trivial integrals ine1 andf2 are in fact iden-
tical and cancel:

e1 + f2 = −∆′(0+)2∆′′(u)IA . (A.31)

APPENDIX B: CORRECTIONS TO
DISORDER: DIAGRAMS OF TYPE B

In this appendix, we calculate diagrams of type B (the bubble-
chains).

The diagrams which are odd functions ofu are:

h1 = h2 = i1 = j1 = k2 = k3 = l2 = l3 = l4 = 0 . (B.1)

The diagrams that are second derivative of static ones have all
their response-fields on their unsaturated vertices. These are:

g1 = ∆′′(u)2∆I2
1 (B.2)

g2 = 2∆′(u)∆′′′(u)∆(u)I2
1 (B.3)

g3 = ∆′(u)2∆′′(u)I2
1 (B.4)

g4 =
1
2
∆(u)2∆′′′′(u)I2

1 (B.5)

g1 + g2 + g3 + g4 = ∂2
u

[
1
2
∆(u)2∆′′(u)

]
I2
1 (B.6)

h3 = −∆(0)∆′′′′(u)∆(u)I2
1 (B.7)

h4 = −∆(0)∆′′(u)2I2
1 (B.8)

h5 = h6 = −∆(0)∆′′′(u)∆′(u)I2
1 (B.9)

h3 + h4 + h5 + h6 = ∂2
u [−∆(0)∆(u)∆′′(u)] I2

1 (B.10)

i2 = j2 =
1
4
∆(0)2∆′′′′(u)I2

1 (B.11)

k1 = −l1 = −∆(u)′′∆′′(0+)∆(0)I2
1 . (B.12)

The surprise is thati3, which is not the second derivative of
a static diagram (since it has botĥu on saturated vertices) is
non-trivial:

i3 = −∆′(0+)2∆′′(u)I2
1 . (B.13)

This diagram is necessary to ensure renormalizability.

APPENDIX C: CORRECTIONS TO
DISORDER: DIAGRAMS OF TYPE C

In this appendix, we show that diagrams of type C do not con-
tribute to the renormalization of disorder. This is fortunate,
since they involve a strongly diverging diagram (the tadpole),
which would render perturbation theory non-universal.

The diagrams which are odd functions ofu are

m1 = m3 = m4 = m5 = n1 = n3

= n4 = n5 = p2 = p3 = q2 = q3 = 0 . (C.1)

The following diagrams cancel:

m2 + n2 = 0 (C.2)

p1 + q1 = 0 (C.3)

p4 + q4 = 0 . (C.4)

No contribution remains.
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p1

m5m3m2m1 m4

n2 n3n1 n4 n5

q1 q2 q3 q4

p4p3p2

FIG. C.1: 2-loop diagrams of class C

APPENDIX D: CORRECTIONS TO η:
2-LOOP DIAGRAMS

In this appendix, we give all diagrams contributing to the cor-
rection ofη at second order. For simplicity of notation, we
again drop the explicit mass-dependence. We group together
those diagrams which partially cancel. We demonstrate ex-
plicitly how to calculate the first diagrama from the very be-
ginning.

a =

t

t t3

2

1

α

β γ

δ

(D.1)

=
∫

q1,q2

∫
t1,t2,t3

Rq1t1Rq2t2Rq1t3 ×

∆′(ut=0 − u−t1−t2−t3)(−∆′′(u−t1))

We have drawn three response functions. We have chosen
to start counting time at 0 for vertexα, such that vertexβ
is at time−t1, vertexγ at time−t1 − t2 and vertexδ at time
−t1−t2−t3. This gives the times for the arguments of∆. The
upper∆ in diagrama has one time derivative, the lower vertex
two, resulting in∆′ and−∆′′ respectively (the minus-sign is
a consequence of the both response-functions entering at dif-
ferent “ends” of∆). We have suppressed the space-arguments
in the fieldsu, since all diagrams correctingη are calculated at
a spatially constant background field. Inserting the response-
functionsRqt = Θ(t)e−q2t, we arrive at

a = −
∫

q1,q2

∫
t1,t2,t3>0

e−q2
1(t1+t3)−q2

2t2 ×

∆′(u0 − u−t1−t2−t3)∆
′′(u−t1 − u−t1−t2)

(D.2)

The crucial point is now that this diagram corrects the critical
force andη. The correction to the critical force is obtained by
setting the arguments of the∆’s to 0+ (unique here due to the
time-arguments). This contribution is non-universal and we
shall not calculate it in the following. Theuniversalcorrec-
tion toη is obtained by Taylor-expanding the argument of e.g.
∆′(u0 − u−t1−t2−t3) as

u0 − u−t1−t2−t3 ≈ (v + u̇0)(t1 + t2 + t3) (D.3)

and thus

∆′(u0 − u−t1−t2−t3) ≈ ∆′′(0+)u̇0(t1 + t2 + t3) , (D.4)

which naturally leads to the generation of a correction to fric-
tion. For our diagram, this is (sloppily droppinġu0 and the
response-field for simplicity of notation)

a = −
∫

q1,q2

∫
t1,t2,t3>>0

e−q2
1(t1+t3)−q2

2t2 ×

[
∆′′(0+)2(t1 + t2 + t3) + ∆′(0+)∆′′′(0+)t2

]
= −

∫
q1,q2

∆′′(0+)2
(

2
q6
1q2

2

+
1

q4
1q4

2

)
+ ∆′(0+)∆′′′(0+)

1
q4
1q4

2

(D.5)

where in the last line we have explicitly performed the time-
integrations.

Diagramg is

g =
∫

q1,q2

∫
t1,t2,t3>0

e−q2
1(t1+t3)−q2

2t2 ×

∆′(u0 − u−t1−t3)∆
′′(u−t1 − u−t1−t2)

=
∫

q1,q2

∫
t1,t2,t3>0

e−q2
1(t1+t3)−q2

2t2 ×

(
∆′′(0+)2(t1 + t3) + ∆′(0+)∆′′′(0+)t2

)
=
∫

q1,q2

∆′′(0+)2
2

q6
1q2

2

+ ∆′(0+)∆′′′(0+)
1

q4
1q4

2

. (D.6)

Thus

a + g = −
∫

q1,q2

∆′′(0+)2
1

q4
1q4

2

= −∆′′(0+)2I2
1 .(D.7)

Note that both diagramsa andg contain a tadpole-like sub-
divergence, which is canceled by a counter-term for the crit-
ical force. However their sum does not involve such a term
and thus there is no need to specify it.

