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Abstract – We obtain a general formula for the distribution of sizes of “static avalanches”, or
shocks, in generic mean-field glasses with replica-symmetry-breaking (RSB) saddle points. For the
Sherrington-Kirkpatrick (SK) spin-glass it yields the density ρ(∆M) of the sizes of magnetization
jumps ∆M along the equilibrium magnetization curve at zero temperature. Continuous RSB
allows for a power-law behavior ρ(∆M)∼ 1/(∆M)τ with exponent τ = 1 for SK, related to the
criticality (marginal stability) of the spin-glass phase. All scales of the ultrametric phase space are
implicated in jump events. Similar results are obtained for the sizes S of static jumps of pinned
elastic systems, or of shocks in Burgers turbulence in large dimension. In all cases with a 1-step

solution, ρ(S)∼ Se−AS
2
. A simple interpretation relating droplets to shocks, and a scaling theory

for the equilibrium analog of Barkhausen noise in finite-dimensional spin-glasses are discussed.

Copyright c© EPLA, 2010

Many disordered systems crackle when driven slowly,
reacting with abrupt responses over a broad range of
scales [1]. These avalanche phenomena occur in granular
materials [2], earthquakes [3], fracture [4], liquid fronts [5],
vortex lattices [6], and other pinned elastic objects such as
domain walls in disordered ferromagnets [7], where jumps
in magnetization are known as Barkhausen noise [8]. Also
in electronic glasses, where striking memory effects are
observed upon gating [9], one expects crackling phenom-
ena. The size S of these events is power law distributed,
i.e. scale-free, ρ(S)∼ S−τ . This property, often termed
self-organized criticality, emerges naturally in sandpile
models, where analytical results were obtained [10].
But even there, ρ(S) is difficult to compute. Scale-free
response also occurs in pinned elastic systems, where
quenched disorder leads to glassiness and metastability
at all scales. The distribution of avalanche sizes for a
single elastic interface was obtained from the functional
renormalization group (FRG) [11], and compared with
numerics [12,13] and with wetting experiments at the
depinning transition [5]. The random-field Ising model
with short-range interactions, much studied in this
context, exhibits a transition between non-critical and
infinite avalanches as disorder is varied [14,15], with

(a)E-mail: markusm@ictp.it

scale-free avalanche distributions only at a special point
in the phase diagram. While domain-wall motion plays
an important role in soft magnets, a description without
nucleation, long-range dipolar interactions and the ensu-
ing frustration between domains would be incomplete [8].
The situation is less explored in strongly frustrated

spin-glasses, whose complex energy landscape shares many
features with that of pinned elastic systems. In particular,
the spin-glass phase exhibits criticality with power-law
spin correlations, as predicted in mean-field theory [16]
and in the droplet picture [17]. This property is difficult
to access by standard experimental protocols. However,
the statistics of magnetization bursts in a hysteresis
experiment (the Barkhausen noise) should be sensitive to
the criticality of the glass state, and thus serve as a probe
of spin-glasses, both experimental and numerical.
The aim of this letter is to compute the statistics

of equilibrium (i.e. static) magnetization jumps in the
Sherrington-Kirkpatrick (SK) mean-field spin-glass. We
obtain a formula, (7) below, which applies more generally
to any mean-field model described by a replica-symmetry-
breaking (RSB) saddle point. The strategy is similar to
ref. [11] for elastic interfaces: a static avalanche, or shock,
occurs when the system jumps discontinuously between
two degenerate global minima as the energy landscape
is tilted with an external force. This phenomenon shows
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up as non-analytic cusps in all moments of the effective
(i.e. renormalized) force. Calculation of these cusps
allowed [11] to obtain the jump-size distribution in
an ε expansion around internal dimension d= 4. To
lowest order, it was found to be identical for dynamical
avalanches (i.e. under a driving force) and for static
avalanches, or shocks, with τ = 2− 2

d+ζ +O(ε
2), ζ being

the roughness exponent. Here, we extend previous mean-
field studies of the second moment of the equilibrium
effective force [18–20] to all moments. The resulting
formula (7) allows for a simple interpretation. We suggest
an extension as a scaling theory for finite-dimensional
spin-glasses, based on a relation between shock and
droplet distributions, which extends an identity for a
particle [21]. Similar shocks occur in many systems: We
also discuss elastic manifolds [22] and decaying Burgers
turbulence [23], embedded in large dimension N , the
mean-field limit. We find that 1-step RSB always results
in ρ(S)∼ Se−AS2 , similar to the shock-size distribution
obtained by Kida in Burgers turbulence [24,25]. In
contrast, we show that continuous RSB results in novel
and interesting scale-free avalanche distributions.

