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We construct the field theory which describes the universal properties of the quasi-static isotropic depinning
transition for interfaces and elastic periodic systems at zero temperature, taking properly into account the non-
analytic form of the dynamical action. This cures the inability of the 1-loop flow-equations to distinguish
between statics and quasi-static depinning, and thus to account for the irreversibility of the latter. We prove
two-loop renormalizability, obtain the 2-log@p-function and show the generation of “irreversible” anomalous
terms, originating from the non-analytic nature of the theory, which cause the statics and driven dynamics to
differ at 2-loop order. We obtain the roughness expoeamd dynamical exponentto ordere2. This allows
to test several previous conjectures made on the basis of the 1-loop result. First it demonstrates that random-
field disorder does indeed attract all disorder of shorter range. It also shows that the corjeeturé3 is
incorrect, and allows to compute the violations¢as £ (1+0.14331¢), ¢ = 4 — d. This solves a longstanding
discrepancy with simulations. For long-range elasticity it yiejds- £(1 4 0.39735¢), € = 2 — d (vs. the
standard predictiog = 1/3 for d = 1), in reasonable agreement with the most recent simulations. The high
value of¢ = 0.5 found in experiments both on the contact line depinning of liquid Helium and on slow crack
fronts is discussed.

I. INTRODUCTION dered periodic Bragg glass phd3¥. These systems have
similarities with (vortex free) continuous XY spins in pres-
A. Overview ence of random fields, and generally constitute the random-

L ) periodic (RP) universality class.
Pinning of coherent structures by quenched disorder, and The contact line of a liquid helium meniscus on a rouah
one of its most striking manifestations, the depinning tran- d 9

sition, are important, ubiquitous and not fully understoodzlrjr?sg%telg:n rgﬁ tehg:;gs?itci?f aansd 22 ;?;egg\(l:ﬁ’ brlg ;S a%?nv-
phenomen&®. Even a single particle in a quenched random y long rang y y propagating

12-15 id friction i inni
potential exhibits a depinning threshold at zero temperature(?raCk§ - Solid friction IS another example of a depmnlng
henomenon. Of course, in each of these systems it must be

Unbounded motion occurs only when the additional external . -
sppled force] exceecs a cricalforcs. Depiing also 0'°0ked sparately uhelier he sasc descriplon ol o
occurs for systems with many interacting particles, and de'ar?t scal%s In anv case. in order to be capable to confirm or
pending on the degree of order in the structure, it ranges fron) ' y ’ P

the so-called plastic depinnifip elastic depinning. Here we rule out such a description, it is necessary to first obtain pre-

focus on elastic depinning where the particles form a latticeiS€ theoretical predictions for the expected behavior in the

or more generally a well ordered structure. The depinningCase of elastic depinning, what we aim to achieve here.
transition is then a rather non-trivial collective phenomenon, It was proposed some time ago, starting from the study of
intrinsically out of equilibrium and irreversible: It is well afully connected mean-field-type motfethat the elastic de-
known for instance to be a source of hysteresis in magne]ginning transition can be viewed in the framework of standard
and superconductcts critical phenomena. The ordered phase is then the moving
For many experimental systems which exhibit a depinningPhase with forcef > f., and the order parameter the veloc-
transition a modelization in terms of an elastic object pinnedy v Which vanishes as ~ (f — f.)” at the critical point
by random impurities is a good starting point. The type of/ = fe. The analogy with standard critical phenomena in a
disorder, which they experience, depends on their symmeRure system however.has some limits: Additional 'quctua.1t|on
tries and their local environment. Domain walls in maghets €xPonents were later identifiétf, and some non-universality
whose study is of importance to information storage technolwvas noticed in the fully connected moéfet?®
ogy, behave as elastic interfaces and can experience eitherlt is thus important to develop a renormalization-group de-
random-bond disorder (RB), which is short range (SR), orscription of depinning. An important step in that direction
random-field disorder (RF), which has long range (LR) spatialvas performed within the framework of the so-called Func-
correlations. Dislocation lines in metals exhibit a depinningtional Renormalization Group (FRG), to 1-loop order using
threshold as the stress in increase@harge density waves the Wilson schemé1%-21 The upper critical dimension was
(CDW) in solids exhibit a similiar conduction threshold. If the identified asd,. = 4, d being the internal dimension of the
applied electric field becomes large enough, the CDW startslastic manifold. The peculiarity of the problem is that for
to slidé®. Being periodic objects the disorder they feel is alsod < d,. = 4 an infinite set of operators becomes relevant, pa-
periodi®. This is also the case for superconductors, whergameterized by a full functior (u), the second cumulant of
vortex lines form, in presence of weak disorder, a quasi orthe random pinning force. This problem turns out to be closely
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related to the statics, i.e. describing the pinned state with minithe limit v = 0™ was found to be subtle and difficult to fully
mal energy in the absence of an applied fofce 0 for which  control within that approach.

the FRG was initially developé(there, the flowing function  The NF conjecture 3 is based on a study of the structure of
is the second cumularft(u) of the random potential). Both higher orders, but it lacks a controlled field theory argument.

problems are notably difficult due to so-called dimensionakyjith the time, it got more and more in disagreement with nu-

reduction (DR) which renders the nai¥e = 0 perturbation  merical simulations and experiments, as we discuss below. In
theory usele$s*" Indeed toany order in the disorder at addition, if one considers that this valge= ¢/3 is expected

zero temperaturg’ = 0, any physical observable is found to nstead for thestaticsRF class, the NF conjecture seems rather
beidenticalto its (trivial) average in a Gaussian random force ynnatural.

(Larkin) model. This phenomenon is not restricted to elastic There are also more fundamental reasons to study the FRG

manifolds in disorder, but occurs in a broad class of disordere :
systems as e.g. random field spin models and solving it her%eyond one loop. In the last fifteen years skicd no study

may open the way to a solution in other models as well. Ther as addressed whether the FRG yields, beyond one loop,

FRG at depinning and in the statics seems to provide a way o normalizable field theory able to predict universal results.
of the DR puzzle: the key feature is that the coarse graineafhere have been 2-loop studies previously but they assumed

. . . n analytic correlator and thus they only applied below the
disorder correlator become®n-analyticbeyond the Larkin Larkin lengtt?®-3L Doubts were even rais&dabout the va-

scaleL., yielding large-scale results distinct from naive per- lidity of the c-expansion beyond order
turbation theory, which assumes an analytic disorder correla- o i
The aim of the present paper is to develop a more system-

tor. Explicit solution of the 1-loop Functional RG equation '" ; b o )
(FRG) for the disorder correlatof@(u) andA(u) gives sev- atic field theoretic description of depinning which extends be-
yond one loop. A short summary of our study was already

eral non-trivial attractive fixed points (FP¥?and critical ex- . A ) _ :
ponents for statics and depinniig’-1921240 lowest order in published® together with a companion study on the statics.
¢ = 4 — d. All these fixed points exhibit a “cusp” singularity, The main and highly non-trivial difficulty is the non-analytic
which has the form\* (u) — A*(0) ~ |u| at smalllu|. The ex- nature of the theory (i.e. of the fixed-point action)/at= 0,

istence of the cusp nicely accounts for the existence of a critiVNich makes it a priori quite different from conventional crit-

cal threshold forc¥, as it is found thaff, ~ % :o+A*( ). !cal phfgr}gmrclana. It |sdnrc1>t even obvious vyhe;her;mzls a Ie_glt—
There are however several highly unsatisfactory and puzMate field theory and how to construct it. For the depinning

. Yo : it ith # — £+ which i
zling features within the 1-loop treatment, which promptedtransition with f = f:*, which is the focus of the present
the present and related works. First it was found that the FREPET, we are able to develop a meaningful perturbation the-

flow equation for the statics and depinning ifenticalto one ~ O'Y in & non-analytic disorder which allows us to show renor-
loop (with A(u) = —R”(w)). This implies for instance that malizability at 2-loop order. Even the way renormalizability

within a given universality class (RB,RF and RP), the 1_|oopworks here is slightly different from the conventional one. To

RG is a priori unable to distinguish static observables, such a&&ndle the non-analyticity in the static problem is even more
the roughness exponeqtat zero applied forcg = 0 from chalkser;‘g‘]mg, and W5e propose a solution of th(aeeproblem to 2-
those at depinning — f,. This is a rather surprising and 100P*>**and 3-loog® order as well as at largar *.
unphysical result since one knows that depinning is an irre- In this paper we focus on the so-called “isotropic depin-
versible out of equilibrium process, quite different from the ning” universality class. This means that the starting model
statics. In an attempt to recover the expected physics, angas sufficient rotational invariance, as discussed below, which
to extend conclusions from the 1-loop study to higher ordersguarantees that additional Kardar-Parisi-Zhang terms are ab-
threeconjecturesvere put forward’19-2% sent. A general discussion of the various universality classes
o _ can be found i#3® and an application of our non-analytic
1. Atmore than 1-loop order depinning should differ from field theory (NAFT) methods to the case of "anisotropic de-
statics. pinning” will be presented .

2. At depinning the RB universality class should flow to  Before we summarize the novel results of the present pa-
the RF universality class: Indeed, since for— f." per, let us recall some important features about the model, the
the manifold does not move backward it cannot feel thescaling and statistical fluctuations at the depinning threshold.
“potential” character of RB disorder.

3. The roughness exponent of the RF universality class at
depinning is¢ = ¢/3 to all orders (the Narayan Fisher
(NF) conjecturé”?y), with e = 4 — d for standard man-
ifold elasticity ande = 2 — d for LR elasticity.

B. Model, scaling and fluctuations

Elastic objects can be parameterized byNacomponent
height or displacement field,, where z denotes thed-
While conjectures 1 and 2 seem reasonable on physicalimensional internal coordinate of the elastic object (we will
grounds, we emphasize that they were based on qualitativéeseu, to denote Fourier components). An interface in the 3D
arguments: In the absence of any (renormalizable) theory beandom field Ising model ha¢ = 2, N = 1, a vortex lat-
yond one loop, they appear putative. A 1-loop study includingice d = 3, N = 2, a contact-lined = 1 andN = 1. In
the effect of a finite velocif§f indeed indicated that 2 is cor- this paper we restrict our study f§ = 1. In the presence of
rect. It strongly relies on a finite velocity, and the behavior ina random potential the equilibrium problem is defined by the



3

Hamiltonian: threshold#*. The following exponent relations were found to
hold*:
H= /@uqu,q + / V(ug,x) (.1)
g 2 z B=v(z-() (1.6)
1
with ¢(q) = c¢? for standard short-range elasticityg) = v=9-¢ (1.7)

d?q

c|q| for long-range elasticity and we dencﬁqe: i G and
fw = [ d4z. Long-range elasticity appears e.g. for the contac
line by integrating out the bulk-degrees of freed8nfor pe-
riodic systems the integration is over the first Brillouin zone.
More generally a short scale UV cutoff is implied@at- A, ' . ' o
o . figuration. It can also be defined as the limit— 0T of the
E‘?grtr:ﬁesyj:ggrslzitg’nggp g;idvei%/héjt%!sbggogr?e(rﬁi?r b eroughness in the moving state, which we will refer to as the
chos,en Gaussian \E)vith second cumulant 9 y ‘quasi-static” depinning limit to distinguish it from the previ-
ous one. This is the situation studied in this paper. Although
Ve )V (. 2) = Ru—u)6%x — ) . 12 it is widely believed thgt bgth are the same, the depinning the-
(w,2)V (', ') (u—w)o%(x — ') (-2) ory has enough peculiarities that one should be careful. In
Periodic systems are described by a periodic functign), particular, beyond scaling arguments and simulations, there is
random bond disorder by a short range function and randorrésently no rigorous method capable to connect the behavior
field disorder of amplitude by R(u) ~ —o|u| at largeu. below and above threshold.
We study the over-damped dynamics of the manifold in this _Another peculiarity was noted ¥ It was found that the
random potential, described (in the case of SR-elasticity) bfinite-size fluctuations of the critical force can scale with a
the equation of motion different exponent:

the latter using STS. There are various ways to measure the
roughness exponent. In some simulatf5n¥ it has been ex-
tracted from the critical configuration, i.e. #ss increased to
feinagiven sample it is obtained from the last blocking con-

natuxt = Cviuxt + F(Iv uzt) + f (|3) fC(L) - fc ~ Lil/qu (|8)

with friction 5. In presence of an applied forgethe center and it was questioned whethers = v. The bound
of mass velocity i&» = L~¢ fx Osuz. The pinning force is
F(u,z) = —8,V (u,z) and thus the second cumulant of the vrs > 2/(d + () (1.9)

force is
follows from a general argument of R&. For charge density

F(z,u)F(z',u') = Alu — u')(sd(x —1'), (1.4) waves where, = 0 one sees that = 1/2 and thusv and
vrg must be different forl < 4. For interfaces it was noté@
such thatA(u) = —R(u) in the bare model. As we will thaty = vpg is possible provided > ¢/3. If one assumes
see below it does not remain so in the driven dynamics. The = vpg, the NF-conjecturé = ¢/3 is then equivalent to
“isotropic depinning” class contains more general equationsaturating the bound (1.9). We will address the question of
of motion than (1.3). For instance some cellular automatorwhetherr = vrg below.
models are believed to be in this cl&ss They must obey Finally note that aff = f. the condition of equilibrium of
rotational invariance, as discussed in Ref®, which prevents  a piece of interface expresses that the elastic force, which acts
the additional KPZ term\(V,u,;)? to be generated gt = only on the perimeter, balances the excess force on the bulk,
f.F. There is always a KPZ term generatedvat- 0 from  yielding the scaling:
the broken symmetry — —zx, but A can vanish or not as
v — 0T, depending on whether rotational invariance is broken L u(a, L) ~ (fo(L) = fo) LY, (1.10)
or not. Here this symmetry is implied by the statistical tilt
symmetry (STS¥*3 u,; — ug; + g.. It also holds in the whereu(a, L) ~ /Cp(a) is the relative displacement (1.5)
statics and accounts for the non-renormalization of the elastibetween two neighbors averaged over the perimeter. This
coefficient, here setto= 1. shows that
A quantity measured in numerical simulations and exper- 1

iments is the roughness exponent at the depinning threshold u(a, L) ~ L 7rs (1.11)

f=re thus for CDW the displacements between two neighbors

Cr(z—2') = u(z) —u(@)]2 ~ |z — x’|2< , (1.5) grows unboundedf§ with L for d < 2. For interfaces (non-
periodic disorder), if one assumes= vrg one obtains that

which can be compared to the static ofig. Other expo- the displacements between two neighbors grows Withnly

nents have been introdu¢éd’1%2! The velocity near the when¢ > 1.

depinning threshold behavesas- (f — f.)”; the dynamical

response scales with the dynamical exportentz® and the

local velocity correlation lengtl§ diverges at threshold with

& ~ (f = f.)~". There have also been some studies belowLet us now discuss the main results of our study.

