Universal interface width distributions at the depinning threshold
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We compute the probability distribution of the interface width at the depinning threshold, using recent power-
ful algorithms. It confirms the universality classes found previously. In all cases, the distribution is surprisingly
well approximated by a generalized Gaussian theory of independant modes which decay with a characteristic
propagatoiG(q) = 1/¢**2¢; ¢, the roughness exponent, is computed independently. A functional renormal-
ization analysis explains this result and allows to compute the small deviations, i.e. a universal kurtosis ratio,
in agreement with numerics. We stress the importance of the Gaussian theory to interpret numerical data and
experiments.

The scaling properties of driven elastic interfaces in random
media play an important role in a wide variety of physical <
situations, ranging from stochastic surface growth to domain
walls in disordered magnetic materials, the spreading of fluids
on rough substrates, and the dynamics of cracks [1, 2]. These <h>
problems share many features with critical phenomena and
provide a challenge for theoretical approaches to disordered
systems and non-equilibrium phenomena [3-8].
Here we study interfaces described by a scalar height func- ! !
tion h(x), wherex is thed-dimensional internal coordinate. 0 X L
We measure the deviation from the mean position@s =
h(x) — (h), where(. . .) stands for the spatial average over all FIG. 1: Example of al + 1-dimensional periodic interfack(z)
x of a given interface (cf. Fig. 1). The mean square width of(random walk) with mean valug:), andu(z) = h(z) — (h).
asingleinterface,w?({u(x)}) = (u?), can be used to char-
acterize its roughness, and explore universal properties: After
averaging over the ensemble of interfaces$ grows with the  for related models such as polymers, spin glasses, and random

lateral extensiorl of the system as diffusion [14]. The quantity we study her&(w?), is the dis-
_ 2 tribution of the lowest order observable which tests the whole
w? o< L™ for L — oo, (1) functionh(z) for 0 < = < L. It appears as a fundamental

guantity in disordered systems.

The aim of this Letter is to compute the width distribution
S(WD) ®(z) for elastic interfaces driven in random media, ex-
ctly at the depinning threshold, numerically and from field
heory. As in the linear problems treated earlier, we confirm

where( is the roughness exponent.

An interesting property is that, for positivg w? fluctu-
ates even in the thermodynamic limit [9-11]. This mean
that the long-range geometric features of the interface are n

characterized by the roughness exponent alone, but requiﬁ sisten f universal prooerties in vari dimensibn
the complete probability distributioR(w?). P(w?) has been o 'c €XISIENCE OF UNIVETSA! PTOPETtes in various dime S
and with several functional forms of the elasticity. The sur-

computed for several linear stochastic growth equations with-

out disorder as the Edwards-Wilkinson model, the Mullins;—'oriSing finding is thfit in all caseB_(w2) (i.e. its shape) iex- .
Herring model, and the-d KPZ model [10, 11]. In these tremely wellapproximated by a simple generalized Gaussian

models, the probability distributio®(w?) can be rescaled approximation (GA), without any fit parameter, and depends

: . . ; .only on¢, which is determined independently. This suggests
hn;?aﬁsform independent of system size and of mlcrOSCOpKihat the complicated morphology of interfaces (cracks, do-

main walls, etc.) may be rendered by a simple ansatz of inde-
P(w?) = (1/w?)®(w?/w?) for L — . (2)  pendent modes with a characteristic decay. This may have im-
o portant consequences for the analysis of numerical and experi-
Althoughw? may contain a non-universal scale, the functionmental data. Our numerical results are then understood within
®(z) is universal. It has been argued that the shape(af?) a functional renormalization group calculation, detailed in a
can thus be used as a sensitive tool, distinct fignto dis-  companion paper [15].
tinguish between different universality classes [9-12]. Fur- \We consider the zero temperature equation of motion of an
thermore,®(z) is expected to converge tajafunction above interface given by
the upper critical dimensiod,.. This has motivated attempts
to determined,¢ for e.g. the KPZ equation [13]. Probability oF OFe|

distributions of order parameters have received much attentionath(x’ t)=  Oh(x,t) = FHn0h(x, 1))~ Oh(x,t)’
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where th_e functlongE({h,x}) represents the_ t_otal energy in- i.e. Pu] oc exp[—1 [, dx(
corporating potential energy due to the driving for€ethe
short-range correlated disorder forgex, h), as well as its in- ()2,
ternal convex elastic energye. Equation (3) is non-linear, Plu] o< exp | — Z I (ay, +b7,)
and has not been solved exactly. We are interested in the de- n=1
pinning limit (f = f.) where thg vglouty of the elas.tl_c man- Jhe probability distribution? (w?)
ifold goes to zero. We use periodic boundary conditions, an
recall that the WDD(z), although independent of small scale ) ) )
details, does depend on the boundary condition at large scale. Pw?) = /D[u]é(w = (u?)) Plu] @)

