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Abstract

In an earlier publication, we have introduced a method to obtain, at largeN , the effective action
for d-dimensional manifolds in aN-dimensional disordered environment. This allowed to obtain
functional renormalization group (FRG) equation forN = ∞ and was shown to reproduce, with n
need for ultrametric replica symmetry breaking, the predictions of the Mézard–Parisi solution
we compute the corrections at order 1/N . We introduce two novel complementary methods, a
grammatic and an algebraic one, to perform the complicated resummation of an infinite num
loops, and derive theβ-function of the theory to order 1/N . We present both the effective actio
and the corresponding functional renormalization group equations. The aim is to explain the c
tual basis and give a detailed account of the novel aspects of such calculations. The analys
FRG flow, comparison with other studies, and applications, e.g., to the strong-coupling phase
Kardar–Parisi–Zhang equation are examined in a subsequent publication.
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1. Introduction

In a series of recent articles we have constructed the functional renormalization
(FRG) method for disordered systems, applied to specific situations and beyond on
[1–9]. This method is, apart from mean field theory[11,12]using replica symmetry break
ing (RSB) and some rare exactly solvable cases[13,14], the only known analytical metho
which promises to handle the strong coupling glass phase of disordered elastic syste[1–
9,15–38]. Such systems, modeled by an elastic manifold (of internal dimensiond) with a
N -component displacement fieldu(x) (i.e.,x ∈ R

d andu(x) ∈ R
N ), are of high interest fo

numerous experiments[25,36,39–44]. This so-called random manifold model still offe
great theoretical challenges and a strong motivation is the hope to gain insight into
physics. In addition, thed = 1 case maps onto the much studied Kardar–Parisi–Z
growth equation[45]. It exhibits a strong coupling phase for which the upper critical
mension is still under debate[46–50].

Higher loop studies of the statics of disordered elastic systems allow, in principle,
tematic dimensional expansion, in the simplest case aroundd = 4. They are however of
rather different nature than in standardfield theory for pure critical systems[1,7,10,31,33–
35,51–54]. Thermal fluctuations are found to be formally irrelevant in these glass ph
suggesting that the physics is controlled by a zero temperature fixed point. Howev
fore this fixed point is reached, the zero temperature effective action is found to becom
non-analytic[17]. Although this allows to evade the so-called dimensional reduction[55]
which makes naive perturbation theory useless and yields unphysical results, it also
ates amazing new subtleties in the field theory. These were analyzed in a number of pap
[1,7,10,31,33–35,51–54], and although some solutions to the puzzles were propose
physics still remains to be elucidated.

An interesting limit where one can hope to gain insight into these formidable p
lems is the large-N limit. SinceN = ∞ is formally the mean-field limit, it allows a direc
confrontation between the FRG method and mean field methods. A solution of theO(N)

random manifold model forN = ∞ was proposed by Mézard and Parisi, using a s
dle point with spontaneous replica symmetry breaking[11,12]. As in other models o
glasses, spontaneous RSB can be related to ergodicity breaking of the Gibbs meas
several ground states[56]. Although it offers a rather elegant way out of dimensional
duction, it is by no means clear that systems with (large but) finiteN should exhibit such
a tremendous degeneracy of low energy states;and there are in fact indications to the co
trary [57].

It is thus crucial to develop another line of attack, even in that limit. This is wha
have achieved in a previous publication, where we have computed the effective ac
the theory at largeN . There we have derived theβ-function of the field theory to dom
inant order, i.e., forN = ∞ [2,3,8]. We have discovered that beyond the Larkin len
the FRG flow freezes (at least for specific initial conditions) and that most of the featur
of the Mézard–Parisi solution can be recovered.Interestingly however, in this formulatio
there is no need for a spontaneous RSB ansatz with ultrametric structure. Thus on

hope that it could be more adapted to real world situations than the RSB calculations. Such
RSB calculations of fluctuations around the mean-field solution have been attempted for
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the random-manifold problem only in the case of 1-step non-marginal RSB (with d
pointing result[58]) and offer, in full generality, extreme complications, as is illustrated
several studies for spin glasses[59–66].

The next challenge is thus to extend the FRG in a large-N expansion beyond the dom
inant order (N = ∞). This is the aim of the present paper. Since this is a complic
calculation, and involves developing new methods which are of interest by thems
this paper is restricted to the calculation of the effective action and derivation of tβ-
function to order 1/N . This is performed atT = 0 and at finite temperature. The analy
of the resulting FRG flow, comparison with other studies, and applications, e.g.,
strong-coupling phase of the KPZ equation is involved and is the subject of a forthco
publication.

The outline of the paper is as follows. In Section2 we give the general formulation o
the 1/N expansion for the effective action of the random manifold. Details and gen
izations are given inAppendices A–C. In Section3 we summarize the main results f
N = ∞. Section4 explains the derivation of the 1/N correction by a graphical metho
which introduces a new type of diagrammatics. Section5 explains the principle of a secon
and complementary method based on the algebra of 4-replica tensors. Section6 contains
the full result for the effective action to order 1/N , first expressed in bare paramete
then as a function of the renormalized dimensionless disorder. This allows, in Sec7,
for a derivation of theβ-function atT = 0. The structure of the finite-T β-function is
indicated, and details given inAppendix H. A fool-proof diagrammatic version for fi
nite temperature is given inAppendix D. More details on the two main methods a
given respectively inAppendix G(for the diagrammatic method, including an altern
tive derivation of theT = 0 β-function) and inAppendix F(for the algebraic method
Appendix I contains a list of all integrals. A table summarizing the notation is foun
Appendix J.

2. 1/N expansion of the effective action: general formula

We start from the partition function of an interfaceZV = ∫
D[u]e−HV [u]/T in a given

sample, with energy

(2.1)HV [u] =
∫
q

1

2

(
q2 + m2)u(−q) · u(q) +

∫
x

V
(
x,u(x)

)
,

where
∫
q ≡ ∫ ddq

(2π)d
,
∫
x ≡ ∫

ddx andu ·v = ∑N
i=1 uivi . TheO(N) indices will be specified

only when strictly necessary, and below additional replica indices for the replicated
ui

a will be introduced,a = 1, . . . , n. The small confining massm provides a scale. T
obtain a non-trivial large-N limit, one defines the rescaled fieldv = u/

√
N and chooses th

distribution of the random potential to be rotationally invariant, e.g., its second cum
as
(2.2)V (x,u)V (x ′, u′) = R(u − u′)δxx ′ = NB
(
(v − v′)2)δxx ′
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in terms of a functionB(z). Higher connected cumulants are scaled as

(2.3)V (x1, u1) · · ·V (xp,up)conn= Nδx1,...,xpS(p)(v1, . . . , vp),

with δx1,...,xp := ∏p
i=2 δd(x1 − xi).

Physical observables can be obtained for anyN from the replicated action atn = 0 with
a sourceJ = √

N j as

(2.4)Z[J ] =
∫

D[u]D[χ]D[λ]e−NS[u,χ,λ,j ],

(2.5)

S[u,χ,λ, j ] = 1

2T

∫
q

(
q2 + m2)va(−q) · va(q) +

∫
x

{
U

(
χ(x)

)

− 1

2
iλab(x)

[
χab(x) − va(x) · vb(x)

] − ja(x) · va(x)

}
,

where the replica matrix fieldχ(x) ≡ χab(x) has been introduced through a Lagrange m
tiplier matrix fieldλab(x). Here and below summations over repeated replica (andO(N))
indicesa, b = 1, . . . , n is implicit. The bare interaction matrix potential

(2.6)U(χ) = − 1

2T 2

∑
ab

B(χ̃ab) − 1

3!T 3

∑
abc

S(χ̃ab, χ̃bc, χ̃ca) + · · ·

depends only on the matrix

(2.7)χ̃ab := χaa + χbb − χab − χba

and has a cumulant expansion in terms of sums with higher numbers of replicas.
The effective action functionalΓ [u] is defined as the Legendre transform ofW[J ] =

lnZ[J ] and satisfies

(2.8)Γ [u] +W[J ] =
∫

J (x) · u(x).

