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Abstract – We study, beyond the Gaussian approximation, the decay of the translational order
correlation function for a d-dimensional scalar periodic elastic system in a disordered environment.
We develop a method based on functional determinants, equivalent to summing an infinite set of
diagrams. We obtain, in dimension d = 4− ε, the even n-th cumulant of relative displacements as
〈[u(r)− u(0)]n〉

c
$ An ln r with An = −(ε/3)nΓ(n− 1

2 )ζ(2n− 3)/
√
π, as well as the multifractal

dimension xq of the exponential field equ(r). As a corollary, we obtain an analytic expression for
a class of n-loop integrals in d = 4, which appear in the perturbative determination of Konishi
amplitudes, also accessible via AdS/CFT using integrability.

Copyright c© EPLA, 2014

Introduction. – Periodic elastic systems in quenched
disorder model numerous applications, from charge-
density waves in solids [1], vortex lattices in super-
conductors [2,3] Wigner crystals [4], Josephson junction
arrays [5], to liquid crystals [6]. The competition between
elastic energy, which favors periodicity, and disorder,
which favors distortions, produces a complicated energy
landscape with many metastable states. While we know
since Larkin [7] that weak disorder destroys perfect trans-
lational order, it was realized later that topological order
(i.e. no dislocations) may survive, leading to the Bragg
glass phase (BrG) [3,8] and validating the elastic descrip-
tion. A key observable, measured from the structure factor
in diffraction experiments [9], is the translational correla-

tion function CK(r) = 〈eiK[u(r)−u(0)]〉, where u(r) is the
(N -component) displacement of a node from its position
in the perfect lattice, and K is chosen as a reciprocal lat-
tice vector (RLV). Overlines stand for disorder averages,
and brackets for thermal averages. Thermal fluctuations
are subdominant, and we focus on T = 0. It was estab-
lished [8,10] that at large scale u(r) is a log-correlated field,

〈[u(r)− u(0)]2〉 $ A2 ln
r

a
, (1)

where a is a microscopic cutoff, and r := |r|. If one further
assumes u(r) to be Gaussian, one obtains

CK(r) ∼ r−ηK , (2)

with ηK = ηGK := 1
2A2K2, hence quasi–long-range trans-

lational order and sharp diffraction peaks, a characteristic

of the BrG [8,9]. This holds for space dimension dlc <
d < duc (i.e., r ∈ Rd) with dlc = 2, duc = 4 for standard
local elasticity. It was obtained by variational methods
and confirmed by the Functional renormalization group
(FRG) [8,10], a field-theoretic method developed in recent
years [11–16], which allows to treat multiple metastable
states. The FRG predicts the universal amplitude A2 in a
dimensional expansion in d = duc− ε. In this letter we re-
strict for simplicity to the scalar case N = 1, i.e. u(r) ∈ R,
and choose the periodicity of u to be one, hence the RLV
to be K = 2πk with k integer. Then, within a 2-loop FRG
calculation [13], A2 = ε

18 +
ε2

108 +O(ε3) in agreement with
numerics [17,18] for d = 3.

The rationale for the Gaussian approximation is that
around duc one can decompose u =

√
εu1+εu2+. . . into in-

dependent fields ui, where u1 is Gaussian (see appendix G
of [16]). Hence non-Gaussian corrections to ηK are ex-
pected only to O(ε4). However they grow rapidly with K
and surely become important for secondary Bragg peaks.
This motivates a calculation of the higher cumulants of
u(r). We also want to study CK(r) for arbitrary K = 2πk
with k not necessary an integer. This is needed, e.g., in
the context of the roughening transition [19] to determine
whether the BrG is stable to a small periodic perturba-
tion VK =

∫

ddr cos(Ku(r)). Finally, for the algebraic
decay (2) to hold for all K all cumulants need to grow as
ln r, a property which we demonstrate.