C. Summary of results



First we show that, at depinning, 1- and 2-loop diagrams D. Numerical simulations and experiments
can be computed using a non-analytic action in an unambigu- ) ,
ous and well defined way, allowing to escape dimensional re-ove,r ) mggoySl_sz/ears, numerous simulations near
duction. The mechanism is non-trivial and works because thepINNINg®2°*:>* accumulated evidence that # ¢/3.

manifold only moves forward in the steady state which allowsln @ = 1 in particular often an exponegt> 1 was obsgrved.
to remove all ambiguities. We show that the limit— o+  OUr results show thaf > ¢/3 and thus resolve this long

can be taken safely without additional unexpected singulari-Standing _disc_:repancy between numerical _simul_ations and the
ties arising in this limit renormalization group. They are summarized in Tables IV.2

Next we identify the divergences in the 2-loop diagrams us-a.nd IV‘? in Section IV, whgre We compare thef.“ to ngmencal
ing dimensional regularization it = 4 — e. We identify the simulations. Of course it is not pOSS|bIe to give strict error
1-loop and 2-loop counter-terms and perform the renormaliza}t—:f"‘rs from the FRG calculation without further knowledge of
tion program. We find that the/e divergences cancel nicely gher orders, but one can still give rough estimates, based on
in the 3-function for the disorder correlator and in the dynam- different Pagé-approximants. _
ical exponent. The theory is finite to 2-loop order and yields Let us in the following discuss recent numerical _results.
universal results. Following shortly our papé?, Rosso and Krauth obtained a

The obtained FRG flow equation for the disorder (the set of precision num_erlcal res_ults using a povyenful algorithm
function) contains new “anomalous” terms, absent in an ant© de;ermme .the Cr.'t'cal conﬂgurathn at7dep|nn|ng (t.he last
alytic theory (e.g. in the flow obtained in R&#29. These blocking configuration) up to large siZ€s*’. They obtained

terms are different in the static theory (obtaine#fjrand at results_ ind = 1 which, despite being far fro@_: 4, compare
depinning, showing that indeadatic and depinning differ to well with our results. For short range elasticity they find
two loops Thus the minimal consistent theory for depin-
ning requires two loops.

Next we study _the_ fixed point SOIUt.'On.S OT our 2-loop F_RG close to our 2-loop result (1.12). Note that displacement cor-
equations at depinning. For non-periodic disorder (e.g. intertq ations scaling as
faces) with correlator of range shorter or equal to random-
field, we find that there is a single universality class, the Ty ~ g (420 (1.17)
random-field class. Thus random-bond disorder does flow to B '
random field. Specifically we find that the flpw ﬁ_fA IS COr- \with ¢ > 1 are perfectly legitimate. It simply means that
rected to two loops and thySA cannot remain at its random-
bond value, which is zero. This is explained in more detail in —(d+20) 2(c—1),.2
section IV. The problem does not remain potential and irre- Cr(z) ~ 2/(1 — cos(qx))q ~L z”. (1.18)
versibility is manifest. For short range elasticity, we find the e

=117 (1.16)

roughness-exponent at depinning: The size dependent factor comes from the infrared divergence
. of the integral. Thus in a simulation neighboring monomers
(== (1 +0.143313 e) (1.12)  will be spread further and further apart, which is fine if their
3 attraction is purely quadratic. Of course in a realistic physical
with ¢ = 4 — d, and for long range elasticity: situation their bond will eventually break, but as a model it
is mathematically well defined. For the anisotropic depinning
_ € universality class, not studied here, they foune= 0.63 as
¢= 3 (1 039735 6) (113) many other authors using cellular automaton motel$

For isotropic depinning with long range elasticity they ob-
with e = 2 — d. Thus the NF-conjectuté?* that( = £ is  tained: pic depinhing grang i

incorrect. We also compute the dynamical exponemind
obtaing andv by the scaling relations (1.6) and (1.7). We also ¢ =0.390 + 0.002 , (1.19)
find thatvgs = v holds to two loops.

For periodic disorder, relevant for charge density waveswhich lies roughly at midpoint of the 1-loop and 2-loop pre-
we find a fixed point which leads to a universal logarithmicdiction settinge = 1 in (1.13). So do their most recent
growth of displacements. This fixed point is however unstaestimate® for SR disorder. Inl = 2 thisis¢ = 0.753+0.002
ble, as an additional Larkin random force is generated. Thand ford = 3 they obtairD.35 < ¢ < 0.4. These results (1.16)
true correlations are the sum of this logarithmic growth and ofand (1.19) are close to estimates from the 2-loop expansion
a power law growth so that the trye= (4 — d)/2. Thisis  and clearly rule out the NF-conjecture.
similar to°. Then we find Another recent wor® studies an interface in the random
field Ising model in high dimension. The authors confirm that

V= 1 (1.14)  d = 4isthe upper critical dimension. They further extract the
3 velocity exponents and compare their results with our 2-loop
vrs =, (1.15)  FRG prediction fors:

€
which holds presumably to all orders. f=1- gt 0.040123€” . (1.20)
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by adding fluid to the reservoir. The elasticity of the line is
‘ short range at short scale but at larger scales it is mediated
1.0 | ~—_ZloopRG by the elasticity of the two dimensional meniscus and thus
O Roters and Usadel . .
it becomes long range and should be compared with (1.13),

(1.19). Disorder is random-field, but one should distinguish
between microscopic disorder, which is poorly characterized,
and macroscopic one which is well controlled. The situation
11 has been studied for a helium meniscus on a macroscopically
| disordered substrate whefe= 0.55 was found®. Although
there are good indications that these experiments probe quasi-
static depinning (the contact line jumps from a reproducible
] pinned configuration to the next one) the precise nature of the
i dynamics remains open. Indeed it was found that propagation

d 6 of perturbations along the line can be as fast as avalanches,

‘ showing inertial regime for heliuff. Experiments were re-
L peated for viscous liquid3yielding ¢ = 0.51 4 0.03. There
d it was checked that the system is over-damped and near depin-
ning. In both cases there is also evidence of thermal activation
effects® characteristic of depinning (not creep). It was argued
that these may be a signature that a more complicated dynam-
fes (e.g. plastic) takes place at the very short scales and pro-
duces an effective dynamics at larger scales with complicated
non-linear (e.g. exponential) velocity and temperature depen-
peent damping. Very similar effects have also been shown to
ceur in solid frictiorf® were the activation volume was also

ound to correspond to microscopic scales.
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FIG. I.1: Figure from Ref® which compares new numerical values
(black circles) and a previous one (white square) obtained for th
exponen{3 with our prediction from the FRG.

The results are shown in Fig. I.1. One can see a clear curvatu
downwards and that the straight line giving the 1-loop resul
is well above the obtained results (the 1-loop approximatio
would predict3 = 0.78 in d = 2). Another class of much studied experimental systems are
Thus, although there is still some spread and uncertaintgrack fronts in heterogeneous media These are charac-
in the results, it seems that there is now a trend towards Eerized by two displacement fields, one out-of-plane compo-
convergence between theory and numerical simulations. ~ nenth and an in-plane ong. Cracks can either be studied
The situation concerning experiments is presently uncleagtopped or slowly advancing. At the simplest level the in-
Let us first outline the generic findings before analyzingPlane displacement is expected to be described as an elas-
the details. The measured exponents corresponding to LRIC line d = 1, N' = 1 with LR elasticity c[q|, at quasi
elasticity andd = 1 seem to be consistently in the range Static depinning. In experiment$” the observed rough-
¢ ~ 0.5 — 0.55. This is slightly above our 2-loop result (1.13) Ness is agai; ~ 0.55. Since the crack propagates in an
but not fully incompatible with it. Our calculation holds for €lastic medium, elastic waves which can in principle affect
quasi-static depinning, i.e: > 0 — 0T, and most exper- the royghness as the crack front advances producing a more
iments are also performed from the moving side, hopefullycomplicated dynamics than Eq. (1.3). Some proposals have
reaching the same quasi-static limit— 0*. On the other ~been putforward on mechanisms to p_ro_duce hlg_her rough_ness
hand if one believes that the numerical result 1.19 (also comexponent§* They rely however on a finite velocity and it is
patible with our calculation, from below) obtained foe= £~ unclear whether they can modify roughness in the quasi-static
also holds for quasi-static depinning (a rather natural, but amit. Even if instantaneous velocities during avalanches be-
yet unproved assumption) then one must conclude that theéome large enough, a detailed description on how these could
elastic models, in their simplest form at least, may not faith-change the line configurations remains to be understood. Then
fully represent the experimental situation. Care must howOf course a major issue is whether the experiment, and in
ever be exercised before any such conclusion is reached. OMdlich sense, is in the quasi-static limit. There again micro-
could argue that disordek(u) ~ u~* of range longer than Scopic dy_namlcs could be more complex_ as at small scales
RF (@ < 1) could produce higher exponergs= ¢/(2 + «) the material may pe damaged and the notion of a single front
(see end of Section IV A) but that does not seem to apply ténay not apply. Finally, since there are two components to
those experiments where disorder is well controlled. A|30’disp|acement one should also be careful to understand inter-
since the exponent= 0.5 is the Larkin DR-exponent, which ~actions between them near depinrfihg
should hold below the Larkin length, one must make sure  Another interesting experimental system is a domain wall
that L. is well identified and that one is not simply observing in a very thin magnetic fillff which experiences RB disorder.

a slow crossover to the asymptotic regime. In some of thestlp to now however only the thermally activated motion has
experimentd.. has been identified to be rather small. been studied, which gives a quite remarkable confirmation of
Let us now examine the situation in more details. the creep lak? with RB exponents. It would be interesting

One much studied experimental system is the contact liné study depinning there and to check whether it also belongs
of a fluid*?89, It advances on a rough substrate and is pushetb the isotropic universality class. In that case, the crossover
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from RB to RF resulting in overhangs beyond some scale aiormalism and the statics. Indeed, at equilibrium (foe= 0

zero temperature(> 1) as well as the non-trivial thermal
rounding of depinning could be studied.

. MODEL AND PERTURBATION THEORY

In this Section we discuss some general features of the fiel
theory of elastic manifolds in a random potential, both for the,

statics and for the dynamics, driven or at zero applied forc

Some issues are indeed common to these three cases. At th

end we specialize to depinning.

A. Static and Dynamical action and naive power
counting

and when time translation invariance is established) any equal
time correlation function computed with (11.2) is formally
identical (e.g. to all orders in perturbation theory) to the corre-
sponding quantity computed in the equilibrium theory (which
is a single replica average). Similarly, the persistent parts, i.e.
g]oseoc 0(w), of dynamical correlations involving mutually
very separated times, are formally identical to the correspond-
ing averages in the replica theory involvipgeplicas. The
rturbative equilibrium calculations in the statics can thus be
indifferently performed either with replicas or with (11.2). It
is possible to generate all dynamical graphs from static ones,
a connection which, as will be further explained below, also
carries to some extent to the case- 0 atT” = 0.

We first study “naive” perturbation theory and power count-

The static, equilibrium problem, can be studied using replicasnd- The quadratic pai$, of the action (I1.2) yields the free

The replicated Hamiltonian corresponding to (1.1) is:
1

7= or [ Dlvuy +mug)

1 a b

_ﬁ ZR(uz_uz)ﬂ

T ab

T 2T
where, for now, we consider SR elasticityruns from 1 ton.
We have added a small mass to provide an infrared cutoff, a
we are interested in the large scale limit— 0. The limit of
zero number of replicas = 0 is implicit everywhere. Terms

(I1.1)

with sums over three replicas or more corresponding to thirq
or higher cumulants of disorder are generated in the perturb

tion expansion. These should in principle be included, but a
we will see below higher disorder cumulants are not relevan

for theT' = 0 depinning studied below.

The dynamics, corresponding to the equation of motio

(1.3) is studied using the dynamical action averaged over di
order:

Slt,u] = / gt (N0 — 8% + mz)uzt — nT/ Ty Wt
xt xt
1 o N
) iU 1Ugpr AUzt — Ugtr) — [ Ut ft -
xtt! xt

(11.2)

It generates disorder averaged correlations, é4ju,;]) =
(Alug])s with (A)s = [ D[u]D[a]Ae and(1)s = 1, and
response function8(A[u])/d fz: = (it Alul)s. The uni-
form driving forcef,; = f > 0 (beyond threshold &' = 0)
may produce a velocity = 9;(u,:) > 0, a situation which

we study by going to the comoving frame (whéte.;) = 0)

shifting u,; — wuge + vt, resulting inf — f — nu. This is
implied below. In general, for any value g¢f we study the
steady state, which at finite temperatre> 0 is expected

to be unigue and time translational invariant (TTI) (all aver-

response and correlation functions, used for perturbation the-
ory in the disorder. They read

Ot =) 0oty

(il ru—gi)o = Ryt = ;

(I1.3)

(ug,pru—qt)o = Cgi—vr

respectively, with the FDT relatioh R, , = —0.Cy , (T >

r\0(;). Perturbation theory i\ (u) yields a disorder interaction

ertex and at each (unsplitted) vertex there is one conservation
rule for momentum and two for frequency. It is thus conve-
nient to use splitted vertices, as represented in Fig I.1, where
he rules for the perturbation theory of the statics using replica
ire also given. For the dynamics one can also focug en0

here graphs are made only with response functions and con-
ider temperature as an interaction vertex. The 1-loop and 2-

loop diagrams which correct the disordeflat= 0 are shown

g_n Fig. 1.1 (unsplitted vertices). There are three types of 2-

loop graphsA, B, C. The graphg2 andF' lead to corrections
proportional to temperature.