Mean-field spin-glasses and the SK model. –
Out-of-equilibrium avalanches in the SK model at T = 0
were studied numerically [26], and found to exhibit crit-
icality, i.e. power-law size distributions. The system self-
organizes to remain at the brink of stability. The distri-
bution of the local field hi =

∑

j "=i Jijσj +h, i.e., the
energy cost to flip only spin i, displays a linear pseudo-
gap [27], marginally satisfying the minimal requirement
for metastability. Upon increasing h by ∼ 1/

√
N (N being

the number of spins) a first spin flips, and with finite prob-
ability entails O(N) spin flips, with a change in magneti-
zation of O(

√
N). The thermodynamic criticality of the

spin-glass phase suggests similar avalanche phenomena at
equilibrium. Indeed, it has long been known [28] that the
equilibrium magnetization M(h) of the SK model under-
goes a sequence of small jumps as h is increased. These
jumps of size N1/2 lead to non–self-averaging spikes in
the susceptibility. However, the analytical understanding
of avalanches in spin-glasses, and their relation to thermo-
dynamics, has remained scarce.
In ref. [29], the equilibrium magnetization of mean-field

systems with p-spin interactions (p > 2) was analyzed and
compared to a toy model of a large set of states with
random energies E and magnetizations M [30]. When
the free energies E1,2−hM1,2 of the two lowest states
cross as h is increased, a jump in magnetization occurs.
This basic picture, with metastable states replacing the
random states, remains a good qualitative guide, both
in the p-spin model and in the SK model of spin-
glasses. In [29], the presence of large equilibrium jumps
was demonstrated by a non-analyticity in the second
moment [M(h2)−M(h1)]2 for h2−h1 ∼N−1/2, in close
analogy to the force correlator of elastic systems [20]. Such
shocks are sharply defined only at T = 0. In order for the

magnetization jumps not to be washed out by thermal
smearing very low T $ 1 must be considered in mean-field
spin models, including SK. Consider now specifically the
SK model (the case p= 2):

H =−
N
∑

i,j=1

Jijσiσj −h
N
∑

i=1

σi, (1)

where the Jij are i.i.d. centered Gaussian random variables
of variance J2/N , that couple all N Ising spins, and h
is the external field. This problem is more involved than
the p-spin model with p > 2, since its glass phase involves
infinite-step RSB with marginally stable states, unlike p >
2, which has a 1-step solution. This is reflected in crucial
differences in the avalanche statistics. The equilibrium
solution of (1) at N →∞ is given by Parisi’s full RSB
ansatz for the overlap matrix Qab = 〈σaσb〉, which is
parametrized by a monotonous order parameter function
q(x) on the interval 0< x< 1 [31]. q(x) exhibits a plateau
at large and small x, q(x> xc) = qc, q(x< xm) = qm.
Jumps in the equilibrium configuration as a function

of h are closely related to chaos in a field. Equilibrium
configurations in different fields have minimum overlap
as soon as the difference in fields significantly exceeds
1/
√
N [32], which sets a typical scale for large shocks.

Interestingly, this is the same scale as suggested by the
dynamical stability considerations discussed above [26]. In
both cases, the average size of an avalanche (total magne-
tization change) should scale as ∆M ∼Nχδh∼

√
N , with

χ the average susceptibility. This is confirmed below.
While we outline the main steps of the calculation on the

SK model, the technique extends to any mean-field system
described by RSB saddle points. Details will be presented
in [33]. The probability for a shock in the interval
[h, h+ δh̃/

√
N ] is proportional to δh̃ if δh̃$ 1; its finger-

print are non-analyticities in the moments of magneti-

zation differences, [M(h)−M(h+ δh̃/
√
N)]k ∼Nk/2|δh̃|.

