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Abstract

In an earlier publication, we have introduced a method to obtain, at Ierdbe effective action
for d-dimensional manifolds in & -dimensional disordered environment. This allowed to obtain the
functional renormalization group (FRG) equation fér= co and was shown to reproduce, with no
need for ultrametric replica symmetry breaking, the predictions of the Mézard—Parisi solution. Here
we compute the corrections at ordetNL We introduce two novel complementary methods, a dia-
grammatic and an algebraic one, to perform the complicated resummation of an infinite number of
loops, and derive thg-function of the theory to order/iV. We present both the effective action
and the corresponding functional renormalization group equations. The aim is to explain the concep-
tual basis and give a detailed account of the novel aspects of such calculations. The analysis of the
FRG flow, comparison with other studies, and applications, e.g., to the strong-coupling phase of the
Kardar—Parisi-Zhang equation are examined in a subsequent publication.
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1. Introduction

In a series of recent articles we have constructed the functional renormalization group
(FRG) method for disordered systems, applied to specific situations and beyond one loop
[1-9]. This method is, apart from mean field the¢ty,12]using replica symmetry break-
ing (RSB) and some rarexactly solvable casd43,14], the only known analytical method
which promises to handle the strong coupling glass phase of disordered elastic $§stems
9,15-38] Such systems, modeled by an elastic manifold (of internal dimeriarith a
N-component displacement fieldx) (i.e.,x € R? andu(x) € RY), are of high interest for
numerous experimen{&5,36,39-44]This so-called random manifold model still offers
great theoretical challenges and a strong motivation is the hope to gain insight into glassy
physics. In addition, th@ = 1 case maps onto the much studied Kardar—Parisi—-Zhang
growth equatiorj45]. It exhibits a strong coupling phase for which the upper critical di-
mension is still under debafé6-50]

Higher loop studies of the statics of disordered elastic systems allow, in principle, a sys-
tematic dimensional expansion, in the simplest case arguad. They are however of a
rather different nature than in standdield theory for pure critical systenj$,7,10,31,33—
35,51-54] Thermal fluctuations are found to be formally irrelevant in these glass phases,
suggesting that the physics is controlled by a zero temperature fixed point. However be-
fore this fixed point is reached, the zero temgtare effective action is found to become
non-analytig17]. Although this allows to evade the so-called dimensional redu¢ssh
which makes naive perturbation theory useless and yields unphysical results, it also gener-
ates amazing new subtleties in the field thedhese were analyzed in a number of papers
[1,7,10,31,33-35,51-544nd although some solutions to the puzzles were proposed the
physics still remains to be elucidated.

An interesting limit where one can hope to gain insight into these formidable prob-
lems is the largeV limit. Since N = oo is formally the mean-field limit, it allows a direct
confrontation between the FRG method and mean field methods. A solution Of(tkig
random manifold model folV = co was proposed by Mézard and Parisi, using a sad-
dle point with spontaneous replica symmetry brealfihy,12] As in other models of
glasses, spontaneous RSB can be related to ergodicity breaking of the Gibbs measure into
several ground statgS6]. Although it offers a rather elegant way out of dimensional re-
duction, it is by no means clear that systems with (large but) fisiighould exhibit such
a tremendous degeneracy of low energy stated;there are in fact indications to the con-
trary [57].

It is thus crucial to develop another line of attack, even in that limit. This is what we
have achieved in a previous publication, where we have computed the effective action of
the theory at largev. There we have derived thg-function of the field theory to dom-
inant order, i.e., forN = oo [2,3,8]. We have discovered that beyond the Larkin length
the FRG flow freezes (at least for specific initanditions) and that most of the features
of the Mézard—Parisi solution can be recovetaterestingly however, in this formulation
there is no need for a spontaneous RSB ansatz with ultrametric structure. Thus one may
hope that it could be more adapted to real world situations than the RSB calculations. Such
RSB calculations of fluctuations around the mean-field solution have been attempted for
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the random-manifold problem only in the case of 1-step non-marginal RSB (with disap-
pointing resul{58]) and offer, in full generality, extreme complications, as is illustrated by
several studies for spin glas{68—66]

The next challenge is thus to extend the FRG in a lav¥gexpansion beyond the dom-
inant order (v = o0). This is the aim of the present paper. Since this is a complicated
calculation, and involves developing new methods which are of interest by themselves,
this paper is restricted to the calculation of the effective action and derivation ¢-the
function to order IN. This is performed a’ = 0 and at finite temperature. The analysis
of the resulting FRG flow, comparison with other studies, and applications, e.g., to the
strong-coupling phase of the KPZ equation is involved and is the subject of a forthcoming
publication.

The outline of the paper is as follows. In Sect®mwe give the general formulation of
the /N expansion for the effective action of the random manifold. Details and general-
izations are given irAppendices A—CIn Section3 we summarize the main results for
N = oco. Section4 explains the derivation of the/V correction by a graphical method,
which introduces a new type of diagrammatics. Sedierplains the principle of a second
and complementary method based on the algebra of 4-replica tensors. Sewtiotains
the full result for the effective action to ordey X, first expressed in bare parameters,
then as a function of the renormalized dimensionless disorder. This allows, in Séction
for a derivation of thes-function at7 = 0. The structure of the finité- g-function is
indicated, and details given iAppendix H A fool-proof diagrammatic version for fi-
nite temperature is given iAppendix D More details on the two main methods are
given respectively iPAppendix G (for the diagrammatic method, including an alterna-
tive derivation of theT = 0 g-function) and inAppendix F(for the algebraic method).
Appendix | contains a list of all integrals. A table summarizing the notation is found in
Appendix J

2. 1/N expansion of the effective action: general formula

We start from the partition function of an interfage = [ D[u] e "V[“/T in a given
sample, with energy

1
Hv[u]=/§(q2+m2)u<—q)-u(q)+fV(x,u<x)), (2.1)

q X

wheref, = [ (ng‘i[,, [.=[dandu-v=3Y"1u'v. TheO(N) indices will be specified
only when strictly necessary, and below additional replica indices for the replicated field
u; will be introduced,a = 1,...,n. The small confining masa provides a scale. To
obtain a non-trivial largeV limit, one defines the rescaled fialé= u/+/N and chooses the
distribution of the random potential to be rotationally invariant, e.g., its second cumulant

as

Vx, )V’ u')=Ru —u')sxy =NB((v— v’)z)ﬁxx/ (2.2)
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in terms of a functiom(z). Higher connected cumulants are scaled as

Vi(x1,ug)--- V(Xp, up)connz N(le,...,xps(p)(vla ) vp)a (23)

With 8y v, =175 8% (x1 — xp).
Physical observables can be obtained for Anfyom the replicated action at= 0 with
asource/ =+/N j as

Z[J]=/D[u]D[X]D[A]e—NS[“»X»M], (2.4)
1
NI NIE ﬁf(q2+m2)va(—q>~va<q>+f{U(x<x))
q X
1
= 5ihab(0)[Xab () = va(x) - 05 ()] = ja(x) - va(x>}, (2.5)

where the replica matrix field (x) = x.»(x) has been introduced through a Lagrange mul-
tiplier matrix field 1, (x). Here and below summations over repeated replica (afd))
indicesa, b=1, ..., n is implicit. The bare interaction matrix potential

1 . 1 L
U(X):_WZB(Xab)_ﬁZS(XaM Xbes Xea) + - (26)
ab abc
depends only on the matrix
Xab ‘= Xaa + Xbb — Xab — Xba (27)

and has a cumulant expansion in terms of sums with higher numbers of replicas.
The effective action functional'[«] is defined as the Legendre transformWfJ] =
In Z[J] and satisfies

F[u]—l—W[J]:/J(x)-u(x). (2.8)

Sincel'[u] defines the renormalized vertices, its zero-momentum limit define tioe-
malized disorderthe quantity on which we focus here. Thus we only need the result (per
unit volume) for auniform configuration of the replica field, (x) = u, = /N v,, which
takes the form

- 1 1 2 2 -~
I (v):= WF(M) = ﬁm vs 4+ U(vv), (2.9)
vyherevv stands for the matrix, - v,. This defines the renormalized disorder potential
U (vv) and, whenever it can be expanded, up to a constant,

7 1 B2 1 (2 .2 2

Uwv) = -5 > B(vZ,) - 373 > S(v2, vE vE) (2.10)
ab abc

It defines therenormalized cumulant®(z), S(---), etc. Here and in the following we

denote

Vab '= Vg — Up. (2.12)
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We aim at calculating the effective action up to terms of ordét/N?), i.e., the first two
terms in the expansion

U(vv) = U°vv) + %01@:}) + 0(1/N?). (2.12)

Details of the calculation, as well as expressions for non-uniform fields are giv&prin
pendix C For the leading term we find, from a saddle-point evalugi&jn

~ 1 > n n
T%wv) = U () + 5 > mln+1tr[—2TaX UG, (2.13)
n=1

1
k

The trace acts on replica matrices gndsatisfies the self-consistent equation

)
Xl =vevp + T / G (k) = vgvp + T8y + T Z L ([-2T0, U (x)]") -
k = (2.15)
Go(k) = [(K2+m?)s +2T9,U (x)] (2.16)
Note that ford < 2 no UV cutoff is necessary (apart for a constant term in the free energy),
while for 2 < d < 4 an UV cutoff is necessary (and implicit in the following) only far?

One also finds a compact and very useful self-consistent equation for the derivative of
the zeroth order potential

o0
3ap U (v0) = 8apU (xv) = apU <vv +THhS+T Y 1n+l(—2TaU°(uv))”).
n=1
(2.17)
Everywhere we denote By, U (¢) := 94,, U (¢) the simple derivative of the functidi(¢)
with respect to its matrix argumedy,,. (Note thatd,, U (vv) is afirst derivativeof U (vv)
with respect to the matrix elemeny - vp.)
Next, from calculations of the fluctuations around the saddle point, one obtaingithe 1
correction, which can be expressed in terms of the zeroth order quantities as

- 1
Ut(wv) = 5 / tr(In[Sacdpa + 2T dy,, 0y, U (xo)
q

x (T (q) + v G (9)va + v; Gy (9)ve)]). (2.18)

< (q) = f Gy (G (g k), (2.19)
k

Go(k) = [(k2 +m?)s + 2T 3, U°wv)] T, (2.20)

1 To obtain a correct continuum limif therefore should be scaled &s= 7/A9~2, when A is taken to
infinity.
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Fig. 1. Top: typical 7 = O contribution to B(v,p). Bottom: self-consistent equation at leading order for
E/(vfh) = B’ (x4»). The wiggly line denotes a derivative, and isntbinatorially equivalent to choosing one
B. At finite T one can attach an additional arbitrary number of tadpoles taBa\so note that no loop made
out of 3 propagators appears: this would be a contributiaié third cumulant (3-replica term), not calculated
here; it is given in8].

where here the trace acts in the space of replica pairs, {(#) te )", My q». Note that
U%wv) can also be replaced by the fill(vv) in the expression of/ 1(vv) with the same
accuracy (i.e., at leading order i ¥).

The saddle-point equatiof2.17) for the zeroth order and the result for th¢Nl-
correction(2.18)are still formal as they encode the full renormalized disorder distribution.
To yield the renormalized disorder cumulants (2a10), (2.12)they must be expanded in
the number of replica sums, i.e., in cumulants. In the following Se@&jome recall the
results forN = oo, and proceed with the non-trivial evaluation (@.18)via a graphical
method in Sectiod, and via an algebraic method in Sectn

3. Review of theresultsfor N = oo
In this section we review the main resultsMt= co. Details can be found if6].
3.1. Self-consistent equation &lt= co
We start by recalling the cumulant expansion and only derive the result for the second

cumulant. Higher cumulants are given[B]. One studies a bare model, where only the
second cumulant is non-zero

1 -
U(x) = —ﬁgmab) (3.1)

and calculates the renormalized disor@@210) (We will drop the index zero on the cu-
mulant functions, indicating the leading order). The self-consistent equ&tibn)can be
expanded in sums with increasing numbers of replicas. We only need

[-2130°0wv)] , (a,,ZBm— ;) (3.2)
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[(—2700°w)?],,
( ab Z B, B, — B, Z(E;f + B+ E;L.E;b) oy (3.3)
c

whereB’ =B b) (recallvab = (vq4 — vp)?). Here and below the dropped terms contain
sums with too many replicas to contribute to the final result for the self-consistent equation
of the second cumulant (2-replica term). One thus has

50 =02, + 2T I1(1 — 8,p)
1 - ~ 1 - ~ - .
+ 412[E > (B,.+By) — E(B;a +Bpy) + By —Sap Y ng] +.... (3.4)
c c
The self-consistent equation becomes

B’( v —SabZB vs.) + 3-replicaterms= B'(x —SabZB (3.5)
and can be solved by appropriate Taylor expansion of the r.h.s. It is solveg4or
1 ~ -
+ 7 D Sung t D= B(x). (3.6)
g gh
Itis then easy to see that the second clantsatisfies a closed equation at dnhy

B'(v%,) = B'(v3, + 2T Iy + 41x(B' (v2,) — B'(0))), 3.7)

with no other contributions from higher cumulants at ghyA more detailed derivation is
given in[6].

3.2. Derivation of the FRG equation at = oo

From the previous section the renormalized second cumulant of the disg(dersat-
isfies the self-consistent equation

B'(x)=B'(x + 2T Iy + 41>(B'(x) — B'(0))). (3.8)
Itimplies

B'(0)= B'(2T 1), (3.9)
as well as

B"(x) = B"(x + 2T 11 + 41>(B'(x) — B'(0)))[1+ 412B" (x)]. (3.10)

We now derive the corresponding exact FRG equation. Taking the derivaljygives
mdu B’ (x)
= B"(x + 2T I + 413(B'(x) — B'(0)))
X [2Tmdy Iy + 4(mdy 1) (B’ (x) — B'(0)) + 4lomdy B' (x) — 41md,, B'(0)]
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E//(x) -, -
=———  [2md,TIL +4(md,l>)(B'(x) — B'(0
" 4123/,(x)[ m T 11+ 4mdy I2) (B’ (x) — B'(0))
+ 4Imdy B' (x) — 4Iomd,, B'(0)]. (3.11)
This yields
mdu B’ (x)
= B"(x)[2m3,, T I + 4mdy 1) (B'(x) — B'(0)) — 4I,md,, B' (0)]. (3.12)

Thus one has also

B"(0)
1+ 41,B"(0)
Hence one gets finally

mduB'(0) = 2m oy, (T 17). (3.13)

9 -
— B
mam (x)

~ a 1 B - -
=B’ 2lm—ThH)|—————— +4m—1© )(B'(x) — B'(0)) |, (3.14
(x)[ (’”am 1>1+ 4123,,(0)+ (’”am 2)( (x) ())} (3.14)

which can also be integrated once oveAs emphasized in Ref6] it is exact atV = oo
for anyd and correctly matches the 1-loop FRG equation obtained by Balents and Fisher
forany N but only toO(¢), e =4 — d. It can be solved directly, or equivalently the self-
consistent equatio¢8.8) can be inverted. The corresponding solutions for various models
are discussed if6] and compared with the Mézard—Parisi solufibh] obtained in a rather
different manner through a replica-symmetry-breaking saddle point.

Before discussing specific models, we now turn to the evaluation of the effective action
of the FRG and th@g-function to the next order in/Iv.

4. Correctionsin 1/N, viathe graphical method

In this section, we present a graphical method to calculate the correctidgnattorder
1/N. An algebraic method is presented in SecBoBoth methods are completely indepen-
dent, since they use orthogonal ideas. They were performed independently by the authors,
each on a different continent. The agreemanttw final result gives some confidence that
it is free from calculational errors.