Graphs b, c and d:

b = −
∫

q1,q2

∫
t1,t2,t3>0

e−q2
1(t1+t3)−q2

2t2 ×
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∆′′′(u0 − u−t2)∆(u−t3 − u−t1−t2)

= −
∫

q1,q2

∫
t1,t2,t3

e−q2
1(t1+t3)−q2

2t2 ×[
∆′′′′(0+)∆(0)t2 + ∆′′′(0+)∆′(0+)|t1 + t2 − t3|

]
(D.8)

while

c = d =
1
2

∫
q1,q2

∫
t1,t2,t3>0

e−q2
1(t1+t3)−q2

2t2 ×

[
∆′′′′(0+)∆(0)t2 + ∆′′′(0+)∆′(0+)|t1 − t3|

]
.

(D.9)

Note the factor1/2 for the symmetry in the lower vertex. To-
gether they are

b +c + d = ∆′′′(0+)∆′(0+)

×
∫

q1,q2

∫
t1,t2,t3

e−q2
1(t1+t3)−q2

2t2(|t1 − t3| − |t1 + t2 − t3|)

(D.10)

Changing variables tou = t1 − t3 ands = 1
2 (t1 + t3), the

integral
∫

t1,t3>0
becomes

∫∞
0

ds
∫ 2s

−2s
du. The integral over

u can be performed, but for fixeds the second term in (D.10)
depends on the value oft2. Distinguishing the both cases, we
obtain

b + c + d = ∆′′′(0+)∆′(0+)
∫

q1,q2

∫
s>0

e−2q2
1s

 ∞∫
0

dt2 e−q2
2t24s2 −

2s∫
0

dt2 e−q2
2t2(t22 + 4s2)−

∞∫
2s

dt2 e−q2
2t24st2


= −∆′′′(0+)∆′(0+)

∫
q1,q2

1
q2
1q4

2(q2
1 + q2

2)
. (D.11)

This integral can be simplified through symmetrization. Using that∫
q1,q2

[
1

q2
1q4

2(q2
1 + q2

2)
+

1
q4
1q2

2(q2
1 + q2

2)

]
=
∫

q1,q2

1
q4
1q4

2

= I2
1 , (D.12)

we obtain

b + c + d = −1
2
∆′′′(0+)∆′(0+)I2

1 . (D.13)

The next diagram ise:

e =
∫

q1,q2

∫
t1,t2,t3

e−q2
1t1−q2

2t2−q2
3t3∆′′(u0 − u−t2−t1))∆

′(u−t2 − u−t3)

=
∫

q1,q2

∫
t1,t2,t3

e−q2
1t1−q2

2t2−q2
3t3
[
∆′′′(0+)∆′(0+)(t2 + t1) sgn(t3 − t2) + ∆′′(0+)2(t3 − t2)

]
. (D.14)

By symmetrizing in (2 ↔ 3), the term proportional tot1 and the term proportional to(t3 − t2) vanish. The remaining term can
be written as

e = −1
2

∫
q1,q2

∫
t1,t2,t3

e−q2
1t1−q2

2t2−q2
3t3∆′′′(0+)∆′(0+)|t2 − t3| . (D.15)

Making the same change of variables tou ands as for (D.11), the integration overu, s andt1 can be performed in this order,
distinguishing the casesu < 0 andu > 0. Both cases give the same result for a total of

e = −∆′′′(0+)∆′(0+)
∫

q1,q2

1
q2
1q4

2(q2
2 + q2

3)
. (D.16)

This contains the new integral (given regularized)

Iη :=
∫

q1,q2

1
(q2

1 + m2)(q2
2 + m2)2(q2

2 + q2
3 + 2m2)

. (D.17)
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It is related toIl, see (A.26) andIA, see (A.18):

Iη + Il = IA . (D.18)

It is calculated in appendix E. The last diagram to be calculated isf:

f =
∫

q1,q2

∫
t1,t2,t3

e−q2
1t1−q2

2t2−q2
3t3∆′′(u0 − u−t1−t2)∆

′(u−t1−t2−t3 − u−t2)

= −
∫

q1,q2

∫
t1,t2,t3

e−q2
1t1−q2

2t2−q2
3t3
[
∆′′′(0+)∆′(0+)(t2 + t1) + ∆′′(0+)2(t1 + t3)

]
= −2∆′′′(0+)∆′(0+)IA − 2∆′′(0+)2IA . (D.19)

APPENDIX E: THE INTEGRAL Iη

We have to calculate the integralIη defined as

Iη :=
∫

q1,q2

1
(q2

1 + m2)(q2
2 + m2)2(q2

2 + q2
3 + 2m2)

. (E.1)

This is done as follows:

Iη =
∫

q1,q2

∫
α,β,γ>0

β e−α(q2
1+m2)−β(q2

2+m2)−γ(q2
2+q2

3+2m2)

=
(∫

q

e−q2
)2 ∫

α,β,γ>0

β e−m2(α+β+2γ)

[
Det

(
α + γ γ

γ β + 2γ

)]−d/2

=
(∫

q

e−q2
)2 ∫

α,β,γ>0

β γ3−de−m2γ(α+β+2)(1 + 2α + β + αβ)−d/2

=
(∫

q

e−q2
)2

Γ(4− d) m−2ε J (E.2)

with

J :=
∫ ∞

0

dα

∫ ∞

0

dβ
β

(1 + 2α + β + αβ)2
(1 + 2α + β + αβ)

ε
2

(α + β + 2)ε
= J1 + J2 + J3 (E.3)