Calculating the prefactor of |δh̃| for all k allows us to
infer the avalanche-size density per unit field for ∆m> 0:

ρh(∆m) = lim
δh̃↓0

1

δh̃
δ



∆m−
M(h+ δh̃√

N
)−M(h)

√
N



, (2)

where we have introduced the rescaled magnetization m=
M/N1/2, which jumps by ∆m=O(1) in typical shocks. To
calculate correlators of magnetization in different fields,

M(h1) . . .M(hk) = (−1)k∂h1 . . . ∂hkF (h1) . . . F (hk), (3)

we consider the generating function of a= 1, . . . , n replica

exp
[

W [{ha}]
]

:= exp
[

−β
n
∑

a=1

F (ha)
]

J

= exp
[

∞
∑

k=1

(−β)k

k!

n
∑

a1,...,ak=1

F (ha1) · · ·F (hak)
J,c
]
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=

∫

∏

a"=b

dQabe
N
2 β

2J2(n−
∑
a !=bQ

2
ab)+NA(Q,{ha}),

eA(Q,{ha}) :=
∑

σa=±1

exp
(

β2J2
∑

a"=b

Qabσaσb+
∑

a

βhaσa
)

. (4)

Organizing the n replica into k groups subject to the same
field hi=1,...,k = h+ h̃i/

√
N , with

∑

a h̃a = 0, and analyz-
ing the cumulant expansion of the potential W [{hi}], the
k-point correlator (3) can be extracted in the limit n→ 0.
Expanding A(Q, {ha}) to second order in h̃i, the poten-
tial is evaluated at the saddle point where Qab assumes
Parisi’s equilibrium solution qh̄(x). However, due to the
explicit breaking of replica symmetry by the external
fields ha, a sum over inequivalent saddle points differing
by replica permutations of Qab has to be performed.
Generalizing techniques introduced in [34], we find a
compact integral representation for the k’th cumulant

m(h1) . . .m(hk)
J,c
=
−k
(−β)k

×
∫

dky δ

(

k
∑

i=1

yi

)

∂h̃1 . . . ∂h̃kφ(0, y),

where φ(x, y) solves the differential equation

∂φ

∂x
=−

β2

2

k
∑

i,j=1

h̃ih̃j
dqh(x)

dx

(

∂2φ

∂yi∂yj
+ x

∂φ

∂yi

∂φ

∂yj

)

,

φ(x= 1; {yi}) = log

(

k
∑

i=1

exp(yi)

)

. (5)

In order to unambiguously identify shocks we need to take
the limit N−1/2* T → 0. It is known [18,20] that the non-
analyticities ∝ |h̃i| in the cumulants are obtained by an
expansion of the diffusion-type equation (5) to first order
in the non-linear term. For k! 2, the result encapsulates
the full statistical information about jumps [33],

(mh1−mh2)k = h̃12
∫ ∞

0
ρh(∆m)(∆m)

k d∆m+O(h̃212),

(6)
where h1,2 = h+ h̃1,2/

√
N , and h̃12 = h̃1−h̃2 > 0. The

density per unit δh̃ of jump sizes ∆m> 0, cf. eq. (2) is1:

ρh(∆m) =∆m

∫ qc

q−m

dq νh(q)
exp[− (∆m)

2

4(qc−q) ]
√

4π(qc− q)
θ(∆m). (7)

The weight νh(q)≡limT→0[T dqh/dx]
−1 can be interpreted

as the probability density, per unit energy, of finding a
metastable state at overlap within [q, q+dq] with energy
close to the ground state [31]. The density of shocks
receives contributions from the largest (q" qc(T = 0) = 1)

1It contains a piece δ(q− qm)xm/T when q(x) exhibits a plateau
at x! xm (if h̄ #= 0), hence the notation q

−

m in the integral. The

integral measure can also be written as
∫
xc/T
0 d(x/T ).

to the smallest overlaps qm(h)≈ h
2/3
. Jumps in overlap

of order O(1) are indeed expected due to field chaos [32].
A useful check of eq. (7) is provided by the average
magnetization jump. It turns out to equal the thermody-
namic (field cooled) susceptibility,