4.1. General considerations for a scalar field theory
Let us start with some general considerations about which graphs contribute at a given

orderin I/ N. For that purpose, we consider a genepal¢, no disorder) scalar field theory,
with a N-componentfield’ (x),i =1, ..., N, and interaction

Sint:N/V(%2>, (4.1)
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Fig. 2. A typical “tree-like” diagram contributing to the leading order in theviexpansion of the renormalized
potential V (effective action). The numbers 1, 2 and 3 depiaicial features discussed in the main text. There is
afactor YN per dotted line and a factor of per “small loop” of propagators (solid lines), thus the overall factor
is N as it should from(4.1). This graph does not contain any “big loop” (see text).

where theuu-correlations of the free theory(= 0) are given by

(' Cou’ () =8"C(x —y), (4.2)

with i, j =1,..., N andC(x — y) independent ofV is denoted by a solid line ikig. 2
Graphically, we can denote this by

Sint = b2+~|— % ...... < + %>+<+ cee (4_3)

where all coefficient$; are of order 1; there is thus a factor ofAL per dotted line.

The renormalized potentidl (effective action) is given by the sum of all 1-particle-
irreducible diagrams. They must thus contain “small loops”. To leading ordefAnthe
following diagrams are possible:

e Tadpoles, contracting ani? with itself only. The factor of¥ from the “small loop”
(the Zf\'zl over the number of components) compensates the factor fbm the
argument ofV (ii2/N). (See 1 orFig. 2)

e Closed “small loops” with 2, 3, 4 or more vertices, as denoted by the same number on
Fig. 2 adding one more vertex gives a factor/éf see Eq(4.1); this is compensated
by using an additional?/N.

o Note that all verticeg?, (ii%)2, a.s.o. contribute equivalently. (See 5, 6Fg. 2)

Note that all these diagrams are “tree-like” diagrams, where the branches (made of
“small loops”) are made out of the diagrams through which no total momentum is running.
We will call them “tree-like” in the following, to distinguish them from normal trees. They
are resummed by the saddle-point equations fggeendix B or from graphical inspec-
tion, as done here: first of all, insertions ¥f into a line of propagators act like a mass,
leading to the replacement of 2 4 m?) by

1

k2 4 m2 42V (1)

G (k) := (4.4)
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O ’Q ~~~~~~ OO p— 0

loop ; O
minimal
QO ............ O ............ O ,,,,,, Q loop

Fig. 3. Typical graphs which conbrite to the renormalized potenti&l to subleading order in/V. The “big
loop” (a loop made of loops, see main text) accounts for a factoy 8f, the same is true for the “minimal loop”
on the right, which is a “big loop” in disguise (as explainie the main text). The given diagram is thus of order
1/N2.

The effective potential’ is obtained from

7/ 1-4'2 /
Vv (ﬁ) =V'(x), (4.5)

-

u 1
=2 fG(k) - f — (4.6)
N / N / k2 +m?+2V'(%)

<
N

Note that the derivatives are graphically understood as follows: choosing one vertex (deriv-
ative!) in the effective potentiaV is equivalent to having a bare vertex with the same
derivative taken (thu®’) and attaching to it loops made out of correlation-functions. At-
taching any number of such loops ¥g amounts to shifting its argument, as can be seen
from Taylor-expansion. In these loops, again derivatives (one neetdsattach the loop)
of the effective potential are inserted. The latter can thus be writte’ agith shifted
argument to account for more things to be attached toWthisr equivalently using4.5)
to aV'. This result coincides witfB.22).

Diagrams at next order/IN contain exactly one “big loop”, sefeig. 3. Take a “tree”
(as, e.g., the object oRig. 2) and glue it together to form a “big loop” by identifying
two vertices; this does not change the factorhoffrom the loops, but one looses one
factor of N from the missing vertex. Note that also the “minimal loop” marked-an 3
belongs to the same class, even though it looks different. The “big loop” demands to sum a
series of diagrams at non-vanishing momentum, and then to carry through the integration
over momenta. However the simplification raims that any added “tree-like” branches are
resummed by replacing the argumentbfrom ii?/N to x.

Another feature arises at subdominant order: in the “big” loop, one may pick any given
small loop (i.e., the loop made out of correlation-functions) and replace one of the two
correlation-functions byi?/N: this means that the corresponding fielddid not get con-
tracted. Since the remaining correlation-functions force their indices to be equal, this gives
a factor ofii? = N x (ii%/N), thus contributes the same factor®f Note that these dia-
grams do not contribute to the effective actiat leading order, which is treelike, since the
resulting diagrams would be 1-particle reducible.
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To resum the order/IV-diagrams one has to sum over loops of all sizes. The result is
- (2 1 1 B i? g
‘“’(ﬁ) - _WXEZ/[‘ZV (X)<12(p) +2ﬁG<p))]
=t p
—i/In 1+2v" o | Ia( )+2ﬁ—26( )
= oN X\ L2(p oW (4.7)
P

Ix(p) = / Gk + p)G (k). (4.8)
k

This can be compared to the resultsAgpendix B and more specifically to formula
(B.39).

4.2. Elastic manifolds in disorder: general considerations, building blocks

Let us start the treatment of the disordiraodel with some general considerations.
First to organize the /IN-expansion, one may still use the diagrammatics of the previous
section, which shows th@ (N)-index content. The same diagrams still exist, but they now
also have a complicated replica contenteTeplica content can be explicated by using
“splitted vertices” instead of the unsplitted araf the previous séion. The corresponding
replica diagrammatics, which shows the replica structunly was explained in details in
[7]. This can be drawn as

> B((va—w)?) =0 *-* (4.9)
ab

where adashedine connects the two dots, standing for replieaandb. In order to avoid
confusion, note that this dashed line is different fromdb#edline used inFigs. 2 and 3
as well as Eq(4.3)to show theO (N)-structure.

Below we introduce a third diagrammatics which allows to trbokhthe replica and
the O (N) indices, not an easy task. Before doing so let us explain a few points.

Since we are only interested in the corrections tohieplica part B, of the effective
action, there are man§ (N) diagrams which do not contribute.

At dominant order[ig. 1) small loops with three vertices (see 3Hig. 2), or more, do
not contribute taB,, but to the third cumulant, or higher, as can be seen from

, (4.10)

which is a diagram showing only replica indic@,ndices being implicit. Note that solid
lines identify replica indices. This is why iRig. 1 only chain-diagrams and tadpoles (the
latter are omitted for simplicity of presentation) appear, rendering calculations appreciably
simpler.
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Fig. 4. Example of a big loop made out of small loops, ifitsal replica notation (left). It contributes to the
2-replica part (i.e., the disorder) at ordefANL Note that there are two constraints more than needed to have a
2-replica term. Thus two redundant constraints cafm@sted”, by cutting each of the solid lines exactly once,
either by inserting &’ or leaving auu uncontracted, as is done on the right.

At subdominant order in/INV, only diagrams with one “big” loop (general feature of the
order I/N discussed in the last section) made of any number of “small” 2-loops and only
exactly two “small” 3-loops can contribute to the renormalized second cumulant. Each
small 3-loop can also be piaced by an uncontracted:. To understand this, consider
the simplest “big” loop, i.e., the railroad diagram, which is drawn on the lefigf 4
in splitted replica notation. It contains exactly two closed propagator lines, which over-
constrain the replicas to be equal. (These are the inner and outer solid lines on the left of
Fig. 4) These over-constraints can be relaxed, by cutting each line exactly once, in order
not to get a higher replica term, as is illustrated on the righfigf 4. This “cutting” is
possible by either inserting into a propagator a vertex (which contains two replicas, thus is
not “replica-conserving”) or by leaving one: uncontracted. This is the basic principle,
whose careful exploration leads to all of the diagrams at ordaf, s we will discuss
now.

In order to do so, we have to introduce a new powerful graphical notation:

= B(%), (4.11)
< = B (Xap)(iia — iip)%, (4.12)
a a 1 - -

y == 5= B Gan) 5[ — )] (4.13)

where lines departing in the same direction belong to the same vector-index, and a contin-
uing line represents the same replica.
We also use the following short-hand notation

B, := B’ (Xab) (4.14)
and similar formulas for the higher derivativds, := B” (xa»), etc. Another frequently
used shorthand is

B, :=B,,. By :=B),, etc. (4.15)
In order to be able to resum the “big” loop, we will now introduce some building blocks.
Since there can be any number of 2-loops in the “big” loop one needs to define the re-

summed chain
a a a a a a a a
b1<>(b:=bIb+b]<>Ib+b]©.<>(b
4y, OO (4.16)
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We have with momentump running through the diagram

L0 O L= AR B Rap), = (4.17)

with
In( )_/‘ 1 1
2P ~ G2 e mE k= pl2? e

(4.18)

Let us introduce a compact notation for the integrals, summarizAgpendix L (All our
notations and important formulas are also summarized in the taBlppendix J

_ e 1 - 4.19
Jap(4) = Jop '_k/((k+q/2)2+m2)°‘ ((k—q/2)2+m?)F’ @19
Ia(p) =1 ()—f = > (4.20)
3(p):=J12p ) (et p/22 4 w2 (k= p/2) +m? '
14(p) := 7 ()—/ = = (4.21)
4(p):=J22(p et p/27 4 mPR2 (k= p/22 + mDE '

Thus

oy KOO = [4np)B )] % = (4.22)
N o= 41 B" ()] °y = (4.23)

and so on. These chain-like diagrams form a geometric series, which is resummed as

ZC a 1 aIZ

b T 1= 4L(p)B" (Rap)

1
=t 5 [wa = up)*]Ha(p)[ (w0 — )?]. (4.24)
We have introduced,;(p), the “effective”B;/b after resummation
B" (Xab)
Hap(p) = Kab (4.25)

C1—-4L(p)B" (Xap)

which we equivalently can express at leading order/i¥V throughB” (jtap) = f?;’b/[l +
41,B!,] as

DI

B
Hap(p) = ab — (4.26)
’ 1+ 4l — L(p)BY,

We also definé?,(p) as

B"(x (v)) B (v?)

H, = — = = ,
») 1-4L(p)B"(x(v)) 1+ 4[I2 — I2(p)]B" (v?)

(4.27)
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valid again at leading order ir/ V. Note that the denominator {@#.27)reflects the renor-
malization of B: the divergent integral>(p) does not appear alone, but together with its
counter-term, the integrdb(p) subtracted ap = 0. It turns out that at zero temperature
the above are the only buildijnblocks needed. However @ > 0 one needs two more
building blocks which are quite non-trivial. As was showr7h non-zero temperature di-
agrams contain at least one replica “sloop”; these are exactly the over-constraining lines
discussed above and &ig. 4. There is one factor of for each such “sloop”. The addi-
tional building blocks thus contain sloops: one sloop at oftleand 2 sloops (an example
is on the left ofFig. 4) at orderT2. Higher orders irf” are only possible at ordey &2, or
higher.

To explain the construction of these additional building blocks, which is subtle, one
goes back to the diagrammatics showing only replica indices.

The first building block is the “moon-diagram”. This is the sum over all diagrams, which
at both ends have lines joining only one of the both replicas, and which enforce the joined
replicas to be equal:

. e o *
aAbZI : |_|_| ' 1
[ ] *

+I 1 1 1

* L]
4 : e S S P (4.28)

Note that we construct the chain from left tighit. Otherwise the graphical representa-
tion of the perturbation expansion is not unambiguous, as can be seen from the following
example

! . 4 (4.29)

Drawing first the two left-most lines, the two right-most ones can no longer be added,
since in the middle, there iR” (u, — u,) = R”(0), which does not depend on the field.
Converselyif we decidedo first draw the two rightmost lines, then the two leftmost could
be drawn. Consequently the diagrams to be draw@ ia8)would be different (actually
they would be nothing but the diagrams mirrored such that their left and right ends are ex-
changed), even though the final result wouldheegsame. This phenomenonis detailed (for
a different diagram) irAppendix E Note that there isor a contradiction, nor an incon-
sistency of the approach.merely means, that when using these kind of rules, which have
the advantage of simplifying calculations importantly, one has to order the contractions.
An approach, which does not have this deficiency, but is very complicated, is explained in
Appendix D We will use it there to recalculate diagrg?28)

We claim that

AN S e s L (- AR,

(4.30)

The second identity is trivial parrbation theory. The non-trivial statement is the first
identity. To prove it, we remark that starting with (recall we construct from left to right)
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I_—"no further contraction can be made. Therefore, we have to stari@'tjDI. At
chain-length two, the only possibility is

* L

! ! 3 (4.31)

At chain-length three, there are two and only two possible prolongations, which have no
additional free replica-indices:

L] ¢ o L]
. ' ' '+.'<—_>:' ~ T~ -0 @32

These diagrams cancel. The same is true for longer chains, since at any intermediate posi-
tion (i.e., not the first and not the last lines), there is always the combination

Y ¢ .’> * (4.33)

which when closed at the right end wifi~—_ ! cancel. This completes the proof.

The last diagram which we need is the “half-moon-diagri==x, which is similar to
the moon-diagram, but does retforcethe replicas at its ends to be equal. However it will
always be evaluated at coinciding replicas. (It thus contZ=x as a subset.) We claim

that
[ ] ® o :: [ ] [ ] [ ]
a P Q & — | : I_I_ 1 ! 1 _I_ 1 : 1 1

= :O(l +212(p) By, ) (1= 412(p) By,)- (4.34)

| | B()?ab)
* S a2
= b B/()_(ab)(ua —up)
@ @ o \lpm =292
b = b B//(Xab)j[(uu —up)©]
a b 5 C(p)= Sab
ab p2+m2
a—X X—p | ¥,
a 4} -
= D« _ B"Gap)
b b | PP = 0 5,
o Ay Sapl2(p)(1—412B]),)
a A, I>(p)(L+ 21>B),)(1—4I2B)),)

Fig. 5. Building blocks of the perturbation theory.eSmain text. The last two blocks only appear at finite tem-
perature.
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This is proven by first remarking that all other diagrams can be generated from those: Add
left of a ! or a~_ "\ the combination

’—’+:> )¢ (4.35)

they cancel pairwise. The same is true for chains made out of the combi°—°nation-+
'~ Finally note that one cannotinsert m@re__\!, since they would lead to higher
replica terms.

All rules and building bocks are collected oRig. 5.

4.3. Zero temperaturel{ = 0)

We start our discussion with zero temperatdie; 0. We have to construct all diagrams
with the topology of a loop in the larg&-limit. Note that, e.g., the diagra(.17)counts as
a line in this construction. The building blocks are giverFog 5. At zero temperature, one
needs all possible constraints on the sum of replicas. This means that one car~=xuse

. . . . . .
or £/, which both contain one non-replica conserving U@> at zero temperature.

At finite temperature, one can use one at offlend two at ordef’2.

At T = 0, we find the following diagrams. Note that the notation is such that crossing
lines do not intersect. All the diagrams correct the effective acBiamithout any further
combinatorial factor

g '+ ( ):8/C(P)2[Hab(p)v§b]2’ (4.36)
p
p

(4.37)

)4
.@.* ( % )=8 f C(p)2v2, Hap(p)(BL, — BY), (4.39)
14

+ =16 [ [ Hanp) B~ 5?10, (4.40)
k p

The combinatorial factors can, and have bekacked by straightforward calculating the
diagrams withH,;, replaced byB/,, both by hand and computer-algebraically.
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The idea of how to construct these diagrams is straightforward: we start by a closed
chain of 2-loops, which disregarding th@&(N)-structure has been drawn on the left of
Fig. 4. Then one has to cut each line exactly once. These cuts can either be done at different
positions in the “big” loop (diagram@.36)to (4.38), or at the same position (diagrams
(4.39)and(4.40)). Then there is the possibility to either insert into a propagator a vertex
(these are the terms proportional B, — Bj) or not to contract two fields (the terms
proportional t0v3b). The left and right diagrams ieach equation are distinguished by
their twist: the left one is the untwisted one (as the one drawn on the I&figo#), the
right one the twisted one, obtained by cutthgth lines between two neighboring vertices,
and reglueing them together with the two lines exchanged (this gives one single propagator
line running twice around.) Note that the twisted diagrams do not appear in the final result,
since we suppose analyticity f@, such that, e.g., ligL,, Hapv2, = 0.2

As discussed above other imaginable contributions are 3-replica terms, where one is not
using the maximal number of possible constraints on the number of free replica-sums (one
line cut twice instead of each line cut once):

= 3-replicaterm (4.42)

3

= 3-replicaterm (4.42)

),

We note contributions which vanish identically for completeness:

@zq a3
.@ a

4.4. Corrections at ordef”

We remark that adding an additional line to any object already constructed at grder 1
results into a diagram of higher topology in the lafgdimit. This means that the diagram
does not contribute, a statement which remains true to any order in perturbation theory.
The only remaining possibility is to proceed as before, but constraining replica-indices to
be the same by more than one propagator (line). Example~=zand #=. Another
example would be a “circular railroad diagram”, see left-gj. 4 and Eq.(4.50) Since
we had two lines to “waste”, it means that there will be a term of ofd@and 72. (As a

2 Note that this construction suggests how to constadditional “anomalous” terms, known, e.g., to be
necessary at 2-loop ord§r,50]. We do not present them here, but relegate their discussion to a subsequent
publication.
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side-remark, we note that at ordetN2, there will be terms of up to order4, since for
the leading term one has to cut up to 4 lines, a.s.0.)
We now give the ordef -contributions:

@_4T/ = +’;(1p), (4.45)

@= 167 / I3(p) Hap (p)[B,, — BY]. (4.46)
14

These are the contributions, where one replica-line has been cut by the insertion of either
v? or B/, whereas the other one (on top of the diagrams) is redundant.

