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Abstract – We conjecture the exact shock statistics in the inviscid decaying Burgers equation in
D> 1 dimensions, with a special class of correlated initial velocities, which reduce to Brownian for
D= 1. The prediction is based on a field theory argument, and receives support from our numerical
calculations. We find that, along any given direction, shock sizes and locations are uncorrelated.
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Decaying turbulence is characterized by the existence
of an inertial range in the inviscid limit (small viscosity
limit) with scaling and multi-scaling. These features are
shared by simpler models as passive advection [1–3] and
the Burgers equation [4–6] where the velocity field presents
manifolds of discontinuities called shocks. How the velocity
field evolves from a prescribed random initial condition
!v(!r, t= 0), !r ∈RD, and the statistics of these shocks, are
of high interest. Unfortunately, exact results are restricted
to few solvable cases in space dimension D= 1 [4,7–15]
or in the limit D=∞ [16,17]. In this letter we present a
solution for generic D, for a non-trivial class of random
initial conditions. These appear naturally in related works
in the context of elastic interfaces in D= 1 [18–21] and
more recently in higher D [21]. At this stage the solution
is a conjecture, based on a field theory argument. Here,
we state the conjecture and provide an accurate numerical
test.
The decaying Burgers equation describing a potential

flow velocity field !v(!r, t) = !∇V̂ (!r, t) reads

∂t!v= ν∇2!v−
1

2
!∇!v2. (1)

The inviscid limit corresponds to ν = 0+ (see footnote1).
Our model is defined by choosing the distribution of
the initial velocity field !v(!r, 0) as a centered Gaussian
with increments δ!v(!r, !r ′) = !v(!r, t= 0)−!v(!r ′, t= 0) of

(a)E-mail: alberto.rosso@lptms.u-psud.fr
1A small ν > 0 gives a small width to shocks, which here scales

to zero in reduced units, and is thus irrelevant.

correlations:

1

2
δvi(!r0, !r0+!r)δvj(!r0, !r0+!r) =

B

2
|!r |(δij + r̂ir̂j). (2)

r̂= !r/|r|, B is a constant and · · · denotes the average over
initial conditions. The increments are stationary because
the correlations are independent of r0 (statistical trans-
lational invariance). In D= 1 this reduces to a Brownian
initial velocity [8–10]. In general D there is no obvious
Markov property, except that the velocity along any given
direction is a Brownian.
We study, without loss of generality, the velocity along

the x-axis. For a given initial condition the velocity profile,
at finite time, can be computed using the Cole-Hopf
transformation (see below). A sketch of the solution in
the inviscid limit is shown in fig. 1 for the case D= 2. Let
us denote by xα the discrete set of points where shocks are
locates along the x-axis, and by !Sα the shock size defined
as

!Sα = t
[

!v(xα− 0+)−!v(xα+0
+)
]

, (3)

where α labels the shocks. We note from fig. 1 that the
longitudinal shock component Sx is always positive, while
the component of the shock orthogonal to x, !Sy, can
be positive or negative. We also remark that, except for
the linear uniform slope of vx, the velocity increments,
[!v(x, t)−!v(0, t) ], are encoded in shocks, so that the joint
distribution of the size and location of all shocks gives the
complete characterization of the statistical properties of
the velocity profiles.
The shock-size density is defined as ρ(!S) =

∑

α δ(x−xα)δ(!S− !Sα) and displays a power law
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Fig. 1: (Color online) Sketch of the velocity profile along the
x-axis, for D= 2 Left: vx-component. Right: vy-component.
The profile is given by the Cole-Hopf transformation [4] (see
eq. (13)). Shocks correspond to the discontinuities of the
velocity profile and are located in a discrete set of points xα,
xα+1, . . . ; the size of the shocks is defined in eq. (3).

behavior: typical shocks are very small, but the velocity
increments are dominated by larger and rarer shocks
(see [18] for a detailed discussion). The characteristic size,
Sm, of these large shocks grows with time and is defined
from the first two moments of Sx as