∫

ρh(∆m)∆md∆m=

limT→0
1
T

∫ 1
0 dx(qc− q(x)) = χ(T=0)FC . This is expected since

the intra-state (zero-field cooled) susceptibility vanishes
as T → 0, the response being entirely due to interstate
transitions.
The formula (7) has a very natural interpretation. If we

take h̃12$ 1 in (6) we only need to consider the possibility
that the ground state and the lowest-lying metastable
state cross as we tune h from h̃1 to h̃2, corrections being
of order O(h̃212). The disorder-averaged density of states of
this two-level system is described by νh(q)dq dE. The two
states differ in Nfl =N(1− q)/2 flipped spins. In the SK
model the magnetization is uncorrelated with the energy,
and one thus expects the magnetization difference between
the states to be a Gaussian variable of zero mean and
variance 〈∆m2〉q = 4Nfl/N = 2(1− q). If ∆m> 0, a jump
at equilibrium occurs once h̃12 =E/∆m. For the shock
probability per unit h̃ one thus expects

∫ qc

q−m

dq

∫ ∞

0
dE νh(q)

exp
[

− (∆m)2

2〈∆m2〉q

]

√

2π〈∆m2〉q
δ

(

h̃12−
E

∆m

)

,

(8)
reproducing eq. (7). The result (7) is generally valid
for models described by RSB. It thus applies to p-spin
models with only one step of RSB, qh=0(x) = q0+(q1−
q0)θ(x− x1). With

∫

dq ν(q)→ x̂1
∫

dqδ(q− q0), x̂1 = x1/T ,
the avalanche distribution simplifies into the form

ρ(p>2)
h

(∆m) = x̂1∆m
exp
[

− (∆m)2

4(q1−q0)

]

√

4π(q1− q0)
θ(∆m). (9)

One verifies that its second moment agrees with ref. [29].
The distribution (9) is non-critical, peaking around a
typical size ∆m∼ 2

√
q1− q0, with ρ(∆m)∼∆m at small

∆m (similar to one of the lower curves in fig. 1). The
case of SK with full replica-symmetry breaking is much
richer, as there is a T = 0 limit function q(x̂). The weight
with which events at overlap distance 1− q contribute is
a power law [35],

νh(q|1* 1− q* T
2) =C(1− q)−3/2, (10)

with C = 0.32047 [36]. This holds independently of the
external field h, and of additional random-field disor-
der [37]. From (10) and (7) it leads to a robust scale-
invariant jump density:

ρ(∆m)≈
2C√
π

1

(∆m)τ
, ∆m$ 1 (11)

with τ = 1. The universal exponent τ = 1 for jump sizes
N−1/2$∆m$ 1 results from superimposed contribu-
tions from all overlaps, i.e. all scales, illustrated in fig. 1.
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Fig. 1: (Color online) Power-law distribution of jumps for the
SK model. The curves in the lower part show the 1-step–like
contributions due to overlaps (1− q) = 2−k, k= 1, . . . , 12. The
three nearly coinciding lines on the top show ρ(∆m) from
Eq. (7), for h= 0, 0.25 and 0.5, respectively. We use the
approximation x̂(q) = (aq+ bq2)/

√
1− q with a= 1.28 and b=

−0.64, and a sharp lower cutoff at qmin(h) = 1.0h
2/3
[35,38,39].

The increase of h decreases the cutoff at large ∆m, while the
avalanche distribution for ∆m$ 1 is a universal power law.

The cutoff function for larger jumps ∆m# 1 depends on
the applied field. In zero field, q(x̂) is linear at x̂$ 1.
The resulting density ν(0) = 1.34523 at q= 0 leads to the
asymptotics

ρ(∆m)≈
2ν(0)√

π

e−(∆m)
2/4

(∆m)τ ′
, ∆m* 1 (12)

with τ ′ = 1. Plots at intermediate ∆m=O(1) are shown in
fig. 1 using approximations to q(x̂). A small field produces

a plateau at qmin(h) = 1.0×h
2/3
and while (11) remains

unchanged, the asymptotics (12) for ∆m*∆mh ∼ h̄−1/3
now decays with τ ′ =−1, as for the 1-step RSB case,
replacing in (9) x̂1→ x̂h ≈ ν(0)qmin(h) and q1→ qmin(h).
Accepting eq. (8) to represent the joint distribution of q

and ∆m, we can infer the probability distribution to flip
Nfl spins when increasing the magnetic field by δh:

D
(

Nfl =
(1− q)N
2

)