We can also use a double (redundant) line, using the moon die£=nStarting from
Eq. (4.45) and inserting it into the bubble line, we find

@— 8T / C(p)v2,Hap(p)?L(p)[1— 412(p) B, |- (4.47)
P

Starting the same procedure fr¢t46)gives

@— 327 / Hap(P)2(Bly, = Bi) Io(p) I3(p)[1— 412(p) B, | (4.48)
p

Note that there is also a “twisted” version(@f46)xnd(4.48) which add up to

@+@_ —16T/Haa(p)B;b13(p)[1+212(p)3;’a]. (4.49)
P

4.5. Corrections at ordef2

We continue with diagrams at ord@?. There is one diagram, which does not neces-
sitate any cut in a replica-conserving line, thus has two redundancies. It is the “railroad-
diagram”, i.e., a closed chain, with at least one vertex. Note that contrary to what one might
expect, for one vertex this it a product of two tadpoles summed at leading order, even
though it looks alike. However, the structure in vector-indices makes it a loaj ire.,

a subdominant term. Since no vertex is marked, the sum is not a geometric series, but a
logarithm:

6 ; % TZ/Z B”(Xu)lz(]?)] (4.50)
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This can be written either as a function of the bare disorder, or Usitig.,) = E;’b/(l+
41,B!,) (valid at all T) as a function of the renormalized disorder:

T2
@z_?/ln[l—412(p)3//()zv)]
P

T2 m<1+4z§”<v>[12 = 12<p>]>

2 1+4B"(v)1I»
P

(4.51)

Note that this is the term where a double, completely replica-conserving line goes around.

More diagrams are possible, with one and two defects, i.e., replica-line cuttings, equiv-
alent to insertingZ==x or /= Using only one cut, both outer indices are forced to be
equal, and we have to inse==, calculated in4.34)

®= 2T2/ L(p)Hap(p)[1+ 212(p) By, |[1 — 412(p) By, ] (4.52)
p

The overall prefactor of Eq$4.51) and (4.52)s such that the term linear iﬁ;’b comes
with a factor of 2, and they both add up to a factor of 4, which can be checked with a simple
1-loop calculation.

The remaining term is obtained by cutting two-replica lines, using the replica-
conserving mooL =, This gives the contribution

@— 212 f [12(p) Hap (p) (1 - 4L2(p) B, | (4.53)
p

There is an additional anomalous term. It is nothing but a 1-loop diagram, of the form
T~ where the right-most vertex is the sum of all diagrams at offers given by
(4.50) to (4.53) evaluated at coinciding replicas:

Io(p)[L+ 215(p) By 1B
1—4ly(p)B,

2
AT = —16T2123;b/

p

— _167%1B, / I2(p)[1+ 612(p) Hua(p)1BL. (4.54)
)4

This can be reexpressed as a functioBobee Sectio.2 One might suspect that longer
chains can be constructed to connect #jg with the derivative of the effective action at
orderT?, taken at coinciding indices. With the same arguments as already made a couple
of times above, the insertions pf 4+ I~ pairwise cancel. Also note that one
could of course draw all these diagrams; there is however no clear advantage of doing so.

The alert reader will also wonder why we have not mentioned any such term at order
7O or T'. It turns out that the effective action at orde?, when derived once and taken at
coinciding arguments, actually vanishes (supposing analyticity!). At dfdéne term in
guestion is nothing bu#.49)
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One caveat is in order: even though this procedure is simple and elegant, there are many
hidden traps. It is therefore good to check this calculation by an explicit loop expansion,
using the excluded replica formalism. This has been done up to 8-loop order, and relies
heavily on computer algebraic support. The procedure can also be formalized, leading
to an additional more rigorous but somehow elaborate approach, the “excluded replica
formalism”, which is presented iAppendix D

5. Correctionsat order 1/N, via the algebraic method

The calculation of the renormalized disorder to next order requires the calculation of
the following trace in the space of four replica matrices, f@x1.8)and(2.19})

~ 1

Ul(vv) = é / tr[ln(ﬁacﬁbd + Mab,cd)} (51)
q

Mab,cd = Mab,efNef,cd(Q)a (52)

Mab,cd = (ZTaXab aXCdU(X))‘X:XU’ (53)

Neea(q) =TI (q) + G (q)ve - va + G (9)vy - ve. (5.4)

Hﬁf’Cd(q) has been defined if2.19) Expression(5.1) can be computed by systematically
expanding in sums over increasing numbers of replicas, as was done at dominant order.
However the calculation is considerably more tedious in the present case. We give the
main features here and relegate detaildppendix F

To obtain the correction to the second cumulant of the disorder, we will only need the
two-replica part of this function, which we denabelU(vv) (P, X denotes the part of an
expressionX which contains exactly free sums over replicas). Since the trace already
involves at least one replica sum, we can and will truncate all expressions given below by
discarding all terms with two or more repdisums. This can be checked systematically
and originates from the fact that once a replica sum appears in an expansion, it can never
disappear later on. As a result, we find that third and higher cumulants do not appear in the
correction to the second cumulant, as they involve higher replica $ums.

The expansion of the matricég, N and M are computed ilppendix F It is crucial
to write explicitly all Kronecker-delta functions. The matr is found to have the form

1 _
Mab,cd = mabé (8addbe + Opadac) + (L + mab)Mab,cda (55)

wherem,y, is symmetric inu, b andM is symmetric ina, b and symmetric ire, d (but not
necessarily in exchange @f, b) with (¢, d)) and can thus be parameterized as

Mab,cd = SubcdXa + aabcyad + Sabdyac + SacdZab + SbedZba + Sactabd + Sadtabe
~+ Obetbad + Sbatbac + Sabdcalac + SabVacd + ScaWabe + Sabeds (56)

3 This formal expansion in replica sums assumes some analyticity property in a way which should be analyzed
later.
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where all Kronecker-delta’s have been written explicitly. Also note thay is sym-
metric in ¢ and d; wype IS Symmetric ina and b and g,pc.q IS Symmetric ina, b and
symmetric inc, d, whereas all others have no such symmetry. These matrices form a
closed algebra which is studied Appendix F Unfortunately this algebra is rather large,
even though it is the smallest algebra sufficient for the present calculation. Note that
we have explicitly separated the part proportional to the (symmetrized) idef)ﬂy, S
1/2(8a08bd + 8ad8pe)-

The first preliminary step in the trace log calculation is to pfabeat

tr[ln((sac(sbd + Map cd)]

- _Zln(1+mab) +3 Zln(1+maa) +tr[|n(5(u5bd+Mab Ld)] (57)
ab

where in the first two terms the In simply acts on numbers. This formula is>dida
matrix M symmetric ina, b and symmetric irr, d. The last trace log is equal to its usual

p+1
series expressiop, , >1( l[)) (Mq)ab ab _ o _
It does not seem p035|ble to express the trace log in general but here it is possible to
expand it systematically in the number of replica sums. Let us sketch the method that we
found most convenient. We write

1

tr[In(L+ M)] = —f (j/\—ktrM*, (5.8)
0

M* = @A 4+aM)"1 -1, (5.9)

and we want to compute all terms &, namely:

MZ,Lb,Cd = Sabcdx; + (Sabcy();d + (Sabdyz;c + (Sacdzﬁb + Sbch;;a + Sactjbd + (Sadtjbc
+ abctgad + abdtéac + 5ab5cd”2c + 5abvécd + 8011 wibc + gt);bcd' (510)

We do this by using the algebra detailedAppendix Fto solve the following equation,
equivalent ta5.9).

AM + M* + A MM* = 0. (5.11)

One projects onto each componenty, z, ... and onto terms with an increasing number
of replica sums. What we want axé, y*, z*, ... as a function of the known, y, z, ...,
which parameterizé (their expressions are given below).

4 Proof. Write M = A + (1 + A M, where Lap,cd = Sacdpa- Then tfin(1l + M)] = trin(1 + A +
1+ AHM)] = In(defL + A + (1 + A/)M]) = In(def1 + A]) +In(def1 + (L + A)~1(@ + A")M)). Fur-
ther Indef1 + A]) = tr[in(1 + A)] = 5 Zuh IN(L+ mgp) + 5 Zu IN(L + maq). Since Map ca = Mbpa.cd
the following identity holdsAM = A’ M, such that liidefL + (1 + A)~ 1(]1 + AHM]) = In(defl + M]) =
trlin(1 + M)]= =3, o(=DP trIMP]. O

5 Note that the naive identity [In(8,c85¢ + Mab.ca)l = tr[In(%(aMBbd + 84d8pe) + Mab,cq)] is incorrect.
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More specifically one writes:

Xq = Poxy + Pixg + -+, (5.12)
Xy = Pox}y + Pyx)y + - (5.13)

and similarly for all other components z, 7, ... of the matricesM and M*. Using the
algebraic rules for the product of two matrices, it turns out that it is possible to €li/&)
for all components of/? in an iterative manner. This is simplified sindgx, = 0 (see
below). First we determine all zero-sum componets*, Poy”, ... from the correspond-
ing Pox, Poy, .... It can be done in the following order: first CompLR@yé‘b together with
Poy?,, then similarly Poz*, Pox*, Pot”, Pov*, Pow*, Pog*. Second one can proje@.11)
onto one-sum terms, and determiPec”, P1y”, etc.
At then end we need:

1
d
Potrin[1+ M]= — P 5(tr M), (5.14)
0
Py(tr M*) =Y "(Prx}+2P1y}, + 2P1zy, +2P1t) + Prt, + P10}, + PLwl,,)
a
+ (2P0t + Pogipas)- (5.15)
ab

The remaining integrations overof each term are found to be of the fogfgl daar /(1 +
2yaar)? = 2F1(1+ p,q,2+ p,—2y44)/(1 + p) which for integerp andg can be ex-
pressed as rational fractions.

The detailed calculation is however veryligus and has been performed using Mathe-
matica. The resultis given in the following and is found to agree exactly with the graphical
method of the previous section. Here we give the zero-sum and one-sum components of the
matrix M needed for the calculation df,trin(1 + M). They are calculated frorfb.1),
seeAppendix F and read:

Pox, =0, Pouge = —Poyac, Powgeq =0, (516)
_ 2
Poyaa = I2(q)AL,B!,, Al,= , 5.17
0Yad Z(Q) aaPgyq aa 1_ 4B”(2T[1)12(6]) ( )
_ 2
Pozap = L2(q)A? B!, Al = ——— (5.18)
a ab ab ab — 1 4B//b12(q)
1 q pl n/ n/
Potaba = _?AabBab[(vb —va)vaC(q) — 213(q)(Byy — Bl p)]. (5.19)
1 _ - -
Povacad = ——Aza{ | (va — va)veC(q) — 213(q) (B}, — By,) ]
+ B[ (ve — va)vaC(q) — 213(q) (Bl — Bp)]}, (5.20)

2 i} By 3 B By
Pogabea = ﬁC(Q)ZAZbBZb(va — vp)[(Bhe — Bye)va + (Bpy — Byg)ve]

4 _ - o~ ~ o~ - o~ - o~
- ﬁ14(‘1)AZb v (BaaBpe + Byg By — BugBoe — By Bye).  (5.21)



P. Le Doussal, K.J. Wiese / Nuclear Physics B 701 [FS] (2004) 409-480 431

where we have definel, = B'(v,) and

Bl,=B"(a). Bl =B"(Xab), (5.22)
- ~ 1 - -
10 =2, 42T + 412(B;b - E(B,’m + B;b)> (5.23)

with B! = B"(2T I). All integrals/, and[, (q) are defined in Sectiof.2andAppendix |
andC(q) = 1/(g%+m?). We recall thai3 is the bare second cumulastthe renormalized
one and satisfieéc’lb = B’(x¢%) at dominant order, which is sufficient for our purpose.
For convenience we usg?’ := )”(52) to denote the zero sum part in the decomposition
X = Xap + 8abxa in the notations of6].

For the 1-sum terms we need only the diagonal values:

Pixg =—Ia(q)A%. Y Bl (5.24)
f
8 1 -
P1Yoa = — B" (2T ) I TB" (2T 1) 11 B/
1aa = 7 [1_43,,(2T11)12(q)]2[ (2T 11)I3(q) + TB" (2T 1) I2 z(q)]zfj ”
2 1 _
_ = B,
T 1—4B"(2T11)I>(q) Zf: af
x [C(q)(a — vf)va — 213(q)(B'(0) — B);)]. (5.25)
1
P1zgq = —Pilga =

T [1—4B"(2T 1) I2()]?
X

[B"(2T 1) I3(q) + TB" T 1) Ial2(q)]) Y By, (5.26)
7

8 1 N
Pivgge=— 1 B// B/ —B/ 0
L T2 1—4B”(2T11)12(61)|:4(Q); or (Bag = B'0)

+C@?*Y_ Biy(Boy = B'(0) (va vfm]. (5.27)
f
In addition sinc&,,, = 0 one hasPi ;4,4 = 0; Piwgaq = 0 sincew,p. = 0 and it turns out

that P1g,qa44 iS NOt Nneeded.

Starting from these values one performs the algebra and olitains (1 + M). To this
one must add the “simple” part @k trln in (5.7)above which one expands as follows:

P2|:%Z/trln(l+ma;,)+ %Z/trln(l+maa):|
ab 4 4 q
1 _ 8 1
= EZfln(l—43gb12(q)) — 7/{
ab q

1-4B"(2T 1) I2(q)
q

x [I3(q)B" (2T I) + TIZB’/’(lel)Iz(q)]E;f}, (5.28)
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wherem,, is computed imMppendix F
To translate the results into terms of the renormalized disorder, we can perform the
replacements

B", = B!, /(1+4LB)), (5.29)
B"(2T1) = B"(0)/(1+ 41,B"(0)), (5.30)
B, = B,/ (14 412B)),), (5.31)
B" (2T I) = B"(0)/(1+ 418" (0))°, (5.32)

since to the same accuracy we can use in all above expressions the dominant order or the
exact one.
The “simple” part of P> trIn thus gives

a(simpleé(x)
8T . 2| 1 1+4B"(x)[Iz — L(p)]
=— | I H B — 13— 1 =
Nf 3(p) Ho(p) B () + N{ 2/n< T TR
14 )4
B///(O)

+etz [ (B )
p
where integrals are defined Appendix L

. _ , (5.33)
(1+412B"(0))2(1 + 4(I2 — I2(¢)) B”(0))

6. Resultsfor the effective action

The 1/N correction to the 2-replica part of theffective action in terms of the bare
disorder can be written as

Py (wv) = —=— > " 8B(v2) (6.1)

with vﬁb = (vg — vp)2. It can be read off from Sectiods3—4.5 We will give the expression

for the correction to the renormalized second cumusdhtr) both in terms of the bare
disorder and the renormalized one.