Sm =
〈S2x〉
2〈Sx〉

, (4)

where 〈· · ·〉 denotes averages over the shock density ρ(!S)
which takes the form

ρ(!S) =
1

S2m
p

(

!S

Sm

)

. (5)

p(!s ) is a function of the reduced shock-size !s := !S/Sm. By
construction 〈s2x〉= 2. A second identity (see below),

∫

d!S ρ(!S)Sx = 1, (6)

implies a further normalization condition 〈sx〉= 1, for the
function p(!s ). Note that here and below 〈. . .〉 denote
moments either over ρ(S) or p(s). It is useful to introduce
the generating function for the distribution of reduced
shock sizes,

Z̃(!λ) := 〈e"λ"s− 1〉 :=
∫

d!s (e
"λ·"s− 1)p(!s ). (7)

We now state our prediction valid for the initial condi-
tions (2) and obtained from field-theoretical considera-
tions: i) along a given direction, the locations of shocks
are independent (i.e. Poisson distributed); ii) shock sizes
are mutually uncorrelated and independent of locations;
iii) the characteristic shock size is Sm =Bt2, the func-

tion Z̃(!λ) is given below in some special directions, its full
expression, not reproduced here, is computed in [21]. Its
expansion is

Z̃(!λ) = λx+
1

2
λ2x+

1

2
!λ2+2λx!λ

2+
3

2
(!λ2)2

+
9

2
!λ2λ2x−λ4x+ . . . . (8)

It implies universal moment ratios, in particular

〈S2x〉
〈S2⊥〉

=
2

〈s2⊥〉
=

2

D− 1
. (9)

While the set of shocks along x are uncorrelated both in
position and size, by contrast, longitudinal and transverse
components of a given shock are correlated, as from (8)
one can calculate higher moments, e.g.

4
〈SxS2⊥〉〈Sx〉
〈S2x〉2

= 〈sxs2⊥〉= 4(D− 1). (10)

This conjecture characterizes the statistics of velocity
increments, [!v(x, t)−!v(0, t)]. It is possible to show (and
the converse is also true) [22] that for uncorrelated and
independent shocks, the characteristic function of the
velocity increments can be written as

e−"λ·["v(x,t)−"v(0,t)] = ex[Zt(
!λ

t
)−λx

t
], (11)

where Zt(!λ) is the generating function for the shock
density ρ(!S). On the other hand, from dimensional analy-

sis, we know that Zt(!λ) = Z̃(Sm!λ)/Sm.
We now indicate the origin of our conjecture, by recall-

ing the connection to disordered systems. Equation (1) is
solved by the Cole-Hopf transformation [4] in the limit
ν→ 0:

V̂ (!r, t) =min
"r ′

[

1

2t
(!r ′−!r )2+V (!r ′)

]

, (12)

where V (!r ′) is the potential associated with the initial
condition, i.e. !v(!r, t= 0) = !∇V (!r ). Hence for a random
initial condition the problem is equivalent to finding
the minimum energy position of a particle in a random
potential, plus a harmonic well. Denoting by !u(!r ) the
position of the minimum in (12), the velocity field is
!v(!r, t) = [!r− !u(!r )]/t. If we are interested in the velocity
profile along the x-axis we have

vx(x, t) = [x−ux(x)]/t, !v⊥(x, t) =−!u⊥(x)/t. (13)

Equation (13) allows us to justify the sketch of fig. 1 with
all the properties we derived. In particular, the uniform
slope of vx (fig. 1, left) can now be identified with the
term x/t in eq. (13). At the shocks, the minimum changes
its location, and the shock size is !S = !u(xα+0+)− !u(xα−
0+). Moving the position of the parabolic well along the
x-axis we now understand that the location of the new
minimum always increases along ux (thus Sx is always
positive), but not along !u⊥ (!S⊥ can be either positive or
negative). Finally noting that !u(!x) = !x we prove 〈Sx〉= 1
as stated in eq. (6).
The random potential V (!r ) corresponding to the

present model (2) is a generalization of the 1D random
acceleration process [23,24] to D dimensions. To define it
one needs a large-scale regularization; we choose periodic
boundary conditions of period L in all D directions,