At T = 0 the model exhibits the property of dimensional
reductio§?3-?7 (DR) both in the statics and dynamics. Its
“naive” perturbation theory, obtained by taking for the dis-
order correlatorA(u) an analytic function of « (or R(u)
for the statics), has a triviality property. As is easy to show
using the above diagrammatic rules the perturbative expan-
sion of any correlation functiof{ [, u.,¢,) s in the derivatives
A™)(0) yields to all orders the same result as that obtained
from the Gaussian theory settidg «) = A(0) (the so called
Larkin random force model). The same result holds for the
statics, for any correlatiof [, u2:)s. At T = 0 these correla-
tions are independent of the replica indiegstheir dynamical
equivalent being independent of the timegs The two point
function thus reads to all orders:

A(0)

<u117t'u*Qat>DR = m . (“4)

ages depend only on time differences). In the zero tempera-

ture limit, one needs a priori to distinguish tlie= 0 TTI

This dimensional reduction results in a roughness exponent

theory adimy, ., limr_,¢ (€.g. the ground state in the static) { = (4 — d)/2 which is well known to be incorrect. One

and thel’ = 0T theory adimy_,¢ limy, _ .

physical reason, in the statics, is that this amounts to solv-

It is important to note that there are close connections, viang the zero force equation which, whenever more than one
the fluctuation dissipation relations, between the dynamicasolution exists, is not identical to finding the lowest energy
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(i) ——o e
- -
(iii) | D= 3 3 3 3
e 2 A% Noeno

o ) . i FIG. I.2: Construction of diagrams starting from an unsplitted static
FIG. 11.1: (i) dlagramTatlc rules for the statics: replica propaga- yiagram via two splitted static diagrams (2-replica component) to the
tor (uaus)o = Tdap/q", unsplitted vertex, equivalent splitted ver- ¢ rresponding dynamical diagrams as explained in the text.
tex—> .. ﬁR(ua — up) and (i) dynamics: response propagator
(Gu)o = Ry—4, Unsplitted vertex, splitted vertai i, A (uze —
usv’) and temperature vertex. AITows are along increasing time. Afyo hroperty of covariance under the well known statistical tilt
arbltrgry number of lines can enter these functl_ona_ll vertices. (m)S mmetrv STSu., — hich vields that the two
unsplitted diagrams to one loop D, one loop with inserted 1-loop y. y wt Uzt + Yz which yl W
counter-term G and 2-loop A,B,C,E,F. po!nt vertexF,;u.(w = 0) remains uncorrected to all orders.
This allows to fix the elastic constant= 1 and shows that
the mass term is uncorrected and can thus safely be used as an
configuration. Curing this problem, within a field theory, is IR cutoff. It also implies that all higher IVFs vanish when any
highly non-trivial. One way to do that, as discussed later willof the w; is set to zero. The DR result is a perturbative triv-
be to consider aon-analyticA(u). iality statement abouf; ;(g;,w;) atT = 0, all other cases
It is important to note that despite the DR, dynamical averfemain non-trivial. In a sense we will now expand around di-
ages involving response fields remain non-trivial, even at zermensional reduction. Similar replica IVFs can be defined for
temperature. Perturbation theory at finite temperature also ré¢he statics.
mains non-trivial. It is thus still useful to do power counting Perturbation expansion of a given IVF to any given order in
with an analyticA(«), the modifications for a non-analytic the disorder can be represented by a set of one particle irre-
A(u) being discussed in the following section. ducible (1PI) graphs. As mentionned above there is a simple
Power counting at the Gaussian fixed point yields 22 rule to generate the dynamical graphs from the static ones.
andau ~ =% At T = 0 nothing else fixes the dimensions The static propagator being diagonal in replicas, each static
of u, sinceu — Mu, & — M4 leaves thel' = 0 action  graph occurring in @ replica IVF containg connected com-
invariant. Denoting: ~ ¢, ¢ is for now undetermined. The ponents. AtI" = 0 the rule is then to attach one response
disorder term then scales a$?*+2¢. It becomes relevant for field to each connected component of the static diagram, each
d < 4 provided¢ < (4 — d)/2 which is physically expected replica graph then generating one or more dynamical graphs.
(for instance in the random periodic cage= 0 is the only  The place where the response field is attached isabeof
possible choice, and for other cases= O(¢)). With this  the diagram. The direction of the remaining response func-
power counting the temperature term scales awith ¢ =  tions is then fixed unambiguously, always pointing towards
d—2+2¢ and is thus formally irrelevant near four dimension. the root. This procedure to deduce the dynamical diagrams
In the end¢ will be fixed by the disorder distribution at the from the static ones isniqueandexhaustivend is illustrated
fixed poin?. in Fig. 11.2. A generalization exists & > 0 but is not needed
A more detailed study of divergences in the vertex func-here.
tions allows to identify all counter-terms needed to render the Any graph corresponding to a given dynamical IVF con-

theory finite. We denote by tainsp connected components (in the splitted diagrammatics)
o with1l < p < F; (p = E3 atT = 0), each one leading to a
L s (Gis @i, @iy wi) = (1.5) conservation rule between external frequencies, and thus one

s Eaoo can write symbolically:

B,
2_1;[1 ou

the irreducible vertex functions (IVF) with,, external fields o L & - =
u (at momentay;, w;, i = 1,..E,) and E; external fields (at =90 (Z 4 Zq) 1:[1 g (Zw Zw) . (11.6)

momentagj;, w;, 1 = 1,..E;). Being the derivative of the ef-

fective action functional'[u, @] they are the important objects Let us compute the superficial degree of UV divergenas

since all averages of productsofand fields are expressed such a graph withva disorder vertices and; temperature

as tree diagrams of the IVF. Finiteness of the IVF thus im-factors contributing td® ~ A“. Using momentum and fre-

ply finiteness of all such averages. The present theory haguency conservation laws at each vertex, and since there are

o OlG. o, b O
qi,Wi j=1 q;5,%Wj Fﬂ.,ﬁ,;u“u(qhwiaqivwi)
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only response functions; + I = 2(va + vp) we obtain: evaluated at = 0 (here and in the following we call thesat-
urated verticesone must go back to a careful application of
a=d+2p—dE;+ (d —4)va + (d—=2)vr . (IL7)  Wick’s rules. Any graph containing such a vertex and which
vanishes in the analytic theory is called anomalous. Let us
AtT =0 (vr = 0, p = Eg) at the critical dimensio@ = 4 yrite the series expansion in powers|of:
the only superficially UV divergent IVF are those with one ex-
ternalu (quadratic divergence) or two exterria{logarithmic _ 1in+ Loy, 2
divergence LD). The STS further restricts the possible diver- (u) = A(0) + A0l + §A (07)u” ... (119)
gent diagrams. One sees that only three types of counter—terw
are needed a priori. One counter-terms is needed fonthe
divergence of'; (¢ = 0,w = 0) (excess forcg —nv in driven
dynamics). This is analogous to the mass inghé¢heory, i.e.
the distance to criticality. If we are exactly at the depinning
critical point (f = f.) we need not worry about this diver-
gence. Another counter-term is associated with the LB in o
and the last one with the LD in the second cumulant of disor- 3 4

ick’s rules can then be applied but usually end up in evalu-
ating non-trivial averages of e.g. sign or delta functions.

Let us consider as an example the following 2-loop 1PI di-
agram (note@; in what follows) which is a correction to the
effective action of the form:

PN "
derA(u), i.e. afull function, which makes it different from the = Uyrlirg A (Ur,r = Ur,o) (1.10)
conventional FT for critical phenomena (edf). One notes a
that higher cumulants are formally irrelevant, as they involve
Eﬂ > 2 X RT'l—’rg,t]R'r'l—rg,th'r—r] ,t3R7‘—'r'2,t4
One sees from (I1.7) that each insertion of a temperature t,i>0’” ,
vertex yields an additional quadratic divergencedin= 4, XA (Ury 7ty = Ury 7 tat) A Uy 7ty = Uy 713 15) -

more generally a factéF A?—2. Thus to obtain a theory where
observables are finite ds— oo one must start from a model
where the initial temperature scales with the UV cutoff as

Here four Wick contractions have been performed, as in any

of the other thirty 2-loop diagrams of the form A (studied in

the next Section). In an analytic theory performing the lo-
~ m d—2 cal time expansion this would result in a 2-loop correction

T="Tm"° (X) : (1.8)  to A(u) proportional toA”(u) but with a zero coefficient
since theA’ functions are evaluated at zero argument. In

This is similar to thep* theory where it is known that @ the non-analytic theory, inserting the expansion (I1.9) yields

term can be present and yields a finite UV limit (i.e. does no{upon some change of variables):

spoil renormalizability) only if it has the forms¢®/A4=2. It

then produces only a finite shift #p, without changing uni- e1 = A (07)2A"(u) | Ryt Ry oty Rig—ry 13 Rog 4 Fr
versal propertie€S. Here each factor will thus come with a ti>0,7;
A2~ factor which compensates the UV divergence. Comput)., ¢, = (sgn(X)sgn(Y)) (1.11)

ing the resulting shift im\ (u) to orderA? by resumming the X =
diagramsFE and F' of Fig. 1.1 and all similar diagrams to any
number of loops has not been attempted here.

~ For convenience we have inserted factors«af the defini-  terms of higher order in (11.9) do not contribute since we are at
tion of the rescaled temperature, using the freedom to rescale — () and we have exhausted the numbet 66 contract (i.e

u by m~¢ anda by m¢. The disorder ter_mQCthen r%‘ads as those terms would yield higher ordersp). The remaining

in (I1.2) with A(u) replaced byAo(u) = m“**A(um®) in average in (II.11) is evaluated with respect to a Gaussian mea-

Upy,—t3 = Ury,—ty—ty

Y = uo,—1, — wo,—t5—t,

terms of a dimensionless rescaled functibn sure, and can thus be performed. It can be defined by using the
T > 0,v > 0 Gaussian measure.; — vt + u,) and taking
B. Non-analytic field theory and depinning in the the limitT" — 0,v — 0. The result is a continuous function
quasi-static limit of v2/T and its value depends on how the limit is taken.

In the static theory one should take— 0 atv = 0. This
From now on we study the zero temperature liffit= 0. yields

To escape the DR triviality phenomenon, and since the fixed

points found in 1-loop studies exhibit a cuspwat= 0, we X V) — 2. .12
must consider perturbation theory iman-analyticdisorder (sen(X)sen(¥)) wasm(a) (11-12)
correlator. In this section we show how to develop perturba- _ (XY)

tion theory and diagrammatics in a non-analytic theory and 7= mm

what are the non-trivial issues which arise.

For now the considerations apply for zero or finite appliedi.e. the result for centered Gaussian variables. Expressing the
force. In usual diagrammatics, extracting a leg from a vertexaverages in (I11.12) using correlation functio@ ; yields a
corresponds to a derivation. Here this can be done as usuabmplicated” = 0 expression foe;. This expression will be
with no ambiguity, provided the corresponding vertex is eval-discussed in a companion paper on the stética list of all
uated at a generig(e.g. the graphs in Fig I1.2). If the vertexis anomalous diagrams is presented in Appendix K.



The opposite limitv — 0 atT = 0 yields much simpler the statics and the depinning can yield different field theories,

expressions: which is a novel result. It remains to perform the actual calcu-
lation of these non-analytic diagrams, which is performed in
(sgn(X)sgn(Y)) — sgn(ts +t1 —t3)sgn(ts +t2 —ta) . the following sections.

More generally this procedure corresponds to the substitution:

AW (. —up ) — AU (v(t—1')) in any ambiguous vertex [ll. RENORMALIZATION PROGRAM
evaluated at: = 0. That this is the correct definition of the

theory of the quasi-static depinning as the limit= 0™ is  In this section we will compute the effective action to 2-loop
particularly clear here since it is well known (the no passingorder atT" = 0 for depinning. From the above analysis we
property*#%) that thew,., are increasing functions of time in know that we only need to compute the 1- and 2-loop correc-
the steady state. Of course it remains to be shown that thi#ons toA(u) andn.

procedure actually works and does not produce singular terms

such asd(vt). It also remains to be shown that it yields a A. Corrections to disorder

renormalizable continuum theory where all divergences can

be removed by the appropriate counter-terms. This is far fronfVe start by the corrections to the disorder, first at 1-loop and

trivial and will be achieved below. then at 2-loop order.
Let us comment again on the connections between dynam-
ics and statics. Considerfa= 0 dynamical diagram withp 1. One loop

connected components evaluated at zero external frequencies.
All response functions can be integrated over the times from
the leaves towards the root on each connected component. Us-
ing the FDT relation this replaces response by correlations and
thus exactly reproducesgareplica static diagram except that
it is differentiated once with respect to each replica field (the
sums over all possible positions of the response field repro-
duces the derivation chain rule). One simple way to establish
this rule is to consider the formal limit — 0™ (equivalently
expansion ofR, ., in powers of frequency), i.e. formally re-
place R, v — du/q* (keeping track of causality). This
reproduces exactly the zero frequencies dynamical diagrams
and treats “replicas” as “times”.

Thus thep-th derivative of gp replica static diagram gives
a set of dynamical diagrams with connected components.
Forp = 2 this ensures e.g. that the relatidrfu) = —R" (u) At leading order, there are four diagrams, depicted on fig-
remains uncorrected to all orders. The flaw in this argumentre 1.1, Since diagram (d) is proportional &' (u)A’(0),
comes from the anomalous diagrams (both in statics and dyt is an odd function ofu, and thus does not contribute to
namics)_ In the ana|ytic theory the dynamica| diagrams Withthe renormalization of\. However its repeated counter-term
response fields on a saturated vertex vanish or cancel in pain#ill appear at 2-loop order. Diagram (a) is proportional to
This just expresses that taking a derivative of a static saturated2 (u)A” (u), diagram (b) to—A'(u)? and diagram (c) to
vertex gives zero and the rule still works. But in the non-A"(u)A(0). All come with a combinatorial factor of /2!
analytic theory the anomalous diagrams do not vanish anffom Taylor-expanding the exponential functidi2 from the
contain an additional time dependence. The above integraction andt from combinatorics. Together, they add up to the
tion of response functions from the leaves to the root cannot-loop correction to disorder
be performed for these anomalous diagrams. As a result they

FIG. 111.1: 1-loop dynamical diagrams correctiny

can give non-trivial contributions both in statics and dynamics S A(u) = 4 [7A/(u)2 — (A(u) — A(O))A”(u)] I

which violate relations such as(u) = —R” (u), thus allow- 22

ing to distinguish statics from depinning. I = / 1 (I1.1)
To conclude this Section: The perturbative calculation of g (@2 +m?)?

the effective action and of the IVF vertices can also be per-

formed in a non-analytic theory. It can be expressed as sumsith I, = |, e UI(2— 4y = (4m)=4/°r (2 - 4).
of the same diagrams one writes in the analytic theory, with
the same graphical rules traw and generate the diagrams
starting from the statics. However the way to compute these
diagrams and theiraluesis differentfrom the analytic theory. First, we have to find all diagrams correcting disorder at sec-
The time ordering of vertices comes in a non-trivial way andond order. Atl" = 0 they can be grouped in 3 classes A, B and
produces results which can be different at depinnfing f." C for the 3 possible diagrams for unsplitted vertices. Class C
(v = 0%)andinthe staticg = 0, as illustrated on the diagram does not contribute as is shown in appendix C. We begin our
e; above. Thus we see the principle mechanism by whictanalysis with class A.