=
2
√
qc− q
N
√
π

νh(q)
SK−→
C√
π

1

Nρ
fl

(13)

with ρ= 1. A very similar density of avalanches with
the same exponents τ = ρ= 1 was observed in the T = 0
hysteresis curve of [26]. In both cases, the number of
spin flips scales as Nfl ∼Nσ, with σ= 1, whereas the
magnetization changes as ∆m∼Nβ , with β = 1/2. This
coincidence between equilibrium and driven dynamics is
presumably related to the marginality of the spin-glass. It
may also be due to the system being in a mean-field limit,
which, in the case of elastic manifolds at N = 1, indeed
gives the same exponents [11]. Similar coincidences were
reported in other models [40].

Finite-dimensional spin-glasses. – We argue that
also in finite dimensions, independently of whether
replica-symmetry breaking [31] or the droplet picture [17]
describes the glass state, the distribution of equilib-
rium avalanches is expected to be a power law (in
low fields). Indeed, let us assume that the dominant

low-energy excitations are droplet-like spin clusters that
flip simultaneously. These droplets are clusters that
cannot be decomposed into a set of independent smaller
excitations with lower energies. For droplets of typical
linear size L we assume a typical energy cost Lθ and a
non-vanishing density of states (per unit volume) down
to E = 0: νL(E = 0) dE = ν0L−dfL−θdE with a constant
ν0 independent of L. Empirically θ is very small, and
df is the possibly fractal dimension of the droplets. We
assume the total magnetization of droplets of size L to
be uncorrelated with the energy, and distributed as2

PL(∆M) =L−dmψM (∆M/Ldm). In a vanishing field,
low-energy droplets are believed to exist at all length
scales, while recent numerical results [42] suggest that
beyond a finite scale Lh ∼ 1/h

γ
droplets are suppressed.

We make the standard assumption that droplets at scale
L are uncorrelated with droplets at scales ! 2L. With
a reasoning analogous to the one leading to eq. (8), we
expect a power-law density of avalanche sizes ∆M (per
unit volume and unit field, with δh→ 0):

ρh(∆M) ≈
∫ Lh

1

dL

L

∫ ∞

0

ν0dE

Ldf+θ
δ

(

δh−
E

∆M

)

PL(∆M)

=
1

(∆M)τ
ν0
dm

∫ ∆M

∆ML−dmh

dz ψM (z)z
τ , (14)

with exponent τ = df+θdm and a cut-off ∆M ∼Ldmh (see

footnote 3). Numerical investigation of avalanches at small
fields could yield insight into the various exponents enter-
ing (14). Furthermore, experimental measurements of
power-law Barkhausen noise in spin-glasses (e.g., by moni-
toring magnetization bursts [8,43]) could provide comple-
mentary insight to earlier investigations of equilibrium
noise [44].

Elastic manifolds. – The above calculation directly
applies to the N -component elastic manifold with coordi-
nate u(x) of internal dimension d in a random potential, in
presence of a harmonic well of curvature m2, which forces
〈u〉= v. It has energy

H=
∫

ddx
1

2
(∇u)2+V (u(x), x)+

m
2

2
(u(x)− v)2. (15)

As v is increased at T = 0 along a straight line, i.e.
vi = vδi1, the minimum-energy configuration jumps and
static avalanches occur, of size S =

∫

x δu1(x). We study

models with Gaussian bare disorder V (u, x)V (0, 0) =
δd(x)R0(u) with correlator R0(u) =NB(u2/N) and
B′(z) =−(1+ zγ )

−γ , γ > 0, in the large-N limit. Notations

are as in [20], except here the Parisi variable is denoted
x= T x̂ (u= T û there). In [20] the second moment of the
renormalized disorder correlator, R(v) was computed.