Another motivation to study the higher cumulants of
u(r) comes from multifractal statistics, with examples

16002-p1



Andrei A. Fedorenko et al.

ranging from turbulence [20] to localization of quantum
particles [21]. Although u(r) exhibits single-scale fractal
statistics, we show here that the exponential field eu(r) ex-
hibits multifractal scaling, i.e. its moments behave with
system size L as

〈equ(r)〉 ∼
( a

L

)xq

, (3)

with a scaling dimension xq. This provides an interesting
example beyond the well-studied Gaussian case [22,23] of
the general correspondence between exponentials of log-
correlated fields and statistically self-similar and homoge-
neous multifractal fields [24].
The aim of this letter is thus to go beyond the Gaussian

approximation: We calculate the multifractal exponents
xq and obtain the higher cumulants of the log-correlated
displacement field u as

〈[u(r)− u(0)]n〉
c
$ An ln(r/a) (4)

for r ( a, n even, where each An is calculated to lead-
ing order in ε = 4 − d (odd cumulants vanish by parity
u → −u). We use the FRG and develop a method based
on the asymptotic evaluation of functional determinants,
which allows us to sum up an infinite subset of diagrams.
Amazingly, it can also be applied to compute integrals ap-
pearing in a perturbative calculation on the field-theory
side of AdS/CFT, known as Konishi integrals [25].
Let us mention that for the same model in d = dlc =

2 (the Cardy-Ostlund model) such a summation was
achieved using conformal perturbation theory [26]. While
for d > 2 the An are T independent, in d = 2 the glass
phase is marginal and exists for T < Tc. The higher cumu-
lants, as well as CK(r) for k ≤ 1, were obtained to leading
order in Tc − T .

The model. – The Hamiltonian of an elastic system
in a disordered environment can be written as

H[u] =

∫

x

1

2
[∇u(x)]2 +

m2

2
u2(x) + V (u(x),x), (5)

with
∫

x
:=

∫

ddx. The first term is the elastic energy.
The second term is a confining potential with curvature
m2 which effectively divides the system into independent
subsystems of size Lm = 1/m, hence provides an infrared
(IR) cutoff. The random potential V (u, x) is a Gaussian
with zero mean and correlator

V (u,x)V (u′,x′) = R0(u− u′)δd(x− x′), (6)

where R0(u) is a function of period unity, reflecting the
periodicity of the unperturbed crystal [3]. The partition
function in a given disorder realization, at temperature
T , is Z :=

∫

D[u] e−H[u]/T . To average over the disorder,
we introduce replicas uα(x), α = 1, . . . , n of the original
system. This leads to the bare replicated action

SR0 [u] =
1

T

∑

α

∫

x

1

2
[∇uα(x)]

2 +
m2

2
u2
α(x)

−
1

2T 2

∑

αβ

∫

x

R0

(

uα(x) − uβ(x)
)

. (7)

p

n

p n

Fig. 1: (Colour on-line) Diagrammatic representation of the
integrals contributing to the translational correlation function
to leading order. The Cn have two external points (big circles,
grey) where the external momentum p enters. They are con-
structed from a polygon with n vertices each attached to one of
the two external points. They are finite in d = 4 and ∼ 1/p4.
Dn has one external point (big circle, not integrated over) all
other points are integrated over. It is log-divergent in d = 4.

The observables of the disordered model can be obtained
from those of the replicated theory in the limit n → 0.

FRG basics. – The central object of the FRG is the
renormalized disorder correlator, the m-dependent func-
tion R(u). Appropriately defined from the effective action
Γ[u] associated to SR0 [u], the function R(u) is an observ-
able [14], which has been measured in numerics [27] and in
experiments [28]. It satisfies a FRG flow equation as m is
decreased to zero (R = R0 for m = ∞). Under rescaling,

R(u) = Admε−4ζR̃(mζu), with Ad = (4π)d/2

εΓ(ε/2) , R̃(u) admits

a periodic fixed point (FP) with ζ = 0, and u ∈ [0, 1],

R̃∗(u)− R̃∗(0) = R̃∗′′(0)
1

2
u2(1 − u)2. (8)

This form is valid for any d < 4, and −R̃∗′′(0) = ε
36 + ε2

54
to two-loop accuracy, in agreement with numerics [27].
The salient feature is that the renormalized force corre-
lator −R′′(u) acquires a cusp at u = 0, which we denote

by σ̃ = R̃∗′′′(0+) = ε
6 + ε2

9 . This cusp, seen in exper-
iments [28], is the hallmark of the multiple metastable
states and is directly related to the statistics of shocks
and avalanches which occur when applying an external
force [16].