2. Two loops
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. Lo by b bs b bs be
FIG. lll.2: The 3 possible classes at second order correcting disord
atT = 0. Only classes A and B will contribute.
; G \ E G l E G \ E Ca l Cs
“ N S N /4 N

é dﬂ\ é d2<\ é d3<\ é d4<\
Z ds\\/ é ds\\/ é d7\\‘/ é ds\\/

, ) 7 7 7
FIG. 111.3: Static graphs at 2-loop order in the form of a hat (class A a e a
in figure 111.2) contributing to two replica terms. Adding a response-

field to each connected component leads to the dynamic diagrams of

figure 111.4. s s s s s
Zn:, f, égi éni éfsi

We now need to write all possible diagrams with splitted
vertices of type A. A systematic procedure is to start fromg|g. |1.4: Dynamical diagrams at 2-loop order of type A with two
all possible static diagrams given in Fig. 1l1.3. This relies external response fields (two connected components) correcting the
on the fact that dynamics and statics are related — recall thalisorder; derived from the two replica static diagrams of Fig. 111.3.
in general a dynamic formulation can be used to obtain the
renormalization of the statics. As mentionned in the previous
Section, to go from the statics to the dynamics, one attaches = Z(ai +bi+.),
one response field to a root on each connected component of
the diagrams a to f in figure 111.3 and orient each componenthere the combinatorial factors aréy3! from the Taylor-
towards the root. The result is presented on figure 111.4. Theexpansion of the exponential functiay,2® from the explicit
next step is to eliminate all diagrams which yield odd func-factors of1/2 in the interaction, a factor of 3 to chose the
tions of w and thus do not contribute to the renormalized dis-vertex at the top of the hat, and a factor of 2 for the possible

order. The list is the following: two choices in each of the vertices. Furthermore below some
additional combinatorial factors are given: a factor2ofor
a=ag=c=d=dg=ds =dy generic graphs antif it has the mirror symmetry with respect
—ey=e3=f =f3=10=1£f=0. (ll.2) to the vertical axis: each diagram symba}.() denotes the

diagram including the symmetry factor.
We recall that we have definedturatedvertices as vertices
evaluated at: = 0 while unsaturatedvertices still contain:

Further simplifications come from diagrams, which mutually
cancel. Again this uses that’(u) is an odd function. This

gives. explicitly. Diagrams with response-functions added to unsat-
cates=dy+dy=dg+ds=0. (111.3) urated vertices can be obtained by deriving static diagrams:
In addition ap + ag = second derivative of the statics

¢ =0 (1.4) b1 ba 4 by +ba 4 bs + b
’ = second derivative of the statics . (III.5)

since [, Ryt Rov A'(t — ') = 0. This is explained in more

details in Appendix K where the list of all anomalous (non- The graphs which contain external response-fieldsato-

odd) graphs is given together with their expressions in theatedvertices cannot be derivatives from static ones. For class

non-analytic field theory. A, the hat-diagrams, the only non-zero such graph is

Thus, the only non-zero graphs which we have to calcu- Explicitly, this reads

late areas, as, bi,...,bg, c1, €1 andf,. These calcula- ) " o

tions are rather cumbersome, due to the appearance of theta- ay +ag = =0, [-R"(0)R"(u)*] L4, (111.6)

functions of sums or differences of times as a result of th

non-analyticity of the theory. The correction to disorder is Where (see (A.18))

d d
12 dqr d%q 1 1 1

2 _ 3 . . =

P*A) = 7553(2°) D (e +bit ) A / (2m)? 2m)7 gF + m? 8 + m? ((q1+2)? + m?)?




- (212 e o<3>> (e1)? (1.7)
Furthermore, we find
6
> by =0 [R'(u)R" (w)?] Ia (111.8)
i=1
and
cp = 2A'(07)2A" (u)I4 (1n.9)

The diagrame; is an explicit example for the appearance of
non-trivial sign-functions resulting from the monotonic in-
crease of the displacement.
previous Section. In the quasi-static depinning limit (Il. 11)
gives (details are given in appendix A):

= A(0%)?A" ()

/(JhtIz /thtz t3,t4>0

—[(gF+m?)t1+(g3+m>)ta+((q1+q2)>+m?) (ta+ta)

sgn( 1—tg+ta)sgn(te —ty +t3).  (II1.10)
The result of the explicit integration is:
er = A(0T)2A" (u) [I; — T4 + finite] (1.11)

1
a3 +m?)(q3 + g3 + 2m?)

Il t:/
e (@3 +m2) (g5 +m?)(
1112

5e —=(eI,)?* + finite .

(I11.12)

The last diagrany, also involves a sign-function and reads:

fy = 2A’(0+)2A”(u)/ / sgn(tys—t3—ta) X
q1,q2 Y t1,t2,t3,t4>0

—[(g1+4q2)%+m?) (ta+ta)+(gf +m>)t1+(g5+m?)ta]

(111.13)

xXe

—A(0)2A" (u) I,

It was already discussed in the

1 01 i | 02 ' O3 | i 1 Oy

s

22./4 REEESOE RERED

FIG. 111.5: 2-loop dynamical diagrams of type B (see figure I11.2).

The diagrams that are second derivative of the static have
all their response-fields on their unsaturated vertices. These
are:

1
g1 +g +8s+gi=02 §A(U)2A”(U) I

by + hy + by + hg = 82 [~ A(0)A(w) A" (u)] 12

1
b =jo =02 ZA(O)zA"(U) I

The surprise is thag, which is not the second derivative of
a static diagram, since it has both response fields on saturated
vertices, is non-trivial:

—A(0F)? A" (u) I

To summarize, for the driven problem’&t= 0 in perturba-
tion of A = A(u), the contributions to the disorder to one and
two loops, i.e. the corresponding terms in the effective action

i (111.17)

In appendix A we show that (for any given elasticity) the suml [u, 4] are:

of e; + f5 only involves the integral 4, and that the combina-
tion takes the simpler form

e1 +fy = —A(0T)2A" (u) 14 (11.14)

We now turn to graphs of type B (bubble-diagrams).
Again diagrams, which are odd functions af vanish.
These are:
hj=hy=i1=j1=ko=kz=1l=13=1,=0. (lll.15)
Two other diagram mutually cancel;
ki+1, =0, (11.16)

as discussed in Appendix K.

S A(u) = — [A’(u>2

P Aw) = [(Aw) ~ A0)A @] Ty
43 (A - 202" ()"
FA (0 A (w)(La — 7).

Curiously, even though two diagrams contain contributions
proportional tol; ~ In2, these contributions cancel in the
final result for the corrections to the disorder.

+ (Au) — A(O))A”} I (I1.18)

1

(111.19)

B. Corrections to the friction 7

We now calculate the divergent correctionsitowhich will
require a counter-term proportional . Let us illustrate
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i\/. 2 for the symmetry of diagrams a, b, e, f and g. Details of
the calculation of diagrams a to g are given in appendix D.
FIG. IIl.6: 1-loop dynamical diagram correcting the friction. ~ Grouping diagrams, which partially cancel, we find:
at+g=—A"0")>21? (11.27)
their calculation at leading order. We start from the first ordery, - ¢ + d = _EA///(0+)A/(0+)]12 (111.28)
expansion of the interactiasm %=, which can be written as 2
e=—A"(0")A"(0M)I, (11.29)
/ gt A(Ugt — Ugy ) Pligps . (11.20) f=—2A"(0M)A(0T)I4 —2A"(07)?14 (111.30)
t>t @
. This involves the non-trivial diagrarm,
Contracting oné, leads to:
1
I, = /
/ iioe A (Ut — Ugp' ) Rr—o,t—1/ - (I11.21) ! (¢f +m?)(g3 +m?)?(g3 + g5 + 2m?)
t>t,x q1,92

The response function contains a short-time divergence,

B < 1 1—-2In2
which we deal with in an operator product expansion. Ex-

szt >(eI1)2+finite (In.31)

pandingA’(u,; — uzy ) to the necessary order yields calculated in appendix E.
/ iligy [A'(0F) + (ugr—ter )A"(07) + ... Rp—o—vr - C. Renormalization program to two loops and
t>t',z (111.22) calculation of counter-terms

The first term of this expansion, proportional Ad(0%), is 1. Renormalization of disorder
strongly UV-divergent and non-universal and gives the criti-

cal force to lowest order in disorder. Since we tuh& be
exactly at the depinning threshold we do not need to consid . :
it. The second contribution, proportional &7 (0*), corrects & Whole function, the disorder-correlatu(u). We denote by
the friction: due to the short-range singularity in the responseé0 the barg dlsorQer N th|s_|s the ObJeCt. in which perturb_a—
function, we can expandu.;—u,.) in a Taylor-series, of tion theory is carried out — i.e. one consider the bare action

which only the first term contributes. (111.22) becomes: _(”'2) V_Vith A_ — Ro. _ We de_note here bA the _renormal_-
ized dimensionless disorder i.e. the corresponding term in the

effective actior[u, 4] is meA.
N N - N2 A+ )
/t>t, [t [(8 = )ikwe + Ot = 1)) A"(OT) Rrcr—v - We define the dimensionless bilinear 1-loop and trilinear 2-
’ (11.23) loop symmetric functions (see (111.18) and (111.19)) such that:

Let us now discuss the strategy to renormalize the present the-
Sy where the interaction is not a single coupling-constant, but

The correction to friction at leading order thus is 5(1)(A, A) = m LA (111.32)

5y = —A"(0%) /tR_O,t . (111.24) S (A A, A) =mG*A (111.33)
t

thus extended to non-equal argument usifig,y) :=
Here, the response-function is taken at spatial argument 0. 18 [f(z + y,z + y) — f(x,2) — f(y,y)] and a similar expres-
momentum representation, the same expression reads sion for the trilinear function. Whenever possible we will use

577 = —A/,(O-i_)//th’t
tJq

— - a7(0") [ tertiat e
q

12 ]‘
=-A (0+)/qW
= —A"(0M) I (I11.25)

with the already known integrdl, equation (111.1).
We now turn to the 2-loop corrections. There are seven
contributions, drawn on figure 111.7. Their contributions#as

1
57):—§><4><2[a+b+c+d+e+f+g] . (1.26)

The combinatorial factor i$/8 from the interaction, 4 from FIG. Ill.7: 2-loop dynamical diagrams correcting the friction. They
the time-ordering of the vertices, and an additional factor oft!l have multiplicity8 except (c) and (d) which have multiplicit
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the shorthand notatiofi’) (A) = §(M (A, A) ands® (A) = The 2-loopp-function (111.38) then becomes with the help
§@ (A, A, A). The expression ol obtained perturbatively of (I11.40)

in powers ofA, at 2-loop order reads: —mOnAw) = (e — 20)A(w) + Cul (u)

A=m" A+ D (m™Ag) + 6P (m ™ Ag) + O(AD) . LA — ANV (]
(11.34) 2 [( (u) (O)) } (6 1)
It contains terms of order/e and1/¢2. This is sufficient to +[(Adu) - A(O))A’(u)2]” G(QjA _ j2>
calculate the RG-functions at this order (In principle, one has !
to keep the finite part of the 1-loop terms, but we will work FA(0M)2A (u) 6<2fA _ j12> . (I.40)

in a scheme, where these terms are exactly 0, by normalizing
all diagrams by the 1-loop diagram). Inverting this formula One of our main results is now apparent: the?-terms can-
yields: cel in the corrections to disorder. If it had not been the case it
would lead to a term of ordelr/¢ in the 5-function and thus
Ay = m* [A —6M(A) =P (A) +60D(A) + .. } , to non-renormalizability. Thus thé-function is finite to two
(11.35) loops a hallmark of a renormalizable theory. Note that this
wheres(:1) (A) is the 1-loop repeated counter-term: happened in a rather non-trivial way since it required a consis-
tent evaluation of all anomalous non-analytic diagrams. Fur-
s (A) =201(A, 61(A, A)) . (11.36)  thermore the precise type of cancellation is unusual: usually
the 2-loop bubble diagrams of type B are simply the square of
The-function is by definition the derivative df at fixedAo.  the 1-loop ones. Here the easily missed and non-trivial bubble

It reads: diagramis was crucial in achieving the above cancellation.
. 1)/ e In order to simplify notations and further calculations, we
—mﬁmA\Ao = 6[7”' Ag +20(m™ Qo) absorb a factor ot/ in the definition of the renormalized

disorder (or equivalently in the normalization of momentum

(2) —€
+3027(m AO)JF"'} (11.37) or space integrals). With this, thefunction takes the simple

form:
Using the inversion formula (111.35), thg-function can be
written in terms of the renormalized disord&r —mOmA(u) = (e — 20)A(u) + Cul'(u)
]. 1
—mnAl, = [A +6M(A) =5 [(Aw) = A0))7]
1
+26@(A) —s00(A) +... | (11.38) 5 [(AG) = A0)A (u)]"
In order to proceed, let us calculate the repeated 1-loop +%A’(0+)2A”(u). (111.42)
counter-termy:1(A). We start from the 1-loop counter-term
(111.18), which has the bilinear form Note several interesting features of this 2-lggjfunction.
) First it contains a non-trivial so called “anomalous term” (the
SO (f,g) = —=[2f’ '(w) + — 0N d" last one) which is absent in an analytic theory. Second, it
(/.9) 2 [ Fwg () + (f(w) = F(0)g"(w) can be shown to exhibit irreversibility, precisely due to this
+ (g(u) — g(O))f”(u)]ﬁ term. Although, surpri_singly, it can be formally be integrated
twice overu the resulting flow equation for the double prim-

(I1.39) itive of A(u) does not, however, have the required property
for the flow of a potential function, i.e. a second cumulant

with the dimensionless integraj := Il‘m:ﬁ we will use the of the random potential in the static. This will be shown in

same convention fof, := I4|, . Thuss"!(A) reads details in the next Section IV where we find that the fixed
points of the above equation are manifestly non-potential. In
SOV (A(u)) = 26 (A, 5(1)(A)) Ref32 we have obtained the corresponding beta function for
R(u) in the statics. The corresponding force force correlator

= [(A(u) — A(0))2A" (u) Agiar(u) = —R”(u) obeys the same equation than (111.42)

" but with the opposite sign for the anomalous term! This shows
+(A(u)? — A'(0)*)(A(u) — A(O))} I? that statics and depinning are indeed two different theories at
(111.40) two loops.

Note that this counter-term is non-ambiguos fior» 0. Fi- 2. Renormalization of friction and dynamical exponent z
nally, as discussed at the end of the previous section at al
point we can rescale the fieldsy m¢. This amounts to write
the 3-function for the functiomA (u) = m~2¢A(um¢) which
will be implicit in the following (in addition we will drop the
tilde superscript). nr = noZ[m Aot . (11.43)

M section 111B, we have calculated the effective (renormal-
ized) friction coefficientyr as a function of the bare ong
and the bare disordeX,:



This identifies the renormalization groupfactor as
Z_l[m_er] =1- A{)’(OJF)Il
+ [AFOH)])? [12 +214]
1
+ AY(07)Ay(0T) {2112 + 214 + I,,] .
(11.44)

The dynamical exponentis then given by

z=2+ mi InZ(m™¢Ay) .
m

5 (I11.45)

Equation (111.44) yields
InZ'=— AJ(0N)I,
+ Ag(01)? [;If + 21,4}
+ A0 AL(0) [;112 + 204 + I,]} (11.46)
and thus (remind thaty ~ m=¢andl, ~ I,, ~ m™)

d
m——1In Z7 = AG(0T)(ely) — AG(0F)? (17 + 414)

+ AY(0T)AG(0T) e(IT + 414 + 21)
(11.47)

We now have to expresy, in terms of the renormalized dis-
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D. Finiteness and scaling form of correlations and
response functions

To complete the 2-loop renormalizability program one must
check that all correlation and response functions are rendered
finite by the above counter-terms. In a more conventional the-
ory that would be more or less automatic. Here however there
are additional subtleties. The disorder counter-term is a full
function and is purely static. This counter-term, and its asso-
ciated FRG equation (111.42) cannot be read.at 0 because

of the non-analytic action (this point is further explained in
Appendix K). Indeed, this equation and the cancellation of
divergent parts was established only foe£ 0. It remains to

be checked that irreducible vertex functions whichare 0
guantities are also rendered finite by the above statj€ 0
counter-terms.

We first examine the two point correlation function. We will
first show that it igourely static Then, in appendix K we show
that it is finite and perform its calculation in the renormalized
theory. One has

<quu7q7w> = waqu,wai'&iﬁ(qw> ) (”|51)

whereR, is the (exact) response function. We will thus only
computel’;4;4(qt) (in time variable). The 1-loop counter-
term fory is absent in thig)(A?) calculation of the proper
vertex but it enters the calculation @i, u_,—.) (it dresses
the external legsk,,, into R,.,). In fact since we find that
Tiaia(gt) is static (independent df) we will need only the
exact response at zero frequency, which is the bare one be-
cause of STS.