SinceΓ [u] defines the renormalized vertices, its zero-momentum limit defines therenor-
malized disorder, the quantity on which we focus here. Thus we only need the result
unit volume) for auniformconfiguration of the replica fieldua(x) = ua = √

N va , which
takes the form

(2.9)Γ̃ (v) := 1

LdN
Γ (u) = 1

2T
m2v2

a + Ũ(vv),

wherevv stands for the matrixva · vb. This defines the renormalized disorder poten
Ũ(vv) and, whenever it can be expanded, up to a constant,

(2.10)Ũ(vv) = − 1

2T 2

∑
ab

B̃
(
v2
ab

) − 1

3!T 3

∑
abc

S̃
(
v2
ab, v

2
bc, v

2
ca

) + · · · .

It defines therenormalized cumulants̃B(z), S̃(· · ·), etc. Here and in the following w
denote
(2.11)vab := va − vb.
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We aim at calculating the effective action up to terms of orderO(1/N2), i.e., the first two
terms in the expansion

(2.12)Ũ(vv) = Ũ0(vv) + 1

N
Ũ1(vv) + O

(
1/N2).

Details of the calculation, as well as expressions for non-uniform fields are given inAp-
pendix C. For the leading term we find, from a saddle-point evaluation[8]

(2.13)Ũ0(vv) = U(χv) + 1

2

∞∑
n=1

n

n + 1
In+1 tr

[−2T ∂χU(χv)
]n+1

,

(2.14)In :=
∫
k

1

(k2 + m2)n
.

The trace acts on replica matrices andχv satisfies the self-consistent equation

(2.15)

χab
v = vavb + T

∫
k

Gab
v (k) = vavb + T I1δab + T

∞∑
n=1

In+1
([−2T ∂χU(χv)

]n)
ab

,

(2.16)Gv(k) = [(
k2 + m2)δ + 2T ∂χU(χv)

]−1
.

Note that ford < 2 no UV cutoff is necessary (apart for a constant term in the free ene
while for 2< d < 4 an UV cutoff is necessary (and implicit in the following) only forI1.1

One also finds a compact and very useful self-consistent equation for the deriva
the zeroth order potential

(2.17)

∂abŨ
0(vv) = ∂abU(χv) = ∂abU

(
vv + T I1δ + T

∞∑
n=1

In+1
(−2T ∂Ũ0(vv)

)n

)
.

Everywhere we denote by∂abU(φ) := ∂φabU(φ) the simple derivative of the functionU(φ)

with respect to its matrix argumentφab. (Note that∂abŨ(vv) is afirst derivativeof Ũ(vv)

with respect to the matrix elementva · vb.)
Next, from calculations of the fluctuations around the saddle point, one obtains th/N

correction, which can be expressed in terms of the zeroth order quantities as

(2.18)

Ũ1(vv) = 1

2

∫
q

tr
(
ln

[
δacδbd + 2T ∂χab ∂χef U(χv)

× (
T Πef,cd

v (q) + veG
f c
v (q)vd + vf Ged

v (q)vc

)])
,

(2.19)Πef,cd
v (q) =

∫
k

Ged
v (k)Gfc

v (q − k),

(2.20)Gv(k) = [(
k2 + m2)δ + 2T ∂vvŨ

0(vv)
]−1

,

1 To obtain a correct continuum limit,T therefore should be scaled asT = T̃ /Λd−2, whenΛ is taken to
infinity.
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Fig. 1. Top: typical T = 0 contribution to B̃(vab). Bottom: self-consistent equation at leading order
B̃ ′(v2

ab) = B ′(χab). The wiggly line denotes a derivative, and is combinatorially equivalent to choosing on
B. At finite T one can attach an additional arbitrary number of tadpoles to anyB. Also note that no loop mad
out of 3 propagators appears: this would be a contribution to the third cumulant (3-replica term), not calculat
here; it is given in[8].

where here the trace acts in the space of replica pairs, i.e., tr(M) = ∑
ab Mab,ab. Note that

Ũ0(vv) can also be replaced by the fullŨ(vv) in the expression of̃U1(vv) with the same
accuracy (i.e., at leading order in 1/N ).

The saddle-point equation(2.17) for the zeroth order and the result for the 1/N -
correction(2.18)are still formal as they encode the full renormalized disorder distribu
To yield the renormalized disorder cumulants via(2.10), (2.12)they must be expanded
the number of replica sums, i.e., in cumulants. In the following Section3, we recall the
results forN = ∞, and proceed with the non-trivial evaluation of(2.18)via a graphica
method in Section4, and via an algebraic method in Section5.

3. Review of the results for N = ∞

In this section we review the main results atN = ∞. Details can be found in[6].

3.1. Self-consistent equation atN = ∞
We start by recalling the cumulant expansion and only derive the result for the s

cumulant. Higher cumulants are given in[6]. One studies a bare model, where only
second cumulant is non-zero

(3.1)U(χ) = − 1

2T 2

∑
ab

B(χ̃ab)

and calculates the renormalized disorder(2.10). (We will drop the index zero on the cu
mulant functions, indicating the leading order). The self-consistent equation(2.17)can be
expanded in sums with increasing numbers of replicas. We only need

[ ˜ 0 ] 2
( ∑ ˜ ′ ˜ ′

)

(3.2)−2T ∂U (vv)

ab
=

T
δab

c

Bac − Bab + · · · ,
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[(−2T ∂Ũ0(vv)
)2]

ab

(3.3)= 4

T 2

(
δab

∑
ef

B̃ ′
aeB̃

′
af − B̃ ′

ab

∑
f

(B̃ ′
af + B̃ ′

bf ) +
∑

c

B̃ ′
acB̃

′
cb

)
+ · · · ,

whereB̃ ′
ab = B̃ ′(v2

ab) (recallv2
ab := (va −vb)

2). Here and below the dropped terms cont
sums with too many replicas to contribute to the final result for the self-consistent eq
of the second cumulant (2-replica term). One thus has

χ̃ab
v = v2

ab + 2T I1(1− δab)

(3.4)+ 4I2

[
1

2

∑
c

(B̃ ′
ac + B̃ ′

bc)− 1

2
(B̃ ′

aa + B̃ ′
bb)+ B̃ ′

ab − δab

∑
c

B̃ ′
ac

]
+ · · · .

The self-consistent equation becomes

(3.5)B̃ ′(v2
ab

) − δab

∑
c

B̃ ′(v2
ac

) + 3-replica terms= B ′(χ̃ab
v

) − δab

∑
c

B ′(χ̃ac
v

)
and can be solved by appropriate Taylor expansion of the r.h.s. It is solved fora �= b:

(3.6)B̃ ′(v2
ab

) + 1

T

∑
g

S̃′
abg +

∑
gh

· · · + · · · = B ′(χ̃ab
v

)
.

It is then easy to see that the second cumulant satisfies a closed equation at anyT ,

(3.7)B̃ ′(v2
ab

) = B ′(v2
ab + 2T I1 + 4I2

(
B̃ ′(v2

ab

) − B̃ ′(0)
))

,

with no other contributions from higher cumulants at anyT . A more detailed derivation i
given in[6].

3.2. Derivation of the FRG equation atN = ∞

From the previous section the renormalized second cumulant of the disorderB̃ ′(x) sat-
isfies the self-consistent equation

(3.8)B̃ ′(x) = B ′(x + 2T I1 + 4I2
(
B̃ ′(x) − B̃ ′(0)

))
.

It implies

(3.9)B̃ ′(0) = B ′(2T I1),

as well as

(3.10)B̃ ′′(x) = B ′′(x + 2T I1 + 4I2
(
B̃ ′(x) − B̃ ′(0)

))[
1+ 4I2B̃

′′(x)
]
.

We now derive the corresponding exact FRG equation. Taking the derivativem∂m gives

m∂mB̃ ′(x)

= B ′′(x + 2T I1 + 4I2
(
B̃ ′(x) − B̃ ′(0)

))

× [

2T m∂mI1 + 4(m∂mI2)
(
B̃ ′(x) − B̃ ′(0)

) + 4I2m∂mB̃ ′(x) − 4I2m∂mB̃ ′(0)
]



Fisher
lf-
dels
r

ction

n-
uthors,

hat

given
ry,
416 P. Le Doussal, K.J. Wiese / Nuclear Physics B 701 [FS] (2004) 409–480

= B̃ ′′(x)

1+ 4I2B̃ ′′(x)

[
2m∂mT I1 + 4(m∂mI2)

(
B̃ ′(x) − B̃ ′(0)

)
(3.11)+ 4I2m∂mB̃ ′(x) − 4I2m∂mB̃ ′(0)

]
.