J1 :=
∫ ∞

0

dα

∫ 1

0

dβ
β

(1 + 2α + β + αβ)2
(1 + 2α + β + αβ)

ε
2

(α + β + 2)ε
= 2 ln 3− 3 ln 2 + O(ε) (E.4)

J2 :=
∫ ∞

0

dα

∫ ∞

1

dβ

[
β

(1 + 2α + β + αβ)2
(1 + 2α + β + αβ)

ε
2

(α + β + 2)ε
− 1

(1 + α)2−
ε
2 β1+ ε

2

]
= ln 2− 2 ln 3 + O(ε) (E.5)

J3 :=
∫ ∞

0

dα

∫ ∞

1

dβ
1

(1 + α)2−
ε
2 β1+ ε

2
=

2
ε

+ 1 + O(ε) . (E.6)

Thus

Iη :=
∫

q1,q2

1
(q2

1 + m2)(q2
2 + m2)2(q2

2 + q2
3 + 2m2)

=
(

1
2ε2

+
1− 2 ln 2

4ε

)
(εI1)2 + finite . (E.7)

APPENDIX F: INTEGRALS IN LONG
RANGE ELASTICITY CALCULATION

In the long-range case, there are two integrals which con-
tribute to the renormalization of the disorder. At 1-loop order

this is

I
(α)
1 :=

∫
q

1
(q2 + m2)α

=
1

Γ(α)

∫ ∞

0

ds

s
sα

∫
q

e−s(q2+m2)

= m−ε Γ( ε
2 )

Γ(α)

(∫
q

e−q2
)

. (F.1)
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At 2-loop order, this is

I
(α)
A :=

∫
q1,q2

1
(q2

1 + m2)
α
2 (q2

2 + m2)α((q1 + q2)2 + m2)
α
2

(F.2)

This is evaluated as follows

I
(α)
A =

∫ ∞

0

ds

s

s
α
2

Γ(α
2 )

∫ ∞

0

dt

t

tα

Γ(α)

∫ ∞

0

du

u

u
α
2

Γ(α
2 )

×
∫

q1,q2

e−s(q2
1+m2)−t(q2

2+m2)−u((q1+q2)
2+m2)

=
(∫

q

e−q2
)2 ∫ ∞

0

ds

s

s
α
2

Γ(α
2 )

∫ ∞

0

dt

t

tα

Γ(α)

∫ ∞

0

du

u

u
α
2

Γ(α
2 )

×

[
det

(
s + u u

u t + u

)]− d
2

e−(s+t+u)m2
.(F.3)

Making the replacements → su andt → tu and integrating
overu, we obtain

I
(α)
A =

(∫
q

e−q2
)2

m−2ε Γ(ε)
Γ(α)Γ(α

2 )2

×
∫

s,t>0

s
α
2−1tα−1

(st + s + t)α
(st + s + t)

ε
2 (1 + s + t)−ε

=
(∫

q

e−q2
)2

m−2ε Γ(ε)
Γ(α)Γ(α

2 )2
(J1 + J2 + J3 + O(ε))

(F.4)

J1 =
∫ 1

0

dt

∫ ∞

0

ds
s

α
2−1tα−1

(st + s + t)α
(F.5)

J2 =
∫ ∞

1

dt

∫ ∞

0

ds s
α
2−1tα−1 ×[

(st + s + t)−α − (1 + s)−αt−α
]

(F.6)

J3 =
∫ ∞

1

dt

∫ ∞

0

ds s
α
2−1(1 + s)

ε
2−αt−1− ε

2

=
2
ε

Γ(α
2 )Γ(α−ε

2 )
Γ(α− ε

2 )
(F.7)

J1 andJ2 are now both integrated overs. Changing inJ2 the
integration overt to that over1/t, we obtain

J1 + J2 = 21−α
√

π
Γ(α

2 )
Γ( 1+α

2 )

∫ 1

0

dt
1 + t

α
2 − (1 + t)

α
2

t(1 + t)
α
2

(F.8)

(J1 + J2) α=1
= 0 (F.9)

(J1 + J2) α=1
= 2π ln 2 . (F.10)

Putting everything together, the final result is

I
(α)
A =

[
1

2ε2
+

1
4ε

(∫ 1

0

dt
1 + t

α
2 − (1 + t)

α
2

t(1 + t)
α
2

(F.11)

+
Γ′(a)
Γ(a)

−
Γ′(a

2 )
Γ(a

2 )

)](
εI

(α)
1

)2

+ O(ε0)

I
(1)
A =

[
1

2ε2
+

ln 2
ε

](
εI

(α)
1

)2

+ O(ε0) (F.12)

I
(2)
A =

[
1

2ε2
+

1
4ε

](
εI

(α)
1

)2

+ O(ε0) . (F.13)

APPENDIX G: CALCULATION OF THE
INTEGRAL Iα

η

The calculations for the corrections to friction are the same
as with short-range elasticity, except that the integralsI1, IA

andIη change. The first two have already been calculated in

appendix F. We now attack the masterpiece,I
(α)
η . For sim-

plicity, we restrict ourselves toα = 1.

I(1)
η :=

∫
q1,q2

1
(q2

1+m2)
1
2 (q2

2+m2) [(q2
2+m2)

1
2 + (q2

3+m2)
1
2 ]

.(G.1)

Using:

e−
√

x =
1

2
√

π

∫ ∞

0

ds s−3/2e−
1
4s e−sx (G.2)

we have

1
√

a +
√

b
=
∫

t3>0

e−t3(
√

a+
√

b)

=
1
4π

∫
t3,s1,s2>0

(s1s2)−
3
2 e−

1
4s1

− 1
4s2 e−s1t23a−s2t23b

(G.3)

With the help of (G.3), we can writeI(1)
η as

I(1)
η =

1
4π

1
Γ( 1

2 )

∫
q1,q2

∫
t1,t2,t3,s1,s2>0

t
− 1

2
1 (s1s2)−

3
2 e−t1(q

2
1+m2)−(t2+s1t23)(q

2
2+m2)−s2t23(q

2
3+m2) e−

1
4s1

− 1
4s2

=
1
4π

1
Γ( 1

2 )