To one loop, the proper vertd ;s (qw) is the sum of the
graphsa, b, ¢ andd of Fig. 111.6 evaluated at finite frequency

orderA using (II.35). For the second-order terms, this rela-and momentum, so we Writg;4;4(qw) = a + b + ¢ + d.

tion is simply Ay = m°A. The non-trivial term isA”(07).

Using (111.18), derived twice ab™, we get (with the factor of

(el;) absorbed into the renormalized disorder
AY(0T) = (el;) " tx
x [(A”(O*) + 1 (A" (0F)A'(0F) + 3A”(0+)2)}
(111.48)

Putting everything together, the result is

el _ 2 414
— InZ 1 _ A" (0t “ A"(0T 2
me - In (07)+e (62 (611)2> (0M)

3 41 21
+€ < 4 7

) A///(O+)A/(O+)
(111.49)

Again there is a non-trivial cancellation of th¢e terms, an-
other manifestation of the renormalizability of the theory. In-
serting the values of the integralg and I,,, the dynamical

exponent becomes:

z2=2-A"0T)+A"(0T)>+A"(0M)A(0) g —1In2

(111.50)

The suma + b yields after two Wick contractions and short
distance expansion a term proportional to

/ ’iﬁtiﬁt/ A//(Ut — Ut/)A(Utl — UtQ)
k,t;
X(Rk,tutz - Rk,t7t2)(Rk,t7t1 - Rk,tutl) , (11.52)

where we have kept all times explicitly to resolve any ambigu-
ity. ExpressingA in a series as in (11.9), the lowest order term
is purely static (since one can integrate freely avet;), and
proportional toA”(04+)A(0) [, k=%, but vanishes from the
cancellation between graph&ndb. As explained in detail in
Appendix K there can be a priori another contribution coming
from 2A/(07)25(u)u in the expansion of\” A. It produces
atermé(v(t — t'))v|t; — t2| which vanishes when multiplied
with the above response function combination (since it van-
ishes at = t).

Thus the only contribution comes fromt d. There theA’
yields sign functions and there are no ambiguities. One finds:

d= —2A’(O+)2/

71,72>0

% / e—k’zme—(k—i-q)?‘r]
k

[sgn(t — 72) + sgn(—t — 72)]

1 2
_ 2 —k“|t
= —24°(04) /m o
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b= A/(0+ 2/ S +t/n)s ¢ Since contributions proportional th, see (A.26), cancel, the
(0+) 1,720 or(rs =+ £/m) SGr(rz = /) only integrals which appear in th&function are:
% /eszq—gef(kJrq)?Tl I(a) :/ 1 _ m_el“(e/2) /e_qz (|||58)
k ' g (@ +m?)" I(a) Jq
. 1 ,
= A’(O+)2/ — (2e*’€ lel/m 1) (@) / !

k2 (k 2 ’ Iy’ = = =

e Kk +9) P Jane (@ +m?)E (g3 + m2) (a1 + g2)? +m?)
where we have accounted for the extra combinatoric factor of (11.59)

2 for graphd and used , T (@) ,4(a) ,
The important combination is agad ;' — (1;*’)2. One finds

/ e TTsgr(r — 1) = ()20 1) + (1)) . (see appendix F)

70 1 (I11.53) @ 2617 — (1))

: X\ =

We thus find that although each graph is time dependent, (dfc‘))2
this time-dependence cancels in the sum. Thus we find a static Ldt 1445 — (1405 T'(a) T'(2)
result: = [ — — + — 2

X 0o t (1+1)2 I'(a) T(5)
_ A2 | — | +0(e) . (111.60)
Fiasa(a) =8(6) [80) = 80+ [ ] “

(.54)  Since this term is finite, thg-function is finite; this is of

The static 1-loop counter-term should thus be sufficient tcourse necessary for the theory to be renormalizable. For the
cancel the divergence of (111.54). This is further analyzed incases of interest = 1 ando = 2, we find
Appendix J where the full correlation-function is computed. x®@ =1 (11.61)

We have thus found the C(_)mmutatlmﬁ_ﬁ(u = O? q) = X0 — 4102 (11.62)
Tiaia(u = 07,q). Note that if all correlation functions are : :
purely static, i.e. strictly time-independent, itimplies the com-Since there is only one non-trivial diagram at second order, all
mutation of the limits. Then it also implies the finiteness 2-loop terms in thed-function get multiplied byX (®):
since these static divergences have been removed. We have ,
not pushed the analysis further but we found a simple argu-  ~™ImA(w) = (€ = 20)Au) + Cui’(u)

ment which indicates that all correlations are indeed static. 1 [(A(u) - A(O))z}"
We found that the time dependence in diagrams cancels by 2
subsets, notirfj that graphs can be grouped in subsets (e.qg. X (@) s
pairsac, bd, ef in Fig. 111.3) which vanish by shifting the end- + 9 [(A(“) — A(0))A(u) ]
point of an internal line within a splitted vertex. x (@)
Finally, let us note that our result that correlations at the +TA’(O+)2A“(u) : (111.63)

quasi static depinning are puredyaticfor v = 0% is at vari- _ _ . ) )
ance with previous work&20. Thus the only functions where The diagrams involved in the dynamics also change. Besides
the dynamical exponent comes in are response function. 11(1) andlgl) given above we need

- 1 ._ 1
E. Long range elasticity Iy / (q%erg)% (@+m2) [(q%_’_mg)% T (q§+m2)%]
As was discussed in the Introduction there are physical sys- i ”
tems where the elastic energy does not scale with the square _ (1 + h124> (€I<1>)2 + finite (11.64)
of the wave-vectoy as Egastic ~ ¢° but asFastic ~ ¢%. In 2¢2 € !

this situation, the upper critical dimensionds= 2c-and we  cg|culated in appendix G.

define: Starting from (111.49), the dynamical exponenis then in
e =% —d. (111.55) straightforward generalization of (111.50) given by
=a—A"(01) + X@A"(0F)2 + Y @A™ 0T)A(0F
The most interesting case, a priori relevant to model wettingz “ 07)+ )"+ o) (II(I 6%)
or crack-front propagation is = 1, thusd,. = 2. with X (@) given above and '
In order to proceed, we have again to specify a cut-off pro-

cedure. For calculational convenience, we choose the elastic 2]7(]a) _ ([l(a))2
energy to be y@ = x(@) o . (111.66)
9 9\ € (I(a))
Fealastic ~ (q +m )5 . (|||56) 1
1 ™
This changes the response-function to Y® =62~ 5 (11.67)
o 3
Rgy = O(t) e~ @+m) ¥t (I11.57) Y& =2 —n2. (111.68)
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The caser = 2 reproduces (111.50). Since botki(") andy () natural conclusion is then that all correlations shorter range
are finite, we have checked that also in the case of long-rangban RF flow to the RF universality cla8s Furthermore the
elasticity the theory is renormalizable at second order. fixed point condition (111.63) equald implies a unique well
defined value for{ identical for all ranges shorter than RF
(including RB). This value takes the form:

C B E B X(Q)A/(O+)3
S 37aA

0

IV.  ANALYSIS OF FIXED POINTS AND

PHYSICAL RESULTS a0, (v
The FRG-equation derived above describes several different
physical situations: periodic systems (such as charge den- .
sity waves) where the disorder correlator is periodic and nonwhere¢; > 0 can be obtained from the knowledge of the 1-
periodic systems (such as a a domain-wall in a magnet)0OPp fixed pointA ~ O(e) only. - _
Within the latter, SR (random bond) and LR (random field) ~Before we comput€, and obtain the depinning fixed point
disorder must a priori be distinguished. In our analysis of thd0 two loop, let us note that in the static c&Sthe last term in
FRG-equations, we have to study these situations separatelfl!!-63) has the opposite sign and, integrating oveme finds

Before we do so, let us mention an important property, valighat there is thus no term proportional £&5(0%) in (IV.2).

under all conditions: IfA(w) is solution of (111.63), then Thus for the RF disorded < [A < +oo one can again
conclude that
A(U) = /QQA(’U,/I{) (IVl) glF — E (|V4)
3

is also a solution. We can use this property to £ix0) in
the case of non-periodic disorder. (For periodic disorder th
solution is unique, since the period is fixed.)

to (at least) second order. In fact, as discusséd tinis is
e'éxpected to be exact to all orders due to the potentiality re-
quirement of the static FRG equation, which also implies that
J A = 0 holds to all orders at the static RB fixed point. The
A. Non-periodic systems corresponding value fagt? is given to ordeg? in,

We now want to find the fixed-point function of equation
[11.63). Using the reparametrization-invariance (IV.1), we set

with random field disorder or any correlator decreasing faste with the factorsi /3 and1,/18 chosen for later convenience)

We now start our analysis with non-periodic systems, eithe;
than RF. Let us first recall that at the level of thare model

the static RF obeyd?(u) ~ —olu| at large|u| and thus € €2 3
[ dul(u) = R'(07) — R'(00) = —o (o is the amplitude of Au) = gy1(u) + 7gu2(u) + O(€%) (IV.5)
the random field) while RB or any correlator decaying faster y1(0) =1 (IV.6)
than RF satisfieg A = 0.

Let us first integrate the disorder flow equation (111.63) from y2(0) =0, (IV.7)
u =07 tou = +oo. We obtain wherey; (u) is the 1-loop fixed point function for the RF case.

It was obtained in Ret? and further studied in Reéf. Let us

7 o recall its properties. To lowest orderdithe 1-loops-function
—m@m/A(U) du = (e - 3()/A(U) du— X A(0%)?. (11.63) reads:
0

0

oo

(IV.2) € Cul(u) — L _ 2]" _
The only assumption that we have made here is #lstu) SA(U) i SUA () 2 {(A(u) A0)) } =0 (v
gRCI::es to zero att = oo, which is the case both for RB and inserting (IV.5) the function: (u) must satisfy:

Let us first recall the 1-loop analysis, where in the FRG r_ 1 _ 21"
equation there is no distinction between statics and depinning. fun (W) = 2 [(y1 (1) =31(0)) } ’ (V:9)
The |aSt term in (|V2) iS then absent. ThUS one findS e|theWh|Ch can be first integrated to
fixed points with| A = ¢ > 0 with { = ¢/3, the RF univer-
sality class, or others witlf A = 0 for ¢ < ¢/3 which cor- uyr(u) = (y1(u) — 1) ¥ (u), (IV.10)
responds to disorder with shorter range correlations than th%]sing (IV.6) in the last line. A second integration with the
RF. This includes the RB fixed point with exponentially de- ) o o . .
caying correlator andr s = 0.208e¢. It also includes a contin- boundary conditions implied by (IV.6) yields:
uous family of intermediate power law fixed poitft€® with
decay at larger asA(u) = —R"(u) ~ (a — 2)(a — 1)u™®
with a* > o > 1. These havé(a) = €¢/(24«) (from solving
the linear part of the FRG equation) at\@h*) = (rp.

The last term in (1V.2) shows that things work differently to
two loops at depinning. the conditiohA = 0 is no longer y1(0) =1, Y (07) = -1
possible at the fixed point. Starting from RB one develops a - 2 - 1
positive value for[ A, i.e. a random field component. The ) =5,  w(07)=-¢. (IV.12)

yi(u) —Inyi(u) =1+ %uQ : (IV.11)

The derivatives ofj; (u) atu = 0 will be needed below. De-
riving (1V.10) successively w.r.t;, we find
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1 ’exponenk dim \l-loop\z-loop\ estimate | simulation ‘
d=3| 0.33| 0.38 |0.38+0.02| 0.34+0.01*%°

0.8 ¢ |d—=2| 067|086 082:0.1| 0.75:0.02"
1.25+0.01%

d=1|1.00| 1.43| 1.2+0.2

0.6 1.25+0.05"
d=3| 1.78 | 1.73|1.744+0.02| 1.75+0.15%%

0.4 z |d=2| 1.56 | 1.38 |1.45+0.15| 1.56+0.06*
1

d=1| 1.33] 094 1.35t0.2 | 142:0.04"

0.2 1.54+0.0%°
' d=3| 0.89 | 0.85|0.84+0.01| 0.84+0.02°2°
0.65+0.05"

i 5 3 7l B |d=2| 0.78 | 0.62|0.53:0.15| 0.64+0.0292°

0.66+0.042

0.35+0.043

FIG. IV.1: The fixed-point functiony; (u) at 1-loop order for non- d=1|0.67| 031| 0.2+0.2 | 0.4+ 0.05%
periodic disorder. 0.25+0.031

d=3| 0.58 | 0.61 |0.62:0.01

— 2

We have also determined the fixed-point function at second v_|d=2]067] 077 08501 0.11%%;?

orderys(u), which is given in appendix H. d=1]0.75| 0.98 | 1.25+0.3 1140 1%

In order to extract from (IV.2), we need
o FIG. IV.2: Depinning exponentgy = 2. First column: Exponents
_ obtained by setting = 1 in the 1-loop result. Second column: Ex-
\/57 B /o yi(w) du, (V.13) ponents obtained by settirg= 1 in the two-loop result. Third col-
umn: Conservative estimates based on thre& Ratimates, scaling
which was computed in Réf. The method is to convert relations and common sense. Fourth column: Results of numerical
(IV.13) into an integral ovey := y;: simulations obtained directly without using scaling relations.

o0 -1 d -1
du = — Y cu dy = — i dy
0 Y o _ dy o Y equation (IV.17) reads

1
y—1
:—/ dy—2—— | (V14 ¢ 42 \ ¢
[ — —1’ =—11 =—1(1 397 . V.19

where in the last equality (IV.11) has been used.
by parts, this yields

Integratmgl_his is in reasonable agreement with simulations, as shown on
figure IV.3.
1 We now turn to the calculation of the dynamical expo-
v7= / dy vy —Iny —1~0.5482228893...  (IV.15)  pents. As can be seen from the general result of equation
0 (111.65), we needA’(07), A”(0") andA”’(0") at leading or-
Combining the definition ofA(u) in (IV.5) with (IV.12) and  der, which can be inferred from (1V.5) and (1V.12). We further

(IV.15), we find needA”(0) at second order. Expanding (I11.63) to order
(@) and Taqur-expanding to second orderinwe can solve for
Co = X (vaie) v2(0), whichyields
27\/57 € €
and thus for A"(0) = gyil((]) + TSyg(O) (IV.20)
e  X(@¢2
(= 3 + m + 0(63) : (IV.17) exponentsone loogtwo loop| estimate| simulation
¢ 0.33 0.47 [0.540.1|0.390 + 0.002%

This result violates the conjecture?bfthat¢ = £ to all orders » 078 | 066 |0.7+0.1| 0.74=+0.03%

ine. To compare_(lV.l?) wit_h simulations, we have to _speci_fy 3 078 | 059 |04+0.2 279

to the cases of interest: First, for short-range elasticity, i.e. 5 133 | 158 | 2. 104 7

o =2, we find

€ € € FIG. IV.3: Depinning exponentgy = 1. First column: Exponents
¢= 3 (1 + 9\/5) =3 (1 +0.143313 6) . (IV18)  gptained by setting = 1 in the 1-loop result. Second column: Expo-
v nents obtained by settirg= 1 in the two-loop result. Third column:
Our results are in excellent agreement with the numerical simConservative estimates based on threeéReslimates together with
ulations, see figure IV.2. For long-range elasticity, se= 1, ~ Scaling relations between exponents.
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2 € (10X V21 long range withA(u) ~ v~ anda > o* > 1. The linear
—o 3l ) (vaD part of the FRG equation implies thata) = ¢/(2 + ) and
o ] ) a crossover from the RF fixed point occurs whga*) =
Specializing to the SR-case: (= 2) yields with the help of CRF = §+C262 + O(€3). We have not studied these LR fixed

(111.50) points in details.
3
=2 A"(0%) + A”(0T)2 + A" (0F)A'(0) <2 —In 2) B. Periodic systems
2¢ (2 In2 5
=2——+4+€ |\ —— - ; i i i i
9 3 54 108 exponentdimensior)1-loop|2-loop| estimate| simulation
—9_ _ 2 _ . 78 10.78+0. 0.81+0.03
2 — 0.222222¢ — 0.0432087¢2 . (IV.22) d=3 | 083] 078 0.78003 o/ 605

The agreement with the numerical simulations given on figure B d=2 | 0.67 | 0.44|0.52+0.08 8'2&8'8?
IV.2 is again good. Finally, the exponertsndy are obtained ' .