Determinant formula. – The cumulants (4) can be
computed from (7) in perturbation theory in R0 at T = 0,
the leading order being O(R′′′

0 (0+)n). This perturbation
theory involves (complicated) replica combinatorics, see,
e.g., [13]. It also requires the evaluation of multi-loop
integrals represented in fig. 1, a formidable task. We
now show how to shortcut these difficulties. We first
reduce the problem to the calculation of a functional de-
terminant using the method developed in [29] to evalu-

ate averages of the form G[λ] := 〈exp(
∫

x
λ(x)u(x))〉 =

lim
n→0

〈exp
(∫

x
λ(x)u1(x)

)

〉S where u1(x) stands for one of

the n replicas. The function CK(r) can then be com-
puted using the charge density of a dipole, λD(x) :=
iK[δ(x − r) − δ(x)]. For an arbitrary λ(x), the aver-
age is expressed as G[λ] = exp(

∫

x
λ(x)uλ(x) − Γ[uλ]),
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where uλ(x) extremizes the exponential, i.e. is solution
of ∂ua(x)Γ[u]

∣

∣

u=uλ = λ(x)δa1. The effective action was
calculated in an expansion in R (i.e. in ε) to leading order
(one loop) as Γ[u] = SR[u] + Γ1[u] where SR[u] is the im-
proved action with the bare correlator R0 replaced by the
renormalized one R, and Γ1[u] is displayed, e.g., in [29,30].
Performing the extremization at T = 0, a slight general-
ization of sect. IV.A of ref. [29] leads to

〈

e
∫
x
λ(x)u(x)

〉

= GGauss[λ]e
−Γλ . (9)

Here GGauss[λ] = e
1
2

∫
xx

′ λ(x)λ(x
′)〈u(x)u(x′)〉 is the Gaussian

approximation, 〈u(x)u(x′)〉 the exact 2-point correlation
function, and the effective action is

−Γλ =
1

2

{

lnDreg[σU(r)] + lnDreg[−σU(r)]
}

. (10)

The effective disorder is σ := R′′′(0+), and we define

D[σU(r)] :=
det(−∇2 + σU(r) +m2)

det(−∇2 +m2)
. (11)

Its logarithm, ln(D[±σU ], has a perturbative expansion in
σ. The first two terms, of order σ and σ2, which contain
ultraviolet divergences in d = 4, are included in the Gaus-
sian part. The remaining terms, i.e. all O(σp) with p ≥ 3,
define the regularized determinant ln(Dreg[±σU ]). Thus
(10) contains only information about higher cumulants1.
We have introduced the potential

U(r) :=

∫

x

(−∇2 +m2)−1
r,x λ(x), (12)

which in the limit m → 0 satisfies the d-dimensional Pois-
son equation∇2U(r) = −λ(r). Note that two copies of the
determinant appear in the present static problem in eq. (9)
as

√

D[σU ]D[−σU ], which can thus be interpreted as orig-
inating from an effective fermionic field theory with two
flavors of real fermions. A related observation was made
in a dynamical calculation of the distribution of pinning
forces at the depinning transition [31], where only one
copy appears, as D[σU ]. Note also, from fig. 1, that to
this order we have an effective cubic field theory with cou-
pling σ. The 2-point correlation function in Fourier2 reads
〈upu−p〉 = cdp−df(p/m), with f(z) ∼ c̃dzd/cd for small z,
f(∞) = 1, c̃d = −AdR̃∗′′(0) and cd = c̃d(1 − ε+ . . .). In-
serting this with the 1-loop FP value into GGauss[λ] leads
to the above Gaussian result for ηGK with A2 = 2Sdcd

(2π)d , and

Sd = 2πd/2

Γ(d/2) .

Evaluation of the determinant. – We now have to
evaluate the functional determinant (11). Unfortunately,
there is no general method in d > 1 for a non-spherically-
symmetric potential. However, as we show below, it is

1A simpler version of (10) was considered in appendix G of [16]
for a uniform source; it yields the cumulants of

∫
r
u(r).