6.1. The effective action as a function of the bare disorder

We find

- 1
8B (vv) = N [8/ C(p)z[Hu(P)vz]2
P

+64 / I3(p)C(p) Hy(p)*v?[ B (3tv) — B'(X0)]
)4
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+128 f I(p)*Hy(p)?[B' (7o) — B' (70|
)4
+8 f C(p)*v®Hy(p)[B'(3%v) — B'(%0)]
14

+ 16/ Hy(p)[B' (%) — B/()Zo)]214(17):|
p

T
+ I |:4/[C(p)v2 +413(p)(B'(xv) — B'(x0))]
P
x Hy(p)[1+4 2I2(p)Hy(p)]

-32 f L(p)*[C(p)v? + 4L3(p) (B (%) — B'(%0)) | Hy(»)?*B” (30)
14

- 16/ I3(p)B' (%) (1+ 212(P)B//(X0))HO(P):|
p

T

2l 1 by
+ N |:—§ / |Og[1 — 4l (p)B (Xv)]
)4
+2 f I(p) Hy(P)[ 1+ 212(p) B" (30)|[1 — 412(p) B" (70)]
)4
+2 f ()2 Hy(p)[1 - 4L2(p) B" (G0)

p

- 1612/ L(p)B'(x»)[1+ 612(P)Ho(p)]B”’()Zo):|,
p

B" (Xv)

1—4L(p)B" (%)’

433

(6.2)

(6.3)

wherev? stands fomgb and is the argument of the function. The integiglandr,(¢) are
defined inAppendix land we recall that:

Xv ="+ 2T Iy + 412(B' (%) — B'(%0)).

6.2. The effective action in terms of the renormalized disorder

(6.4)

To make the conversion to renormalized disorder, we use that on the r.(6s2pive
can expres® in terms of the renormalized at leading order. Usin{.8)

B'(x)=B'(x + 2T Iy + 4(B'(x) — B'(0))),

(6.5)
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x =12 (6.6)
and differentiatind6.5) w.r.t. x, we obtain
é//(x) " N/ n/
————— =B (x+ 2T 11+ 412(B (x) — B'(0))). 6.7
1t 4LB () ( 1 2(B'(x) 0))) (6.7)

This allows to rewritg6.3)as (already noted i(#.25)
é//(x)
1+4(I2 — I2(p) B" (x)
. 1 -
3B(x) = N{E‘ f C(p[Hc(p)x]?

P

gx(P) = = Hy(p), (68)

+64 / I3(p)C(P) Ay ([ B'(x) — B(0)]
)4
1128 / Is(p) 2B, (p2[B' () — B0
P
+8 / C(p2x A (p)[B'(x) - B'(0)]
)4

+16 / H(p)[B'(x) - B/<0>]214<p)}
P

T ~ - ~ -
+ N{4/[C(p)x ~|—4I3(p)(B/(x) - B/(O))]Hx(P)[l‘FZIZ(P)HX(p)]
)4
- 32/ L(p)*[C(p)x + AL3(p) (B (x) — é/(o))]ﬁx(l’)zL@
1+ 41,B"(0)
)4
_, B"(0) .
16| I3(p)B 14 2L(p)———— ) A,
,,/ 2(p) (x)( +2120) 4123,/(0) o(P)}
72 { 1 / (1+4B”(x>[12—12<p>]>
+——=1In =
N| 2 1+4B"(x)Iy
P
. B"(0) B”(0)
2 | L(p)H (p)|1+21(p)———Z || 14l (p)————
* /2(”) (p)[ " 2(p)1+4123"(0)][ 2(p)1+4123"(0)]
)4
D/ 2
2 | L(p)?H, 2[1—41 73(9) }
+ / 2(9)2H (p) T T
)4
_ B EW(O)
166 | L(p)B'(x)[1+ 6L(p)Ho(p)] — 2 1. 6.9
2/ 2(p) (x)[ +62(p) 0(p)](1+4123//(0))3} (6.9)

p
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6.3. Expression in terms of rescaled dimensionless quantities

As in Ref.[6], we define the dimensionless functibof the dimensionless argument
through

b(z) = 4Aqm™ € B(zm~%), (6.10)

wheree =4 —d andAy = 2(47) /21 (3— %). This prefactor has been chosen to simplify
the leading-ordeg-function. Ford < 4 andT = 0 all integrals which will appear here and
below are convergent in the limit of UV cutoff — oo that we consider, e.g., in that limit
I = Agm~¢ Je. The rescaling factos is for now unspecified, but at the fixed point it will
yield the roughness exponent.

In terms of rescaled quantities, one finds that the result of tize éxpansion for the
second cumulant of the disorder can be rewritten as

b (x) = b2 (x) + %bl[b,%](x), (6.11)

whereb? (x) is the solution to dominant order, obtained previously for an arbitrary bare
disorder. We have made apparent the dependence on thenm@sgl raise the indices
whenever necessary). The expression for@i&/N) correctionb1[b](x) can be obtained
from the last subsection upon rescaling and reads{(ford)

1
balbl(x) = o= f [2¢(p)?[he (p)x]” + iz(p)e(p)hy (p)2x[b (x) — b (0)]
)4

+ 2i3(p)2hy (p)?[B' (x) = B O] + 2c(p)xh (p)[b (x) — b'(0)]
+he(p)[B'(x) — b (0)Pia(p))

€Tm - , , 1
+ GAd {[c(ﬁ)x +i3(p) (' (x) — b'(0)) | (p) [1+ Elz(p)hx(P)]
P
1 . . , , b//(o)
= 512 [e(p)x +is(p) (') =V O) ) (P 1 s

oV 1 1. b"(0) I
—i3(p) (x)( *I—yz(]’)m) O(P)}

e / _gln(1+b”(x>[iz—iz(p>]>
44,4 2 1+0"(x)i2

p

1 1. b"(0) . b"(0)
+ ElZ(P)hx (p) |:1 + EIZ(P)m] |:1 - lZ(P)m]

+ 812(17) hy(p) [1 ’2(p)1+i2b”(0)]
b///(o) }

(1+i20"(0))3 (6.12)

3
— i2ia(p)b'(x) [1 + Eiz(P)ho(P)]
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where one has defined

b//(x)
hy = 6.13
P = = ™ 619

as well as the rescaled temperature

4Am?
Ty = 4", (6.14)
€
wheref = d — 2 + 2¢ is the energy fluctuation exponent, and the rescaled integrals are

denoted by small letters:

) 1 1 dp
in(p) = A—d[n(l’) m=1= A, W"', (6.15)
c(p) = rpz (6.16)

with, e.g.,i2 = i2(p = 0) = 1/e¢. In the expression above we have kept the order of the
diagrams from Sectiod.3ff. Note that explicitA dependence can be reinstated6ri 2)
by restricting all rescaled momentum integralsAym as upper cutoff, and is necessary
in T > 0 integrals (since they are usually UV divergent).

Regrouping terms, this result can be rewritten in a more compact form:

b1(x) = 2x2g1(ax) + 2x (b (x) — b'(0)) ga(ax) + 2(b'(x) — b'(0))*ga(ax)
+ €T [x(ga(ax) + aogs(ax)) + (b'(x) — b'(0))(ge(ax) + aog7(ax))
+ ' (x)((g8(ao) + aoga(ao))]
+ (€Tm)?[g10(ax) + aogi1(ax) + aggiz(ay) + b’ (x)a(y + aogia(ao))]

(6.17)
with
_ b”(x) _ dax
“Erirw NPT Ry
B bW(O) o b/W(O)/E ZbW(O)Z/eZ
T o TR D b0/eR (6.18)
and
1
fa = / () h ()2, (6.19)
)4
1
ala) = / [2c(p)ia(phy () + () 2hx(p)]. (6.20)
P
R 32 2
gaa) =+ f Sia(Pe(p) + ia(p)Phe () | (6.21)

p
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The other functiong; (@) andy, which characterize non-zero temperature, are given in
Appendix H
Finally, note that the resul{§.12)and(6.17)given above are for the choige= 0. For
a non-zera; = go + %51 + - -- the result forb1[b](x) is identical to(6.12) (6.17)above,
up to the trivial linear rescaling term

b1[b](x) — b[b](x) — (2¢1xb'(x) + 451b(x)) In(m). (6.22)

7. The g-function at order 1/N

We are now ready to obtain the flow equation of the dimensionless disorder, i.e., com-
pute thep-function. Here we give the most direct method to do so and give the results.
A second method, closer in spirit to the diagrammatic approach and which yields more
compact expressions has also been devised. Since it is rather involved it is detaited in
pendix G.2

Our goal in the present paper is as follows. The dimensionless disktdedepends
on the IR cutoffm, and a priori, also on the UV cutoff. To obtain a FRG flow equation
we want to express

1
—momb(x) = BIb1(x) = Polbl(x) + = b (x) + - - (7.1)

in terms ofb(x), at fixed A. Furthermore, we are interested in the behavior of the resulting
expression whem /A becomes very small, which we hope can be made independent of
A/m, if necessary with appropriate redefinitions of parameters.

To computeB[b](x) in the /N expansion we write

1 1
b(x) = bo(x) + Nbl[bo](X) +0 (W) (7.2)

wherebg(x) is the dimensionless disorder at leading order. The correspogdingction
was derived in Ref[6]. It can be recovered by insertiri§.10)into (3.14)usingma,, [1 =
—2m?I, and the above value d§ (for A = 00). In the variable$ it reads

—mdpybo(x) = Polbol(x),

Bolb1(x) = (¢ — 4¢)b(x) + 2¢xb'(x) + %b’(x)z — B () + Ty )

1+ 20

(7.3)

where we recall;, = 4T Aym? /€. Thus theg-function at leading order has a simple and
well-definedA = oo limit.
We now turn to the next order correction.

7.1. Theg-function atl =0

We first detail thel’ = 0 limit, which has a well-definedi = oo limit. At order 1/N,
deriving(7.2)w.r.t. m, we obtain

db1[b 1
—mdub = Polbo] + ﬁo[bo] 1[00]+0<W)' (7.4)
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Replacingbg by b, using(7.2), we obtain the3-function at order 1IN

1 dbl[ ] 1
Blbl = ﬁo[b——bl[b]:|+ ~ folb) +0<N2>

~ dba[b] dﬁo[b] 1
= Bolb] + {ﬂo[b S —bilb) = }+0<ﬁ). (7.5)

This expression is still symbolic. The derivatigkbl[b], e.g., is the sum over the deriva-
tives w.r.t. all derivatives ob, and in the above expression is multiplied by fréunction
of the corresponding derivative, obtained by derifing@)w.r.t. x. Since afl’ = 0, b1[b](x)
depends only of’(x) — b'(0) andb” (x), (7.5)gives

Blbl= aiz[f[ (T)ﬂo[b]”( )+ %(ﬁo[b]/(ﬁc) — Bolb]'(0))
— {eb1[b1(x) + ba[b]) (x)[b(x) — b'(0)] — b’ (x)b1[b] (0)}. (7.6)
Inserting the expressiq®.12)with T = 0 one finds:
11 dp

— 1 / 2
ﬂ(b(x))—eb(x)+§b ()2 = (x)b (0)+__ oy

x {2xc(p)®hy(p)?[xe + 2xvehy (p)iz(p) + 20'(0) — 26/ (x)]

+4c(p)hi (p)Zia(p)[b' (x) — b (0)]

x [2ve + 2vehy (p)iza(p) + b/ (0) — b'(x)]

+ 2eh (p)?[3+ 2hx (piz(p) |ia(p)2[b'(0) — b' ()]

+2¢(p)?hy (P)[b' (x) = b/ (O)|[xe (L+i2(p)hy (p)) +B'(0) — b/ (x)]
+eh(p)[2+ he(p)iz(p)]ia(p) [0 — b/ ()]}, (7.7)

A more compact expression can be found if one 6ek7)as a starting point. The first
term on the l.h.s. of7.6)is replaced byg%(—ma,‘%ax) and one uses

—mdla, =ea, + [b'(x) — b’(O)]b”’(x)(ax)z =eay + [b'(x) = b'(0)]dra,.  (7.8)

One finds a form rather similar (6.17)
1
—mdmb =e€b + Eb’2 —b'b'(0)

1
+ = [27%81@) + 20(6' () — b (0) 22(@) + 2(6'(x) ~ '(0)) *Ga(@)]

(7.9)

with
g1(a) = e(agy(a) — g1(a)), (7.10)
g2(a) = eagy(a) — 2g1(a), (7.11)

g3(a) = €(g3(a) + ags(a)) — g2(a). (7.12)
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All terms proportional t®,a, have canceled. Also note that we have used analyticity in
the derivation. Issues related to the non-analytic regime will be discussed in a subsequent
publication.

7.2. Theg-function at non-zero temperature

At non-zero temperature th&function to order 1N is independent of the UV cutoff
A only ford < 2. Its expression is more complicated and we give here only its form, for
d < 2. The derivation and explicit expressions for the functions are givéppendix H
together with some comments abaut 2.

Bulb1(x) = BI=Ob1(x) + Tou[x (8a(ax) + aogs(ax))
+ ' (x)(86(ax) + aogr(ax) + gs(ao))]
+ T2[810(ay) + aog11(ax) + adgialay) + xaj(e — ao)gs(ax)
+ab'(x)(eg7(ax) + ¢ (ao))]

+ T3[6' () (¥ (a0)a® + V¥ (a0)@) + o (g11(ax) + 2a0812(ay)) ],
(7.13)
where thel =0 expressiqulT =0[b](x) was given above.

8. Conclusion

In this article we have computed the effective action of the field theory of random man-
ifolds at largeN. The 2-replica part of this quantity is what is needed to compute the
renormalized disorder to ordey A/. Although similar in spirit (one must compute the de-
terminant of fluctuations around® = oo saddle point) the problem solved here is much
more complex than for the standardM expansion (say in th¢*-model), first because
one needs to perform the calculation of fluctuations around the saddle point at fixed aver-
aged field value, second besauthis involves four-replica matrices. It does however not
involve spontaneous replica-symmetry breaking of the Parisi type, but rather some type of
simpler explicit (vector) symmetry breaking.

To handle such additional difficulties we teaintroduced in this paper two comple-
mentary methods. The first one is graphical and uses a diagrammatics which is able to
handle both the (N) and the replica indices. In this diagrammatics the zero-temperature
diagrams are reasonably easy to compute. Much more subtle are theTfidisgrams.
Interestingly, only ordef” and 72 are found to be non-vanishing to this order jf\L It
is even simpler foe = 0, where the result for thg-function is polynomial. (This can be
derived by using Bogoliubov’s subtraction operator.) The second method uses an algebraic
formula for the determinant of fluctuations around the saddle point. The algebra of the
four-replica matrices is worked out and one uses an expansion in number of free replica
sums to compute all components iteratively in a given order of this expansion. Since we
only need the two-replica part, this is a finite calculation, although rather tedious and has to
be performed with Mathematica. The two methods are complementary, since any forgotten
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diagram of the graphical method can be trat@dome term in the algebraic result, and
vice versa. They are also, to our knowledge, new, henceforth the detailed exposition.

Having obtained the effective action, we rewrote it in terms of the dimensionless renor-
malized disorder. By varying with respect to the infrared cutoff, we obtaineg-fiu@ction
to order ¥ N. We noted that thig-function is UV finite atT = 0.

It is important to note that the derivation was made, strictly speaking, using an analytic
action. This is familiar forN = oo, where the same strategyas applied successfully:
Although the derivation was done in the analytic regime, ghfinction could then be
continued to the non-analytic one. This was done via a careful analysis of the solution
when it reaches the Larkin sealA similar analysis will be performed in a forthcoming
publication, together with a comparison to the two-loop result, and a detailed analysis of
the physical consequences of the FRG flow derived here.
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Appendix A. Thelarge-N formalism for the effective action

Before studying specific models, in the following sections, we first present schemati-
cally the framework of the largé* calculations.

A.1. General properties of thE/ N expansion

The general problem can be formulated alfofes. We want to compute the effective
action I'[u] defined as the Legendre transforméf{J] = In Z[J] (J being the source
field conjugated ta), in the case where the partition function can be written as

Z[J] =/D[1p]e’NSW’”, (A.1)

where j = J/+/N is the rescaled source andis some auxiliary field (or a set of such
fields). Here all space coordinates and indices are suppressed and integrals and sums im-
plicit, in order to exhibit the structure more clearly.