- . d=1 0.5 0. 0.2+0.2
from scaling relations. Fax = 2 (SR) they read

FIG. IV.4: Depinning exponents for CDW. First column: Exponents

0= 2=6 obtained by setting = 1 in the 1-loop result. Second column: Ex-
2-¢ ponents obtained by settirg= 1 in the two-loop result. Third col-
_1 € 5 (G2 1 In2 umn: Conservative estimates based on thre& lRatimates, scaling
T 9 Te 6 24 108 relations and common sense. Fourth column: Simulations®rom
€
=l-3+ 0.040123¢ (IV.23) For periodicA () as e.g. CDW depinnifg?,, there is an-
1 1 G 1 other fixed point of (111.63). It is sufficient to study the case
=3¢~ 5 12 +e ( + 72) where the period is set to unity, all other cases are easily
obtained using the reparametrization invariance of equation
1 + £ +0.0258316 €2 . (IV.24) (IV.1). This means, that no rescaling is possible in that direc-
2 12 tion, and thus the rescaling factor is
We now turn to long range elasticity # 2. The general C=0. (IV.30)

formula for z reads
The fixed-point function is then periodic, and can in the inter-
) . (IV.25)  wval [0, 1] be expanded in a Taylor-seriesfl — u). Even-
more, the ansatz

G 2X(@  yl@
Z_O‘_§€+ (3_ 27 "

Specifying toa = 1 yields Au) = (a1 + aze® +...) + (bre + bae® + ... ) u(l — u)

42 m+20In2 (IV.31)
z=1- §€ +e T8 allows to satisfy the fixed-point equation (111.63) to ordér
with coefficients

2 2
= 1—5e—0.1132997¢. (IV.26) ) C ox@ /e ex
A" (u)= —=—+———| =+ u(l—wu). (IV.32)
Again 3 andv are obtained from scaling as & 1) 36 108 6 9
PR 9 , (G 2 m+20In2 Inthe phy;icglly interesting s?tuation of charge density_waves,
B = =l—cete | —F—— the elasticity is short range, i.e. = 2 and X(® = 1 which
1-¢ 9 3 27 108 . i
5 yields:
=1- 5 0.1873737¢2 (IV.27) . e . e
1/=1+§+62 <9+C2>
c This fixed point is manifestly non-potential, i.e. it describes
=1+ 3 +0.24356€> . (IV.28)  a force-force correlation-function, where the forces can not
be derived from a potential. In a potential environment, the
Numerical values are given on figure 1V.3. integral of the force over one period must vanish, and so must
Note that to two loops at the RF fixed point there does nothe force-force correlation-function. In contrast we find here
appear to be any unstable direction. We thus conclude?as in 1 2 v (o) )
that dua (u) =~ 2T vag)
108 108 '
Vps = V. (|V29)

Thus to two loop the fixed point correctly accounts for the
Finally, for depinning there should also be a family of fixed irreversibility in the driven system, which becomes manifest
points corresponding to correlations of tf@ce which are  beyond the Larkin-length. This was not apparent to one loop.
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An important feature of the periodic case is that the fixedand given the generality of the above argument this should
point isunstable The direction of instability is simply adding holds to all orders. Note then that the CCFFS-bdfridr
aconstanttad\ («) and its eigenvalue is trivial equal¢édo two  vpg is saturated. This is very different to the case of interfaces
loops and presumably to all orders. The full stability analysis(saturation of the bound there would lead to the incorrect re-
is performed in appendix | but it can be seen already from: sult{ = ¢/3).

The dynamical exponentis

1 1
ity [ Aw)du=e [ Awdu - 2xO a0 ¢_SXO a2, 2 vas)
0 0

e T e

_ _ _ (IV.35)  curiously, it does not depend on the diagrémor equiva-
obtained by integration of the 2-loop FRG equation on thgently y ()

interval 0", 17]. One sees thaf A flows away if it does not In CDW depinning, the best observable quantitgisrom
coincide with its fixed point value (1V.34). the scaling relatioH 19213 = (z — ¢)/(2 — ¢), and( = 0
Thus the asymptotic flow as the dimensional parameteyq find3 = z/2 and thus for CDW § = 2) ' '

m — 0 takes the simple form
2

€ €
Ap(u) = A*(u) + em ™ (IV.36) B=l-c—15- (1V.46)
. / . This expansion is however ill-behaved, at least at largt
c=m /(Amo - A" (IV.37)  therefore seems advisable, to use one of the Pade-variants.
0 The only one which respects common sense dow te 1
and even beyond, is the Pade (0,2), reading

i.e. it takes the fixed point form shifted by a growing constant.

In the staticsfo1 du A, = fol du A, = 0 from potentiality ( — 1 .
the last term in (IV.35) is absent ) and thuis= 0. At depin- I+5+53
ning ¢ is non-zero at 2-loop order (~ — f01 A* > 0) using o . . .
that the bare disorder has zero integral) and this has sevelAfJaln simulations are in reasonable good agreement with our

consequences. First one obtains the static deformations as t eoretl_cal predictions, as can be seen on table IV.4. Further
simulations would be welcome.

(IV.47)

sum
(ug —uo)? = Bu(z) + Brr() (1V.38) V. CONCLUSION
of a universal logarithmic growth-term To conclude we have constructed a consistent field theory of
isotropic depinning at zero temperature to 2-loop order. While
Bui(z) = Agln fz| (IV:39)  the 1-loop flow-equations for statics and driven dynamics are
A= 1 2x (@) 3, V.40 identical, our 2-loop equations distinguish these physically
4= 3¢ T T ¢ (IV.40)  gifferent situations, yielding different universal predictions for

) ) ) ) both cases. This is an encouraging progress. The non-analytic

(the calculation o4, is presented in Appendix J as an exam-fie|d theory that we have developed here will be discussed in
ple of an explicit calculation of a correlation function in the companion studi€és for the static theory to two and three
renormalized theory); and of the contribution of the generategyps,
‘random force” of the Larkin type A lot remains to be done and understood. If universality is
|4_d (V.41) to hold at depinning then a renormalizable theory should exist

’ ' to any number of loops. We have not attempted a proof to all
orders here, and the mechanism in whichtfiedivergences

which completely decouples from the other one. This is eIy ancel is non-trivial. We have however checked the applica-

similar to what was found in other driven systems where &ili . . .

. 6 . PP ility of formal constructions like the subtraction operakr
random force is generat€tf®. In particular this implies that on sample diagrams. This could further be tested in a 3-loop
the true roughness-exponent at depinning is(net0 but calculation. Although short time singularitie§((t) terms)

4—d did not appear their role to any order remains to be clarified.
Cdep = — (IV.42)  Next, effects of temperature have not been included here. One
expects that although &t = 0 the statics and the depinning
Another consequence is that the the two exponerdasd  should be two distinct field theories, this distinction becomes

Brp(z) ~ c|z

vpg are different. We find: blurred at finite temperature. How this will work out is not yet
elucidated. Some efforts in that direction are reportéd. in
v = b1 (Iv.43)  Similarly it would be quite interesting to understand how to
2-¢ 2 describef = f_, i.e. the approach to the threshold from be-
1 2 low. From the considerations here this appears to be quite
VRS = o———— = (IvV.44)

2—Caep d non-trivial.
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Extension of the present method to systems wiNth> 1 and we can set := u,, — u, for all 7/ = 7 + somet,,
is also far from trivial. The monotonous increase wof ¢’ = o = somet; since the; are small (due to the exponen-
does not apply to all components, which leads to complicatially suppressing factors) compared to the difference-eb.
tions. The large¥ limit of the static FRG was solved exactly Finally, sinceA is continuousA (v, _¢, — wr_¢,—¢,) Can be
recently?*®and it would be interesting to extend it to the dynam-replaced byA(0). Integrating over all times leads to
ics. Finally the threshold dynamics of other systems, such as

random field spin models, which can be described by the FRG, , ” 1
is of interest. az = —2A(0)A'(w)A (“)/ CEd (A-2)
From the point of view of simulations our results together e
with recent more powerful algorithms offer hope that moresimilarly, we find
precise comparisons could be made, not only for exponents
but also for other universal quantities which offer stronger o 1
tests such as scaling functions, amplitudes or finite size ef- ag = —2A(0)A"(u) / 57 (A.3)
fects. The exponentrg should be measured independently. 1,92 q1q2qf
We encourage further precise numerical studies on both man- — _92 |A(0)A! 2/ A4
ifolds and CDW with a comparison to theory in mind. Agree- a2+ ag u | AO)A W) PR 1qfq§q§ A4)
ment between numerics and theory would allow to rule out or by = 20/ (u)2A” (u) / -5 (A.5)
to accept elastic models for the description of more complex a1,q2 419293
experimental situations. , " 1
a1,q2 919293
: 1
APPENDIX A: CORRECTIONS TO by = A(u)A”(u)z/ A (A7)
DISORDER: DIAGRAMS OF TYPE A a.q2 419393
1
In the following, we give explicit expressions for the diagrams by = A" (u)A' (u)? / 57 (A.8)
contributing to the renormalization of disorder. To simplify 1,92 q1q21‘13
notations, we have introduced := ¢; — ¢2 ar_1d set the mass by = 20" (u) A’ (u)? / - (A.9)
m to zero. The mass-dependence can easily be reconstructed a1,q2 4192493
by replacingg? by ¢? + m?. We start with the diagrams of s 1
class A, given on figure 11.4. For illustration, we show the be = A(u)A" (u) / e (A.10)
complete calculation of the first non-vanishing diagram q1,42 T1E2ES
The contribution of théy;’s can be summed as
3i 5 E4 _ _/ / e—thl—qgtz—qg(fﬁ-‘rM) 6
. 1
G et S b= [A<u>A'<u>2 / ngqu SNCREN
XA" (U — ) A (Ur ) — Ug—t,) =1 a2 THI2ES
XAty = Ur—ty-14) - (A1) piagrame, is
For the fieldu, we have given the time-arguments, but sup- 1
pressed the spatial arguments, since the result is taken at con- cL = 2A’(0+)2A”(u)/ - - (A.12)
stant background field. We also do not write explicitly the two a1,9> 19293
response-fields. The given configuration is for- o large,
|
All these diagrams contain the hat-diagram known from the staticgatiteory. It can be calculated as follows:
éé _ / 1 _ / Go—alat+m?)=Blad+m®) —y((a1 +a2)*+m?)
e (@@ M) (@ +m?)2 (1 +a2)2 +m?)  Jagaso
5 —d/2
= </ eq2> / Be~m’(@+8+7) | Det aty v
q a>0,8>0,7>0 v B+y
2 5
- </ > / By* e I D 0k 54 )~
q a>0,8>0,v>0
2
- (/e—q2> I'(4—dm=2J, (A.13)
q



where we split the divergent integrdlin pieces, which are either finite or where the divergence can be calculated analytically:
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= / o / i dﬁ (a+ 6ﬂ+ af)? (?a++ﬁﬁ++a£)f ShRtd (A-14)
- / do‘/ Bt 6 n aff) (C(ycjffjfﬁ)f =2+ 0() =
n= [0 [ (e g pa  AraE) =00 A9

ng/o da/1 dﬁw_;ﬂ%—i+l+0(e) (A.17)

This gives the final result for the hat-diagram

Iy= é = (/,, e—q2>2 T(4 — d)m™2 (i +1+ O(E))
~ (gt ) (a1”)

We now turn to the non-trivial diagram . At finite velocity
v, the diagram is

Cd

3 4

(A.18)

= / / A" (u)A'(v(ty +ty — t3))
q1,q2 Jt1,...,t4>0

7t1qf*t2q;*(t3+t4)qg

(A.19)

XA/(U(tQ + tg — t4))e

In the limit of vanishing velocityy — 0, we can replace
A/(U(tg + t3 — t4)) by A(O+)sgn(t2 + t3 — t4) a.s.o. Let
us stress that this replacement is correct both before and after

reaching the Larkin length. Its result is

er = A'(0M)2A" (u)

" / / e~ BET ) [(15 1y q1,q0)  (A.20)
q1,q2 Jt3,t4>0

I(t3,ts,q1,q2) = / 0(t1)0(t2)sgn(ts + t4 —t3)
t1,ta

—(aiti+a5tz)

(A.21)

X Sgn(tg + t3 — t4)€

Using thate—(4it1+d3t2) — 2720000 —(a¥t1+43t2) gnd inte-
grating/ by parts int; andtz ylelds

1
I(t3,ts,q1,q2) = = X
q7

)
NN

(

X [29(?53 — ty)e BTt 4 20ty — ty)e Bt 1)}
(A.22)

The integral over the two remaining timesandi, in (A.20)
gives

/ I(ts,ts,q1,q2) =
t3,t4>0

1 ( 1 s 1 1)
BB \EE+@) EE+a3) ¢

and thus

e; = A'(0M)2A" (u) x

1 1 1 1
X/ 3 ( 3 3 + 3 5 2) (A24)
e G593 \G+43  G+ad @

with g3 = ¢; — g2. In presence of a mass this reads:

e; = A(0T)2A" (u) x

1
X
/,M (¢ + m?)(q3 +m?)(q3 + m?)

1 1 1
+ —
<q$+q§+2m2 @ + g3 + 2m? q§+m2)
(A.25)

We now calculate the new integral.
since it has only a single pole irye:

It is relatively simple,

1
/‘Il o (@@ +m?) (g3 +m?)(q3 +m?)(q; + ¢3 + 2m?)