This yields

m∂mB̃ ′(x)

(3.12)= B̃ ′′(x)
[
2m∂mT I1 + 4(m∂mI2)

(
B̃ ′(x) − B̃ ′(0)

) − 4I2m∂mB̃ ′(0)
]
.

Thus one has also

(3.13)m∂mB̃ ′(0) = B̃ ′′(0)

1+ 4I2B̃ ′′(0)
2m∂m(T I1).

Hence one gets finally

m
∂

∂m
B̃ ′(x)

(3.14)= B̃ ′′(x)

[
2

(
m

∂

∂m
T I1

)
1

1+ 4I2B̃ ′′(0)
+ 4

(
m

∂

∂m
I2

)(
B̃ ′(x) − B̃ ′(0)

)]
,

which can also be integrated once overx. As emphasized in Ref.[6] it is exact atN = ∞
for anyd and correctly matches the 1-loop FRG equation obtained by Balents and
for anyN but only toO(ε), ε = 4 − d . It can be solved directly, or equivalently the se
consistent equation(3.8)can be inverted. The corresponding solutions for various mo
are discussed in[6] and compared with the Mézard–Parisi solution[11] obtained in a rathe
different manner through a replica-symmetry-breaking saddle point.

Before discussing specific models, we now turn to the evaluation of the effective a
of the FRG and theβ-function to the next order in 1/N .

4. Corrections in 1/N , via the graphical method

In this section, we present a graphical method to calculate the corrections toB̃ at order
1/N . An algebraic method is presented in Section5. Both methods are completely indepe
dent, since they use orthogonal ideas. They were performed independently by the a
each on a different continent. The agreement on the final result gives some confidence t
it is free from calculational errors.

4.1. General considerations for a scalar field theory

Let us start with some general considerations about which graphs contribute at a
order in 1/N . For that purpose, we consider a general (pure, no disorder) scalar field theo
with a N -component fieldui(x), i = 1, . . . ,N , and interaction∫ ( �u2)
(4.1)Sint = N

x

V
N

,



d
e is
tor

le-

ber on
d

ade of
ning.
ey

-
s,
P. Le Doussal, K.J. Wiese / Nuclear Physics B 701 [FS] (2004) 409–480 417

Fig. 2. A typical “tree-like” diagram contributing to the leading order in the 1/N -expansion of the renormalize
potentialṼ (effective action). The numbers 1, 2 and 3 depict special features discussed in the main text. Ther
a factor 1/N per dotted line and a factor ofN per “small loop” of propagators (solid lines), thus the overall fac
is N as it should from(4.1). This graph does not contain any “big loop” (see text).

where theuu-correlations of the free theory (V = 0) are given by

(4.2)
〈
ui(x)uj (y)

〉 = δijC(x − y),

with i, j = 1, . . . ,N andC(x − y) independent ofN is denoted by a solid line inFig. 2.
Graphically, we can denote this by

(4.3)Sint = b2 + b4

N
+ b6

N2
+ · · · ,

where all coefficientsbi are of order 1; there is thus a factor of 1/N per dotted line.
The renormalized potential̃V (effective action) is given by the sum of all 1-partic

irreducible diagrams. They must thus contain “small loops”. To leading order in 1/N the
following diagrams are possible:

• Tadpoles, contracting any�u2 with itself only. The factor ofN from the “small loop”
(the

∑N
i=1 over the number of components) compensates the factor ofN from the

argument ofV (�u2/N). (See 1 onFig. 2.)
• Closed “small loops” with 2, 3, 4 or more vertices, as denoted by the same num

Fig. 2: adding one more vertex gives a factor ofN , see Eq.(4.1); this is compensate
by using an additional�u2/N .

• Note that all vertices�u2, (�u2)2, a.s.o. contribute equivalently. (See 5, 6 onFig. 2.)

Note that all these diagrams are “tree-like” diagrams, where the branches (m
“small loops”) are made out of the diagrams through which no total momentum is run
We will call them “tree-like” in the following, to distinguish them from normal trees. Th
are resummed by the saddle-point equations (seeAppendix B) or from graphical inspec
tion, as done here: first of all, insertions ofV ′ into a line of propagators act like a mas
leading to the replacement of 1/(k2 + m2) by

1

(4.4)G(k) :=

k2 + m2 + 2Ṽ ′( �u2

N

) .
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Fig. 3. Typical graphs which contribute to the renormalized potentialṼ to subleading order in 1/N . The “big
loop” (a loop made of loops, see main text) accounts for a factor of 1/N ; the same is true for the “minimal loop
on the right, which is a “big loop” in disguise (as explained in the main text). The given diagram is thus of ord
1/N2.

The effective potential̃V is obtained from

(4.5)Ṽ ′
( �u2

N

)
= V ′(χ),

(4.6)χ = �u2

N
+

∫
k

G(k) = u2

N
+

∫
k

1

k2 + m2 + 2Ṽ ′( �u2

N

) .

Note that the derivatives are graphically understood as follows: choosing one vertex
ative!) in the effective potential̃V is equivalent to having a bare vertex with the sa
derivative taken (thusV ′) and attaching to it loops made out of correlation-functions.
taching any number of such loops toV , amounts to shifting its argument, as can be s
from Taylor-expansion. In these loops, again derivatives (one needsu2 to attach the loop
of the effective potential are inserted. The latter can thus be written asV ′ with shifted
argument to account for more things to be attached to thisV ′ or equivalently using(4.5)
to a Ṽ ′. This result coincides with(B.22).

Diagrams at next order 1/N contain exactly one “big loop”, seeFig. 3. Take a “tree”
(as, e.g., the object onFig. 2) and glue it together to form a “big loop” by identifyin
two vertices; this does not change the factor ofN from the loops, but one looses o
factor ofN from the missing vertex. Note that also the “minimal loop” marked onFig. 3
belongs to the same class, even though it looks different. The “big loop” demands to
series of diagrams at non-vanishing momentum, and then to carry through the inte
over momenta. However the simplification remains that any added “tree-like” branches a
resummed by replacing the argument ofV from �u2/N to χ .

Another feature arises at subdominant order: in the “big” loop, one may pick any
small loop (i.e., the loop made out of correlation-functions) and replace one of th
correlation-functions by�u2/N : this means that the corresponding fieldsu did not get con-
tracted. Since the remaining correlation-functions force their indices to be equal, this
a factor of�u2 = N × (�u2/N), thus contributes the same factor ofN . Note that these dia

grams do not contribute to the effective action at leading order, which is treelike, since the
resulting diagrams would be 1-particle reducible.
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To resum the order 1/N -diagrams one has to sum over loops of all sizes. The resu

(4.7)

δṼ

( �u2

N

)
= − 1

2N

∞∑
n=1

1

n

∫
p

[
−2V ′′(χ)

(
I2(p) + 2

�u2

N
G(p)

)]n

= 1

2N

∫
p

ln

[
1+ 2V ′′(χ)

(
I2(p) + 2

�u2

N
G(p)

)]
,

(4.8)I2(p) =
∫
k

G(k + p)G(k).

This can be compared to the results ofAppendix B, and more specifically to formul
(B.39).

4.2. Elastic manifolds in disorder: general considerations, building blocks

Let us start the treatment of the disordered model with some general consideratio
First to organize the 1/N -expansion, one may still use the diagrammatics of the prev
section, which shows theO(N)-index content. The same diagrams still exist, but they n
also have a complicated replica content. The replica content can be explicated by us
“splitted vertices” instead of the unsplitted ones of the previous section. The correspondin
replica diagrammatics, which shows the replica structureonly was explained in details i
[7]. This can be drawn as

(4.9)
∑
ab

B
(
(va − vb)

2) = ,

where adashedline connects the two dots, standing for replicasa andb. In order to avoid
confusion, note that this dashed line is different from thedottedline used inFigs. 2 and 3
as well as Eq.(4.3)to show theO(N)-structure.

Below we introduce a third diagrammatics which allows to trackboth the replica and
theO(N) indices, not an easy task. Before doing so let us explain a few points.

Since we are only interested in the corrections to the2-replica partB̃ab of the effective
action, there are manyO(N) diagrams which do not contribute.