(∫
q

e−q2
)2 ∫

t1,t2,t3,s1,s2>0

t
− 1

2
1 (s1s2)−

3
2 e−m2(t1+t2+(s1+s2)t

2
3) e−

1
4s1

− 1
4s2

(t1t2 + s1s2t43 + (s1 + s2)t1t23 + s2t2t23)
1− ε

2
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=
1
4π

1
Γ( 1

2 )

(∫
q

e−q2
)2 ∫

t1,t2,t3,s1,s2>0

t−1+2ε
3

t
− 1

2
1 (s1s2)−

3
2 e−m2t23(t1+t2+s1+s2) e−

1
4s1

− 1
4s2

(t1t2 + s1s2 + (s1 + s2)t1 + s2t2)1−
ε
2

=
1
4π

1
Γ( 1

2 )

(∫
q

e−q2
)2 Γ(ε)

2
m−2ε

∫
t1,t2,s1,s2>0

t
− 1

2
1 (s1s2)−

3
2 e−

1
4s1

− 1
4s2

(t1t2 + s1s2 + (s1 + s2)t1 + s2t2)1−
ε
2 (t1 + t2 + s1 + s2)ε

=
1
4π

1
Γ( 1

2 )

(∫
q

e−q2
)2 Γ(ε)

2
m−2εJ . (G.4)

In the third line we have made the replacementt1 → t23t1 andt2 → t23t2. In the fourth line we have integrated overt3. The
integralJ is again decomposed in converging parts (which can be evaluated atε = 0) and parts that can be integrated analytically:

J = J1 + J2 + J3 + O(ε) (G.5)

J1 =
∫

t1,s1,s2>0

t
− 1

2
1 (s1s2)−

3
2 e−

1
4s1

− 1
4s2

∫
t2>1

1
t1t2 + s1s2 + (s1 + s2)t1 + s2t2

− 1
t2(s2 + t1)

(G.6)

J2 =
∫

t1,s1,s2>0

t
− 1

2
1 (s1s2)−

3
2 e−

1
4s1

− 1
4s2

∫
0<t2<1

1
t1t2 + s1s2 + (s1 + s2)t1 + s2t2

(G.7)

J3 =
∫

t1,s1,s2>0

t
− 1

2
1 (s1s2)−

3
2 e−

1
4s1

− 1
4s2

∫
t2>1

t
−1− ε

2
2 (s2 + t1)−1+ ε

2 . (G.8)

Integrating inJ3 overt2, t1, s1 ands2 (in this order) we find

J3 = 2−ε 16π

ε
Γ
(

1− ε

2

)
. (G.9)

In order to calculateJ1 andJ2, it is convenient to do the integration overt2 in both integrals first. Taking the sum, some terms
cancel:

J1 + J2 =
∫

t1,s1,s2>0

t
− 1

2
1 (s1s2)−

3
2 e−

1
4s1

− 1
4s2

ln(s2 + t1)− ln(s1s2 + t1(s1 + s2))
s2 + t1

. (G.10)

The logarithms have to be written as derivatives:

J1 + J2 =
∂

∂b

∣∣∣∣
b=0

∫
t1,s1,s2>0

t
− 1

2
1 (s1s2)−

3
2 e−

1
4s1

− 1
4s2

(
(s2 + t1)−1+b − (s2 + t1)−1(s1s2 + t1(s1 + s2))b

)
. (G.11)

Making the change of variabless1 → 1/s1, s2 → 1/s2, t1 → t1/s2 ands1 → s1s2 (in this order), we obtain

J1 + J2 =
∂

∂b

∣∣∣∣
b=0

∫
t1,s1,s2>0

s
− 1

2
1 s

1
2−b
2 t

− 1
2

1

(
(1 + t1)−1+b − (1 + t1)−1s−b

1 s−b
2 (1 + t1(1 + s1))b

)
e−

1
4 s2(1+s1) . (G.12)

The integration overs2 can now be done analytically:

J1 + J2 =
∂

∂b

∣∣∣∣
b=0

∫
t1,s1

s
− 1

2
1 t

− 1
2

1

[
Γ
(

3
2 − b

)
(1 + t1)1−b

(
1 + s1

4

)b− 3
2

−
Γ
(

3
2 − 2b

)
(1 + t1(1 + s1))b

(1 + t1)sb
1

(
1 + s1

4

)2b− 3
2
]

. (G.13)

In order to proceed, we split these integrals as follows

J1 + J2 = K1 + K2 + K3 (G.14)

K1 =
∂

∂b

∣∣∣∣
b=0

∫
t1,s1

s
− 1

2
1 t

− 1
2

1

Γ
(

3
2 − b

)
(1 + t1)1−b

(
1 + s1

4

)b− 3
2

=
∂

∂b

∣∣∣∣
b=0

8 π 4−b Γ
(

1
2 − b

)
(G.15)

K2 = − ∂

∂b

∣∣∣∣
b=0

∫
t1,s1

s
− 1

2
1 t

− 1
2

1

Γ
(

3
2 − 2b

)
(1 + t1)sb

1

(
1 + s1

4

)2b− 3
2

= − ∂

∂b

∣∣∣∣
b=0

8 π
3
2 4−b Γ (1− 2b) (G.16)

K3 = − ∂

∂b

∣∣∣∣
b=0

∫
t1,s1

s
− 1

2
1 t

− 1
2

1

Γ
(

3
2

)
(1 + t1(1 + s1))b

(1 + t1)

(
1 + s1

4

)− 3
2

(G.17)

To evaluateK3 one first has to take the derivative:

K3 = −8 Γ
(

3
2

) ∫
t1,s1

ln(1 + t1(1 + s1))
√

s1

√
t1 (1 + t1) (1 + s1)

3
2

.