2We note that the numerical study [41] found that most likely
neither of the assumptions dm = df/2 = d/2, made by Fisher and
Huse [39], holds.
3The mean-field case τ = 1 is formally recovered replacing Ld→

(1− q), dm/d→ 1/2 and (df + θ)/d→ 1/2. The latter reflects the
typical gap at distance 1− q, ∆q = (1− q)1/2 [39].
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Here we are interested in the shock-size density ρ(S) =
ρ0P (S), the total shock density ρ0 and the normalized
size distribution (

∫

dSP (S) = 1). We define its moments

as 〈Sp〉=
∫

dSSpP (S). The dictionary is: h̃→ v1, ∆m→
m
2S, q(x̂)→m4LdG(x̂) with G(x̂) =G(k= 0, x= T x̂),
where 〈ua−kubk〉=Gab(k). This gives the shock density

ρ(S) =m2L−d/2S

∫

x̂c

0
dx̂
exp
(

− L−dS2

4[G(x̂+c )−G(x̂)]

)

√

4π[G(x̂+c )−G(x̂)]
. (16)

Two exact relations hold in all cases:
∫

dSSρ(S)≡ ρ0〈S〉=Ld
(

1−
m
2

m
2
c

)

, (17)

(

1−
m
2

m
2
c

)

〈S2〉
2〈S〉

=
∂31R(v)|v1=0+

m
4

. (18)

The first one is the total susceptibility ∂v1
∫

x u1(x) =L
d

minus the intra-state susceptibility. The factor (1− m
2

m
2
c
)

thus gives the fraction of motion which occurs in jumps,
which vanishes at m>m0c ≡mc(m0c). Here mc =mc(m) is
the running Larkin mass, defined as m2c =m

2+ [σ](u+c ) in
the notations of [20]. Equation (18) extends the relation
obtained in [11] between size moments and the cusp of the
force correlator to the case of a finite fraction of motion
in shocks. The size of the cusp is the same as in [20]. We
define the large-size cutoff via S2

m
=Ld[G(x̂+c )−G(0)].

For d < 4 and m<m0c = (
4Ad
ε )
1/ε, where ε= 4− d and

Ad =
2Γ(3− d2 )
(4π)d/2

, the T = 0+ saddle point equations admit

a RSB solution [20,22]. We now discuss various cases,

depending on the energy exponent θ= 2+γ(d−2)1+γ :

i) 1-step RSB: it occurs for θ$ 0, i.e. d$ 2 and γ ! 2
2−d .

The shock-size distribution depends on the single scale Sm:

P (S) =
1

Sm
p
( S

Sm

)

, p(s) =
1

2
s e−s

2/4. (19)

Hence 〈S〉=
√
πSm which yields ρ0 from (17). Here

S2
m
L−d = 1

x̂c
(m−2−m−2c ) depends on the details of the 1-

step solution. In the critical limit m$mc, for d > 0 (d= 0
is treated below), one finds Sm =m−1c (mL)

d/2
m
−d−ζ

with mc =
[ 8Ad(γ−1)

εdγ

]1/ε
, and a roughness exponent

ζ = (2− d)/2 (defined by u∼ xζ).
ii) continuous RSB: it occurs for θ>0, with mc(m)=m0c ,

AG(x̂) =
8

(4− θ2)

1

m
2+θ
−
2

2+ θ

(A

x̂

)1+2/θ
, x̂m $ x̂$ x̂c

(20)
and G(x̂) =G(x̂m) for x̂$ x̂m with x̂c =Amθc , x̂m =Am

θ,

A= 1+γγε (
4Ad
ε )

γ
1+γ [20]. The total shock density is

ρ0 =
m
2Ld/2√
π

√

2A

2+ θ
m

θ
2−1
c f

(

m

mc

)

, (21)

with f(x) = xθ(x−2−θ − 1)1/2+
∫ 1
xθ dy(y

−1− 2θ − 1)1/2. For
m$mc, the size distribution becomes P (S)≈ 1

Sm
p( SSm )

with typical size Sm ≈
√

2
A(2+θ)

(mL)d/2

m
(d+ζ) , roughness

exponent ζ = 4−d
2(1+γ) , avalanche-size exponent τ = 2θ

2+θ ,
and

p(s) =
1−τ
2

[

se−
s2

4 + τ
(2

s

)τ
Γ
(1+τ

2
,
s2

4

)

]

∼
1

sτ
, s$ 1

(22)

where Γ(a, z) =
∫∞
z dt t

a−1e−t. One has 〈S〉=
√
π 2−θ2 Sm

and ρ0 =
Ld

〈S〉 from (18), consistent with (21) at small m.