At dominant order (Fig. 1) small loops with three vertices (see 3 inFig. 2), or more, do
not contribute toB̃ab, but to the third cumulant, or higher, as can be seen from

(4.10),

which is a diagram showing only replica indices,N indices being implicit. Note that soli
lines identify replica indices. This is why inFig. 1only chain-diagrams and tadpoles (t

latter are omitted for simplicity of presentation) appear, rendering calculations appreciably
simpler.
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Fig. 4. Example of a big loop made out of small loops, in splitted replica notation (left). It contributes to th
2-replica part (i.e., the disorder) at order 1/N . Note that there are two constraints more than needed to ha
2-replica term. Thus two redundant constraints can be“wasted”, by cutting each of the solid lines exactly on
either by inserting aB ′ or leaving auu uncontracted, as is done on the right.

At subdominant order in 1/N , only diagrams with one “big” loop (general feature of t
order 1/N discussed in the last section) made of any number of “small” 2-loops and
exactly two “small” 3-loops can contribute to the renormalized second cumulant.
small 3-loop can also be replaced by an uncontracteduu. To understand this, consid
the simplest “big” loop, i.e., the railroad diagram, which is drawn on the left ofFig. 4
in splitted replica notation. It contains exactly two closed propagator lines, which
constrain the replicas to be equal. (These are the inner and outer solid lines on the
Fig. 4.) These over-constraints can be relaxed, by cutting each line exactly once, in
not to get a higher replica term, as is illustrated on the right ofFig. 4. This “cutting” is
possible by either inserting into a propagator a vertex (which contains two replicas,
not “replica-conserving”) or by leaving oneuu uncontracted. This is the basic princip
whose careful exploration leads to all of the diagrams at order 1/N , as we will discuss
now.

In order to do so, we have to introduce a new powerful graphical notation:

(4.11)= B(χ̄),

(4.12)= B ′(χ̄ab)(�ua − �ub)
2,

(4.13)= B ′′(χ̄ab)
1

2

[
(�ua − �ub)

2]2
,

where lines departing in the same direction belong to the same vector-index, and a
uing line represents the same replica.

We also use the following short-hand notation

(4.14)B ′
ab := B ′(χ̄ab)

and similar formulas for the higher derivativesB ′′
ab := B ′′(χ̄ab), etc. Another frequently

used shorthand is

(4.15)B ′
0 := B ′

aa, B ′′
0 := B ′′

aa, etc.

In order to be able to resum the “big” loop, we will now introduce some building blo
Since there can be any number of 2-loops in the “big” loop one needs to define t
summed chain

:= + +

(4.16)+ + · · · .
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We have with momentump running through the diagram

(4.17)
p−→ = 4I2(p)B ′′(χ̄ab)

with

(4.18)I2(p) =
∫
k

1

(k + p/2)2 + m2

1

(k − p/2)2 + m2 .

Let us introduce a compact notation for the integrals, summarized inAppendix I. (All our
notations and important formulas are also summarized in the table inAppendix J)

(4.19)Jαβ(q) ≡ J
q
αβ :=

∫
k

1

((k + q/2)2 + m2)α

1

((k − q/2)2 + m2)β
,

(4.20)I3(p) := J1,2(p) =
∫
k

1

((k + p/2)2 + m2)2

1

(k − p/2)2 + m2 ,

(4.21)I4(p) := J2,2(p) =
∫
k

1

((k + p/2)2 + m2)2

1

((k − p/2)2 + m2)2
.

Thus

(4.22)
p−→ = [

4I2(p)B ′′(χ̄ab)
] 2

(4.23)
p−→ = [

4I2(p)B ′′(χ̄ab)
] 3

,

and so on. These chain-like diagrams form a geometric series, which is resummed

= 1

1− 4I2(p)B ′′(χ̄ab)

(4.24)=: 1

2

[
(ua − ub)

2]Hab(p)
[
(ua − ub)

2].
We have introducedHab(p), the “effective”B ′′

ab after resummation

(4.25)Hab(p) := B ′′(χ̄ab)

1− 4I2(p)B ′′(χ̄ab)
,

which we equivalently can express at leading order in 1/N throughB ′′(χ̄ab) = B̃ ′′
ab/[1 +

4I2B̃
′′
ab] as

(4.26)Hab(p) := B̃ ′′
ab

1+ 4[I2 − I2(p)]B̃ ′′
ab

.

We also defineHv(p) as

B ′′(χ̄(v)) B̃ ′′(v2)

(4.27)Hv(p) :=

1− 4I2(p)B ′′(χ̄(v))
=

1+ 4[I2 − I2(p)]B̃ ′′(v2)
,
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valid again at leading order in 1/N . Note that the denominator in(4.27)reflects the renor
malization ofB̃: the divergent integralI2(p) does not appear alone, but together with
counter-term, the integralI2(p) subtracted atp = 0. It turns out that at zero temperatu
the above are the only building blocks needed. However atT > 0 one needs two mor
building blocks which are quite non-trivial. As was shown in[7] non-zero temperature d
agrams contain at least one replica “sloop”; these are exactly the over-constrainin
discussed above and onFig. 4. There is one factor ofT for each such “sloop”. The add
tional building blocks thus contain sloops: one sloop at orderT , and 2 sloops (an examp
is on the left ofFig. 4) at orderT 2. Higher orders inT are only possible at order 1/N2, or
higher.

To explain the construction of these additional building blocks, which is subtle
goes back to the diagrammatics showing only replica indices.

The first building block is the “moon-diagram”. This is the sum over all diagrams, w
at both ends have lines joining only one of the both replicas, and which enforce the
replicas to be equal:

= +

+

(4.28)+ + · · · .
Note that we construct the chain from left to right. Otherwise the graphical represen
tion of the perturbation expansion is not unambiguous, as can be seen from the fol
example

(4.29).

Drawing first the two left-most lines, the two right-most ones can no longer be a
since in the middle, there isR′′(ua − ua) ≡ R′′(0), which does not depend on the fie
Conversely,if we decidedto first draw the two rightmost lines, then the two leftmost co
be drawn. Consequently the diagrams to be drawn in(4.28)would be different (actually
they would be nothing but the diagrams mirrored such that their left and right ends a
changed), even though the final result would be the same. This phenomenon is detailed (
a different diagram) inAppendix E. Note that there isnor a contradiction, nor an incon
sistency of the approach.It merely means, that when using these kind of rules, which h
the advantage of simplifying calculations importantly, one has to order the contrac
An approach, which does not have this deficiency, but is very complicated, is explai
Appendix D. We will use it there to recalculate diagram(4.28).

We claim that

(4.30)

= + = (
1− 4I2(p)B ′′

aa

)
.

The second identity is trivial perturbation theory. The non-trivial statement is the first
identity. To prove it, we remark that starting with (recall we construct from left to right)
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no further contraction can be made. Therefore, we have to start with . At
chain-length two, the only possibility is

(4.31).

At chain-length three, there are two and only two possible prolongations, which ha
additional free replica-indices:

(4.32)+ = 0.

These diagrams cancel. The same is true for longer chains, since at any intermedia
tion (i.e., not the first and not the last lines), there is always the combination

(4.33)+ ,

which when closed at the right end with cancel. This completes the proof.
The last diagram which we need is the “half-moon-diagram” , which is similar to

the moon-diagram, but does notenforcethe replicas at its ends to be equal. However it w
always be evaluated at coinciding replicas. (It thus contains as a subset.) We claim
that

= + +

+

(4.34)= (
1+ 2I2(p)B ′′

aa

)(
1− 4I2(p)B ′′

aa

)
.

B(χ̄ab)

B ′(χ̄ab)(�ua − �ub)2

B ′′(χ̄ab) 1
2[(�ua − �ub)2]2

δabC(p) = δab

p2+m2

v2
ab

Hab(p) = B′′(χ̄ab)

1−4I2(p)B′′(χ̄ab)

δabI2(p)(1− 4I2B ′′
aa)

I2(p)(1+ 2I2B ′′
aa)(1− 4I2B ′′

aa)
Fig. 5. Building blocks of the perturbation theory. See main text. The last two blocks only appear at finite tem-
perature.
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This is proven by first remarking that all other diagrams can be generated from thos
left of a or a the combination

(4.35)+ ;
they cancel pairwise. The same is true for chains made out of the combination +

. Finally note that one cannot insert more , since they would lead to highe
replica terms.

All rules and building blocks are collected onFig. 5.