For our numerical study we use a very efficient algorithm . . . .
[16—18] which directly determines critical forcg’s as well IS obtained from the generating function of its moments
as the critical interfacé.(x) for a wide range of models. In 00
particular we calculate the WD for interfaces of dimensions W) = / deP(w2)e—Aw2. (8)
d = 1 andd = 2, where the elastic energy has the harmonic 0
form Ea({h,x}) ~ (Vh)*. We have also tested the univer- \yyiting Eq. (8) as an integral over, andb,, we obtain
sality of®(z) in d = 1, by means of a directed polymer model
with an anharmonic quartic elasticity, and for a lattice model oo 2

i i i — TP (0] 403) o 3 (a3 4+D7)
with hard local constraint, which have the sane 0.63 [16]. Z(\) = H day, db, e” L TonleT 2 Ton
As expectedd(z) is always size independent and the WD as- n=1

)?] gives

(6)

sociated to non-harmonic models can be distinguished from Z\) A Lo\

the one resulting from an harmonic elasticity. The harmonic (A) = Z(0) <1 T3 (7m)2) ' ©)

models, in fact, have an exponeht 1.2, and thus belong to n=l

a different universality class. For the random walk Eq. (6)P(w?) can be obtained exactly
For our field theory calculation we use the functional renor-py inverse Laplace transform of Eq. (9):

malization group method (FRG) originally developped to one

loop to describe the model with harmonic elasticity and cor- P(wg) _ ﬁ n2(—1)"+1 02w (n)? /L (10)

7 .

rect the predictions of dimensional reduction [4, 5]. Recently
a renormalized field theory was constructed to 2-loop order
[7] which overcomes the deficiencies of the 1-loop anaIySiS'Using,uTz — _dw — L. Eq. (10) can be written in a

.. . . . . A= — 791
notably to distinguish between statics and driven dy”am'csscaling form ax =0 12
and to account for the large values of the roughness exponent

n>0

¢ measured e.g. in [17-19] as compared to an earlier conjec- ®(z) = w2P(w?), 2 =w?/w?

ture [5]¢ = (4—d)/3. We find that the FRG both suggests the 2 o,

GA as a lowest order approximationdn= 4 —d and allows to =3 n?(—1)"tle= %=, (11)
define and compute universal ratios which probe high cumu- n>0

lants of P(w?) and deviations from the GA, and are thus more
sensitive to details of the universality class. The simplest o
them is the generalized kurtosis

]:rhe size dependence thus appears only through the average
width w2. We can generalize Eq. (6), where each megé,,

has a weightx n?2, to an arbitrary function of independent

¢ Fourier modes

4)
Pgausstt] x exp [—i Z(ai +02)G7! (T)] . (12)

n>0

o oy (EPuP)
2/, , (u@u)

where the subscript indicates the connected expectation which, in real space, corresponds to

value. R is found to be small but non-zero. This directly

proves that the correct description of interfaces must go be- 1 L L

yond the independent-mode picture. Pgaus§u] o< exp [—2/ / dz dy u(z)G,, U(y)] - (13)
To introduce the Gaussian approximation in the most ele- 070

mentary way, we first recall [9] the simple periodic random

walk of sizeLL, with a Fourier expansion The functionG,, = u(x)u(y) is the exact disorder-averaged

2-point function and can be computed from numerical data.
oo This allows to obtainPyauss even for a finite system. In
u(z) = Z ay, Cos (2””,,) + b, sin <27T”I> . (5) the thermodynamic limitPgausiu] is obtained from the be-
el L L havior of G, = G,—_, for large |z — y| (small ¢), where
G(q) ~ C/q?%¢. This means that a single observahje,
The standard Gaussian probability measure associatediwith fixes Pyausdu] on large scales.
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FIG. 2: Scaling functiorP(z) and®gaus{ z) for: (1 + 1)—d harmonic  FIG. 3: Difference between the integrated distribution functions of
(L = 256, 2 x 10° samples¢ = 1.25)—left; (14 1)-d an-harmonic & and ®gauss (With ¢ = 1.25) obtained from2 x 10° independent
(L = 256, 2 x 10° samples¢ = 0.63)—middle; 2+ 1)-d harmonic  interfaces af. = 256 (continuum line) and. = 64 (dashed line), in

(L = 32, 10° samples¢ = 0.75)—right. The scatter in the numeri- thed = 1 harmonic model.

cal data is mostly due to binning. Notice that, tbe= 1, the typical

value ofz is much smaller than its average= 1.

magnitude smaller. The absence of systematic finite-size ef-
fects shows that the asymptotic regime of large interfaces has
Obeen reached and thus to conclude that the exact distribution
for large systems is not Gaussian.