(G.18)

Integrating first overt1 and thens1 gives

K3 = −4π
3
2

∫
s1

2 atanh(1/
√

1 + s1) + ln(s1)
√

s1 (1 + s1)
3
2
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= 8π
3
2 (2 ln−2π) . (G.19)

Putting everything together his gives finally

I(1)
η =

(
1

2ε2
+

ln 2− π
4

ε

)
(εI(1)

1 )2 + finite . (G.20)

APPENDIX H: FIXED-POINT FUNCTION AT
SECOND ORDER

In this appendix, we show how to obtain the fixed-point func-
tion for ∆(u) at second order. We restrict the discussion to
α = 2. We use the notations of equation (IV.5). First, one
needs the 1-loop functiony1(u) both by solving (IV.11) nu-
merically and as a Taylor-series about 0. The latter is obtained
by deriving the 1-loopβ-function at the origin and fitting the
coefficients as

y1(u) = 1− u +
u2

3
− u3

36
− u4

270
− u5

4320
+

u6

17010

+
139u7

5443200
+

u8

204120
+

571u9

2351462400

− 281u10

1515591000
− 163879u11

2172751257600

− 5221u12

354648294000
− 5246819u13

10168475885568000

+
5459u14

7447614174000
+

534703531u15

1830325659402240000
. . .

(H.1)

The β-function at second order yields a linear differential
equation fory2(u). It is numerically singular at smallu.
Therefore one has to expand it in a Taylor-series about 0. Us-
ing the above information and the knowledge ofζ2, one finds

y2(u) = −1.14012 u + 0.967798 u2 − 0.202495 u3

−0.019299 u4 + 0.00259234 u5 + 0.0015302 u6

+0.000286423 u7 − 6.25533 10−6 u8

−0.0000206648 u9 − 6.48801 10−6 u10

−7.85669 10−7 u11 + 1.88404 10−7 u12

+1.24668 10−7 u13 + 3.13093 10−8 u14 + . . .

(H.2)

The differential equation fory2(u) is then solved numeri-
cally, starting atu ≈ 0.5. By integrating from that point

both towards 0 and towards infinity, one verifies that Taylor-
expansion and numerically obtained curve coincide in their
respective domain of validity. This is shown on figure H.1.
One also verifies that the numerically obtained function con-
verges to 0 for large u, thus the exponentζ2 obtained above is
correct.

It is a good question to ask for how largeε the fixed-point
function∆(u) = ε

3y1(u) + ε2

18y2(u) might be a good approx-
imation for the true disorder correlator. Let us note that if
one demands that∆(u) > 0, thus that forces be never anti-
correlated, this is only satisfied if

ε < εc ≈ 1.6 . (H.3)

1 2 3 4

-0.5

-0.4

-0.3

-0.2

-0.1

FIG. H.1: The fixed-point function of the RG-flowy2(u) at sec-
ond order inε. Upper curve: Numerical integration. Lower curve:
Taylor-expansion about 0.

APPENDIX I: STABILITY OF THE FIXED
POINTS

We now consider the stability of the periodic fixed point given
in (IV.33). DefineK[f ] as

K[f ] := lim
κ→0

1
κ

[β(∆∗(u) + κf(u))− β(∆∗(u))] . (I.1)

The eigenfunctions and eigenvalues are

K[f ] = λf . (I.2)

We find the following solutions (withx = u(1 − u) and nor-
malized tof(0) = 1)
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λ1 = ε , f1 = 1
λ2 = −ε− 7

3ε2 , f2 = 1− (6 + 4ε)x
λ3 = −4ε− 5ε2 , f3 = 1− (15 + 20ε)x + (45 + 85ε)x2

λ4 = −25ε
3 − 140ε2

9 , f4 = 1− (28 + 238ε
3 )x + ( 616

3 + 23548ε
27 )x2 − ( 4004

9 + 185402ε
81 )x3

λ5 = −14ε− 35ε2 , f5 = 1− (45 + 225ε)x + (585 + 4500ε)x2 − (2925 + 110475ε
4 )x3 + ( 9945

2 + 424755ε
8 )x4

λ6 = −21ε− 66ε2 , f6 = 1− (66 + 517ε)x + (1320 + 16148ε)x2 − (11220 + 169928ε)x3 + (42636 + 3672944ε
5 )x4

− ( 298452
5 + 28055588ε

25 )x5 (I.3)

This shows that apart from the constant mode (the shift) dis-
cussed in the text, the fixed point is stable.

APPENDIX J: CALCULATION OF
CORRELATION FUNCTIONS

In this Appendix we show how to compute a correlation func-
tion in the renormalized theory. As an example we study the
periodic case, i.e. we compute the amplitudeAd in (IV.40). To
do that we assume that we are exactly at the fixed point.

The correlation function is time-independent, as was shown
in Section (III D), and takes the scaling form:

〈uqu−q〉nl =
1

εĨ1

∆∗(0)m−dFd

( q

m

)
, (J.1)

where we have restored the factor previously absorbed in∆.
The scaling function is universal and satisfiesF (0) = 1 since
our calculation was performed at zero external momenta in
presence of a mass andF (z) ∼ B/zd at largez. In d = 4
one hasF4(z) = 1/(1 + z2)2. We want to obtain the scaling
function to the next order; in particular to computeAd we
needB = 1 + bε + O(ε2). The universal amplitude reads:

Ad =
2Sd

(2π)dεĨ1

B∆∗(0) (J.2)

= (1 + bε)(2 + ε)
(

ε

36
+

ε2X(α)

108

)
+ O(ε3) ,

which yields:

Ad =
1
18

ε +
2X(α) + 3 + 6b

108
ε2 . (J.3)

Computingb requires computing diagrams with external mo-
mentum which we do now. Let us use straight perturbation

theory with∆0, as in Section (III C 1). One has

(q2 + m2)2〈uqu−q〉 = ∆0(0)−∆′
0(0

+)2I(q) (J.4)

I(q) =
∫

p

1
(p2 + m2)((p + q)2 + m2)

. (J.5)

Let us reexpress this by the renormalized dimensionless dis-
order given in (III.35) and (III.18) atu = 0:

∆0(0) = mε(∆(0) + ∆′(0+)2mεI(0)) . (J.6)
This gives:

(q2 + m2)2〈uqu−q〉
= mε(∆(0)−∆′(0+)2mε(I(q)− I(0)))