2It was calculated to O(ε2) in [13], sect. VI A.

sufficient to calculate the determinant for a spherically
symmetric potential, and then apply a multifractal scal-
ing analysis [24,32,33]. Thus, we start by computing the
scaling dimension xq = x−q, as defined from (3). To this
aim we calculate G[λ] for a (regularized) point-like charge
λp(r) := qδa(r) in a finite-size system. Since the cor-
responding potential is spherically symmetric, to obtain
the determinant ratio (11) we can employ the Gel’fand-
Yaglom method [34], generalized to d dimensions [35]. We
separate the radial and angular parts of the eigenfunctions
as Ψ(r, *θ) = 1

r(d−1)/2ψl(r)Yl(*θ), where the angular part is

given by a hyperspherical harmonic Yl(*θ), labeled in part
by a non-negative integer l. The radial part ψl(r) is an
eigenfunction of the 1D (radial) Schrödinger-like operator
Hl + σU(r) +m2, where

Hl := −
d2

dr2
+

(

l + d−3
2

) (

l + d−1
2

)

r2
. (13)

The logarithm of (11) can be written as a sum of the log-
arithms of the 1D determinant ratios Bl for partial waves
weighted with the degeneracy of angular momentum l,

ln (D[σU ]) =
∞
∑

l=0

(2l + d− 2)(l + d− 3)!

l!(d− 2)!
lnBl. (14)

The Gel’fand-Yaglom method gives the ratio of the 1D
functional determinants for each partial wave l as

Bl :=
det

[

Hl + σU(r) +m2
]

det [Hl +m2]
=

ψl(L)

ψ̃l(L)
. (15)

Here ψl(r) is the solution of the initial-value problem for
[

Hl + σU(r) +m2
]

ψl(r) = 0, (16)

satisfying ψl(r) ∼ rl+(d−1)/2 for r → 0. Equation (15)
holds for the boundary conditions u(|r| = L) = 0, tak-
ing the large-L limit afterwards3. The function ψ̃l(r)
solves (16) with the same small-r behavior, but for σ = 0.

We can now calculate 〈equ(r)〉 to leading order in d =
4 − ε. Since σ = O(ε) we can perform the calculation in
d = 4. A point-like charge distribution leads to a potential
U(r) ∼ 1/rd−2 which is too singular at the origin in d = 4.
We introduce an UV cutoff via a uniformly charged ball
of radius a, λB(r) =

qd
SdadΘ(a − |r|). Since L is finite, we

solve Poisson’s equation setting m → 0 and obtain

U(r) =















qa2−d

2Sd

(

d

d− 2
−

r2

a2

)

for 0 < r < a,

q

Sd(d− 2)

1

rd−2
for a < r < L.

(17)

We insert this potential in the Gaussian approximation
which reads lnGGauss = − 1

2R
′′(0)

∫

r
U(r)2, to lowest order

3To work directly in an infinite system, the electric field must
vanish fast enough. One can either use m = 0 with a neutral charge
configuration (dipole), or m > 0 (screening, exponential decay).
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O(ε). The log-divergence of this integral in d = 4 leads
to xG

q = −c̃4q2/(8S4) = −εq2/72. More generally, eq. (1)

requires by consistency that u(r)2 $ 1
2A2 ln(L/a) hence

xG
q = −A2q2/4, fixing the quadratic part O(q2) of xq.
To calculate the leading non-Gaussian corrections to xq

via (11), we find the solution of (16) in d = 4 with the
potential (17). It reads, for r < a

ψl(r) =
rl+

3
2

e
ir2

√
s

2a2

1F1

(

l + 2− i
√
s

2
+ 1; l+ 2;

ir2
√
s

a2

)

,

(18)
and for a < r < L,

ψl(r) = c1r
1
2−

√
(l+1)2+s + c2r

√
(l+1)2+s+ 1

2 . (19)

We introduced s := σq/(2Sd). One can find c1,2 by match-
ing at r = a. Using eq. (15) we obtain the partial-wave
determinant, which is universal at large L,

lnBl =
[

√

(l + 1)2 + s− (l + 1)
]

ln(L/a) +O(L0). (20)