We again determine the generating function for the mo
ments, but for arbitrarg andd:

~ -1/2 We now discuss the field theoretical calculation. To low-
W) = H (1 + QAG(Q)) ’ (14) est order in perturbation theory, we show that the generalized
770 Gaussian approximation appears naturally. This is instructive

since it identifies the diagrams which are obtained by assum-
ing the theory to be Gaussian, albeit non-trivial, since it in-
'volves a non-trivial roughness exponéntUsing dynamical
s field theoretic methods [7], one starts again from the Laplace
andb,,. An explicit sum over poles allows to obt L

" P P Aausd 2) transform¥V(\) and expands in powers of the correlator of

for all ¢ andd with excellent precision. All GA interfaces )
. he pinning forceA(u). To lowest order one finds [15] that
{u(x)} can be directly sampled by Monte Carlo methods. FOI{og (A) is the sum of all connected 1-loop diagrams. The

details, including the extension to open boundary conditions,
see [12, 20] 9 P y loop with N disorder vertices and’ insertions ofw? is

In Fig. 2 we compare, for different models, the exact scal- N
ing function®(2) to Pgausd 2), USINgG(n) = C/n4T2. The Z ZAA
2N ’

where = \/L, ¢ = 2zn/L, n € Z%. Due to the symmetry
q < —q, no fractional power appears in Eq. (14), asin Eq. (9)
where the exponent1 stems from the double sum over g

roughness exponent was previously obtained using both field (16)

theory [7] and numerical methods [17]. The agreement be-
tween® and ®yaussis clearly spectacular. The scatter of the
data, visible in Fig. 2, is mostly due to the finite width of his-
togram bins.

Tiny—yet significant—differences betweeh and ®gauss
are best resolved in the integrated probability distributions
which need no discretization. The difference between the in-
tegrated distributions is

where the sums oveq thus run over ad-dimensional lat-
tice with spacmg , and the 0-mode is excluded, as ap-
propriate for per|od|c BC. Resumming (16) overwould
give Eq. (14) withG(q) ~ 1/¢*, i.e. the dimensional re-
duction (Larkin) result. In fact, the FRG tells us that the
calculation should be performed with the running disorder
A(0) — A(0) = elc=20LA*(0) where A*(0) is the (non-

z universal) value of the fixed point [7]. For the present case of
AH(z) = / di(Pgausdt) — P(t)), (15)  periodic boundary conditions and momentum infrared cutoff,
0 one can replacé — log(1/q), and finally obtains Eq. (14)
where H(z) = [; dt®(t) is the fraction of samples with a with G(q) = C/q**2¢. This calculation is valid to domi-

renormahzed width below In Fig. 3, we showAH(z) ob-  nant order ine = 4 — d, i.e. neard = 4. If the same class
tained fromN = 210° independent samples. Statistical fluc- of diagrams are resummed in atyt leads to the GA, as we
tuations in this quantity are of ordéy+/N and the signal- now illustrate considering e.g. the second connected cumulant
to-noise ratio would be smaller thanif N was an order of of the WD. This cumulant isot connectedv.r.t. », and thus
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there is an exact relation: the distributions are strongly dominated by the valug.ddn
) the other hand, it will be difficult to distinguish different uni-
W2 = W22 - Ww?) =201+ R)/ G7,. (17)  versality classes from the forms @f(z), if their roughness
T,y exponents are similar. Other universal quantities, sucR as
The first term results from Wick's theorem and would be thedeﬂned here, directly involve the non-Gaussian part of the dis-

full result if the measure were Gaussian. Analogous formulagibu“on' Their prgcise determ_ingtio_n however requires_more
exist for higher cumulants, and if the measure:dé purely work, both numerically and within field theory. Also, since

Gaussian can be resummed into Eq. (14). Even though thtge WD is so tied up ta, finite size effects in both quantities

GA is not exact, the deviations, given by the last term in (17)are connected. Finite-size effects will need to be well under-

are expected to be small; indeed they are of oedleThus the stood in orde.r to res_olve open issues [6, 19, 22] cqncerning
GA is already exact to thievo lowest leading orders’ ande?, .d“C for the ar_usptroplc dep!nnlng class. It would be.mterest-
which explains why it is so accurate even in low dimension. Ing to carry sn’mlar calculations on other pure, and disordered

The calculation of the deviations using the field theory ismOdeIS' in particular for the equivalent static system.
delicate [15]. The kurtosi® in Eq. (4) which character-
izes the imgortance of non-Gaussian effects is found t0 be \yg thank 7. Facz for stimulating discussions. K.J.W. is
R = —0.13¢" to lowest order for smalt = 4 —d. Itiseasy g nhorted by Deutsche Forschungsgemeinschft under grant
to see that this strongly overestimat&sn low dimensions.  \yi1932/1-1.

Another method is to work in fixed dimension and to truncate

to one loop, yieldingR = —0.036 (d = 3), R = —0.048

(d = 2), R = —0.01 (d = 1), which in view of the numeri-

cal results below seems to underestimaterhe small values
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