4.3. Zero temperature (T = 0)

We start our discussion with zero temperature,T = 0. We have to construct all diagram
with the topology of a loop in the large-N limit. Note that, e.g., the diagram(4.17)counts as
a line in this construction. The building blocks are given onFig. 5. At zero temperature, on
needs all possible constraints on the sum of replicas. This means that one cannot u
or , which both contain one non-replica conserving line at zero temperature

At finite temperature, one can use one at orderT and two at orderT 2.
At T = 0, we find the following diagrams. Note that the notation is such that cros

lines do not intersect. All the diagrams correct the effective actionB̃ without any further
combinatorial factor

(4.36)+ = 8
∫
p

C(p)2[Hab(p)v2
ab

]2
,

(4.37)

+ = 64
∫
p

I3(p)C(p)Hab(p)2v2
ab(B

′
ab − B ′

0),

(4.38)+ = 128
∫
p

I3(p)2Hab(p)2(B ′
ab − B ′

0)
2,

(4.39)+ = 8
∫
p

C(p)2v2
abHab(p)(B ′

ab − B ′
0),

(4.40)+ = 16
∫
k

∫
p

Hab(p)(B ′
ab − B ′

0)
2I4(p).
The combinatorial factors can, and have beenchecked by straightforward calculating the
diagrams withHab replaced byB ′′

ab, both by hand and computer-algebraically.
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The idea of how to construct these diagrams is straightforward: we start by a c
chain of 2-loops, which disregarding theO(N)-structure has been drawn on the left
Fig. 4. Then one has to cut each line exactly once. These cuts can either be done at d
positions in the “big” loop (diagrams(4.36) to (4.38), or at the same position (diagram
(4.39)and(4.40)). Then there is the possibility to either insert into a propagator a ve
(these are the terms proportional toB ′

ab − B ′
0) or not to contract two fields (the term

proportional tov2
ab). The left and right diagrams ineach equation are distinguished

their twist: the left one is the untwisted one (as the one drawn on the left ofFig. 4), the
right one the twisted one, obtained by cuttingboth lines between two neighboring vertice
and reglueing them together with the two lines exchanged (this gives one single prop
line running twice around.) Note that the twisted diagrams do not appear in the final
since we suppose analyticity forB, such that, e.g., lima→b Habv

2
ab = 0.2

As discussed above other imaginable contributions are 3-replica terms, where on
using the maximal number of possible constraints on the number of free replica-sum
line cut twice instead of each line cut once):

(4.41)= 3-replica term,

(4.42)= 3-replica term.

We note contributions which vanish identically for completeness:

(4.43)= 0,

(4.44)= 0.

4.4. Corrections at orderT

We remark that adding an additional line to any object already constructed at orde/N

results into a diagram of higher topology in the largeN -limit. This means that the diagra
does not contribute, a statement which remains true to any order in perturbation
The only remaining possibility is to proceed as before, but constraining replica-indic
be the same by more than one propagator (line). Examples areand . Another
example would be a “circular railroad diagram”, see left ofFig. 4 and Eq.(4.50). Since
we had two lines to “waste”, it means that there will be a term of orderT andT 2. (As a

2 Note that this construction suggests how to construct additional “anomalous” terms, known, e.g., to

necessary at 2-loop order[7,50]. We do not present them here, but relegate their discussion to a subsequent
publication.
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side-remark, we note that at order 1/N2, there will be terms of up to orderT 4, since for
the leading term one has to cut up to 4 lines, a.s.o.)

We now give the orderT -contributions:

(4.45)= 4T

∫
p

v2
abHab(p)

p2 + m2
,

(4.46)= 16T
∫
p

I3(p)Hab(p)[B ′
ab − B ′

0].

These are the contributions, where one replica-line has been cut by the insertion o
v2 or B ′, whereas the other one (on top of the diagrams) is redundant.

We can also use a double (redundant) line, using the moon diagram. Starting from
Eq.(4.45), and inserting it into the bubble line, we find

(4.47)= 8T

∫
p

C(p)v2
abHab(p)2I2(p)

[
1− 4I2(p)B ′′

aa

]
.

Starting the same procedure from(4.46)gives

(4.48)= 32T
∫
p

Hab(p)2(B ′
ab − B ′

aa)I2(p)I3(p)
[
1− 4I2(p)B ′′

aa

]
.

Note that there is also a “twisted” version of(4.46)and(4.48), which add up to

(4.49)+ = −16T
∫
p

Haa(p)B ′
abI3(p)

[
1+ 2I2(p)B ′′

aa

]
.

4.5. Corrections at orderT 2

We continue with diagrams at orderT 2. There is one diagram, which does not nec
sitate any cut in a replica-conserving line, thus has two redundancies. It is the “rai
diagram”, i.e., a closed chain, with at least one vertex. Note that contrary to what one
expect, for one vertex this isnot a product of two tadpoles summed at leading order, e
though it looks alike. However, the structure in vector-indices makes it a loop inN , i.e.,
a subdominant term. Since no vertex is marked, the sum is not a geometric series
logarithm:

(4.50)= T 2 ∫ ∞∑ [
4B ′′(χ̄v)I2(p)

]n
.

2
p n=1

n
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This can be written either as a function of the bare disorder, or usingB ′′(χ̄ab) = B̃ ′′
ab/(1+

4I2B̃
′′
ab) (valid at allT ) as a function of the renormalized disorder:

= −T 2

2

∫
p

ln
[
1− 4I2(p)B ′′(χ̄v)

]

(4.51)= −T 2

2

∫
p

ln

(
1+ 4B̃ ′′(v)[I2 − I2(p)]

1+ 4B̃ ′′(v)I2

)
.

Note that this is the term where a double, completely replica-conserving line goes a
More diagrams are possible, with one and two defects, i.e., replica-line cuttings,

alent to inserting or . Using only one cut, both outer indices are forced to
equal, and we have to insert , calculated in(4.34):

(4.52)= 2T 2
∫
p

I2(p)Hab(p)
[
1+ 2I2(p)B ′′

aa

][
1− 4I2(p)B ′′

aa

]
.

The overall prefactor of Eqs.(4.51) and (4.52)is such that the term linear iñB ′′
ab comes

with a factor of 2, and they both add up to a factor of 4, which can be checked with a s
1-loop calculation.

The remaining term is obtained by cutting two-replica lines, using the rep
conserving moon . This gives the contribution

(4.53)= 2T 2
∫
p

[
I2(p)Hab(p)

(
1− 4I2(p)B ′′

aa

)]2
.

There is an additional anomalous term. It is nothing but a 1-loop diagram, of the
, where the right-most vertex is the sum of all diagrams at orderT 2, as given by

(4.50), to (4.53), evaluated at coinciding replicas:

AT 2 = −16T 2I2B
′
ab

∫
p

I2(p)[1+ 2I2(p)B ′′
aa]B ′′′

aa

1− 4I2(p)B ′′
aa

(4.54)= −16T 2I2B
′
ab

∫
p

I2(p)[1+ 6I2(p)Haa(p)]B ′′′
aa.

This can be reexpressed as a function ofB̃, see Section6.2. One might suspect that long
chains can be constructed to connect theB ′

ab with the derivative of the effective action
orderT 2, taken at coinciding indices. With the same arguments as already made a
of times above, the insertions of + pairwise cancel. Also note that on
could of course draw all these diagrams; there is however no clear advantage of do

The alert reader will also wonder why we have not mentioned any such term at
T 0 or T . It turns out that the effective action at orderT 0, when derived once and taken

coinciding arguments, actually vanishes (supposing analyticity!). At orderT , the term in
question is nothing but(4.49).
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One caveat is in order: even though this procedure is simple and elegant, there ar
hidden traps. It is therefore good to check this calculation by an explicit loop expan
using the excluded replica formalism. This has been done up to 8-loop order, and
heavily on computer algebraic support. The procedure can also be formalized, le
to an additional more rigorous but somehow elaborate approach, the “excluded
formalism”, which is presented inAppendix D.

5. Corrections at order 1/N , via the algebraic method

The calculation of the renormalized disorder to next order requires the calculat
the following trace in the space of four replica matrices, from(2.18)and(2.19):

(5.1)Ũ1(vv) = 1

2

∫
q

tr
[
ln(δacδbd +Mab,cd)

]
,

(5.2)Mab,cd = Mab,ef Nef,cd(q),

(5.3)Mab,cd = (
2T ∂χab∂χcd U(χ)

)∣∣
χ=χv

,

(5.4)N̄ef,cd (q) = T Πef,cd
v (q) + Gf c

v (q)ve · vd + Ged
v (q)vf · vc.