Interestingly, the droplet argument (14) can be adapted
to the interface, i.e. N = 1. The correspondence ∆M → S
and standard interface scaling implies dm→ d+ ζ and
df → d. Together with θ= d− 2+2ζ it yields τ = τζ =
2− 2/(d+ ζ) and provides, for static avalanches, a basis
for the conjecture made previously at depinning, i.e. out
of equilibrium [45]. By contrast, the above large-N limit
gives τ = 2− 2/(d2 + ζ). In d= 4, this gives τ = 1, which
is different from the usual mean-field exponent τ = 3/2
at N = 1 [11], and expected to hold at finite N . There
are indications that this is due to a non-commutativity
of the limits N,L→∞, also reflected by the unusual
L-dependence of the maximal avalanche size Sm.

Decaying Burgers turbulence. – We now consider
the decaying Burgers velocity field u(r, t) in dimension N ,
satisfying

∂tu+
1

2
∂ru

2 = ν∇2u (23)

with Gaussian, power-law–correlated, initial condition

ui(r, t= 0)uj(r′, t= 0) =−∂i∂jR0(r− r′)∼ |r− r′|−2γ ,
(24)

R0(r) =NB(r2/N). From the Cole-Hopf transformation,
the velocity at time t= 1/m2 is obtained from the d= 0
version of the model (15) with v≡ r and T ≡ 2ν as
tui(r, t) = ri−〈ui〉H. In the large-dimension limit N →∞
and for LR correlations 0< γ < 1, i.e. 0< θ= 21−γ1+γ < 2,
the above results for the manifold immediately apply,
setting d= 0. In the inviscid limit, ν→ 0, the velocity field
develops discontinuities along codimension-one manifolds,
i.e. shocks, for t > tc = (m0c)

−2. Consider a line, say ri =
r1δi1, the velocity field along this line, i.e. u1(r), and
its shocks ∆u= u1(r

+
1 )− u1(r

−
1 ). From the identification

∆u≡m2S, the shock-size density along this line is given
by eqs. (16) and (20) as ρ(∆u)≡m−2ρ(S) with m2 = 1/t.
At large time t* tc, the size probability takes the form
P (∆u) = (∆ut)−1p(∆u/∆ut) where p(s) is given by (22)
and the shock-size exponent is τ = 1− γ. The typical
shock size is ∆ut ≡m2Sm ∼ t−1+

ζ
2 , with ζ = 2/(1+ γ),

consistent with the asymptotic scaling of the decaying

velocity field: u(r, t) in law−−→ t−1+
ζ
2 ũ(r̃= rt−ζ/2). The total

shock density ρ0 given by (21) vanishes for t < tc, exhibits
a maximum near tc, then decays as ∼ t−ζ/2, as the shock
separation grows as tζ/2 from usual scaling. For shorter-
ranged initial correlations, γ ! 1, the solution is 1-step
RSB. The reduced size distribution is p(s) = 12se

−s2/4 with

ρ0 =
1√

πt∆ut
(1− tct ) and i) ∆ut = t

−1/2(1− 1
2t )
1/2 for the

γ = 1 LR class; ii) ∆ut ≈ t−1/2(γ−1γ ln t)
−1/4 at large t, for

the SR class, similar to Kida’s result [24] for N = 1.
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Conclusion. – Systems whose thermodynamics is
described by full RSB exhibit a power-law distribution of
equilibrium-avalanche sizes, which can be traced back to
their marginal stability. Even though dynamic avalanches
are different from our static analysis, the exponents
turn out to be the same τ = ρ= 1 in the SK model, and
in both cases the scale-free response is a consequence
of criticality and marginal stability [26]. We expect a
similar critical response upon slow changes of system
parameters in many other systems with full RSB. This
is of interest for optimization problems on dilute graphs
such as minimal vertex cover [46], coloring or Potts
glass [47], k-satisfiability [48] around the satisfiability
threshold, and in the UNSAT region at large k. Likewise,
in models of complex economic systems one expects a
power-law–distributed market response to changes in
prices and stocks [49]. Avalanches are also expected
in electron glasses with unscreened 1/r interactions. A
stability argument shows that the number of rearrange-
ments upon adding a new electron at T = 0 diverges with
system size at least as Ld−2, presumably with a wide
distribution of dynamic responses. Since the mean field
yields a full RSB phase [37], we speculate that static
avalanches are power law distributed as well.
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