The term O(L0) can be calculated from the ci; it is not
universal. Note that the massive problem also leads to
(20) with ln(L) replaced by ln(1/m).
Substituting this result into eq. (14) yields the result for

ln(D[σU ]). However, the sum over l diverges, indicating
that this functional determinant requires regularization in
d ≥ 2 [35]. However in (10) we only need the regularized
determinant Dreg[±σU ] ∼ (L/a)−Freg(±s) where the first
two orders in s are subtracted,

Freg(s) = −
∞
∑

l=0

(l + 1)2
(

√

(l + 1)2 + s− (l + 1)

−
s

2(l + 1)
+

s2

8(l + 1)3

)

. (21)

Summing over l, it can also be written as a series in s,

Freg(s) =
∞
∑

n=3

fns
n, fn = (−1)n

Γ(n− 1
2 )ζ(2n− 3)

2
√
πΓ(n+ 1)

.

(22)
Putting together the two copies we obtain the multi-fractal
scaling exponent, an even function of s (and q),

xq = −
1

4
A2q

2 + F (s), s =
ε

3
q, (23)

F (s) :=
1

2
[Freg(s) + Freg(−s)] =

∞
∑

n=2

f2ns
2n. (24)

To leading order we used σ = Adσ̃, σ̃ = ε
6 + O(ε2) and

S4 = 2π2. The final result is finite, as we avoided diver-
gences by i) using perturbation theory in the renormal-
ized R rather than in the bare R0, ii) by separating the
non-Gaussian part F (s) from the Gaussian one. For com-
pleteness we also defined the single-copy exponent Freg(s)
since it appears in the theory of depinning4.

4At depinning, there is an additional tadpole diagram associated
to the non-zero average u(r) = −Fc/m2, where Fc is the threshold
force. Similarly separating the non-Gaussian parts leads to Freg(s).

s

F

k

F i ks

Fig. 2: (Colour on-line) Numerical evaluation (blue dots) of
F (s) (left) and F (2πik) (right). The red solid line is the con-
tribution of the mode l = 0.

Analysis of the result. – Equation (23) is an even se-
ries in s with a radius of convergence of |s| = 1. At s = ±1,
F (s), plotted in fig. 2, has a square-root singularity given
by its l = 0 term. On the other hand, the exponent xq

must satisfy5 q d
dqxq ≤ 0, and convexity d2

dq2 xq ≤ 0, both
requirements for multifractal field theories [33]. While the
Gaussian part xG

q = − 1
4A2q2 does, the correction term

F (s) does not, since F ′′(s) ≥ 0. Since F ′′(s) ∼ 1
8(1−|s|)3/2

diverges at s = ±1 (q = qp $ 3
ε ) one cannot trust the cal-

culation in that region6; it surely fails when F ′′( qε3 ) >
1
4ε .

Calculation of 2-point correlations. – To obtain
the cumulants (4) and the translational correlation func-
tion (2) we would need a dipole source, for which we can-
not solve the Schrödinger problem. One way to proceed is
to assume that the exponential field eu(r) obeys the con-
ventional multifractal scaling formula [24,32,33]:

〈eq1u(r1)eq2u(r2)〉 ∼
(

r12
a

)xq1+q2−xq1−xq2
(

L

a

)−xq1+q2

,

(25)
with r12 = |r1 − r2|. Since we already calculated xq, this
formula, taken for q1 = −q2 = q immediately yields

〈

eq[u(r)−u(0)]
〉

∼
( r

a

)−2xq

, (26)

using that xq = x−q and x0 = 0. Let us define the expan-
sion xq =

∑∞
n=1

1
n!anq

n. Using the standard formula

ln 〈eA〉 =
∞
∑

n=1

1

n!
〈An〉

c
, (27)

we obtain one of the main results of this letter, eq. (4),
with the amplitudes for even n ≥ 4,

An = −2an = −
Γ(n− 1

2 )ζ(2n− 3)
√
π

(ε

3

)n
. (28)

5Since 〈qu sinh qu〉 ≥ 0 and from Cauchy-Schwarz the inequality

〈u2equ〉 〈equ〉 ≥ 〈uequ〉
2
must hold.