Π
ef,cd
v (q) has been defined in(2.19). Expression(5.1)can be computed by systematica

expanding in sums over increasing numbers of replicas, as was done at dominan
However the calculation is considerably more tedious in the present case. We g
main features here and relegate details toAppendix F.

To obtain the correction to the second cumulant of the disorder, we will only nee
two-replica part of this function, which we denoteP2Ũ

1(vv) (PnX denotes the part of a
expressionX which contains exactlyn free sums over replicas). Since the trace alre
involves at least one replica sum, we can and will truncate all expressions given be
discarding all terms with two or more replica sums. This can be checked systematic
and originates from the fact that once a replica sum appears in an expansion, it ca
disappear later on. As a result, we find that third and higher cumulants do not appea
correction to the second cumulant, as they involve higher replica sums.3

The expansion of the matricesM, N̄ andM are computed inAppendix F. It is crucial
to write explicitly all Kronecker-delta functions. The matrixM is found to have the form

(5.5)Mab,cd = mab
1

2
(δadδbc + δbdδac) + (1+ mab)M̄ab,cd,

wheremab is symmetric ina, b andM̄ is symmetric ina, b and symmetric inc, d (but not
necessarily in exchange of(a, b) with (c, d)) and can thus be parameterized as

M̄ab,cd = δabcdxa + δabcyad + δabdyac + δacdzab + δbcdzba + δactabd + δad tabc

(5.6)+ δbctbad + δbd tbac + δabδcduac + δabvacd + δcdwabc + gabcd,
3 This formal expansion in replica sums assumes some analyticity property in a way which should be analyzed
later.
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where all Kronecker-delta’s have been written explicitly. Also note thatvacd is sym-
metric in c and d ; wabc is symmetric ina and b and gabcd is symmetric ina, b and
symmetric inc, d , whereas all others have no such symmetry. These matrices fo
closed algebra which is studied inAppendix F. Unfortunately this algebra is rather larg
even though it is the smallest algebra sufficient for the present calculation. Not
we have explicitly separated the part proportional to the (symmetrized) identity 1sym

ab,cd =
1/2(δacδbd + δadδbc).

The first preliminary step in the trace log calculation is to prove4 that

tr
[
ln(δacδbd +Mab,cd)

]
(5.7)= 1

2

∑
ab

ln(1+ mab) + 1

2

∑
a

ln(1+ maa) + tr
[
ln(δacδbd + M̄ab,cd)

]
,

where in the first two terms the ln simply acts on numbers. This formula is valid5 for a
matrixM symmetric ina, b and symmetric inc, d . The last trace log is equal to its usu

series expression
∑

p�1
(−1)p+1

p
(M̄q)

p
ab,ab.

It does not seem possible to express the trace log in general but here it is poss
expand it systematically in the number of replica sums. Let us sketch the method t
found most convenient. We write

(5.8)tr
[
ln(1+ M̄)

] = −
1∫

0

dλ

λ
trMλ,

(5.9)Mλ = (1+ λM̄)−1 − 1,

and we want to compute all terms ofMλ, namely:

Mλ
ab,cd = δabcdxλ

a + δabcy
λ
ad + δabdy

λ
ac + δacdz

λ
ab + δbcdzλ

ba + δact
λ
abd + δadt

λ
abc

(5.10)+ δbct
λ
bad + δbd tλbac + δabδcduλ

ac + δabv
λ
acd + δcdwλ

abc + gλ
abcd .

We do this by using the algebra detailed inAppendix Fto solve the following equation
equivalent to(5.9):

(5.11)λM̄+ Mλ + λM̄Mλ = 0.

One projects onto each componentx, y, z, . . . and onto terms with an increasing numb
of replica sums. What we want arexλ, yλ, zλ, . . . as a function of the knownx, y, z, . . . ,
which parameterizeM̄ (their expressions are given below).

4 Proof. Write M = A + (1 + A
′)M̄, where 1ab,cd = δacδbd . Then tr[ln(1 + M)] = tr[ln(1 + A +

(1 + A
′)M̄)] = ln(det[1 + A + (1 + A

′)M̄]) = ln(det[1 + A]) + ln(det[1 + (1 + A)−1(1 + A
′)M̄]). Fur-

ther ln(det[1 + A]) = tr[ln(1 + A)] = 1
2

∑
ab ln(1 + mab) + 1

2
∑

a ln(1 + maa). SinceM̄ab,cd = M̄ba,cd ,

the following identity holds:AM̄ = A
′M̄, such that ln(det[1 + (1 + A)−1(1 + A

′)M̄]) = ln(det[1 + M̄]) =∑

tr[ln(1 + M̄)] = − p>0(−1)p tr[M̄p]. �

5 Note that the naive identity tr[ln(δacδbd +Mab,cd )] = tr[ln( 1
2(δacδbd + δadδbc) +Mab,cd )] is incorrect.
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More specifically one writes:

(5.12)xa = P0xa + P1xa + · · · ,
(5.13)xλ

a = P0x
λ
a + P1x

λ
a + · · ·

and similarly for all other componentsy, z, t, . . . of the matricesM̄ andMλ. Using the
algebraic rules for the product of two matrices, it turns out that it is possible to solve(5.11)
for all components ofMλ in an iterative manner. This is simplified sinceP0xa = 0 (see
below). First we determine all zero-sum componentsP0x

λ,P0y
λ, . . . from the correspond

ing P0x,P0y, . . . . It can be done in the following order: first computeP0y
λ
ab together with

P0y
λ
aa, then similarlyP0z

λ,P0x
λ,P0t

λ,P0v
λ,P0w

λ,P0g
λ. Second one can project(5.11)

onto one-sum terms, and determineP1x
λ,P1y

λ, etc.
At then end we need:

(5.14)P2 tr ln[1+ M̄] = −
1∫

0

dλ

λ
P2

(
trMλ

)
,

(5.15)

P2
(
trMλ

) =
∑
a

(
P1x

λ
a +2P1y

λ
aa +2P1z

λ
aa +2P1t

λ
aaa +P1u

λ
aa +P1v

λ
aaa +P1w

λ
aaa

)
+

∑
ab

(
2P0t

λ
abb + P0g

λ
abab

)
.

The remaining integrations overλ of each term are found to be of the form
∫ 1

0 dλλp/(1+
2yaaλ)q = 2F1(1 + p,q,2 + p,−2yaa)/(1 + p) which for integerp andq can be ex-
pressed as rational fractions.

The detailed calculation is however very tedious and has been performed using Mat
matica. The result is given in the following and is found to agree exactly with the grap
method of the previous section. Here we give the zero-sum and one-sum componen
matrix M̄ needed for the calculation ofP2 tr ln(1 + M̄). They are calculated from(5.1),
seeAppendix F, and read:

(5.16)P0xa = 0, P0uac = −P0yac, P0wacd = 0,

(5.17)P0yad = I2(q)A
q
aaB̄

′′
ad, A

q
aa = 2

1− 4B ′′(2T I1)I2(q)
,

(5.18)P0zab = I2(q)A
q

abB̄
′′
ab, A

q

ab = 2

1− 4B̄ ′′
abI2(q)

,

(5.19)P0tabd = − 1

T
A

q
abB̄

′′
ab

[
(vb − va)vdC(q) − 2I3(q)(B̃ ′

bd − B̃ ′
ad )

]
,

P0vacd = − 1

T
A

q
aa

{
B̄ ′′

ad

[
(vd − va)vcC(q) − 2I3(q)(B̃ ′

dc − B̃ ′
ac)

]
(5.20)+ B̄ ′′

ac

[
(vc − va)vdC(q) − 2I3(q)(B̃ ′

cd − B̃ ′
ad)

]}
,

P0gabcd = 2

T 2C(q)2A
q
abB̄

′′
ab(va − vb)

[
(B̃ ′

bc − B̃ ′
ac)vd + (B̃ ′

bd − B̃ ′
ad)vc

]

(5.21)− 4

T 2I4(q)A
q
abB̄

′′
ab(B̃

′
adB̃ ′

bc + B̃ ′
bdB̃ ′

ac − B̃ ′
adB̃ ′

ac − B̃ ′
bd B̃ ′

bc),
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where we have defined̃B ′
ab = B̃ ′(v2

ab) and

(5.22)B̄ ′′
ab = B ′′(χ̄ab), B̄ ′′′

ab = B ′′′(χ̄ab),

(5.23)χ̄ab
v = v2

ab + 2T I1 + 4I2

(
B̃ ′

ab − 1

2
(B̃ ′

aa + B̃ ′
bb)

)

with B̄ ′′
aa = B ′′(2T I1). All integralsIn andIn(q) are defined in Section4.2andAppendix I

andC(q) = 1/(q2+m2). We recall thatB is the bare second cumulant,B̃ the renormalized
one and satisfies̃B ′

ab = B ′(χ̄ab
v ) at dominant order, which is sufficient for our purpo

For convenience we usēχab
v := χ̃

(0)
ab to denote the zero sum part in the decomposi

χ̃ab
v = χ̃ab + δabχa in the notations of[6].