The first step is to writeV[J] in an /N expansion using the standard saddle point
method. One finds

WIJ1=NWI[j], (A.2)

- 1 1

W= WL+ S W+ 5 WA+ (A3)
where thej-dependent saddle-point valyg of the auxiliary field is solution of

Syl j1=0. (A4)
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The expansion yields

wOljl= —S[w,, jl, (A.5)

wijl= —Etrln Sy Jl, (A.6)
1
W21 = = 35 Sapeal Vo J1bapdeda) 51

3'22 ;/[/;L[W/ ]é/]/fg[lﬂ/ ](¢a¢b¢c¢e¢f¢g>(5~)—l- (A-7)

More generally, théV" (j) are obtained from the loop expansion of the field theory

InZ[j]1= NW°[j]+In / Dlg]

-4

1 N
x eXp(_§¢S//[‘/fj» o= —
p=3

3%11 .. '81//ap S[lﬁj, j]¢a1 .. '¢“1’)'

(A.8)
In these formula, the indices b, ... summarize all spatial coordinates, indices, etc., of the
field.
The effective action is then defined as

Ful=NI[v=u/VN], (A.9)

Fll=vjy = Whisl.  v=W1Ijl (A.10)
The equation forj, can formally be inverted into an expansion ifNLusing(A.3),

.0, 1

Jo= 0 i (A.11)

which yields in turn the expansion for the effective action
o
Flvl=) NPIP[]. (A.12)

One finds that the leading order is simply the Legendre transforiti%j ],
ol =vj) = WOl o= W) [il]. (A.13)

where here and belo@")'[j]1=8;W"[j]. Since one has,°[v] = ;?, it satisfies the
self-consistent equation

O] = vd, Il — wO(8,1°vl), (A.14)
and one has the usual relation between the second derivative ma(tW?eé[jl?] =
0
[S(Q [:J)]] 1

In this paper we use the result for the next order:

rl=-w;2]. (A.15)
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For completeness we give the two next orders:

Fpo1 = —w2[ 0] + 2 (W3 [12) (2(WO)) "] (W) [1°]

5 U
v B
)= —w2l2 + (W T W) [0 (W) [0
ST T Y L) LT W) 1)
< (WY LI+ SO LI WO) T (Y [T, (a17)

6

where the following graphical rules allow to restore correctly all index contractions and
spatial integrals implicit in the schematic notation above. Deraf® by a square with

n inside andW” by a circle with an inside. One treats the circled 2, 3, etc., as vertices

and considers all tree graphs. A lineis a propagw@[j,?]*l and is thus not a vertex (itis
summed in a line). The sum of these numbers is just the order. The formula are equivalent

-
-0 X0-®
o

-0-O @O0 00
®

This has, including the combinatorial factors (from expanding the exponential and number
of choices), an immediate interpretation as a perturbative expansion with all 1Pl graphs
subtracted. In the last line, the 1-2 graph comes wjttl in expanding the exponential,
and adding the two possibilities, the-11 — 1 comes with 13!, but then there is a 3
for selecting the middle one, and the last graph hagaftom expanding the exponential.
There is also a relative minus sign from eacht@eadded. To justifthis graphical method,
one simply recalls that quite generally correlation functions, V{/] are given as the
sum of possible tree diagram made withu] vertices. Since the Legendre transform is
involutive, the same is true far[«] in terms ofW[J] vertices. Thus to write""[v] one
must simply insert the proper orders iffAL at each vertex, in all possible ways, so as to
match the total order.

Thus all the"?[v] can all be expressed as functions of Wié(jl?). Inserting the results
(A.5), (A.6), a.s.0. from the saddle point expansion, one obtaing ] explicitly in
terms of derivatives of th& functional in(A.1).
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A.2. Summary of main result
Before we detail the calculations in a more pedagogical way for some specific models
below, we first summarize here in compact notations the main result for the two lowest

orders of the 1IN expansion, with a generalization to a bilocal bare action.
Let us consider & -component field theory whose action functional can be written as

1
S(¢) = §¢G‘1¢ + NSint[¥ay], (A.18)

1
1)0xy = N‘ﬁx . ¢y7 (A.lg)

where St is a functional of the bilocal fields,, (which is also a bi-index matrix, if the
field ¢ carries other indices (e.at, b, ...). Then its effective action can be written as

1
gl = §¢>G*1¢ + NIy 1+ T 1+ - -, (A.20)

wherel"% is also a functional of a bilocal field and satisfies the self-consistent equation

1% 5Sm
v [ny] B ——[Vry + G[¥ ]y ] (A.21)
sro 17t
a1 =fot 255w} (.22)
and
1 828
r [wxy] trln[ 2,70+ ZW“&X}/ + G[W]xy]
X (G[w]ut’G[w]vz’ + Vur Gl¥ ]y + 1/fvz’G[‘/f]ut/)] ) (A.23)

where lcyab,ztcd = szﬁytﬁacﬁbd-

Appendix B. Toy model

For pedagogical clarity, we will give all details for the simpler case of the toy model.
B.1. Model and effective action to leading order
We study the followingD (N) toy model, defined by the partition sum
Z[J]= / Dluje SN = / Dluje S/l = / Dlu] D[ x]Dr] e S-x:2]

=/D[X]D[/\] e NVShoAJl (B.1)
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Slu, j] / (Vu)2+ mu +NV( ) VN ju, (B.2)

Slu, x, &, j1=S(u) — /[%k(Nx —u?) —}-x/ﬁju}, (B.3)

X

a1 2 2 1
S[X,/\,J]=§tr|n(—v +m?®+21) + VOO - 5hx
1. ~1.
- iffx(—vz+m2+k)xy Iy (B.4)
Xy

wherei(x) and x (x) are local fields (the factar has been absorbed in the fiel)l The
above expressiofB.1) is thus of the forn{A.1) whereyr = (x, 1) is a set of two auxiliary
fields.

The saddle point equatidi.4) thus read

X = (V2 4m? 1)

+ iy (=V2HmP40) (=R mP ) s (B.5)

Aj(x) =2V (x;(x)). (B.6)
FromAppendix Aone finds the dominant order

WOLjT==SIxj, 2j» j1- (B.7)

Using the saddle point equation one finds

(WO)'Lj1=—0;Slx;» 1j» j1=(=V2+m?+1;) ). (B.8)
Thus one obtains

I'w)=NI(u/VN), v=u/~N, (B.9)

Jo=(=V2+m?+21)v, (B.10)

f[v] = jvv + S[X]va )‘fjva .]U]

- %v(_vz +m? 4 M)+ %trln(—vz +m?+5xj,)+NV(x;,)

1

One finds

1
5(V2Gu),, + V(0 + (o)),

1
)= trlnG—1+/ (Vu)? + mv -5

(B.12)

(GyY) o =[-V2+m?+ 2V (02 + (Go)ax) Jbrx- (B.13)
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This can be simplified further as the compliedfpart of the effective action is just a con-
stant. First one notes that(v) = I'[G,, v] satisfies

36 T'[G,vllg=c, =0. (B.14)
As a consequence one sees that

I'[v] = (—Vz —+ mz) vi + 2vi V/(UE + (Gv)xx)~ (B.15)

i
vl

The effective action (per unit volume) for a uniform configuration of the field, = v
reads

1 . 1 1
Srw= 5mzvz + V(P +Gy) + Ef{ln(qurrrl2 +2V' (v + Gy))
q
2 2
qc+m
, B.16
+q2+m2+2V’(v2+Gu)} (819
G —f 1 (B.17)
) 24 m?2 42V + Gy’ '
q
which can also be written as
1 - 1
Slw= Em2v2 + V(2 +Gy) — Gy V' (v + Gy)
1
+3 f In(g% +m?+2V'(v? + G)). (B.18)
q
Here one can write
() =T[Gy.v?), (B.19)
061G, v?]|5_g, =0. (B.20)

For uniform configurations the effective action is simply a function®©$uch that

1 5, =, 1dlw] 1, ’
S ~|—V’(v ):5 W2z — 3" —|—V’(v ~|—Gv), (B.21)
i.e., it satisfies the self-consistent equation
7)) =v'(v?+ / ) (B.22)
; q2+2V'(v?)

This defines a renormalized potentié{v?), whose RG flow is studied in Appendix |
of [8].



446 P. Le Doussal, K.J. Wiese / Nuclear Physics B 701 [FS] (2004) 409-480

B.2. 1/N corrections to the effective action
To next order one has, fro(@\.6)
1
WA = =5t S 1), 2 71, (B.23)

wherey;, »; are taken at their saddle point valU&s6). The symmetric matrix of second
derivatives reads

1
(S;(/X)xy = VN(X (x))ﬁx}" (S;(/A)x}’ = _Eaxy» (824)
1
($i)wy==5G0Gyx = (GG (G, (B.25)
Gy = (-V2+m?+1). (B.26)
It can be putin the form
174 1
n_ =
§'= 2(1 B>- (B.27)
Its inverse reads
n-1_ o —-BA—-AB)"t (1-BA)?
Ay = —ZV//(X (x))SXy, (B.29)
Byy =GiyGyx +2(jyG)xGry(Gj)y = GryGyx 4+ 20 Gryvy, (B.30)

where the last equality holds only fgr= j,?. Note thatA and B do not commute (unless
fields are uniform).
The result for the effective action is thus, fr¢f.15)

~ 1 .

e = Etrln S (xjo: 1 j0, i), (B.31)
0=G"1, (B.32)
Gy =(=V2+m?+30) (B.33)

A more explicit form can be given for a uniform field configuration= v, with in that
case

Axy = _2V//(X)5xya X=Xj0o= v? + Gyx, (B.34)
By = (G)? +20%GY, (B.35)
2
s -1 —
S ) = VT [ Gu ) @) + 207G @)
o ((T1(@) +20%G(q) -1 (B.36)
-1 —2V"(02 + [, Gy(k)) )’
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Hu(q)=/Gu(q—k)Gu(k), (B.37)
k
1
Gl = 2viary 1. Go(k)) (B-38)

yielding finally

- 1
M) =3 / In(1— A(¢)B())

q

= %/In<1+ 2V"<v2+/Gu(k))(ﬂu(q)+2v2Gq(v))> (B.39)
k

q
up to a constant.

Appendix C. Calculation of order 1/N for the random manifold

We now sketch the derivation @t for the case of the random manifold.
It was shown in Ref[8] that the partition sun(2.4) can be put in the form

Z[J]:/DX Dye VSl (C.1)

S[x. A, jl= %trln(C‘lei/\) ~|—/U(X(x)) — %,\“b(x)xab(x)

X

1 _
_E/ja(-x)(cil+i)‘)axj:bx/jb(x/)7 (CZ)

x,x’

where the inversion and trace are perfornrethoth replica space and spatial coordinate
space. It has again the forfA.1) wherey = (x9%(x), A%’ (x)) is a set of 2-replica-matrix
auxiliary fields. The saddle-point equatith.4) reads (see Ref8])

X3P = (G axbx + (G = ax - (G bxs (C3)
0297 (x) = 204U (x; (%)), (C.4)
G l=Cct+in, (C.5)

whereG; is a matrix with both replica indices and spatial coordinates and inversion is
carried out for both. Here and below, replica indices are raised whenever explicit depen-
dency is given, e.g.xa» = X;.‘b. The notation for theV-component vecto(G : j);, =

Yo f) Gy ey jl(y) is a shorthand for a matrix product, and everywhere we denote by

dapU (@) := g, U () (C.6)

the simple derivative of the functiali(¢) with respect to its matrix argumeut.
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The dominant ordei¥°[j] and I"°[v], was computed in Ref8], thus here we study
only the next order. It is given by

M= %trln S"[xj0. 2 j0. j°). (C.7)
i&=(G ) (C.8)
(G = (€7 8t + 205U (10(0))8% (x = y). (C.9)

Note that when computing the fluctuations around the saddle point we congjdand
Xpba @S independently fluctuating fields, symmetry being restored at the saddle point (it is
also possible to perform the calculation with symmetric matrices only).

The matrix of second derivatives can again be put in the form (see the previous section)

1/4 i1
//___
o (A1) 10

and one can show that
trinS” =trin(1— AB), (C.11)
Aabx,cdy = —20y,;, 0.4 U (X (X))Sxy, (C.12)
Bapx,cdy = Gax,dyGey,bx + (J : G)eyGax,ay(G : j)px
+ (J: G axGpx,ey(G : j)ay + Map,ca
= Gax,dyGey,bx + Vox Gax,dyVey + VaxGox,cyVday + Map,cd (C.13)

and note thatA and B do not commute (unless fields are uniform). The last equality is
valid only when; = ;O is inserted.
For uniform fields one finds

M= %/In(l — A(v) By (v)), (C.14)
q

A(v)ab,cd = _Zaxah aX(‘dU(XU)ﬂ (015)

By (Vab,ca = / G4 (k)G (g — k) + vpve G4 (q) + vavaGY (q), (C.16)
k

G (k) =[C) + i ], (C.17)

x5 =vevg + f G (k), (C.18)
k

A% = 20,U (x). (C.19)

We note that the above matrices ai a priori sSymmetric iru <> b or in ¢ <> d since we

have chosen the representation where all components of the fields fluctuate freely. The alert
reader will notice later (when coming backttee main text) that in fact the final matrix

AB, will possess such a symmetry.
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Appendix D. Theexcluded replica-formalism

In this section, we calculate the terms at ordeand 7’2 using the excluded replica-
formalism. This gives an independent derivation of the moon-shaped building L==xs
and~=in Sectiord4.2

We start by recalling that corrections at finite temperature are more difficult to obtain.
The simplest example is given Appendix E Here we want to understand this by making
two contractions betweeB(u, (x) — up(x)) andB(u, (y) —up(y)). Be the first contraction
(focusing on the replica-structure)

t 8 (D.1)

The following possible contractions are

°—’+Q—:7:—:<: (D.2)

At zero temperature, we have found in Secto8that only the first term contributes. This
enabled us to do the calculationZat= 0.

The general case is more colicpted, since there are now three more possible contrac-
tions, one may draw, i.e., 4 for ead@{. This looks discouraging. Two ways out of the
dilemma can be thought of. The first, callegtursive constructionr successive construc-
tion, tries to add one more link to a chain 8f'. The decisive simplification then is that
whenever arriving at, e.g.,

. ! ! (D-3)

—

no more links can be added to the right, since the rightmost verteg¥js which is
a constant. This procedure has however onecial deficiency contractions are non-
commutative! Let us illustrate this on the diagram

1 ! g (D.4)

If one first does the two leftmost contractions, then the two rightmost contractions are
not possible. On the other hand, when doing first the two rightmost contractions, the two
leftmost are possible! Working with this formalism, i.e., using its implied simplifications,
one has to number the lines. This is pretty awkward, since one wants to be able to interpret
diagrams as such, without having to number lines. This is especially important here, since
one wants to recognize the chains which give riséft@(p). Also note that problems
arise at finite temperature, since there one has additional lines to add, and not all lines are
needed to get a 2-replica term, i.e., there are lines which can be discarded, and still the
diagram would be a 2-replica term. A very instructive example is the simplest 2-loop order
diagram at finite tempenate, which is derived irAppendix E One sees that diagrams
can be grouped differently to cancel, and that these different cancellations correspond to
different paths in the contractions.

One way out of the dilemmais tlexcluded replica approaghvhich at 2-loop order has
as its descendent the sloop-algoritf#h Here we explain thexcluded replica approach
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We start by writing the trivial relation

ZBab :ZBab+ZBaa~ (D5)
a,b

a#b a

The first term on the r.h.s. is the excluded replica disorder, the second a constant. When
performing contractions, the second tedimes not contribute. Thus one can perform per-
turbation theory instead wity_,, B,y with Za# B.». The big advantage is that the
last two terms in(D.2) do not contribute. The backdraw is that the final result is a sum
over excluded replicas, which has to be projected onto the 2-replica term, and one may
have more terms at intermediate steps. The final projection can be done formally, by
replacing By, — Bap(1 — 84p), €xpanding and then collecting the 2-replica contribu-
tions.