= mε 1
εĨ1

∆∗(0)(1− ε
1

εĨ1

mε(I(q)− I(0))) , (J.7)

where we have reestablished the factor∆(u) = 1
εĨ1

∆∗(u)
and used the fixed point condition∆∗′(0+)2 = ε∆∗(0) This
substitution acts as a counter-term which exactly subtract the
divergence as it should. The result is finite. Using that:

I(q) =
∫

p

∫
s,t>0

e−s(p+q/2)2−t(p−q/2)2−(s+t)m2

=
∫

p

e−p2
∫

s,t>0

(s + t)−d/2e−q2 st
s+t−(s+t)m2

=
∫

p

e−p2
m−εΓ

(
2− d

2

)
×
∫

t>0

(1 + t)−d/2

[
(1 + t) +

t

1 + t

q2

m2

]−ε/2

. (J.8)

One obtains the scaling function in the form (z = |q|/m):

Fd(z) =
1

(1 + z2)2

{
1−

∫ ∞

0

dt
1

(1 + t)2

[(
1 +

tz2

(1 + t)2

)−ε/2

− 1

]}
(J.9)

=
1

(1 + z2)2

{
1 +

ε

2

∫ 1

0

ds ln(1 + z2(s− s2))
}

+ O(ε2)
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=
1

(1 + z2)2

{
1 +

ε

2

[
−2 +

√
4 + z2

z2

(
ln 2− ln

(
2 + z2 − z

√
4 + z2

))]}
+ O(ε2)

ζ→∞
−−→ 1

z4

{
1 +

ε

2
[−2 + 2 ln z]

}
+O(ε2)

We want to match at largez:

Fd(z) =
1
z4

(1+bε)zε =
1
z4

(1+ε(ln z+b)+O(ε2)) (J.10)

The above result yields

b = −1 . (J.11)

APPENDIX K: ANOMALOUS AND
NON-ODD GRAPHS

In this Appendix we write all anomalous 2-loop graphs con-
tributing to the correction of a non-analytic disorder. In a first
step we make no assumption and give their general expres-
sions: Already at that stage some cancellations are apparent.
In a second step we consider the limitv → 0+ at T = 0.
We check all cancellations given in the text and show that no
additional singularities occur. The multiplicity factors are in-
cluded in the given expressions. Of course since we want only
corrections to disorder we will give only the expressions when
the separations of the times between the two external response
fields are much larger than the separations within each con-
nected component. If this were not the case, as is needed e.g.
in the calculation of a 2-point correlation function to order
∆3, the above expressions should be reexamined separately.
Equivalently, the expressions given here are correct only for
u > 0 and may become incorrect atu = 0.

Graphs which are odd need not be considered (see main
text). Each remaining graph, e.g.ci is written in the shorthand
notation form:

graph ci =
∫

x,y

∫
ti>0

Fcci . (K.1)

The only anomalous non-vanishing graphs of class A are:

Fc = Ryt1Ryt2Rx−yt3Rxt4 (K.2)

c1 = 2〈∆′(ux
0 − ux

−t3−t2−t4)∆
′(uy

−t3 − uy
−t3−t2−t1)〉∆

′′(u)
(K.3)

c2 = 2〈∆(ux
−t4 − ux

−t2−t3)∆
′′(uy

0 − uy
−t2−t1)〉∆

′′(u) (K.4)

c4 = 2∆′(ux
0 − ux

−t2−t3−t4)∆
′(uy

−t4−t2 − uy
−t4−t1)∆

′′(u)
(K.5)

c5 = −2∆(ux
−t1−t2−t3 − ux

−t1−t4)∆
′′(uy

0 − uy
−t2−t1)∆

′′(u)
(K.6)

Fe = Ff = Rx−yt1Rx−yt2Rxt3Ryt4 (K.7)

e1 = ∆′′(u)〈∆′(ux
−t3 − ux

−t1−t4)∆
′(uy

−t4 − uy
−t3−t2)〉 (K.8)

f2 = 2∆′′(u)〈∆′(ux
−t3 − ux

−t3−t2−t1)∆
′(uy

−t2−t3 − uy
−t4)〉 .

(K.9)

For the graphs d one easily sees that the following relations
are exact (with no other assumption thanu 6= 0):

Fc = Fd = Ryt1Ryt2Rx−yt3Rxt4 (K.10)

d2 + d4 = 0 (K.11)

d6 + d8 = 0 . (K.12)

The only anomalous non-vanishing graphs of class B are:

Fk = Fl = Rxt1Rxt2Ry−xt3Ry−xt4 (K.13)

k1 = c∆′′(u)〈∆′′(ux
−t2 − ux

−t1)∆(uy
−t2−t4 − uy

−t1−t3)〉
(K.14)

l1 = −c∆′′(u)〈∆′′(ux
−t2 − ux

−t1)∆(uy
−t1−t4 − uy

−t1−t3)〉
(K.15)

Fi = Rxt1Rxt2Ryt3Ryt4 (K.16)

i3 = −∆′′(u)〈∆′(ux
0 − ux

−t1−t2)∆
′(uy

0 − uy
−t3−t4)〉 .

(K.17)

All graphs of class C exactly vanish. For instance:

m2 = ∆(0)∆′′′(u0 − u−t3)∆
′(u) (K.18)

n2 = −∆(0)∆′′′(u0 − u−t3)∆
′(u) . (K.19)

We now evaluate these graphs in the quasi-static depinning
limit, substituting∆(u) by its power series as a function ofu,
as explained in the main text. We need in addition to (II.9):

∆′(u) = ∆′(0+)sgn(u) + ∆′′(0+)u + . . .

∆′′(u) = 2∆′(0+)δ(u) + ∆′′(0+) + . . . . (K.20)

In ∆′′(u) evaluated at zero we have written theδ-function
which may in principle be needed. If this were the case that
would pose two unpleasant problems: Firstly a different view-
point were to argue that∆′′(u) should simply be continued to
zero which does not pose any problem since it is pair. Sec-
ond it would open the possibility to problematic singular terms
(δ(v) or 1/v) asv → 0+. Fortunately, in all our 2-loop calcu-
lations this never happens: theseδ-functions, if put by hand,
cancel. This confirms that, at least to this order, no pathology
arises.