For the 1-sum terms we need only the diagonal values:

(5.24)P1xa = −I2(q)A
q
aa

∑
f

B̄ ′′
af ,

P1yaa = 8

T

1

[1− 4B ′′(2T I1)I2(q)]2
[
B ′′(2T I1)I3(q) + T B ′′′(2T I1)I2I2(q)

]∑
f

B̃ ′
af

− 2

T

1

1− 4B ′′(2T I1)I2(q)

∑
f

B̄ ′′
af

(5.25)× [
C(q)(va − vf )va − 2I3(q)

(
B̃ ′(0) − B̃ ′

af

)]
,

P1zaa = −P1uaa = 8

T

1

[1− 4B ′′(2T I1)I2(q)]2
(5.26)× [

B ′′(2T I1)I3(q) + T B ′′′(2T I1)I2I2(q)
]∑

f

B̃ ′
af ,

P1vaaa = − 8

T 2

1

1− 4B ′′(2T I1)I2(q)

[
I4(q)

∑
f

B̄ ′′
af

(
B̃ ′

af − B̃ ′(0)
)2

(5.27)+ C(q)2
∑
f

B̄ ′′
af

(
B̃ ′

af − B̃ ′(0)
)
(va − vf )va

]
.

In addition sincetaaa = 0 one hasP1taaa = 0; P1waaa = 0 sincewabc = 0 and it turns out
thatP1gaaaa is not needed.

Starting from these values one performs the algebra and obtainsP2 tr ln(1+M̄). To this
one must add the “simple” part ofP2 tr ln in (5.7)above which one expands as follows:

P2

[
1

2

∑
ab

∫
q

tr ln(1+ mab) + 1

2

∑
a

∫
q

tr ln(1+ maa)

]

= 1

2

∑
ab

∫
q

ln
(
1− 4B̄ ′′

abI2(q)
) − 8

T

∫
q

{
1

1− 4B ′′(2T I1)I2(q)}

(5.28)× [

I3(q)B ′′(2T I1) + T I2B
′′′(2T I1)I2(q)

]
B̃ ′

af ,



m the

r or the

re

e

432 P. Le Doussal, K.J. Wiese / Nuclear Physics B 701 [FS] (2004) 409–480

wheremab is computed inAppendix F.
To translate the results into terms of the renormalized disorder, we can perfor

replacements

(5.29)B̄ ′′
ab = B̃ ′′

ab/(1+ 4I2B̃
′′
ab),

(5.30)B ′′(2T I1) = B̃ ′′(0)/
(
1+ 4I2B̃

′′(0)
)
,

(5.31)B̄ ′′′
ab = B̃ ′′′

ab/(1+ 4I2B̃
′′
ab)

3,

(5.32)B ′′′(2T I1) = B̃ ′′′(0)/
(
1+ 4I2B̃

′′(0)
)3

,

since to the same accuracy we can use in all above expressions the dominant orde
exact one.

The “simple” part ofP2 tr ln thus gives

δ(simple)B̃(x)

= 8T

N

∫
p

I3(p)H0(p)B̃ ′(x) + T 2

N

{
−1

2

∫
p

ln

(
1+ 4B̃ ′′(x)[I2 − I2(p)]

1+ 4B̃ ′′(x)I2

)

(5.33)+ 8I2

∫
p

I2(p)B̃ ′(x)
B̃ ′′′(0)

(1+ 4I2B̃ ′′(0))2(1+ 4(I2 − I2(q))B̃ ′′(0))

}
,

where integrals are defined inAppendix I.

6. Results for the effective action

The 1/N correction to the 2-replica part of theeffective action in terms of the ba
disorder can be written as

(6.1)P2Ũ
1(vv) = − 1

2T 2

∑
ab

δB̃
(
v2
ab

)

with v2
ab = (va −vb)

2. It can be read off from Sections4.3–4.5. We will give the expression
for the correction to the renormalized second cumulantδB̃(x) both in terms of the bar
disorder and the renormalized one.

6.1. The effective action as a function of the bare disorder

We find

δB̃(vv) = 1

N

[
8
∫
p

C(p)2[Hv(p)v2]2

+ 64
∫

I3(p)C(p)Hv(p)2v2[B ′(χ̄v) − B ′(χ̄0)
]

p
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+ 128
∫
p

I3(p)2Hv(p)2[B ′(χ̄v) − B ′(χ̄0)
]2

+ 8
∫
p

C(p)2v2Hv(p)
[
B ′(χ̄v) − B ′(χ̄0)

]

+ 16
∫
p

Hv(p)
[
B ′(χ̄v) − B ′(χ̄0)

]2
I4(p)

]

+ T

N

[
4
∫
p

[
C(p)v2 + 4I3(p)

(
B ′(χ̄v) − B ′(χ̄0)

)]

× Hv(p)
[
1+ 2I2(p)Hv(p)

]
− 32

∫
p

I2(p)2[C(p)v2 + 4I3(p)
(
B ′(χ̄v) − B ′(χ̄0)

)]
Hv(p)2B ′′(χ̄0)

− 16
∫
p

I3(p)B ′(χ̄v)
(
1+ 2I2(p)B ′′(χ̄0)

)
H0(p)

]

+ T 2

N

[
−1

2

∫
p

log
[
1− 4I2(p)B ′′(χ̄v)

]

+ 2
∫
p

I2(p)Hv(p)
[
1+ 2I2(p)B ′′(χ̄0)

][
1− 4I2(p)B ′′(χ̄0)

]

+ 2
∫
p

I2(p)2Hv(p)2[1− 4I2(p)B ′′(χ̄0)
]2

(6.2)− 16I2

∫
p

I2(p)B ′(χ̄v)
[
1+ 6I2(p)H0(p)

]
B ′′′(χ̄0)

]
,

(6.3)Hv(p) = B ′′(χ̄v)

1− 4I2(p)B ′′(χ̄v)
,

wherev2 stands forv2
ab and is the argument of the function. The integralsIn andIn(q) are

defined inAppendix Iand we recall that:

(6.4)χ̄v = v2 + 2T I1 + 4I2
(
B ′(χ̄v) − B ′(χ̄0)

)
.

6.2. The effective action in terms of the renormalized disorder

To make the conversion to renormalized disorder, we use that on the r.h.s. of(6.2) we
can expressB in terms of the renormalized̃B at leading order. Using(3.8)
(6.5)B̃ ′(x) = B ′(x + 2T I1 + 4I2
(
B̃ ′(x) − B̃ ′(0)

))
,
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(6.6)x := v2

and differentiating(6.5)w.r.t. x, we obtain

(6.7)
B̃ ′′(x)

1+ 4I2B̃ ′′(x)
= B ′′(x + 2T I1 + 4I2

(
B̃ ′(x) − B̃ ′(0)

))
.