We now introduce the excluded replica-formalism. Recalling that

p a a 1 a a
’bob -~

T 1= 4L(p)B" (xap) *
1
= E[(ua — up)? ) Hap () (a — up)?]. (D.6)

We then proceed as follows: whenever we have a long chain with some replica conserving
lines (as above) and with doubled lines (or single lines when inserting vertices), we will
always sum the double-line part, resultingAfy,. We then have to sum explicitly the rest,

and project it onto the 2-replica-contribution (in general). For illustration, we start with the
open chain. This is, say when fixing one end to have repticasdb

R O O S O = O S O (D.7)
We furthermore observe that the combinatorial weight for either having a replica-
conserving double Iine@), or a doubled line up«_—w) or down &%), is the
same. We do not draw crossed lines; by definition they are incorporated into the com-
binatorial factor. The above has to be projected onto the 2-replica sum. Writing any
H.q4(p) with excluded indices a$l.4(p)(1 — 8.4), and multiplying all terms, one al-

ways has to take the term with tldg;, and(D.7), summed over all lengths of the chain,
is

D S e e e

all lengths

= Hap(p) ) _(—412(p) Haa)"

n=0

= Har(P) 570 P)Haa(p)

= Hup(p)(1—4L(p)Bl,). (D.8)

This object is well known: it is the chain times the moon-diagram FSge5. We remark
the important point that, even though we have an infinity of diagrams to sum up, in the
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projection onto 2 replicas (or since we are already fixing two replicas, maybe we should
better say onto one replica) all but 1 non-trivial term vanish. (Also remark that we have
been a bit sloppy to amputate the lagtlegs. Otherwise, that is not so easy to repre-
sent.)

We need another intermediate result. Sumgrall diagrams which conserve the lower
index, we obtain

T = A O OO (OO .. (D.9)

We want this sun~Z7, projected onto 1 replices="1. Using the same procedure as
above, we find

S(p) :="F1=2D2(p) Y _(~2I2(p)Haa)"

n=0

=21 _

2(p) 1+ 212([7)Haa

1-4L(p)B],
=21 —_— 7 D.10
2(P) 1= 2L (Bl (D.10)

The 2-replica contribution is

vzzleOZX T 1=S(p)Hur(p)S(p). (D.11)

This half-chain is very practical, since when inserted into a more complicated diagram, no
further restrictions apply. In a diagram involving this half-chain and some “rest”, there are
two 2-replica contributions: the half-chain projected onto the 1-replica part times the rest
projected onto 2 replicas (taking care of the replica-conserving line of the half-chain) or
the 2-replica part of the half-chain times the 1-replica-part of the rest.

We continue on the orddr?-term. We have the following terms before projection:

n },f‘O‘/—\‘OvOA“ﬁL . (D.12)

A dashed line denotes the identity; one would like to print this on a torus. The first term is
very symbolic, since it is not a geometric sum but a log, and there should be at least one
vertex. The second is 0 (coinciding replicas in the chain)

- a =0, (D.13)

We now have the choice of where to project onto the 2-replica term. The rest has to be
projected onto the 1-replica term. We first project one of the half-chains onto a 2-replica-
term, usingD.11). The 2-replica term is shaded in dark grey. The rest consequently has to
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be projected onto the 1-replica terms, shaded in light grey. We obtain theCglass

+W+ e (D.14)

Denote byn the number ofH,;, in each diagram, which have lines starting at different
replicas. Each sucH,, contributes a factor ofl — §,,), for a product of

D A= 8ii) (L= 8igig) -+ (1= 8i,iy). (D.15)
i1,02,in
We need all indices to be restricted to be ideali The terms which lead to that restriction
are either the product of ails (1 term) or any one of th&'s left out. This gives another
terms, but with a different sign, for a total of

C1=S8(p)Hap(p) Y _(1—n)[—Haa(p)S(p)]". (D.16)
n=0

where it is important to note that also the first tern(ln14)for n = 0 is correctly given
by the above formula. We note the auxiliary sum

o0
1+2x
1— 1) (—x)" = . D.17
n;( ()" = (D-17)
We give the intermediate results
- 21>(p)B! (D.18)
1+ Huo(p)S(p) aar
S(p) 1
. S a—— | 1—-4I(p)B.) ), D.19
1T B (S0 2(p)( 2(p)B},) (D.19)
_ 1+ 212(17)3(/4/41
1+ 2Hua(p)S(p) = 1= 2L(p) B!, (D.20)
the above sum is
C1= 2I2(p) Hap(p) (1 + 212(p) B}, ) (1 — Al2(p) B, ). (D.21)

This reproduces diagra(d.52)

We now turn to the diagrams where the half-chain is always projected onto the 1-replica
contribution, whereas the nonial terms come from omitting & belonging to one of the
H,;, with lines entering into different replicas. With the same shading for 1- and 2-replica
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terms as above, this is

. OGO (D.22)

g (D.23)

EachH,;, which is projected onto a single replica again contributes a fact¢t efé,;,)
Starting from the second diagram, we have to leave out exaétlyig

1
;(1_51'11'2)(1_5i2i3)"'(1_5ini1)~ (D.24)

The first has already been left out in plottifig 22), accounting for the factor of. Leaving
out two §’s leads to a factor ofi(n — 1)/2, since they are indistinguishable. The result
contains two factors off,;; the remaining factors are al,;:

1 > e
C2= S Ha(P)*S(p)* Y_(n = D[~ Hua(P)S(p)]" . (D.25)
n=2
With the sum
o _ =2 _

and usingD.10)and(D.18)we obtain

Ca = 2I2(p)? Hup (p)2(1 — 412(p) BL,)°. (D.27)

This reproduces the ter(d.53)
We now turn to the diagrams of ord@r. First of all, note that the following two dia-
grams have no contributions proportionalBg, :

L, o @ 029
The reason is that they have no doubled line, as in

and . (D.29)

Note that both diagrams necessitate a replica-conserving double line{i-ew or <),
Otherwise they vanish. The replica-consaeg double line can be more generally replaced
by all chains, which start and end with a double line, and which conserve the index running
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through. The chains with one index entering and one index exiting are

v+UOQ+U'OQOU
+ <O OO (D.30)

Each of these has the form (with+ 1 half-chains)
Sp) [ T(@=8i,i,,)S(P) Hijiy 1 (). (D.31)
j=1

The only replica-conserving term is obtained by using,, in eachfactor. The projection
onto the 1-replica term is denot& (for replica-conserving)

R=v1+UOQ1+UOQ<>U1
+UOQOUCPI+"' (D.32)

and is evaluated as

- " S(p)
R=S(p)Y [-SPHu(p)]' = —a———
,12:;, 1+S8(p)Haa(p)
= 2I2(p)(1— 412(p)B},). (D.33)

where the last identity can be found(D.19). This reestablishes the two factors(@f—
41,B! ) in diagram(D.29). Note thatR is 4= introduced in Sectiod.2

We can also give an equivalent interpretatior(Df21). It is H,;, times summed half-
chains, but since the indices are forced to be equal at the end, we can drop ongwiithe
(D.31). Instead ofD.33)this is

T=8(p) ) [~S(p)Haa(p)]" (L —n)
n=0

= 2I2(p)(1+ 2I2(p)B)),) (1— 412(p)B,). (D.34)

where the combinatorial factqd — ») is due to the fact, that one can drop one of the
§’s. We have also used the simplifications of equati@d.7)ff. 7 is nothing but==,
introduced in Sectiod.2

Appendix E. The 2-loop diagram with a tadpole and graphical interpretation of
perturbation theory

For simplicity of notations, this calculation is done for a 1-component fieMl/e also
note R(u) := B(u?). We here calculate the 2-loop diagns at finite temperature. This
shows how the naive rules one uses at zero temperature can be misinterpreted.
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All diagrams have two verticeR, two lines between these twi's, and a tadpole at-
tached to one of th&’s:

(E.1)

This is a graphical representation®f, R, (8aa + 8pp — 28ap) (8acdpa + 84a8pc)?, together
with combinatorial factors. Projecting onto 2-replica-terms only gives:

(E.2)
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The interesting diagrams proportional®” (0) are:

(E.3)

One sees that one has cancellation either in one column or in one line. One can interpret this
as follows: making first contractions between the ti/s, identifying the replicas of the
upperR, one can say that no tadpole can be added to the uppEhis is the cancellation

in the first column. Equivalently, one can first draw the tadpole. If one does this connecting
replicasa andb on the upperR, then one can say that it is no longer possible to add
correlators connecting the tw®'s. This is the cancellation in the first line, as opposed to

the first column.

Appendix F. Details of the algebraic method
F.1. Algebra of 4-replica matrices

The 4-replica matrices needed in thrén calculation of Sectio® can be parameterized
as in(5.5)and(5.10) They form an algebra, and to solve K§.11)one needs to write
explicitly the components of an arbitrary product of such matrices.

Let us consider two matrice® ! and M2 parameterized respectively toy. , yﬁ,b, zflb,

o pes W Vipes Whies 8peq) TOT i = 1, 2. Then the productap,ca = Yoo My, M2 o4 18
itself parameterized by, yab, Zab, tabe Uab, Vabe, Wabes abed) @nd one finds:

1.2 1.2 1.2 1.2
Xa =XgXq + Zyaaxa + Zxazaa + Zzyafzaf’

f
1.2 1.2 1.2 1.2
Yad = XqYqd + 2xutaad + 2yaayad + zzya.}"ta.}"d’
f
Zab = TgpX2 + 2ppa ¥l + 22025, + zzfalbfzif’
f
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.1 .2 1 .2 1.2 1 .2
labd = ZgpYad + 2tabayad + 2Zabtaad +2 Z tabftafd’

f
1.2 1.2 1 .2 1.2 1.2 1 2 1.2
Uace = XqUge + UgeXe + VaccXe + XaWaace + 2yaczca + 2yaauac + 2uaczcc
1.2 1 .2 1.2 1 2 1.2
+ D [2vapwise + 22y +ugpue + vappuGe +ugiwiy]
f
1 2
D Vaer Wares
ef
1.2 1.2 1.2 1.2 1.2 1.2 1.2
Vacd = XqVqcd + *a8aacd + 2yactcad + 2yadtdac + UgeYed + UgdVdc + 2yaa Vacd

1 2 1 2 1.2 1.2
+ VaceVed + VaddYde + zuactccd + 2u dtddc

a

1.2 1 2 1 .2 1.2 1 2
+ Z[zyafgafcd + 2050150 + 2050515 F UGV ca UG8 fea
f

1.2 12
+ UV ea] + Z Vaer8efed
ef
1 .2, 1 .2 1 .2 1 .2 12 12 1.2
Wabe = WypeXe + 8abecXe + Ztabczca + thaczcb + ZabUac + Zhalpe + ZabWaac
1.2 1.2 12 1 2
+Zba Wppe + Zwabczcc + Ztabauac + thabubc
1 2.1 2 12 12 1 2
+ Z[Zgabcfchz%bfwafc + 2y s Whire + Wap 5o + 8aprpUse
f

1 2 1 2
+ wabfwffc] + Z gabefwef(,"

ef
_ .1 2 1 2 1 2 1 2 1.2 1.2
8abed = WapeYed + WapdYde + 8abceYed + 8abddYdc + ZabVacd + ZbaVbed
1 2 1 2 1 .2 1 .2 1 .2
+ Zab8aacd + Zba8bbed + 2tabctcad + 2tbactcbd + 2tabdtdac
1 .2 1 .2 1 2 1 .2 1 .2
+ 2tbadtdbc + 2taba Vacd + 2tbabvbcd + zwabctccd + 2wabdtddc

1.2 1.2 12 12
+ § :[2tabfgafcd + 201 8hfca + 28aberlipa T 28abatafe
f

+ wibf”%cd + gibff”%cd + wibfgifcd] + Zgibefgffcdv (F.1)
ef

where we have made replica sums explicit.

Using these multiplication rules one can rewrite Eg11)in terms of a set of non-linear
equations for the components &f* in terms of the components g§1. Unfortunately no
closed solution seemed possible (exceptinswary special cases). The next step is thus to
expand each component in number of replica sums @& 118) This results in a hierarchy
of equations for components with increasing number of replica sum. For instance the zero-
sum components behave under multiplication agid), dropping all terms with replica
sums, and so on. These equations can be solved iteratively, as discussed in the text. For this,

one needs the zero- and one-sum components of the retrithe calculation of which
we now detail.

F.2. Calculation of the matrix/

We start by computing the matri®¢ in (5.1). As in the following subsections there are
two stages. First make all Kronecker-dslexplicit, then expand each term in the number
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of replica sums. As discussed in the text, all intermediate free sums over two or more
replicas can be dropped.

A straightforward calculation frort2.6), for a model with only a bare second cumulant,
gives

Mab,cd = (2T8Xah aXczl U(X)) |X:X

2
= _? <8abcd Ze: B(/J/e + 8apbed B(/J/L' — (Bacd + (Sbcd)B;l/b

— (8abe + Sabd) Bly + (Bacdba + 5bc5ad)3gb>, (F.2)

where B!, = B"(3%%), and 32* = x%4 + xb" — 2x4%; x@" is given by its saddle point
value(2. 16) Note that since one takes everything at the saddle point at the end, which is
symmetric ina, b, all expressions resulting from two derivatives are symmeRj¢:= B, ,
(even if one chooses the fluctuating fields a priori non-symmetric).

The matrixj“” still contains explicit Kronecker-deltas. As in the main text, one writes

;(3 = ;(ab + 8ab)~(aa (F3)
wherey,, andjy, contain no Kronecker delta, and are computed below. Then one sees that
B//(X ) = aab[B (Xaa + Xa) — B’ (Xaa)] + B (Xab) (F4)

Inserting this form intdF.2)above one finds that the contribution of the pi&gg B” (x40 +
%xa) — B” (Xaa)] cancels exactly and thus one obtains tiaits given by(F.2)but with now
B!, = B"(Xab), 1.€., the part with no Kronecker delta.

We can now continue the calculation frdg116)by expanding in the number of replica
sums. First we define

( 2T8U = (Sab Z Uac — Uab, (FS)

Uab—_ ab+ TZZ abg? (FG)

WhereE’;b = B’(vab) and similarly for the three-replica term (which will drop later on).
From there an@2.16)we obtain, dropping all higher order sums, the expansions
Xa=—2TI —2T12 ) Ug. (F.7)
e

- 1 1
Xab = 03}, +2T 1L+ 2T]2|:Uab - E(Uaa + Upp) + E Z(Uae + Ube):|
e
+ 2TI3 |:Z Uab(Uae + Ube) - Z UseUep
e e

1 1
_Z(UaaUae+UbbUbe_EUanea_éUbeUeb>:|- (F8)
e
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Thus in each of the&!, = B”(x.,) matrices appearing iffF.2) the argument can be Taylor
expanded, i.e., as

(/l/b — / B/// Z Oabf» (Fg)
where we have deflneﬂ” = B"(Jab), B”’ B"(xa») and
= 2 / 1 >/ >/
Xab =05, + 2T 11 + 4\ B, — E(Baa + By, |, (F.10)
0) —il s —}(S’ +8..))+2L(B., + B},
abf = T 2\ Dabf 5 \Waaf bbf 2\Byr bf
8 =
/ / n!’ D/ 1 n! D/ 1 n' D/
B, Bl; + By, By — 5BarBra = 5B By | | (F11)

It will turn out below that at the end we will only nee®l,,r = 4121§;f. We will not perform
this expansion and replacement now. Five¢ turn to the calculation of the matrix and

perform the produchM N4, keepingB/, unspecified.