= / / e_a(Q1+m2)—5((Q1+Q3) +m?)—~(gz4+m?)—5(gi +q2+2m?)
q1,93 Y «>0,8>0,v>0,0>0
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—d/2

e—mz(a+ﬁ+'y+25) Det o+ 6 +0 5
g B+otny

a>0 ,8>0,7>0,6>0

a>0,8>0,7>0,6>0

2
- (/ ¢ ) eI (L 4y + a4 28+ af + ay + By) "
q
(/eq> (1+~y+oz+—2[3+aﬂ+ow—uh)*d/2[m?(a+ﬂ+v+2)]d_4
q a>0,8>0,7>0

2
1 -
= (/eQQ) - *26/ (1+v4a+26+aB+ay+ pBy)" 2 +finite
q € a>0,3>0,7>0

2
1 L.
—2In2 (/ e_q2> —m ™2 + finite
q €

In2

— 5 (eh)? + finite (A.26)
€
This gives the final result far gs = A/ (u)?A" (u)I? (B.4)
1
o1 = A(0F)2A" () (21, — 1) . (A.27) g1 = S AW A" (u) I} (B.5)
The last non-vanishing diagram fs: g1t tegs+g =02 ;A(qu”(u)] I? (B.6)
fy = 2A’(0+)2A”(u)/ et (tatta) —(aititazta) o hy = —A0)A" (u)A (U)I12 (B.7)
1,92 hy = —A(0)A” (u)?1 (B.8)
X Sgn(t4 — t3 — tz) . (A28) h5 — h6 (0) /l/( ) (U)If (Bg)
Integrating first overt, and then over the remaining times 13 +1ha +hs +he = 07 [ A(0)A(w)A"(w)] I} (B.10)
gives iy =jo = iA(o)QA””(u)Il (B.11)
1 _ _ aNAT 2
f :—QA’O+2A”u(/ . (A29 ki = =l = —A(u)"AY(0T)A(0)I . (B.12)
e A T R R

The surprise is thait;, which is not the second derivative of
The integral has already been calculated in (A.26), yielding? static diagram (since it has bathon saturated vertices) is
the result non-trivial:
s ANNTN2 AN 2
= oA (0)2A (), (A.30) iz = =A"(07)*A"(u)I7 . (B.13)
This diagram is necessary to ensure renormalizability.
Note that the non-trivial integrals in andf; are in fact iden-

tical and cancel: APPENDIX C: CORRECTIONS TO

e1 +fa = —A(0T)2A" (u) 4 . (A.31) DISORDER: DIAGRAMS OF TYPE C
In this appendix, we show that diagrams of type C do not con-
APPENDIX B: CORRECTIONS TO tribute to the renormalization of disorder. This is fortunate,
DISORDER: DIAGRAMS OF TYPE B since they involve a strongly diverging diagram (the tadpole),

which would render perturbation theory non-universal.
In this appendix, we calculate diagrams of type B (the bubble- The diagrams which are odd functionswofire
chains).
The diagrams which are odd functionswére: M1 =Mz =Mg = M5 =11 =03
=my=n5=pa=p3=q=q3=0. (C.l)

hi=hy=h=jh=k=k=hb=l=l=0. 81 . following diagrams cancel:

The diagrams that are second derivative of static ones have all my+1n,=0 (C.2)
their response-fields on their unsaturated vertices. These are: p14aqr=0 (C.3)
g1 = A" (u)?ATI? (B.2) Pa+qs=0. (C.4)

go = 20" (u) A" (u) A(u)I? (B.3)  No contribution remains.
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Al(uo - u*t1*t2*t3)A”(u*t1 - u*t1*t2)
(D.2)

The crucial point is now that this diagram corrects the critical
force andy. The correction to the critical force is obtained by
setting the arguments of th's to 0T (unique here due to the
time-arguments). This contribution is non-universal and we
shall not calculate it in the following. Theniversalcorrec-
tion ton is obtained by Taylor-expanding the argument of e.g.
Al(ug — u—t,—t,-t,) as

\;p}. UY) — Uty —ty—ty = (U + 110)(1*,1 + i+ t3) (D3)

and thus

ﬁ S

AN (ug — gy —ty—t5) = A"(0T)ug(ty +t2 +t3), (D.4)
,9\. \?\ which naturally leads to the generation of a correction to fric-
R

(R
AR

o - tion. For our diagram, this is (sloppily dropping and the
response-field for simplicity of notation)
FIG. C.1: 2-loop diagrams of class C ) R
a=— / e—ql(t1+t3)—q2t2 «

q1,92 t1,t2,t3>>0

[A"(0F)?(t1 + ta + t3) + A (0T) A" (07)t,]

- / A”(0+)2< 22+ 414> + A'(0F)A"(0™) 414

APPENDIX D: CORRECTIONS TO #:
2-LOOP DIAGRAMS

In this appendix, we give all diagrams contributing to the cor- -

91(12 4145 414>
rection ofn at second order. For simplicity of notation, we a,q2
again drop the explicit mass-dependence. We group together (D.5)

those diagrams which partially cancel. We demonstrate ex-
plicitly how to calculate the first diagramfrom the very be- where in the last line we have explicitly performed the time-
integrations.

inning. - .
d g Diagramg is
g = e—tﬁ(t1+t3)—q§tz %
a = t1 (D.l) q1,92 t1,t2,t3>0
Al(uo - u*h*ts)AH(u*h - u7t17t2)
= e Ui (ti+ts)—a3tz o
= / / quth(]thqutg X q1,92 t1,t2,t3>0
a1sa2 titaits (A"(0%)2(t1 + t3) + A'(0F)A"(07)t2)
, _ AN 2 1
A (ut:O u—tl—tz—ts)( A (u—t1)) _ A//(O+) —— —i—A (0+)AW(O+) — (D6)
q1,92 ta3 1492

We have drawn three response functions. We have chosen

to start counting time at O for vertex, such that vertex3  Thus
is at time—t,, vertex~y at time—t; — t, and vertex at time 1
—t1—to—t3. This gives the times for the arguments®f The atg=— / A"(01)2—— = —A"(07)217 (D.7)
upperA in diagrama has one time derivative, the lower vertex qi CI2

two, resulting inA’ and—A" respectively (the minus-sign is
a consequence of the both response-functions entering at diffote that both diagrams andg contain a tadpole-like sub-
ferent “ends” ofA). We have suppressed the space-argumentgivergence, which is canceled by a counter-term for the crit-
in the fieldsu, since all diagrams correctingare calculated at  jcal force. However their sum does not involve such a term
a spatially constant background field. Inserting the responsemnd thus there is no need to specify it.

functionsR,, = ©(t)e™? “t we arrive at Graphs b, c and d:

q1,92

2 2 " 2 2
a=— e*ql(t1+t3)*qgt2 X b=— e 4 (t1+t3)—qst2 %

q1,92 t1,t2,t3>0 q1,92 t1,t2,t3>0
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A0 =1t Aty = i—t11,) Note the factorl /2 for the symmetry in the lower vertex. To-
= */ / e Ui (ti+ts)—a3tz o gether they are
q1,q92 Jt1,t2,t3

b+c+d=A"0"T)A(0T)
[A'/I/(O+)A(O)t2 + A/I/(O+)A/(O+)‘t1 +ty — t3|}

2 2
X —a(ttta)=ata (14 go| |ty -ty — ¢
(D.8) e (Itr 3| — |t1 + t2 3|)

q1,92 t1,ta,t3

while (D.10)
1 . .

c=d= 3 / / e~ @ (titta)—a3tz o Changing variables ta = ¢; — t3 ands = 3(t; + t3), the

Graga t1,tats>0 integralftht3>0 becomes|;* ds ff;s du. The integral over

1t MO AT (O u can be performed, but for fixedthe second term in (D.10)
[A (07)A(0)t2 + AT(OT)A(OT)]tr — s | - depends on the value of. Distinguishing the both cases, we
(D.9) obtain

J

oo 2s 0
b+c+d=A"0")A'(0") / / e 24is /dtg ez gg? /dt2 e 43tz (t3 +4s%) — /dtz 092 4gt,
s>0
0 0 s

q1,92
1
= —A”’(O*)A’(O*)/ - - (D.11)
ar.02 G192(0F + 3)
This integral can be simplified through symmetrization. Using that
1 1 1
+ = —— =17, (D.12)
/ [ Gt +a3)  ala3ad +ad) i
q1,92 q1,92
we obtain
1
b+c+d= —§A”’(O+)A’(O+)1f. (D.13)
The next diagram is:
—q2t1—q2ta—qitz AN /
e= [ [ e a g — sy )A (0~ unsy)
q1,92 Jt1,t2,t3
- / / e~ aiti=aBta=aits [AM(OF)A(0F) (ta + 1) sgnlts — o) + AT(ON)2(ts — )] . (D.14)
q1,92 Jt1,l2,l3

By symmetrizing in £ < 3), the term proportional t&; and the term proportional t@s — ¢2) vanish. The remaining term can
be written as
o=y / / et = a3t a3t AT (O ) AT (0|t — ta - (D.15)
q1,92 t1,t2,t3
Making the same change of variablesit@ands as for (D.11), the integration over, s and¢; can be performed in this order,

distinguishing the cases < 0 andu > 0. Both cases give the same result for a total of

e= —A”’(0+)A’(o+)/ ! (D.16)

q1,92 q%q%(q% + qz) -

This contains the new integral (given regularized)

1
! ::/ : (D.17)
! 71,92 (¢ +m?)(q3 +m?)%(q3 + q?, + 2m?)
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It is related tol;, see (A.26) and 4, see (A.18):
In+L=14. (D.18)

It is calculated in appendix E. The last diagram to be calculatéd is
f= / / e_(I%tl_qgtz_qgtSAN(uo — Uty ) A (U gy ity by — U—t,)
q1,q2 Jt1,t2,t3
B _/ / o= [AT(OF)A(0F) (b + 1) + A(0%)2(t1 + t3)]
q1,92 J11,t2,t3
= 2A"(0N)A'(0F) 14 — 2A"(07)%14 . (D.19)

APPENDIX E: THE INTEGRAL I,

We have to calculate the integtg) defined as

1

Iy = : E1l
! /qq (g2 +m?)(g3 +m2)2(q3 + ¢2 + 2m?) (E.1)
This is done as follows:
In 2/ / ﬁe_a(qf+m2)—5(q§+m2)—7(q§+q§+2m2)
q1,92 J a,B3,7>0
2 —d/2
- (/ eq2) / femi a2 | per( @ TY Y
4 ,6,7>0 v B+2y
2
B (/ eqz) [ By et (L 20 ot )
q a,3,7>0
) 2
- (/ °’ ) P - dym™J E2)
q
with
Taa [ B (1420 + B+ apB)s
J = d d =J J: J- E.3
‘/O OéA 5(1—|—2O[+ﬁ+0(ﬂ)2 (a—|—ﬂ+2)5 1+ J2+ J3 ( )
o0 1 B
3 (1+2a+ B+ apB)s
Jii= [ da [ d —2In3-32+0 Ea
1 /0 05/0 ﬁ(l+20[+5+0{5)2 (Oé+ﬁ+2)€ n n (6) ( )
- ~ p (1+2a+ B+ ap)? 1 ]
Joi= | daf o d - | =m2-2m3+o0 E5
’ /0 a/l ’ [(1‘*‘20&4‘54'045)2 (a+ B+ 2)F (1+a)2 331+5 n n3+0(e) (E.5)
J3 = d A e = — 1+0 . E.6
3 /o a/l ﬁ(l—i—a)%iﬁ”i -1+ (€) (E.6)
Thus
1 1 1-2In2
In = == +—= (el1)* +finite.. E.7
I /ql,qz (qf +m?)(q3 +m?)*(q3 + g3 + 2m?) <262 4e ) (¢h) (E.7)

APPENDIX F: INTEGRALS IN LONG this is
RANGE ELASTICITY CALCULATION

In the long-range case, there are two integrals which con- _TL(5) o (F.1)
tribute to the renormalization of the disorder. At 1-loop order I'(a) \J, ' '



At 2-loop order, this is

1
1) = / = =
4 (g7 +m?)% (g5 +m?)*((q1 + g2)* +m?)=
q1,92
(F.2)
This is evaluated as follows
- [T e e
4 o sT(g)Jo tD()Jo ul(3)
X/ o= s(@24m?)—t(g3+m?) —u((q1+q2)+m?)
q1,92
B (/e_q2>2/°°<13 5% /wg te /“dﬁ us
q o sT(g)Jo tT()Jo ul(3)
d
-2
x[det<s+u Y ) e~ (sHtrwm® - (F 3y
u t+u

Making the replacement — su andt — tu and integrating
overu, we obtain

1= (f ) T T

g5 —1pa—1 ‘
" CEYED £)2(1 -
/s,t>o (st+5+t)a(8 + s+ ) ( s+ )
2 2 F(e
= e_q m_2€7 (Jl + JQ +J3 +O(€))
( q D(a)I($)?
(F.4)
' e 7_1 a—1
ne / dt/ T (F.5)
0 0 (st+s+t)>
J2 :/ dt/ dSs%flta*I %
1 0
[(st+s+)7" —(1+8)7] (F6)
J3 :/ dt d55%71(1+s)§7at717§
1 0
2T (&) (a=<
o (2 ( 2 | (F.7)
¢ Pla—3)

J1 andJ, are now both integrated over Changing inJ; the
integration ovet to that overl /¢, we obtain

1+t35 —(1+1)%
t(1+1)%

1
(CO / 177 (s182) "% e (gl Hm?)~(tat it} (@3 +m?) —sati (a3 +m) o~ 17 ~ 13

RS VY

q1,92 t1,t2,13,81,52>0

1 f . L
t 2 (8152)7% efmz(t1+t2+(81+82)t§) e 11 Isy
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(F.8)
(J1 + J2)|,_, =0 (F.9)
(Jl + Jz)‘azl =2rIn2. (F.10)

Putting everything together, the final result is

B

5] oo
V= 212 + hﬂ ( 19”)2 +O() (F.12)
o :212 + H (dﬁ‘”)z + 0. (F.13)

APPENDIX G: CALCULATION OF THE
INTEGRAL I}

The calculations for the corrections to friction are the same

as with short-range elasticity, except that the integfald 4

andI, change. The first two have already been calculated in

appendix F. We now attack the masterpieb(ﬁ,). For sim-
plicity, we restrict ourselves ta = 1.