Let us start with the sumc2 + c5. Using (II.9) and (K.20)
one sees that the term proportional to∆(0)∆′′(0+) cancels.
Let us test theδ-function. Then one needs to go one order fur-
ther in the expansion of the∆ term since averages of the type
δ(u1)u2 have dimension one, similar to〈sgn(u1)sgn(u2)〉,
and can thus yield a non-zero result at zero temperature
(higher order terms yielding dimensions as positive powers of
the field are not needed as they vanish at zeroT ). This yields
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c2 + c5 = 4∆′(0+)2∆′′(u)〈(|ux
−t4 − ux

−t2−t3 | − |u
x
−t1−t2−t3 − ux

−t1−t4 |)δ(u
y
0 − uy

−t2−t1)〉 , (K.21)

which strictly vanish upon the replacementux
t − ux

t′ → v(t − t′). This is fortunate since this term would have led to a1/v
singularity. Note that all diagramsa − g in the 2-loop correction toη could a priori suffer from the same problem since∆′′

functions must be expanded. However one notes that their arguments are always strictly positive in the depinning limit, which
avoids, as it did here, the problem. Similarly one has

c4 = 2∆′(0+)2∆′′(u)〈sgn(ux
0 − ux

−t2−t3−t4)sgn(uy
−t4−t2 − uy

−t4−t1)〉 . (K.22)

Performing the replacementux
t − ux

t′ → v(t − t′), since the
ti > 0 and becauseFc is symmetric int1 ↔ t2 one finds that

c2 + c5 = c4 = 0 (K.23)

at depinning. Note that these cancellations do not happen any
longer, if the field is not a monotonic function, a question
which will be discussed in Ref.34.

A similar calculation shows that at depinning one has also:

k1 + l1 = 0 . (K.24)

There, in the singular part, theδ-function implies thatt1 = t2

yielding the cancellation via a slightly different mechanism
than above.

Finally we are left with the only non-zero anomalous non-
trivial graphsc1, e1, f2 andi1 to compute, which is done in
the text.
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S. Lemerle, E. Rolley and A. Rosso for stimulating discus-
sions.

1 M. Kardar, Nonequilibrium dynamics of interfaces and lines,
Phys. Rep.301(1998) 85–112.

2 D.S. Fisher,Collective transport in random media: from super-
conductors to earthquakes, Phys. Rep.301(1998) 113–150.

3 G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin and
V.M. Vinokur, Vortices in high-temperature superconductors,
Rev. Mod. Phys.66 (1994) 1125.

4 M. Chandran, R. T. Scalettar and G.T. Zimanyi,Metastabilty
and uniqueness of vortex states at depinning, cond-mat/0204039
(2002).

5 G. Bertotti,Hysteresis and Magnetism, Academic Press, 1998.
6 T. Nattermann,Theory of the random field Ising model, in A.P.

Young, editor,Spin glasses and random fields, World Scientific,
Singapore, 1997.

7 S. Zapperi and M. Zaiser,Depinning of a dislocation: the influ-
ence of long-range interactions, Materials Science and Engineer-
ing A309-A310(2000) 348–51.

8 G. Gruner,The dynamics of charge-density waves, Rev. of Mod.
Phys.60 (1988) 1129–81.

9 A.A. Middleton and D.S. Fisher,Critical behavior of charge-
density waves below threshold: numerical and scaling analysis,
Phys. Rev. B47 (1993) 3530–52.

10 T. Giamarchi and P. Le Doussal,Elastic theory of flux lattices in
the presence of weak disorder, Phys. Rev. B52 (1995) 1242–70.

11 T. Giamarchi and P. Le Doussal,Statics and dynamics of dis-
ordered elastic systems, in A.P. Young, editor,Spin glasses and
random fields, World Scientific, Singapore, 1997.

12 A. Prevost, PhD thesis, Orsay, 1999.
13 A. Prevost, E. Rolley and C. Guthmann,Thermally activated mo-

tion of the contact line of a liquid4He meniscus on a cesium sub-
strate, Phys. Rev. Lett.83 (1999) 348–51.

14 D. Ertas and M. Kardar,Anisotropic scaling in threshold critical

dynamics of driven directed lines, Phys. Rev.B 53 (1996) 3520–
42.

15 J. Schmittbuhl and K.J. Maloy,Direct observation of a self-affine
crack propagation, Phys. Rev. Lett.78 (1997) 3888–91.

16 D.S. Fisher,Sliding charge-density waves as a dynamical critical
phenomena, Phys. Rev.B 31 (1985) 1396–1427.

17 O. Narayan and D.S. Fisher,Critical behavior of sliding charge-
density waves in 4- epsilon dimensions, Phys. Rev. B46 (1992)
11520–49.

18 J. Vannimenus and B. Derrida,A solvable model of interface de-
pinning in random media, J. Stat. Phys.105(2001) 1–23.

19 T. Nattermann, S. Stepanow, L.-H. Tang and H. Leschhorn,Dy-
namics of interface depinning in a disordered medium, J. Phys. II
(France)2 (1992) 1483–8.

20 H. Leschhorn, T. Nattermann, S. Stepanow and L.-H. Tang,
Driven interface depinning in a disordered medium, Annalen der
Physik6 (1997) 1–34.

21 O. Narayan and D.S. Fisher,Threshold critical dynamics of driven
interfaces in random media, Phys. Rev. B48 (1993) 7030–42.

22 D.S. Fisher, Interface fluctuations in disordered systems:5 − ε
expansion, Phys. Rev. Lett.56 (1986) 1964–97.

23 K.B. Efetov and A. I. Larkin, Sov. Phys. JETP45 (1977) 1236.
24 A. Aharony, Y. Imry and S.K. Ma,Lowering of dimensionality in

phase transitions with random fields, Phys. Rev. Lett.37 (1976)
1364–7.