V (!r ) =L−
D

2

∑

"q $=0

V"q e
i"q·"r, V"qV"q ′ =

σ2δ"q,−"q ′

(q2)
D

2
+H
, (14)
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where !q= 2πL !n, !n∈ {−L/2+1, . . . , L/2− 1, L/2}D, in the
limit L→∞, and H = 3/2. In real space this leads to
a non-analytic cubic potential correlator V (!r )V (!r ′) =
R0(!r−!r ′) with

R0(!r )−R0(0) =−
1

2
Ar2 L+

B

6
|r|3+O(1/L), (15)

where the constants A and B can be computed from (14):
A= σ20.0182 . . .+O(1/L) and B = σ2/(3π)+O(1/L).
The initial velocity correlator is vi(!r, t= 0)vj(0, t= 0) =
−∂i∂jR0(!r ) with the stationary increments δ!v distributed
as in eq. (2).
In a nutshell, the basis for our conjecture is as follows:

the present model is the d= 0 limit of a model of an
elastic manifold (of internal dimension d) in a quadratic
well of curvature 1/t and a random potential2. In this
model, the analogous variable to !u(!r ) is the location of
the center of mass of the manifold for a given well position
!r. Note that both the center-of-mass location and the
well position are points in the D− d dimensional space.
At time t, the energy of the optimal configuration as a
function of well position !r is V̂ (!r, t). Its second cumulant
defines a renormalized potential disorder correlator R(!r ),
which obeys a functional RG equation as t is varied.
This equation can be solved perturbatively in R in a
d= 4− ε expansion. It turns out that the initial correlator
R0(!r ) corresponding to (15) solves the FRG equation to
all orders in ε, i.e. there are no loop corrections. The
explicit computation for D− d= 1 with R0(r)∼Br3/6
has been performed in [18], the conjecture we present
here is valid for any D (and also for any d although we
need only d= 0 (Burgers)). The remarkable property of
the initial condition defined in (15) under the action of
the functional RG allows to compute the exact correlation
functions to tree level either by recursion or from a saddle-
point method. This leads to the main statements of our
conjecture: i) Sm =Bt2, ii) eq. (11), and iii) the explicit

form of Z̃(!λ). The detailed calculations will be presented
elsewhere [21]. A further result, proved to lowest order in
ε= 4− d [21], but which we expect to hold for any d, is
that (2) is an attractive fixed point of the RG, hence for
velocity correlations which differ from (2) only at small r,
the behaviour at large t again follows (11) (see footnote1).
Of course our analysis of the functional RG equations

cannot exclude the presence of non-perturbative correc-
tions, hence our prediction is, strictly speaking, a conjec-
ture. However for D= 1 and d= 0 our predictions are in
perfect agreement with results rigorously proved in [10].
To check it in D= 2 and d= 0 we now turn to numerics.
A powerful algorithm allows to solve this problem for

a slightly modified version of eq. (12), with a discretized
variable !r ′ = (i, j) and a continuous variable !r= (x, 0),

V̂ (x, t) = min
1!i,j!L

[

(i−x)2

2t
+
j2

2t
+V (i, j)

]

, (16)

2Think, as an example, of a single vortex in a superconductor:
its behavior can be modeled by an elastic line (d= 1) in the
3-dimensional space (D= 3).
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Fig. 2: Left: Step 1: reduction to one dimension. Effective
1-dimensional potential V(i, t) after the minimization over j,
as given in eq. (18), at different times (from top to bottom
t= 0, 2, 8). The potential becomes deeper and deeper as time
increases. Right: Step 2: location of the minimum. The solid
stair-case line is imin(x), the dashed line is jmin(x) for t= 8.
The drift x is indicated. Shocks are only forward in x-direction.

for any x in the interval (0, L). Let us now discuss how
the algorithm finds the site !u(x) = (imin(x), jmin(x)) which
satisfies the minimization condition (16):
Step 1: Reduction to a 1-dimensional problem. For each

value of i we perform a minimization over the transverse
coordinate j, keeping in memory the location of the
minimum, j∗min(i). Since this operation does not involve
x, the effective dimension of the problem is reduced to 1,
and eq. (16) becomes