1
I(l)::/
R (@3+m2)3 (g3+m?) [(g3+m?2)? + (¢3+m?)3]
(G.1)

Using:

1 > 1
e VT = ﬁ/o dss3/2e dse™5" (G.2)

we have
1 _
\/Ef—'— \/l; t3>0

k 1 1
- 1 (8182)—%e*m*me—ﬁt%a—wt%b
4m

t3,s51,52>0

o t3(vat+v)

(G.3)

With the help of (G.3), we can writ&}" as

1

- 417rr<1;> </ )

t1,t2,t3,51,52>0

(tltz + Slsgté + (51 + 52)t1t§ n Sztztg)l_%
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ST </ q2>2 o142 1% (s150) "% e (Eitateites) o~ Ty T 1
e ) (3
q 3 (tltg + $189 + (Sl + Sz)tl + SQtQ)l_E

t1,t2,t3,51,52>0

()0, IRUTOR P
4 F(%) q 2 (tltg + S189 + (81 + Sg)tl + Sgtg)l_é(tl + 1o+ 51+ 82)6

t1,t2,81,52>0

_ jﬂé) </qeq2>2 %e)m*%]. (G.4)

In the third line we have made the replacemant— t3t; andt, — t3t,. In the fourth line we have integrated owgr The
integral.J is again decomposed in converging parts (which can be evaluated @tand parts that can be integrated analytically:

J=J+J2+ I3+ 0(e) (G.5)
_1 1 1 1
J :/ b 2(5185) 2e o1 452/ _ G.6
! t1,51,52>0 17 (s152) to>1 Lito + 8152 + (514 s2)t1 + sata ta(s2 +t1) (G.6)
_1 1 1 1
J. :/ t, 2(s18 *Ee_E_E/ G.7
? t51,5250 (s152) O<tz<1 tita + 8152 + (81 + 82)t1 + sat2 @7
1 : 1 1 _1_¢€ e
I :/ ty 2(5152)_%67E7Q/ ty'F(s2 1) IE (G.8)
t1,51,52>0 ta>1
Integrating inJs overts, t1, s; andss (in this order) we find
16 1—
Jy=2"¢<2p < . 6) . (G.9)
€

In order to calculate/; andJs, it is convenient to do the integration overin both integrals first. Taking the sum, some terms
cancel:

1 3 1 _ﬁ 111(52 + tl) — 111(5152 + tl(Sl + 82))

Ji+ J. :/ t, 2(s182) 2e T G.10
' ’ t1,51,52>0 ! ( ! 2) So + 11 ( )

The logarithms have to be written as derivatives:

1

0 _1 _1 1
it dy= 2 / 172 (sy55) " Fe T ((52 )7 sy 1) (5180 + (51 +52))b) . (G.1)
b b=0 Jt1,51,52>0

Making the change of variables — 1/s1, s — 1/s9,t1 — t1/s2 ands; — s15 (in this order), we obtain

o 1 1 4 _1 1 5
Ji+Jy= = / st (0T = () st (1 (L)) e o) (6.12)
ob b=0 J11,51,52>0

The integration oves, can now be done analytically:

0 1 [ D(2-0 1 =5 (3 _op) (144 (1+ b /q 2b—3
= o / slétlé[ G >b( +81) LGl e ( Hl) } (G.13)
ob b=0 Jt1,s1 (]‘ +t1)1 4 (1 +t1)51 4
In order to proceed, we split these integrals as follows
Ji+Jo=K+Ky+ K3 (G.14)
o 11 (é —b) 1+ s -3 0
K = — 2722 = —| 8747 'T(L—-b G.15
1= 5 b—o/tl, . S1 71y (1 +t1)—Y ( 1 ) b|,_, ™ (3-0) ( )
L _;r 8 _0b) 148\ 72 9 :
— 2t (5 = 82477 (1—2b G.16
8b b= o/tl,el h 1+t1)sh ( 4 ) b b=0 i ( ) ( )
_1 ,AF 3 (1+t(1 1 -3
I (2)< o) (L) ©17)
ob b=0 Jt1,s1 (1 +t1) 4
[
To evaluateK; one first has to take the derivative: Integrating first ovet; and thens; gives
In(1+t,(1
Ky = 78F(%)/ n(l+#(1+s1)) . Ky = _47T%/ 2atanf(1/\/1+51)43rln(51)
trs1 /51 VE (1 +1) (14 51)° 51 Va1 (1+s1)?

(G.18)



2 (G.19)

=872 (2In—2m) .

Putting everything together his gives finally

1
1) _
ffv“(w*

APPENDIX H: FIXED-POINT FUNCTION AT
SECOND ORDER

In2—=
n€4> (eIV)? 1 finite.  (G.20)
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both towards 0 and towards infinity, one verifies that Taylor-
expansion and numerically obtained curve coincide in their
respective domain of validity. This is shown on figure H.1.
One also verifies that the numerically obtained function con-
verges to O for large u, thus the exponénbbtained above is
correct.

It is a good question to ask for how largehe fixed-point

. 2 .

functionA(u) = §y1(u) + {gy2(u) might be a good approx-
imation for the true disorder correlator. Let us note that if
one demands thak(u) > 0, thus that forces be never anti-

In this appendix, we show how to obtain the fixed-point func-correlated, this is only satisfied if

tion for A(u) at second order. We restrict the discussion to
«a = 2. We use the notations of equation (IV.5). First, one

needs the 1-loop functiogy (v) both by solving (IV.11) nu-

e<e.~16. (H.3)

merically and as a Taylor-series about 0. The latter is obtained 1 2 - 4

by deriving the 1-loop3-function at the origin and fitting the
coefficients as
2 3 4 5 u6

( ) 1 J,» u u u u J,»
uy=1-u+— —
4 3 17010

36 270 4320
571u°

13947 u®
5443200 ' 204120 ' 2351462400
281410 163879u!"

T 1515591000 2172751257600
522142 5246819u!3
354648294000  10168475885568000

5459y 14 534703531u'5

7447614174000  1830325659402240000
(H.1)

The p-function at second order yields a linear differential

equation forys(u). It is numerically singular at smalk.

FIG. H.1: The fixed-point function of the RG-floy(u) at sec-
ond order ine. Upper curve: Numerical integration. Lower curve:
Taylor-expansion about O.

Therefore one has to expand it in a Taylor-series about 0. Us- APPENDIX I: STABILITY OF THE FIXED

ing the above information and the knowledge gfone finds

yo(u) = —1.14012u + 0.967798 u* — 0.202495 u*
—0.019299 u* 4 0.00259234 u® 4 0.0015302 u®
+0.000286423 1.7 — 6.25533 10~ % «®
—0.0000206648 u” — 6.48801 1076 1©
—7.85669 1077 't + 1.88404 1077 u!?
+1.24668 1077 u!'3 +3.13093 10 8 u!* + . ..

(H.2)

The differential equation fogs(u) is then solved numeri-
cally, starting atu ~ 0.5. By integrating from that point

POINTS

We now consider the stability of the periodic fixed point given
in (IV.33). DefineK|f] as

K[f] = lim — [3(A"(u) + £f () = BA )] . (LD)
The eigenfunctions and eigenvalues are
K[f]=Af . (1:2)

We find the following solutions (with: = u(1 — «) and nor-
malized tof (0) = 1)
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)\1 = €, fl =1

Ao =—€—Le?, fao=1—(6+4e)x

A3 = —4de — 5e? | f3 =1—(15+ 20¢)x + (45 + 85¢)x?

Ay = =28 140e . fa=1— (284 238¢)p | (810 4 23548c),2 (4004 | 185402,

A5 = —14e — 35e f5 =1— (45 + 225€)z + (585 + 4500¢)z* — (2025 + 110475¢)y;3 4 (9915 4 424755¢) 44

(
¢ = —2le — 6662,  fo=1— (66+517€)x + (1320 4 16148¢)2? — (11220 + 169928¢) > + (42636 + 2072944¢ )54
= (

298452 28052555886 )2 (1.3)

This shows that apart from the constant mode (the shift) distheory withA, as in Section (lll C 1). One has
cussed in the text, the fixed point is stable.

(¢ +m*)*(ugu—g) = 8o(0) = AH(0F)*I(q)  (3.4)
APPENDIX J: CALCULATION OF _ 1

I(q) - 2 2 2 2\ ° (JS)
CORRELATION FUNCTIONS p (P*+m?)((p+q)* +m?)

In this Appendix we show how to compute a correlation func-Let us reexpress this by the renormalized dimensionless dis-
tion in the renormalized theory. As an example we study theorder given in (111.35) and (111.18) at = 0:
periodic case, i.e. we compute the amplitutigin (1V.40). To
do that we assume that we are exactly at the fixed point. Ao(0) = m(A(0) + A (0F)2meI(0)) . (J.6)
The correlation function is time-independent, as was showrrhjs gives:
in Section (Il D), and takes the scaling form:

(q2 + m2)2<uqu—q>

1 .. _ q
(Wi = A O Fa (1) . Q) — m(AO) - A0 Pme(I(q) - T(0)))
m;Amu%éwW@—mm,un

where we have restored the factor previously absorbes.in
The scaling function is universal and satisfié®)) = 1 since

our calculation was performed at zero external momenta in
presence of a mass afdz) ~ B/-% at largez. Ind — 4 where we have reestablished the factofu) = 6}1 (u)

one hasFy(z) = 1/(1 + z%)2. We want to obtain the scaling and used the fixed point conditiah* (0)? = eA*(0) This
function to the next order; in particular to computg we  Substitution acts as a counter-term which exactly subtract the
needB = 1 + be + O(¢?). The universal amplitude reads: ~ divergence as it should. The result is finite. Using that:

QSd 2 2 2
Ag= —2L_BA*(0) 02  I(q) = / / o s(0+4/2)~t(p—a/2)* ~ (s+)m
(2m)dely @ 5,430
€ eQX(O‘) 2 2 st 2
= (14 be)(2 — O(e), :/ —p / 200" 55— (s+t)m
(109240 (55 + S5 ) + O [ [ (seny e
which yields: — / e P’ m=T <2 - g)
p
1 2X (@) 3460 , —
= e+ —— €% ) _ t q
Aa=qget 108 ‘ (-3) X/ A+t 1+ )+ ——5 -(2.8)
>0 L+tm

Computingb requires computing diagrams with external mo-
mentum which we do now. Let us use straight perturbatiorOne obtains the scaling function in the form=€ |q|/m):

J

Faz) = (1+z2 { /dt1+

e
1
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1 € 44 22 9 3 9

(1+22)2{1+2 24— (n2-m (2422 = 2V4+22) ) [+ O()
(=00 1 ¢ )
—>;{1+5[72+21nz}}+(9(e)

We want to match at large For the graphs d one easily sees that the following relations

. ) are exact (with no other assumption thagt 0):
Fy(2) = — (1+0be)z" = ;(1+6(1H2+b)+0(62)) (J.10)

Z FC = Fd - Rthytsz—ythxm (KlO)
The above result yields do+ds=0 (K.11)
de +dg =0. (K12)

b=—1. 3.11)

The only anomalous non-vanishing graphs of class B are:
APPENDIX K: ANOMALOUS AND

NON-ODD GRAPHS Fy« = Ky = Raty Rot, Ry—aty Ry —aty (K.13)
k) = CA”(U)<A”(UL2 - Uitl)A(ugtz—u - u?itl—ta»

In this Appendix we write all anomalous 2-loop graphs con-

-~ . S . (K.14)
tributing to the correction of a non-analytic disorder. In a first . -
step wg make no assumption and giv)é their general expres-11 = —eA (WA (Wl —uly )ALy, —uly )
sions: Already at that stage some cancellations are apparent. (K.15)
In a second step we consider the limit— 0" at7 = 0. F; = Ryt Ryt Ryt Ryt (K.16)
We _c_heck a_II canc_el_latlons given in the_te_xt_ and show tha_t no ;. _ A () (A (uE — VA (W — Y, )
additional singularities occur. The multiplicity factors are in- 1 BT
cluded in the given expressions. Of course since we want only (K.17)
corrections to disorder we will give only the expressions when , )
the separations of the times between the two external respon8d graphs of class C exactly vanish. For instance:
fields are much larger than the separations within each con- " ,
nected component. If this were not the case, as is needed e.g. my = A(0)A™ (ug — u—sy ) A'(u) (K.18)
in the calculation of a 2-point correlation function to order ny = —A0)A" (ug — u_gy)A'(u) . (K.19)

A3, the above expressions should be reexamined separately.

Equivalently, the expressions given here are correct only fo¥We now evaluate these graphs in the quasi-static depinning

u > 0 and may become incorrectat= 0. limit, substitutingA (u) by its power series as a function of
Graphs which are odd need not be considered (see ma#as explained in the main text. We need in addition to (11.9):

text). Each remaining graph, eq.is written in the shorthand

notation form: A (u) = A (0T)sgn(u) + A”(0T)u + . ..

A" (u) = 2A"(07)6(uw) + A" (0T) + ... .

(K.20)
(K.1)

graphc; = / F.c; .
x,y Jt; >0

The only anomalous non-vanishing graphs of class A are:

F. = Ryt1 Ryt2 szytg th4 (K2)
c1 = 2(A"(ug — ua—;tg—tg—tgl)A/(uy—tg - uyit3—t2—t1)>AN(u)

(K.3)
c2 = 2(A(uly, —uly, y )A"(uf —uly, 4, )A"(u) (K4)

Cq4 = 2A/(U’g - uit27t37t4)A/(ugt47t2 - u:litglftl)AN(u)

(K.5)
cs = —2A8(uly, 4y, — Uitl—m)A”(ug - u?itQ—tl)AN(u)
(K.6)
Fo=F = Ry—yt, Ry—yt, Ruts Ryt (K.7)

ep = A"(u) (A (uly, —uly A (uly, — uly, ) (K.8)
fo = 2A”(“)<A/(Uit3 - uit;j—tg—tl)Al(uth—t;; - Uy—t4)> .
(K.9)

In A”(u) evaluated at zero we have written thdunction
which may in principle be needed. If this were the case that
would pose two unpleasant problems: Firstly a different view-
point were to argue thak” (u) should simply be continued to
zero which does not pose any problem since it is pair. Sec-
ond it would open the possibility to problematic singular terms
(6(v) or1/v) asv — 0. Fortunately, in all our 2-loop calcu-
lations this never happens: theséunctions, if put by hand,
cancel. This confirms that, at least to this order, no pathology
arises.

Let us start with the sum, + ¢5. Using (11.9) and (K.20)
one sees that the term proportionalg0)A” (01) cancels.
Let us test thé-function. Then one needs to go one order fur-
ther in the expansion of th& term since averages of the type
d(u1)us have dimension one, similar tGgn(u)sgn(us)),
and can thus yield a non-zero result at zero temperature
(higher order terms yielding dimensions as positive powers of
the field are not needed as they vanish at Z&roThis yields



31

C2+C5 = 4A/(0+)2AH(U)<(|“24 - uitz—t3| - |uit1—tg—t3 - Uitl—tﬂ)‘s(“g - uzitQ—tI» ) (K.21)

which strictly vanish upon the replacemerft — uf, — v(t — t’). This is fortunate since this term would have led tb/a
singularity. Note that all diagrams — ¢ in the 2-loop correction t@ could a priori suffer from the same problem sin&é
functions must be expanded. However one notes that their arguments are always strictly positive in the depinning limit, which
avoids, as it did here, the problem. Similarly one has

C4 = 2A'(O+)2A"(u)<sgn(ug - Uif,g—tg—m)Sgn(ulim—tQ —uly,q)) - (K.22)

Performing the replacemenf — u}, — v(t — t’), since the yielding the cancellation via a slightly different mechanism
t; > 0 and becausg,. is symmetric int; < 5 one finds that  than above.
Finally we are left with the only non-zero anomalous non-
cgtcs=cg=0 (K.23) trivial graphscy, e1, fo andiy to compute, which is done in

o ) the text.
at depinning. Note that these cancellations do not happen any

longer, if the field is not a monotonic function, a question
which will be discussed in Réf. ACKNOWLEDGMENTS
A similar calculation shows that at depinning one has also:
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