25 G. Grinstein, Ferromagnetic phase transitions in random fields:
the breakdown of scaling laws, Phys. Rev. Lett.37 (1976) 944–7.

26 G. Parisi and N. Sourlas,Random magnetic fields, supersymmetry,
and negative dimensions, Phys. Rev. Lett.43 (1979) 744–5.

27 J.L. Cardy, Nonperturbative effects in a scalar supersymmetric
theory, Phys. Lett.125 B(1983) 470–2.

28 P. Chauve, T. Giamarchi and P. Le Doussal,Creep and depinning



32

in disordered media, Phys. Rev. B62 (2000) 6241–67.
29 H. Bucheli, O.S. Wagner, V.B. Geshkenbein, A.I. Larkin and

G. Blatter,(4 + n)-dimensional elastic manifolds in random me-
dia: a renormalization-group analysis, Phys. Rev. B57 (1998)
7642–52.

30 O.S. Wagner, V.B. Geshkenbein, A.I. Larkin and G. Blatter,
Renormalization-group analysis of weak collective pinning in
type-ii superconductors, Phys. Rev. B59 (1999) 11551–62.

31 S. Stepanow, Dynamics of growing interfaces in a disordered
medium: the effect of lateral growth, J. Phys. II (France)5 (1995)
11–17.

32 L. Balents and D.S. Fisher, Large-N expansion of4 − ε-
dimensional oriented manifolds in random media, Phys. Rev.B
48 (1993) 5949–5963.

33 P. Chauve, P. Le Doussal and K.J. Wiese,Renormalization of
pinned elastic systems: How does it work beyond one loop ?,
Phys. Rev. Lett.86 (2001) 1785–1788.

34 P. Le Doussal, K. Wiese and P. Chauve,Two loop FRG study of
pinned manifolds, in preparation.

35 P. Le Doussal and K. Wiese,3-loop FRG study of pinned mani-
folds, in preparation.

36 P. Le Doussal and K.J. Wiese,Functional renormalization group
at largeN for random manifolds, cond-mat/0109204(2001).

37 L.-H. Tang, M. Kardar and D. Dhar, Driven depinning in
anisotropic media, Phys. Rev. Lett.74 (1995) 920–3.

38 R. Albert, A.-L. Barabasi, N. Carle and A. Dougherty,Driven
interfaces in disordered media: determination of universality
classes from experimental data, Phys. Rev. Lett.81 (1998) 2926–
9.

39 P. Le Doussal and K. Wiese,Functional renormalization group
for anisotropic depinning and relation to some branching pro-
cesses, in preparation.

40 D. Ertas and M. Kardar,Critical dynamics of contact line depin-
ning, cond-mat/9401027(1994).

41 M. Alava, Scaling in self-organized criticality from interface de-
pinning?, J. Phys. Cond. Mat.14 (2002) 2353.

42 U. Schulz, J. Villain, E. Brezin and H. Orland,Thermal fluctua-
tions in some random field models, J. Stat. Phys.51 (1988) 1–27.

43 T. Hwa and D.S. Fisher,Anomalous fluctuations of directed poly-
mers in random media, Phys. Rev. B49 (1994) 3136–54.

44 A.A. Middleton and D.S. Fisher, Critical behavior of pinned
charge-density waves below the threshold for sliding, Phys. Rev.
Lett. 66 (1991) 92–5.

45 A. Rosso and W. Krauth,Origin of the roughness exponent in
elastic strings at the depinning threshold, Phys. Rev. Lett.87
(2001) 187002.

46 A. Rosso and W. Krauth,Roughness at the depinning threshold
for a long-range elastic string, Phys. Rev. E65 (2002) 025101/1–
4.

47 A. Rosso and W. Krauth,Monte carlo dynamics of driven flux
lines in disordered media, cond-mat/0107527(2001).

48 J.T. Chayes, L. Chayes, D.S. Fisher and T. Spencer,Finite-size
scaling and correlation lengths for disordered systems, Phys. Rev.
Lett. 57 (1986) 2999.

49 S.N. Coppersmith and A.J. Millis,Diverging strains in the phase-
deformation model of sliding charge-density waves, Phys. Rev. B
44 (1991) 7799–807.

50 P. Le Doussal and T. Giamarchi,Moving glass theory of driven
lattices with disorder, Phys. Rev.B 57 (1998) 11356–11403.

51 H. Leschhorn, Interface depinning in a disordered medium-

numerical results, Physica A195(1993) 324–35.
52 L. Roters, A. Hucht, S. Lubeck, U. Nowak and K.D. Usadel,De-

pinning transition and thermal fluctuations in the random-field
ising model, Phys. Rev. E60 (1999) 5202–7.

53 U. Nowak and K.D. Usadel,Influence of temperature on the de-
pinning transition of driven interfaces, Europhys. Lett.44 (1998)
634–40.

54 P. B. Thomas and M. Paczuski,Avalanche dynamics of crack
propagation and contact line depinning, cond-mat/9602023
(1996).

55 L.-H. Tang and H. Leschhorn,Pinning by directed percolation,
Phys. Rev. A45 (1992) R8309–12.

56 S.V. Buldyrev, A.-L. Barabasi, F. Caserta, S. Havlin, H.E. Stanley
and T. Vicsek,Anomalous interface roughening in porous media:
experiment and model, Phys. Rev. A45 (1992) R8313–16.

57 S.C. Glotzer, M.F. Gyure, F. Sciortino, A. Coniglio and H.E. Stan-
ley, Pinning in phase-separating systems, Phys. Rev. E49 (1994)
247–58.

58 A. Hartmann A. Rosso and W. Krauth, in preparation.
59 L. Roters and K.D. Usadel, submitted for publication.
60 A. Prevost, E. Rolley and C. Guthmann,Dynamics of a helium-4

meniscus on a strongly disordered cesium substrate, Phys. Rev. B
65 (2002) 064517/1–8.

61 D. Ertas and M. Kardar,Anisotropic scaling in depinning of a flux
line, Phys. Rev. Lett.73 (1994) 1703–6.
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