V̂ (x, t) = min
1!i!L

[

(i−x)2

2t
+V(i, t)

]

, (17)

V(i, t) = min
1!j!L

[

j2

2t
+V (i, j)

]

. (18)

The reduced potential V(i, t) is plotted in fig. 2 (left).
Step 2: Determination of imin(x). The latter is an

increasing piecewise constant function of x. The mini-
mum location in the original D= 2 lattice is given by
jmin(x) = j∗min(imin(x)). For x= 0 the minimum position
is found from eq. (17). Increasing x, the minimum remains
in imin(x= 0) up to a threshold x1, above which the
minimum takes a new value imin(x1)> imin(0). For all
i > imin(x= 0) we find the value of x satisfying

(i−x)2

2t
+V(i, t) =

(imin(0)−x)2

2t
+V(imin(0), t). (19)

x1 is the smallest value of x for which this condition is
satisfied:

x1 = min
imin<i!L

1

2
(i+ imin(0))+

t(V(imin(0), t)−V(i, t))
imin(0)− i

.

(20)

One then searches for the next minimum and the proce-
dure is iterated up to x=L, see fig. 1 (right).
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Fig. 3: (Color online) Left: convergence of the measured
Z̃num1 (λ) to the analytical prediction (21) for different times:
t= 2.04 (filled circles), t= 2.78 (open circles), t= 4 (squares).
Right: measured Z̃2(λ) for t= 4 (squares) compared to the
prediction (22) (solid line).

Step 3: Shock sizes. Given the sequence of minima
locations !u(x) = (imin(x), jmin(x)), the shocks sizes !S are
the discontinuities in these piecewise functions of x.
The velocity profile is vx(x, t) = (x− imin(x))/t, vy(x, t) =
−jmin(x)/t.
Note that our algorithm is different from the algorithms

proposed in the literature, where the numerical study of
eq. (12) is performed on models which are discrete both in
!r ′ and !r. In that case minimization is efficiently achieved
using a fast Legendre transform [5]. Here, thanks to the
simplification of Step 1, we can keep the variable x contin-
uous and determine the exact location of the shock, the
only discretization comes from the size of the shock that
is constrained to be integer. The minimal shock has thus
size S0 = 1, the maximal shock cannot be larger than
the system size L. We conclude that self-affine scaling is
expected to hold in the continuum limit when S0) Sm)
L or equivalently S0/Sm = 1/(Bt2)) s)L/(Bt2).
Step 4: Numerical implementation. In practice, we

consider a D= 2 square latice (usually of size L= 212),
the correlated random potential V (i, j) is constructed
from L2 independently distributed Gaussian random
numbers via a “fast Fourier transform” of eq. (14). Note
that the sum over the components of !n is now running
over integers from −L/2+1 to L/2. The zero mode
!n= 0 is set to zero, V0 = 0. We choose σ2 = 1, which
implies that B = 1/(3π) in formula (2). We collected a
large number of shocks (∼ 106–107) using many samples,
from which we computed Sm and verified the prediction
Sm = t2/(3π). From the reduced sizes !sα := !Sα/Sm,

we measured Z̃(λx, λ⊥) =
1
N

∑

α(e
"λ·"sα − 1), specifically

Z̃1(λ) := Z̃(λ, 0) and Z̃2(λ) := Z̃(0, λ). The conjecture
states that for the longitudinal component of the shock

Z̃1(λ) =
1

2
(1−
√
1− 4λ), p1(s) =

1

2
√
πs3/2

e−s/4 (21)

with p1(sx) :=
∫

ds⊥p(sx, s⊥), i.e. the same as obtained
forD= 1 [10,14] and for the related Galton process [20,25].
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Fig. 4: (Color online) Left: plot of s2xp1(sx) (top curve) and
s2⊥[p2(s⊥)+ p2(−s⊥)] (bottom curve). Shocks at t= 8 (Sm =
7± 0.1). The solid line represents the analytical predictions.
Right: test of the ratio (10). Squares are for L= 28, circles for
L= 210, and triangles for L= 212. Numerical data approach
the predicted value when L is large. For L/Sm→ 0 the particle
feels the periodic potential, i.e. Sx =L and S⊥ = 0. For t→ 0,
lattice spacing is important: Sx = 1 and S⊥ = 0. The plateau
value is consistent with 4− c1L

−1/2.