6Our result is a summation of a convergent series in qε, but there
is no guarantee that there are no non-perturbative corrections.
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There is actually more information in eq. (25): Using (27)
and expanding in powers of qj1q

n−j
2 we obtain

〈u(r1)ju(r2)n−j〉
c
$ an ln(r12/L), (29)

〈u(r1)n〉
c
$ −an ln(L/a). (30)

While we already know (30) from (3) and (27), eq. (29),
valid for any 1 ≤ j ≤ n− 1 represents strong constraints.

Formula (25) is, at this stage, an educated guess, since
we do not know the exact solution to the corresponding
2-charge (dipole) Schrödinger problem. We now close this
gap via a careful examination of the integrals appearing
in the expansion of the determinant in powers of σ, repre-
sented by the diagrams in fig. 1. We show two properties:

i) All terms of the form eq. (29) are equal, and inde-
pendent of j: This proves that both eqs. (25) and (26)
hold.

ii) The topologically distinct integrals with the same j
are also all equal. This remarkable property goes beyond
what is needed for eq. (29), and provides simple expres-
sions for such integrals; as announced in the introduction,
they are of interest in the AdS/CFT context.

For clarity, let us detail the term n = 4 (setting
m = 0). The calculation of 〈u(r1)2u(r2)2〉 involves two
3-loop integrals, I{2,2}1

(p) and I{2,2}2
(p), which are rep-

resented by the first two (topologically distinct) diagrams
in fig. 1. The first is equal to the integral, with entering

momentum p, I{2,2}1
(p) :=

∫

q

I(p,q)2

q2(p−q)2 with I(p,q) :=
∫

k
1

k2(k+p)2(k+q)2 ,
∫

q
:=

∫ ddq
(2π)d . The third diagram

(i.e. integral) is the only one entering in the calculation
of 〈u(r1)3u(r2)〉. By power counting, these integrals are
both UV and IR finite in d = 4, and scale as p−4; we now
determine their amplitude.

First we show that, for given n, the diagrams with two
external points depicted in fig. 1 are independent of how
these points are attached to the polygon vertices. In a nut-
shell this is because they all scale as p−4, and if we identify
the two external points, we obtain the same integral Dn

in fig. 1. Explicitly, for m = 0 and d = 4, any of these
diagrams has n− 1 loops and 2n propagators, and reads

=
Cn
p4

, (31)

where a priori Cn depends on how we attach the n points
of the polygon to the two external points. In a massive
scheme, and d = 4− ε, by power counting this changes to

=
Cn

p4+(n−1)ε
gn

(

p

αnm

)

, (32)

where gn(x) → 1 for x → ∞, gn(0) = 0 and αn pa-
rameterizes the crossover point with gn(1) = 1

2 . Now
Dn is obtained from Cn by integrating over the external

momentum:

Dn =

∫

p

Cn
p4+(n−1)ε

gn

(

p

αnm

)

$ Cn
Sd

(2π)d

∫ ∞

αnm

dp

p1+nε

=
Cn(αnm)−nε

8π2nε
+O

(

ε0
)

=
Cnm−nε

8π2nε
+O

(

ε0
)

. (33)

The leading pole in ε does not depend on αn, and is uni-
versal. Since all these diagrams lead to the same value of
Dn, all integrals of the type (31) are equal, and in d = 4
equal to Cn/p4.
We already know the integral Dn in d = 4 from

eqs. (21) and (22), by matching powers of q in the
expansion of the determinant with a point source,

lnD[σU ] =
∑∞

n=1
(−1)n+1

n Dn(qσ)n which yields Dn $
(−1)nnfn/(2π)2n ln(La ) for any n ≥ 3. Interestingly, the
Gel’fand-Yaglom method allows us to calculate Dn di-
rectly in d = 4 − ε. For d < 4 we can set a = 0 in
the potential (17). The corresponding radial Schrödinger
problem can be solved exactly as

ψl(r) = rl+
d−1
2 zl(r), zl(r) = 0F1

(

2(l+ 1)

ε
;

2srε

(2− ε)ε2

)

.