F.3. Calculation of the matrixv¢

We now compute the second matrix?, expanded up to one free replica sum. One has

Ny g =vavaGl, +vpvc Gl + TITY, . (F.12)
G!=C(g)s+ Y _ Clg)"(—-2100°)", (F.13)
n>1
a,; ab,ed = Jl 18aadpe + Z J1q,n+1(50d(_2T‘900)bc + Sbc(_ZTaﬁo)ad)
n>1
+ Z m+l n+l 2T800)Zd(_2T8ﬁ0)20’ (F14)
m>=1,n>1
1

(F.15)

(k2 +m?) (g —k)?+m?)]’
In addition to(F.6) we also need

( 2T8U ZUab(Uae+Ube)+ZUacUcb

- T2 Z Bc/lb(Bc/te + Bbe) +t 5 T2 Z Bac eb*
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Since(—2T79 00)3b, etc., contains only at least 2-replica sums, it can be dropped. We define
Nqb,cd = Ngd,bc + Ngc,ad’ (F16)

a
q _ 1 q
Noa pe = ETJLl‘Sad‘Sbc + C(g)8advive
5 ~0\2
+ va04 (C(q)z(—ZTBUO)bC +C(q)3(-2130°);
70 ~0\2
+ Toaa((-21000),, + 1 y(~2ra0O)2)
1 - -
q 0 0
+ ETJZ,z(_ZTaU )aa(=2T007),,,
q 70 ~0\2
+TJy5(—2T00°) ,(-2T8U )m)- (F.17)
We obtain
q 1 1 2 2,1 4
Nad,bc = SadﬁbcLab + 5adPa,bc + stPb,ad = UpcvavaC(q)" + ETJZ,ZUadUbC

+ (Uavdc(q)s — TJ§’3Uad) Z[Ubefc - UbC(Ubf + Ucf)],

F.18
7 (F.18)
1
LY = ETJ{{DLTJ{{ZZUW, (F.19)
f
Py =C(@vpve — TJ{ JUpe + TJ{ 3> [UppUcs — Upe(Upy + Uey)]
f
1
— ST 5Ube Y Uay. (F.20)
f
1
P} g =vavaC(q)* Y Upf — ETJZ‘{ZUMZUW. (F.21)
f f
This yields
Ny ca =8aadbcLly, +8aa Q) o+ 86c OF 44
2 5/ S/ 2 4 q9 b p’
— ?(Bbcvavd + B, vpve)C(q)° + ?Jz,zBadec
4 - -~ - - -
t 75 (v C(@)* = 2033B14) } [ By By — Byo(Byy + B(p)]
I
4 . . L .
+ ﬁ(vbch(Q)s —2J33By.) Z[B;fB/fd — Byy(Bys + Bjp)],
f
Le =TI +27{, (By + By, (F.22)

f
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2 N 2 - ~
Qg.pe = VbVe (C(q) + ?C(q)ZZB;f) - ?B,;C (TJ{{Z + 215,2235’#)
f f
4 ~ o~ ~ ~ -
+ 913D _[ByyBly — By (B, + By, (F.23)
i

F.4. Final calculation of the matrix\1

We now perform the matrix multiplication

- 2
MZb,cd = Z M“byff’fNZf,cd = _? |:Bt/1/bN5b,cd — Sab Z Bt/l/gNqug,cd] ’ (F24)
ef g

where we have defined

Nipea= Ny ca+ N ca = Naa.ca = Nip ca)
= L}, (Baadpe + 8padac) — Léadaca — LiySbcd + 8ad O 4o + 86a Of 4.
—84d Qb ac — 30d O e + e QF 4q +8ac O 1y — 8ac OF 1y — 86c O 1y
= (Ubcvavd + UadVpve + Uacvpva + UpaVave — Uacvava
— Uaavave — Upcvpva — Upgupve) I3

+ TJZz(Uadch + UbaUac — UaaUac — UpaUpc)

+ (vavaC(q)° = TJZ 3Uaa) Y _[UbsUye = Upe(Ups + Uey)]

f

+ (060 C(@)° = T I3 3Ube) Y [UasUsa — Uad(Uag + Uap)]
f

+ (vhde(q)3 - Tngubd) Z[Uanfc — Uac(Uag + Uep)]
f

+ (0aveC(@)* = T I 3Uac) > [UnsUsa — Upa(Ups + Uay)]
f

— (vavaC(@)® = TJ§ 3Uaa) Y [UasUse = UacUas + Ucy)]
f

— (vaveC(@)® =TI 3Uuc) Y [UagUsa — UaaUas + Uay)]
f

— (vpvaC(@)® = T3 3Upa) Y _[UbsUse — Upe(Upy + Uey)]
f

— (e C (@)% = T I3 3Use) D [UbsUsa — Upa(Uss + Uap)]-
f
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Performing the matrix product yields the parameterization of the mattjxvhere we have
not yet fully expanded in sums, as (thedependence is implicit)

2 1
ri- %ngLab’

Xa = Uaa Z B,/l/fLaa ,
f

Uab =

Yad = _aaaB:,/dLad + daq Z B;/f(Qa,ad - Qa,fd)a
f

Zab = _aabBZbLaaa
tabd = aabBZb(Qa,bd - Qa,ad)»

Uge = Uaa B;/CLCCa
Vacd = %aa |:B;/d(Qd,dc - Qd,ac) + BZC(QC,Cd - Qc,ad)

- Z (/J/fTJZq,Z(UadeC + deUac —UuaUye — deUfc)

s
+ Y B} (Ujcvava + Uad e + Uacvva + U pavave
f

—Uacvavg — UgqVqve — Ufcvad - devac)lzq:|a
Wape =0,
8abcd = aabBZb { —(Upevava + Uaqvpve + Ugcvpvg + Upgvqve

= UacVaVd — UadVaVe — UpcUpVd — Ubdvbvc)lzq
+ szz(Uadch' + UbaUac — UadUac — UpaUbc)

+ (vavalg — TJ§3Uad) Z[Ubefc — Upe(Upy + Uey) |

f

+ (vpvel§ = TJ33Ube) D [UapUga = Uad(Uay + Uay)]
f

+ (vpval§ = T3 3Usa) Y _[UasUse = UacWas + Uep)]
f

+ (vaveld — TngUac) Z UpfUfsa — Upa(Upy + Uay)]

[

!

— (vavald = T I3 3Uad) Y [UasUse — Uae(Uas + Uecy)]
!
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— (vaveld = TIE3Uac) Y [UasUysa — UsaUas + Uag)]

f
— (vpvald — szgUbd) Z[Ubefc — Upe(Upy + Uep)]
f
— (vpvel§ — T3 3Upe) Y [UbyUyga — Upa(Usy + Uap)] {- (F.25)
f
We now finish the expansion in sums, us{k®), (F.11)and defining the notations
2
Al =——— (F.26)
1-4B3,J11
2
Al = (F.27)

1—-4B"(2T1)J{

1
O‘ab__7|:AZb+2(AZb < Ji,B /bZ(Baf+Bbf)+Jfl ”/Zoabf>:|

(F.28)
Lap=TJ{ +27{, (B, + Byy). (F.29)
f
The result is given in the text in Secti@nas well as
Piyad =277 1 (Ada) ( 1! B}, Z B+ J{,Bl, Z Oaaf>
2 _ - .
+ 7 Aaal{ o Bua ) (Bl + Byp) + J{ ALB), Z Oudf
f
2 C(q) I
- = B (v, —vr)vug, F.30
T(1—4B”(2T11)qu’1)2f: af( a £)Vd ( )
2(2 4 & ~ ~
Pizap =277 1(AZ)) (?Jf ,B, Z(B;f + Byp) + J1 1 BL; Z Oabf)
+ A ab 7 oDy ZB -+ J AL, Bl Zoabf (F.31)

Appendix G. Moreremarkson the graphical method
G.1. Diagrammatics

The diagrammatic AN expansion can be constructed by using
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Theorem.

_ S 1 1

B'(v?) = [@ + m] (B(X) + 5 BY (), v?) + 5B (x (), v%) + - )
(G.1)

BD () = Zall 1PI diagrams withl loop, (G.2)

B?(x) =Y all 1Pl diagrams with2 loops (G.3)

ce=a (G.4)

x (v) =v% + 2T Iy + 4153, B(x (v%), v?) — 8, B(x (0), 0)]. (G.5)

Some explication and precisions are in order: 1-particle-irreducible diagrams (1Pl) are
w.r.t. lines being correlator&v), and vertices bein@™ (x). The r.h.s. of Eq(G.1) are
diagrams made out of bare vertices. We have separatedtiependence from the explicit
v-dependence: the latter arls which are connected with a line. These are the terms in our
1/N-calculation, which explicitly contain. Note thatv’s always pair. Side-chains only
come from the fact that finally one inseptsNote thaty as defined here is an object which
contains terms at all orders inf ¥. The diagrams are 1PI, a fact which is important for the
order I/N2. It means thaBB® doesnot contain the diagram made out ®tlosed loops,
connected by a single line.

L g
- g

\Q@%Q e O

Fig. 6. Some typical AN-diagrams and the classes they belong to. The wiggly line indicates the derivative,
the black circle is a3 (or derivative), the grey circle & (or derivative). We have restrained from drawing a
contribution due to the explicit-dependence. These terms do not play a role in the argument, and are only
tedious supplements one has to keep track of.

B (x)

B (12)
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O OO O OO PO & O O % ©C

Fig. 7. Diagrams at order/V (first), 1/ N2 (next two) and 1N3 (rest).

Proof. Draw a collection of diagrams contributing By(seeFig. 6). This drawing contains
vertices made out of derivatives @&(v?) (not B(x) — we have drawn the completely
expanded diagram). Now derive that object with respeaftagiving a couple of terms.
Any of these terms singles out ol namely the one derived.

This B may be part of a tree, by which we mean that either it is a point or by cutting off
one of the attached legs, the diagram will fall apart. Then it is contained in the first term on
the r.h.s. of Eq(G.1), since any attachment which can be made to it in the form of a tree,
is taking care of by choosing the above givenNote that for this to be trug; has to be
exactly the object given above, i.e., on the r.h.s. of(Bq4)there has to be the fult to all
orders in ¥N. In the diagrammatic language this is clear: Having a higher-order diagram
and taking the derivative at one of the tree-like vertices, this diagram may still contain an
arbitrary loop somewherattached to the tree.

The B which has been derived may as well be part of a closed loop. By this we mean
that when we cutoff all parts of the diagn which can be disconnect from our chosen one
by one cut, there remains more than the vertex itself. This object is of higher connectivity;
it can either be a loop (at ordey X); it can be a diagram in the form of an 8 or a circle to
which one has added an additional line between two arbitrary chosen points on it (at order
1/N?). Higher order diagrams are givenfiig. 7. O

G.2. An alternative derivation of thé-function (I’ = 0)

We now give a general derivation of tigefunction to all orders in AN, following our
results of the last section. This derivation is restricted'te: 0, since it is rather compli-
cated at finiteT'. To make the derivation more transparent, and to avoid having to derive
with respect ta? on the r.h.s. of Eq(G.1), we introduce the auxiliary functiofi (v2, u?).
By u2 we shall denote a pair of background-fields that are non-trivially connected by a
line of propagators, whereag denotes the background-field which is inserted iBtdut
which is not connected to any propagator. Note that this decomposition is unique; that the
paring ofu’s is natural, and that deriving with respectity, but notu? can combinatori-
cally be interpreted as choosing any verfeand deriving it once. This object is thus better
fitted for calculations tha® (v?) = B(v?, u?)|,2_,2. However the latter object is of course
the only one with a physical meaning.

We now start from a modified version of Eg5.1), namely

9,28 (v?,u?) = %(B(X) +8B(x.u?)). (G.6)

8B (x,u?) =8B[B' (x (), B"(x()),...,u?]

1
= NB(D[B’(X(U)), B"(x(),...]

1
+ mB(Z>[B’(X(v)), B"(x(), ..., u?]+---, (G.7)
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x = x() = x (v, u?) = v? + 415(3,2B (v, u?) — 3,2B(0, 0))
=v2+ %(szl;(vz, u?) — 8,2b(0,0)), (G.8)

where we are a little bit sloppy with thetations, suppressing the argumef x (v). We
define the dimensionless quantities

b(vz, uz) = 4612§(v2, uz) = 4A,1m7€]§(v2, uz), (G.9)
bo(x) =4Aam™B(x), (G.10)
Sb(x,uz) =4Adm_€5B(x, uz). (G.11)

As in the main text, we use the notatityip) = I”A(f) = 1"(”) . Theg-function is

0
—m %avzb(vz, uz)

— coob(v2.u2) — (4Aam=) "2 2 (Bx) + 8B (x.u?))

aom oy
92 dx
—ctzb(v%.1) + 5 5 (000 + ab(X,MZ))(_m%>
i li / Vi 2

Note that in the Iast equatlon, we have been a little bit sloppy with the notation. What
this means is that having rescalBdo bg, them-dependence of the integrals is canceled.
Thus we can evaluate all integralsrat = 1. The derivative w.r.ta is easily understood
as follows: having a diagram witth+ 1 vertices, the integrals scale like €. First, this
accounts for the factor of. Second, in order to get the right combinatorial factonof
instead ofn + 1, one has to subtract one contribution, which is done by the factofiof 1
in front of 8b.

We need two more equations. First, starting from &}.7) and deriving w.r.tm, we
obtain (exact!)

—mg—’); = %(—m a?n)[a 2b(v u ) —0,2b(0, O)]
1 0 2 2

# —(—m%>avzb(v ,u) — 0,2b(0,0), (G.13)

€

where an equality would suppose tdaie to dimensional reductid, B’ (0) = 0
Deriving Eq.(G.7)w.r.t. v2, we obtain (also exact)

ax 1

™ 2_1+ Z9%b(v% u?). (G.14)
Deriving Eq.(G.6) by v2 gives with the help of Eq(G.14)
2 BX
2,02 2
szb(v Ju ) 32 [bo()()+8b(x u )]8 5 (G.15)
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82
3 a,2
Therefrom we infer that (to all orders)

[bo(x) +8b(x, u )]<1+ 18 2b(v2, u2)> (G.16)

92 0%,b(v%, u?)
b + b u .
a2 2000 + b (x. )= 1+ 202,b (2, u?)

(G.17)

This equation can also be written as

1 1 1
02 o 2plad e (G.18)
Zlbo(x) +5b(xuD)] 95602 u?) €

This procedure can be repeated to obtain

53 9%,b(v2, u?)
b sb
ix —[bo(x) + 8b(x. u?)] = o 182 YRR

(G.19)

84

ix —[boGx) + 8b(x. u?)]

_0Lb0% u?) + 2@ (2, u?)9%b (0%, u?) — 3[9%b (0% u?) )
a 1+ 20%b(v2 u?)° '

(G.20)

Eliminating ax and i 2[bo(x) +8b(x, u?)] from Eq.(G.12), we obtain

d
—mﬁavzb(vz, uz)
=€d,2b(v?, u?)
%62 u?) 1 5
v ’ il L 2 2\
i 152 b(v2, u?) e( mam>(av2b(” u’) = 9,2b(0,0))

a
BA

[1 0 8b(Abg, Abg, )} (G.21)

a=1LA 0x

We now take the limit ofv2,u?2 — 0. We suppose that—m2-)(d,2b(v2, u?) —

9,2b(0,0)) — 0 in that limit. Furtherd%b(v?, u?) can either remain finite or diverge.
3221; v, u2)

argument is mdeed correct (are there additidbRadivergences?) the conclusion is that

However remains finite whatevei?,b(v?, u?) will do. Supposing that this

9 9
_ b(0,0) = €9 25(0.0) + lim e->
Mo 00200, 0 =€3,26(0.0)+ im e

19
[ —8b(Aby, by, .. .)}. (G.22)
LA 9y

The g-function thus is equivalent to

B
—m %avzb(vz, uz)
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= eavzb(vz, uz) + [8vzb(v2, uz) — 9,2b(0, O)]szb(vz, uz)

9 19
8%b(v2, u?)) — = Sb(Abh, ADL, ...
+(E+ v2 (U u ))a)\‘ k:l|:)“ aX ( 0 0 ):|
—3%b(v%, u?) lim 9 Eiﬁb(kbo AbL, .. (G.23)
L S TR N Y T R '

Using Eq.(G.14) this can also be written as

—m iE)vzb(vz, uz)

am
= erzb(vz, uz) + [8vzb(v2, uz) — 9,2b(0, O)]szb(vz, uz)
9 1
— —— | =8b(Abp, MDY, . ..
T AZlavz[x (*bo. 2o )}
—0%b(v%, u?) lim 9 Eiab(xbo AbY, ... (G.24)
v T S0 0 |, _q | X X R '

Integrating the latter equation ovet, we obtain

_ & 2 2
mamb(v U )

=eb(v?,u?) + :—ZLavzb(uz, u?)? = ,2b(v?, u?)d,2b(0, 0)

9 1
— Z8b(\bjy, MDY, . ..
—i_eaf\x=1|:)L (00200 ):|
3 19
—3.2b(v%, u?) lim — Sb(hbo, Abh, .. ) |, G.25
v? (v " )v,uﬁoa)» A:l|:)‘ ax (bo. b )] ( )

which of course has to be read:&t = v2. In a final step, we want to reintroduce proper
guantities. Noting that

8,20 (v2, u?)| _ o =b'(v?) — 8,28b(x (v),1?) (G.26)
(which does not need), we obtain
d 2
—ma—mb(v )
=eb(v?) + }b’(vz)z — ' (v?)b'(0) — [/ (v?) — b (0)]8,28b(x (v), v?)