This is verified in fig. 3 (left) and fig. 4 (left). Since the
agreement is very good, we have plotted in fig. 3 (left)
the difference with the analytical prediction to emphasize
the small deviations. These deviations are more important
for large negative λ∼−1/s0, sensitive to the small lattice
cutoff s0 = S0/Sm for the reduced shock sizes. Increasing
the time, s0 decreases as s0 ∼ 1/t2. The prediction for the
characteristic function of the y-component of the shock
sizes, Z̃2(λ), is obtained by elimination of θ in the system
of equations

λ(θ) = sin θ

√

5− cos(4θ)+ 2
[

1− cos(2θ)+
√

5− cos(4θ)
]2 , (22)

Z̃2(θ) =
cos θ

2

√

5− cos(4θ)− 2
1− cos(2θ)+

√

5− cos(4θ)
. (23)

Numerically, the Laplace inversion can be performed
to determine p2(s⊥) =

∫

dsx p(sx, s⊥) with high preci-
sion. (It is an integral over a segment of θ in the
complex plane.) p2(s) is plotted in fig. 4 (left). For
large s, p2(s)≈ 1.7304|s|−5/2e− 0.2698|s|; while for small
s p2(|s|) = 0.12375|s|−3/2. We have plotted the measured
and calculated Z̃2(λ) in fig. 3 (right). Since p2(s) is

symmetric in s, the same holds true for Z̃2(λ). The left and
right edges of the analytic curve are at |λ∗|= 0.2698 . . . ,
the constant in the exponential decay of p2(s). The agree-
ment is excellent up to this point, where the size L cuts
the divergence for |λ|>λ∗.
We now discuss shock correlations: First, the universal

ratio (9) was measured to be 2.034± 0.015, very close to
its analytical prediction. Second, correlations of jumps in
the different directions are measured by the ratio (10),
plotted in fig. 4 (right). In both cases, the deviations can
be attributed to finite-size corrections, see the caption
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Fig. 5: (Color online) Circles correspond to H = 1/2, triangles
to H = 1 and squares to H = 3/2. Top: connected size corre-
lations of subsequent shocks. Correlation decay is slower for
H = 1, for H = 3/2 no correlation has been detected. Bottom:
normalized shock distance.

of fig. 3. Third, we studied the correlations between
subsequent shocks. To emphasize the remarkable nature
of the present model (H = 3/2) we compare with two
other ones, with potential given by (14) with H = 0.5 and
H = 1. In fig. 5 (top) we show the connected correlation
〈sx,αsx,α+p〉c of the longitudinal size sx,α of a shock with
the p-th subsequent shock. Figure 5 (bottom) focuses
on the correlations between the location and the size of
shocks. For example, are large shocks more isolated with
respect to small shocks? To check this we compute the
average distance 〈xα+1−xα〉 between consecutive shocks,
normalized by its averaged and called ∆(sx), as a function
of the longitudinal size sx of the shock α. Figure 5
(bottom) shows strong correlations for H = 0.5 and H =
1. For H = 3/2 no effect was detected. This remarkable
statistical independence of the shocks is essential for the
main formula (11).
To conclude, we proposed a conjecture for the
D-dimensional decaying Burgers equation with initial
conditions which generalize the Brownian for D= 1. We
tested it numerically and checked that the shocks and
the velocity increments along an axis are statistically
independent at any time t. The conjecture is based on
vanishing loop corrections in the field theory for the disor-
dered problem and its generalization to elastic manifolds.

Although confirmed within our numerical accuracy, any
deviation would have important consequences for the
—probably non-perturbative— corrections to the field
theory. We hope this motivates efforts to prove or falsify
our conjecture on a rigorous basis.
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