Using the identity limε→0 ε ln0 F1(
2(l+1)

ε , s̃
ε2 ) =

∑∞
n=1

(−1)n+1Γ(n− 1
2 )s̃

n

2n
√
πΓ(n+1)(l+1)2n−1 we calculate to leading or-

der in ε, lnD[σU ] $
∑∞

l=0(l + 1)2 ln zl(L). This yields
the polygon integrals for n ≥ 3 in the massive scheme,

Dn = =
m−nε

nε

Γ(n− 1/2)ζ(2n− 3)

2
√
π(2π)2nΓ(n)

+O(ε0). (34)

Note that Lnε

nε changed to m−nε

nε . Further substituting this
factor by ln(L/a) reproduces the above estimate for d = 4.
Using eqs. (33) and (34) we now obtain Cn in d = 4,

Cn = p4 =
Γ(n− 1

2 )ζ(2n− 3)
√
πΓ(n)(2π)2n−2

. (35)

This allows to expand the determinant in the presence
of two charges q1, q2, in terms of 2-point diagrams, and
obtain, using (27) and (10) in d = 4 with m = 0:

∑

n≥4

1

n!
〈[q1u(r) + q2u(0)]n〉

c
=

∑

n even≥4

(−1)n+1

n
σn

×
[

(qn1 + qn2 )Dn +

∫

p

eip·r
n−1
∑

j=1

(

n

j

)

qj1q
n−j
2

Cn
p4

]

. (36)

Here we used that all Cn integrals are the same.
Since (nj ) appears on both sides it implies (29) with

an = − S4
(2π)4 Cn(n− 1)!σn in agreement with (28). Choos-

ing q2 = −q1 rederives our main result for the cumulants
(4) and (28) since

∑n−1
j=1 (

n
j )(−1)j = −2. We thus proved

that the multifractal scaling relations (25) and (26) hold.
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Performing the analytical continuation q = iK we ob-
tain the decay exponent7 of the translational correlations,

ηK =
[ ε

36
+

ε2

216
+O(ε3)

]

K2 + 2F
(

iK
ε

3

)

. (37)

The wave vector K is arbitrary, not necessarily a RLV8.
Although non-Gaussian corrections start at O(ε4), setting
directly ε = 1 and K = K0 = 2π yields9 ηGK0

|1-loop =
1.097, ηGK0

|2-loop = 1.279 while ηK0 − ηGK0
= 0.569. Even if

these corrections may be an overestimate, and higher-loop
corrections are needed, non-Gaussian effects10 appear to
be non-negligible for d = 3 [18]. Comparison with the elas-
tic term [19] then shows that a small periodic perturbation
VK becomes relevant for K < Kc with 2− ηKc = 0.

Conclusion. – Using functional determinants we ob-
tained the scaling exponents of the (real and imaginary)
exponential correlations of the displacement field in a dis-
ordered elastic system. We leave the calculation of the
spectrum of fractal dimensions11, and the extension to a
more general elastic kernels for the future. As a surpris-
ing corollary, our method yields, in an elegant way and
for arbitrary n, exact expressions for the integrals Cn (we
numerically checked formula (35) for n = 3, 4, 5). Similar
integrals appear in N = 4 SYM, on the field-theory side of
two theories related via AdS/CFT: E.g., C5 contributes to
the Konishi anomalous dimension in N = 4 SYM at five-
loop order, and an elaborate formalism was put in place
to calculate it [25]. We hope that our method, and pos-
sible generalizations, will also allow for a further-reaching
check of the AdS/CFT duality12.
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[1] Grüner G., Rev. Mod. Phys., 60 (1988) 1129.
[2] Blatter G. et al., Rev. Mod. Phys., 66 (1994) 1125.
[3] Giamarchi T. and Le Doussal P., in Spin Glasses and

Random Fields, edited by Young A. (World Scientific,

7Note that eiKu(r) obeys ordinary field-theory scaling, while
equ(r) obeys multifractal scaling [33].

8In d = 2, CK(r) was argued [36] to exhibit cusps for integer
K/(2π) due to screening of the 2-point function by the interaction.

9We used eq. (21) which can be considered as the analytic con-
tinuation of eq. (22), whose radius of convergence is K = 3.

10In d = 4 the second cumulant grows as ln(ln(r)), while higher
ones reach a (non-universal) finite limit.