2
+8,28b(x (0), 0)b' (v?) + %[avzﬁb(x(v), )

9
— 8,28b(x (v), v?)3,28b(x (0), 0) + €or

1 / /"
= Sb(Abj, A}, ..
=1 A

Ir(2\ _ 2 P i Ei /
[b'(v°) = 8,2b(x (v), v )]u,lﬂoax . /\axab(xbo,,\bo,...) . (G.27)
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(Of coursed,28b(x (0), 0) means first to derive and then to put the arguments to 0.) Also
note tha®,28b(x (0), 0) is not O, at least at ordét. The8-function at order 1N therefore

b (v3)? = b' (1?1 (0)
1 0 1 Q) / /" 1(. 2 / Q) 2
+—le— —b D (aby, Abg, ..) | — [b/(v7)—=b'(0)]0,26"7 (x (v), v?)
N\ arl,_q[ 2

0
+b’<v2){auzb(”(x(oxuz)lu:o—

1
lim 2 9 — bV (Abo, Aby, ... )
v,u—0 3)» =1 )» ax
1
+ 0 (ﬁ) (G.28)
This might better be grouped as
d 2
—m—=>b

m— (v9)

= eb(1?) + 25/ (7)1 (12)0'(0)
d

+_< A

1
[ b (Aby, 1bg, )]
A

A=1

(2 9 19 }
b (v )U|:HOZM . 1[1 3Xb (Abo, Aby, ...)
— [0/ (v®) = 0" (0)]8,2bP (x (), V%) + b (v?) 3,26V (x (0), u?) |u=0>
1
+0 (NZ) (G.29)

A caveat is in order: the rescaling has to be done on the level of bare vertices, not on the

level of renormalized ones. That would give a wrong result. However the derivative w.r.t.
v? can be taken in any formulation.

G.3. Thecasd =0

As one can see from our final result for tefunction in (7.7), specified tad = 0, it
is a polynom inb of finite order, since the denominators present.iip), see(6.13)are
identical 1. Since this come as quite a surprise, we show here why this must be so; actually
it is a quite general feature of the¢ X -expansion of a renormalizable theorydn= 0.

We start to warm up with the diagram

(G.30)
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The leading and next-to-leading contributions&)rare

CRerEFasc R e

(G.31)

Our strategy is to apply Bogoliubovig-operation, see, e.d67—70]and to show that only
the first two terms contribute. Three remarks are in order:

(1) The R-operation in the context of a/N-expansion is maybe not entirely natural.
However we have in the above diagrams the property, that the terms already encoun-
tered at YN (and thus taken care of in thfefunction at leading order) are exactly the
iterated 1-loop diagrams, thus the first order jiv1

(2) Inorder to extract thg-function fromR applied to a diagram, we only have to derive
(w.r.t. m) the diagrams in the boxes, since only those are counter-terms.

(3) Applying R to a functional of the barég gives the result as a functional bf Thus
the contributionsg(b) to the B-function iség(b) = —m %R[diagramibo)]. Now

RSERGcHEee

which give as the contribution 6

5B(b) = —3e :@ . (G.33)

The second diagram gives

D
L
+ @ . (G.34)
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In D =0, the last two diagrams cancel, and

3B(b) = —e _{i 9 §> (G.35)

This gives also the ratio 6 to be found in the explicit formula: the 3 from the first diagram
has to be set in relation to the combinatorial factor of 2 for the second one and a factor of
1/¢ for the second, which together give a ratio of 6; finishing the test.

We now proceed to higher orders: first we remark that for the chainavittembers
(heren = 3) one can show recursively that

HOOOI-|O- O ©39)

Thus having: diagrams in the chain and deriving thedependence gives

R OO0 O |O-| O] @

Of course, ind = 0 the latter vanishes for > 1.
Itis now easy to see that only finite order terms can appear.

Appendix H. Details of the calculation of the g-function at finite T
H.1. Integrals appearing in th& > 0 correction to the effective action

The following functions have been defined but not given in fornf6la7)in the main
text:

1 1
galay) = A—/C(P)hx(l’) + EC(P)iz(P)hx(P)Z, (H.1)
d
P
1 1 . 2 2
gs(ay) = _EA_ c(p)i2(p)hx(p), (H-2)
d
14
1 ) 1, . 2
go(a) =+ f 8P (p) + 5i2(Plis( P ()P (H.3)
d
)4
11 2. 2
g7(ay) = _EA_ c(p)i2(p)<iz(p)h(p)-, (H-4)
d
)4

1
gola0) =~ / is(Pho(p), (H.5)
d
)4
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11
olan) =5 / i2(pis(p)ho(p). (H.6)
14
1 1
g10(ay) = 8A, / —In(1—axiz2(p)) +i2(p)he(p) + Ziz(p)zhx(p)z, (H.7)
)4
g11(ax) = = 7= i2(p)?hy (p) + i2(p)3hy (p)?, (H.8)
)4
1 1
g12(ax) = 7= / —i2(p)3hy(p) + Eiz(m“hx(p)% (H.9)
14
1
y = —Zi%iz, (H.10)
3
g1ala0) = — 272 f i2(p)?ho(p), (H.11)

and we recall that a cutoft /m is implicit in all these rescaled momentum integrals.
These functions are not all independent. Indeed, defining

1
() = f F(Pia(p) e (p)" (H.12)
d
4

one easily establishes the recursion relations

myYm+1,n (a) = azaa)/mn (a),

1
Ym+1n+1(a) = Eym+l,n(a) — Ym,n(a). (H.13)
They allow to obtain these functions from derivatives of
1
r@=- [In(-aiz) £ o) (H.14)
P
Specializing first tof (p) = 1, one finds usingH.13)
yr1(a) =ay'(a), (H.15)
yi2@) =v'(@ —if, (H.16)
1
r13@) == (y'(@) = if) = yo(a), (H.17)
y2.2(a) = a%y’ (a), (H.18)

y2.3(a) =ay” (@) — y'(a) +i%, (H.19)
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2
y2.4(a) =y (a) — E(y’m) —i2) + yo,2(a). (H.20)

Thus the functiongio(a), g11(a), g12(a) andgiz(a) can all be obtained from derivatives
of y(a) with f(p) = 1. Similarly, g4(a) and gs(a) can be all obtained from derivatives
of y(a) with f(p) = ¢(p), and similarly forgs(a), gg(a) andgg(a) with f(p) =i3(p),
g7(a) with f(p) =iz(p)c(p).

One may further attempt to relaje(a) for different functionsf(p). Sinced, 2 l> =
—213, one can use that

1 1 1
i3(p) = Zeiz(p) - Zpié(p) — Z)\aAiZ(P)v (H.21)

wherer = A/m. Integration by part yields identities such as

f d;”p%pap +28,) H (i2(p))
A A
= —d/ dfde(iz(P)) + th/ dFPPdH(iz(P))» (H.22)
which can be used to relate the integrals.

H.2. Calculation of thel' > 0 g-function

Below we compute—ma,,b(x) at fixed A/m, thus we truly compute-(ma,, +
Adp)b(x). Itis therefore useful af > 0 only ford < 2 when all integrals are UV conver-
gent and the limitA/m — oo can be taken with no further redefinitions. The calculation
of the g-function ford > 2 and7 > 0 requires further redefinitions and will eventually be
detailed elsewhere.

Taking into account allz-dependence & > 0 in (6.17)one obtains (up to an additive
constant)

B1[b](x) = —m3ub(x)

_% _ 0 51?1 _ 0/ 3
= (Sax[ mamax]+—8[b/(x) _bl(o)][ ma, (b’ (x) —b'(0)]
by, .o 8b1, o
* Sag (7n0) + 57 (=T
db1 / / / /
+ < (Cmine) = eb1— (b' = b'(0))(by — b1(0))
bl (x) b'(x) b (0)
— T — i = H.23
1+b"(0)/e + (1+0b"(0)/€) € (H.23)
whereb1 is given in(6.17)
One uses that
—md2ay = eay + [b'(x) — b'(0)]a} + Ton ! (H.24)

115670 /e ™
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—md2 (b'(x) — b'(0))

U / / Tm 1 /!
=[e+b"(0)][b (x)—b(O)]—l—m[b (x) = b"(0)], (H.25)
2 _N\2=
_m8,91a =€ + Tm( a + (@ —¢) a) (H.26)
ap— € €

and—ma,, T,, = —0T,,. After arather tedious calculation one obtains the f¢rri3)given
in the text with the following definitions (fad < 2):

2a(a) = —4g1(a) — €(e + 0)ga(a) + e2ag)(a), (H.27)
gs(a) = ggl(a) — 2g2(a) — etigs(a) + €ags(a), (H.28)
Z6(a) = —2g2(a) — €0gs(a) + €%agy(a) — €ga(a), (H.29)
g7(a) = §g2(a) — 4g3(a) — egs(a) + €(€ — 0)g7(a) + €%agh(a), (H.30)
gs(a) = :fza [g6(a) + ga(a) + a(g7(a) + go(a))] + ggl(a) + €ga(a) — €O gs(a)

8 4
+a [—E—zgl(a) + —82(a) + egs(a) + (e — O)go(a) + 62843(“)}

4 4 4
+a2[6—3g1(a) - e_ng(“) + ggs(a)+€2gé(a)], (H.31)
g10(a) = —€?(e + 20) gr0(a) — egala) + 3agjg(a), (H.32)
g11(a) = —2€%0g11(a) + gaa) — egs(a) — egp(a) + €3agy(a), (H.33)
Z12(a) = €2(¢ — 20)g12(a) + g5(a) — €g7(a) + €3agh(a), (H.34)

$(a) = E%a[gem) +agr(a) + gala) + ego(a) + €2 o(a) + acgly(a)

2.2 1

+a?e?gi5(a) + ¥y +aedgra(@)] + 2g4(a) + eghla) — 2€%y 0

2
+a [62(6 —20)g13(a) — gg4’(a) +2gi(a) + 2g5(a) + egé(a)]

/

2g5(a)

+ az[eSg’ls(a) - + 2g’7<a>], (H.35)

¥r(a) = €[glo(a) + agiy(a) + a®gly(a) + egis(a) + aegiz(@)], (H.36)

V(a)= (e — a)z[g’lo(a) +aghq(a) + azg/lz(a) +ey+ eaglg(a)]. (H.37)
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Appendix I. Integrals

I.1. Definitions

1
I r=/m,

k

m—e

I=Ay ;
€
o 2I'(3—dJ2)
CT T amdrz
The momentum dependent ones are

1 1
I =
2(p) k/(k+p/2)2+m2 k—p/22+m?’

1 1

Ia(p) = k/ [k 1 /22 +m2P (k—p/2% ¥ m?
1 1

I4(p) :

zk/ [(k+ p/27+ m2R [tk — p/DZ + m?P2

Dimensionless rescaled variants

I, (p)
Aq

in(p) =

m=1

I
Aq

in:

m=1

I.2. Integrals in fixed dimensions, general formulas

The general case can be treated as follows:

o1 L :
Jnm(p) = Ay l[ [(k — p/2)2 + 11" [k + p/2)2 + 1

Using the usual Schwinger-parameter representation, this can be written as

I'(n)I"(m)

475

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

Jnm(p) = ;<i/ek2) / oL (o 4 p) e @ P atn

Ay
k a,f>0

Pt m—dj2) prt [ g 2] 2o

- 21"(3—51/2)1"(11)1"(m)}3 o A+ pyr+m 1+ (1+/3)2,p

(1.10)
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We make the change of variablgs= 1

1
jn,m(p) = Lntm _d/2) /dssmil(l—S)nil[l‘}‘s(l—s)pz]%*m*”
0

2I'(3—d/2)I (n)T (m)

B I'n+m—d/2) i dy
T I'(3—d/2)I"(n)I"(m)2r+m /{./1—y
0

AT AT T 4 ATy AT
2

[T a

where we have used another new variabte 4s(1 — s). Note that the large fractio in
the above expression is such that only integer powe¢s ef y) survive. Some simplifica-
tions occur fom = m, andiz(p) = j1.2(p):

1
I'(2n—dj?2) dy n1[1+ pz]%—zn

0
1 d
. . 1 [ dy p?1273
i3(p) = j1.2(p) = —/ [1+y—} . (1.13)
8] /iy 4
5 y

1.3. d=0

in=in(p)=1/4,  Ag=4, e=4. (1.14)
4. d=1

3
Ad=7. (1.15)
2

i2(p) = W’ (1.27)

124 p?

i3(p) = B(sz)T (1.18)

2(20+ p?
ja(p) = 2204 1) (1.19)

34+ p2)*
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1.5. d=2
1
Ag=—, 1.20
‘=5 (1-20)
arctanhjlp ';ﬁ? )
i2(p) =
|plv/4+ p?
_In@+ p? + |ply/4+ p?) —In@2+ p? — |plV4+ p?)
2|ply/4+ p?
2 arcsintf 2!
_ 2arcsinify) : (1.21)
|plv/4+ p?
1 2arcsinlﬁ%)
is(p) = + . (1.22)
8+2p2  |pla+p?)*?
1
ia(p) = —2F1(2 3.5/2,—p®/4). (1.23)
1.6. d=3
1
Ag=—, 1.24
‘=g (1-24)
. arctar{'2l i
i2(p)=2 | rf 2) ﬁ[ln( —ilpl) = In(2+ilpl)], (1.25)
5(p) = — (1.26)
1 =—, .
3p p2 +4
i =—. 1.27
4(p) Ty (1.27)
Appendix J. Summary of notation
Symbol Definition Defined in equation
€ e=4—d
z,0 ¢ = roughness) = d — 2+ 2¢ (thermal exponent)
u(x), v(x) u(x) = field, v(x) = u(x)/v/N
In = e gz 12 = S 214)
Ir(p) Ih(p):= fk (k+p/§)2+m2 (k—p/§)2+m2 (4.18)

._ 1 1
I3(p) I3(p) = fk [(k+p/2)24m2)2 (k—p/2)24m? (4.20)
(continued on next paye
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Symbol Definition Defined in equation

I4(p) 18P) = i (o 2w TG 22T (4.22)

c(p) Clp)=(p2+m?~t

in(p), in in(p) = 24 |1, i 2= Al (6.15) (6.16)

c(p) c(p):=1+p>H-1

B(---) second cumulant of bare disorder

B(--+) second cumulant of renormalized disorder (not rescaled)

B!, B!, B, etc. B!, = B'(Xap), B}, = B" (Xap), B, := B'(v2,), etc.

b(z) b(z) = 4Agm™ € B(zm~%) (6.10)

Xab (%), ap(x) auxiliary fields

Kab(x) Kab(X) = Xab(X) + Xba (¥) = Xaa (x) — Xpp(xX)

x5tz P = Rab@lowy=vs X5 = X5 + 0 ()

%98 =%y = xap %00 =02 + 2T 1y + 4B, — 3(B), + B},)]

Ho(p) D)= T (@.27)

He(p) Ae(p) = Tt s (6.8)

e () he(p) 1= TS (6.13)
2—i2(p

T temperature

Ty Ty :=4T Agm? /e
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