11The Gibbs measure of a particle diffusing on top of the elastic
object with potential energy ∼ u(r) provides a normalized multi-

fractal measure µ(r) = eγu(r)
∫
x
eγu(x) from which one can calculate a

spectrum of dimensions.
12Reciprocally, the results in [37] yield the full 4-point function for

the Bragg glass.

Singapore) 1997; Le Doussal P., Int. J. Mod. Phys. B,
24 (2010) 3855.

[4] Andrei E. Y. et al., Phys. Rev. Lett., 60 (1988) 2765.
[5] Granato E. and Kosterlitz J. M., Phys. Rev. Lett.,

62 (1989) 823.
[6] Radzihovsky L. and Toner J., Phys. Rev. B, 60 (1999)

206.
[7] Larkin A., Sov. Phys. JETP, 31 (1970) 784.
[8] Giamarchi T. and Le Doussal P., Phys. Rev. Lett., 72

(1994) 1530; Phys. Rev. B, 52 (1995) 1242.
[9] Klein T. et al., Nature, 413 (2001) 404.

[10] Nattermann T., Phys. Rev. Lett., 64 (1990) 2454.
[11] Fisher D., Phys. Rev. Lett., 56 (1986) 1964; Natter-

mann T. et al., J. Phys. II, 2 (1992) 1483.
[12] Chauve P., Le Doussal P. and Wiese K., Phys. Rev.

Lett., 86 (2001) 1785.
[13] Le Doussal P., Wiese K. and Chauve P., Phys. Rev.

E, 69 (2004) 026112.
[14] Le Doussal P., Europhys. Lett., 76 (2006) 457; Ann.

Phys. (N.Y.), 325 (2009) 49.
[15] Wiese K. and Le Doussal P., Markov Process. Relat.

Fields, 13 (2007) 777.
[16] Le Doussal P. and Wiese K., Phys. Rev. E, 79 (2009)

051106.
[17] McNamara D., Middleton A. andChen Z., Phys. Rev.

B, 60 (1999) 10062.
[18] Noh J. D. and Rieger H., Phys. Rev. Lett., 87 (2001)

176102.
[19] Emig T. and Nattermann T., Phys. Rev. Lett., 79

(1997) 5090.
[20] Paladin G. and Vulpiani A., Phys. Rep., 156 (1987)

147.
[21] Evers F. and Mirlin A., Rev. Mod. Phys., 80 (2008)

1355.
[22] Castillo H. E. et al., Phys. Rev. B, 56 (1997) 10668.
[23] Carpentier D. and Le Doussal P., Phys. Rev. E, 63

(2001) 026110.
[24] Fyodorov Y., Physica A, 389 (2010) 4229.
[25] Eden B. et al., Nucl. Phys. B, 862 (2012) 123.
[26] Le Doussal P., Ristivojevic Z. and Wiese K., Phys.

Rev. B, 87 (2013) 214201.
[27] Middleton A., Le Doussal P. and Wiese K., Phys.

Rev. Lett., 98 (2007) 155701; Rosso A., Le Doussal P.

and Wiese K., Phys. Rev. B, 75 (2007) 220201.
[28] Le Doussal P., Wiese K., Moulinet S. and Rolley

E., EPL, 87 (2009) 56001.
[29] Le Doussal P. and Wiese K., Phys. Rev. E, 85 (2011)

061102.
[30] Chauve P. and Le Doussal P., Phys. Rev. E, 64 (2001)

051102.
[31] Fedorenko A., Le Doussal P. and Wiese K., Phys.

Rev. E, 74 (2006) 041110; Le Doussal P. and Wiese

K., Phys. Rev. E, 68 (2003) 046118.
[32] Cates M. and Deutsch J. M., Phys. Rev. A, 35 (1987)

4907.
[33] Duplantier B. and Ludwig A., Phys. Rev. Lett., 66

(1991) 247.
[34] Gel’fand I. M. and Yaglom A. M., J. Phys. A, 1 (1960)

48.
[35] Dunne G. and Kirsten K., J. Phys. A, 39 (2006) 11915.
[36] Toner J. and DiVincenzo D., Phys. Rev. B, 41 (1990)

632.
[37] Ussyukina N. and Davydychev A., Phys. At. Nucl., 56

(1993) 1553.

16002-p6