This allows to rewrite(6.3)as (already noted in(4.25))

(6.8)H̃x(p) := B̃ ′′(x)

1+ 4(I2 − I2(p))B̃ ′′(x)
= Hv(p),

δB̃(x) = 1

N

{
8
∫
p

C(p)2[H̃x(p)x
]2

+ 64
∫
p

I3(p)C(p)H̃x(p)2x
[
B̃ ′(x) − B̃ ′(0)

]

+ 128
∫
p

I3(p)2H̃x(p)2[B̃ ′(x) − B̃ ′(0)
]2

+ 8
∫
p

C(p)2xH̃x(p)
[
B̃ ′(x) − B̃ ′(0)

]

+ 16
∫
p

H̃x(p)
[
B̃ ′(x) − B̃ ′(0)

]2
I4(p)

}

+ T

N

{
4
∫
p

[
C(p)x + 4I3(p)

(
B̃ ′(x) − B̃ ′(0)

)]
H̃x(p)

[
1+ 2I2(p)H̃x(p)

]

− 32
∫
p

I2(p)2[C(p)x + 4I3(p)
(
B̃ ′(x) − B̃ ′(0)

)]
H̃x(p)2 B̃ ′′(0)

1+ 4I2B̃ ′′(0)

− 16
∫
p

I3(p)B̃ ′(x)

(
1+ 2I2(p)

B̃ ′′(0)

1+ 4I2B̃ ′′(0)

)
H̃0(p)

}

+ T 2

N

{
−1

2

∫
p

ln

(
1+ 4B̃ ′′(x)[I2 − I2(p)]

1+ 4B̃ ′′(x)I2

)

+ 2
∫
p

I2(p)H̃x(p)

[
1+2I2(p)

B̃ ′′(0)

1+4I2B̃ ′′(0)

][
1−4I2(p)

B̃ ′′(0)

1+4I2B̃ ′′(0)

]

+ 2
∫
p

I2(p)2H̃x(p)2
[
1− 4I2(p)

B̃ ′′(0)

1+ 4I2B̃ ′′(0)

]2

(6.9)− 16I
∫

I (p)B̃ ′(x)
[
1+ 6I (p)H̃ (p)

] B̃ ′′′(0)
}

.
2

p

2 2 0
(1+ 4I2B̃ ′′(0))3
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6.3. Expression in terms of rescaled dimensionless quantities

As in Ref.[6], we define the dimensionless functionb of the dimensionless argumenz
through

(6.10)b(z) = 4Adm4ζ−εB̃
(
zm−2ζ

)
,

whereε = 4−d andAd = 2(4π)−d/2Γ (3− d
2). This prefactor has been chosen to simp

the leading-orderβ-function. Ford < 4 andT = 0 all integrals which will appear here an
below are convergent in the limit of UV cutoffΛ → ∞ that we consider, e.g., in that lim
I2 = Adm−ε/ε. The rescaling factorζ is for now unspecified, but at the fixed point it w
yield the roughness exponent.

In terms of rescaled quantities, one finds that the result of the 1/N expansion for the
second cumulant of the disorder can be rewritten as

(6.11)bm(x) = b0
m(x) + 1

N
b1[b0

m

]
(x),

whereb0
m(x) is the solution to dominant order, obtained previously for an arbitrary

disorder. We have made apparent the dependence on the massm (and raise the indice
whenever necessary). The expression for theO(1/N) correctionb1[b](x) can be obtained
from the last subsection upon rescaling and reads (ford < 4)

b1[b](x) = 1

Ad

∫
p

{
2c(p)2[hx(p)x

]2 + 4i3(p)c(p)hx(p)2x
[
b′(x) − b′(0)

]

+ 2i3(p)2hx(p)2[b′(x) − b′(0)
]2 + 2c(p)2xhx(p)

[
b′(x) − b′(0)

]
+ hx(p)

[
b′(x) − b′(0)

]2
i4(p)

}
+ εTm

Ad

∫
p

{[
c(p)x + i3(p)

(
b′(x) − b′(0)

)]
hx(p)

[
1+ 1

2
i2(p)hx(p)

]

− 1

2
i2(p)2[c(p)x + i3(p)

(
b′(x) − b′(0)

)]
hx(p)2 b′′(0)

1+ i2b′′(0)

− i3(p)b′(x)

(
1+ 1

2
i2(p)

b′′(0)

1+ i2b′′(0)

)
h0(p)

}

+ ε2T 2
m

4Ad

∫
p

{
−1

2
ln

(
1+ b′′(x)[i2 − i2(p)]

1+ b′′(x)i2

)

+ 1

2
i2(p)hx(p)

[
1+ 1

2
i2(p)

b′′(0)

1+ i2b′′(0)

][
1− i2(p)

b′′(0)

1+ i2b′′(0)

]

+ 1

8
i2(p)2hx(p)2

[
1− i2(p)

b′′(0)

1+ i2b′′(0)

]2

[
3

]
b′′′(0)

}

(6.12)− i2i2(p)b′(x) 1+

2
i2(p)h0(p)

(1+ i2b′′(0))3 ,
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where one has defined

(6.13)hx(p) = b′′(x)

1+ [i2 − i2(p)]b′′(x)

as well as the rescaled temperature

(6.14)Tm := 4Adm
θ

ε
T ,

whereθ = d − 2 + 2ζ is the energy fluctuation exponent, and the rescaled integral
denoted by small letters:

(6.15)in(p) := 1

Ad

In(p)

∣∣∣∣
m=1

≡ 1

Ad

∫
ddp

(2π)d
· · · ,

(6.16)c(p) := 1

1+ p2

with, e.g.,i2 = i2(p = 0) = 1/ε. In the expression above we have kept the order of
diagrams from Section4.3 ff. Note that explicitΛ dependence can be reinstated in(6.12)
by restricting all rescaled momentum integrals byΛ/m as upper cutoff, and is necessa
in T > 0 integrals (since they are usually UV divergent).

Regrouping terms, this result can be rewritten in a more compact form:

b1(x) = 2x2g1(ax) + 2x
(
b′(x) − b′(0)

)
g2(ax) + 2

(
b′(x) − b′(0)

)2
g3(ax)

+ εTm

[
x
(
g4(ax) + a0g5(ax)

) + (
b′(x) − b′(0)

)(
g6(ax) + a0g7(ax)

)
+ b′(x)

(
(g8(a0) + a0g9(a0)

)]

(6.17)

+ (εTm)2[g10(ax) + a0g11(ax) + a2
0g12(ax) + b′(x)α

(
γ + a0g13(a0)

)]
with

ax = b′′(x)

1+ b′′(x)
ε

, hx(p) = ax

1− axi2(p)
,

(6.18)α = b′′′(0)(
1+ b′′(0)

ε

)3 , ᾱ = b′′′′(0)/ε

[1+ b′′(0)/ε]2 − 2b′′′(0)2/ε2

[1+ b′′(0)/ε]3

and

(6.19)g1(ax) = 1

Ad

∫
p

c(p)2hx(p)2,

(6.20)g2(ax) = 1

Ad

∫
p

[
2c(p)i3(p)hx(p)2 + c(p)2hx(p)

]
,

(6.21)g (a ) = 1
∫ [

1
i (p)h (p) + i (p)2h (p)2

]
.
3 x

Ad
p

2
4 x 3 x
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The other functionsgi(a) andγ , which characterize non-zero temperature, are give
Appendix H.

Finally, note that the results(6.12)and(6.17)given above are for the choiceζ = 0. For
a non-zeroζ = ζ0 + 1

N
ζ1 + · · · the result forb1[b](x) is identical to(6.12), (6.17)above,

up to the trivial linear rescaling term

(6.22)b1[b](x) → b1[b](x) − (
2ζ1xb′(x) + 4ζ1b(x)

)
ln(m).

7. The β-function at order 1/N

We are now ready to obtain the flow equation of the dimensionless disorder, i.e.
pute theβ-function. Here we give the most direct method to do so and give the re
A second method, closer in spirit to the diagrammatic approach and which yields
compact expressions has also been devised. Since it is rather involved it is detailedAp-
pendix G.2.

Our goal in the present paper is as follows. The dimensionless disorderb(x) depends
on the IR cutoffm, and a priori, also on the UV cutoffΛ. To obtain a FRG flow equatio
we want to express

(7.1)−m∂mb(x) = β[b](x) = β0[b](x) + 1

N
β1[b](x) + · · ·

in terms ofb(x), at fixedΛ. Furthermore, we are interested in the behavior of the resu
expression whenm/Λ becomes very small, which we hope can be made independe
Λ/m, if necessary with appropriate redefinitions of parameters.

To computeβ[b](x) in the 1/N expansion we write

(7.2)b(x) = b0(x) + 1

N
b1[b0](x) + O

(
1

N2

)
,

whereb0(x) is the dimensionless disorder at leading order. The correspondingβ-function
was derived in Ref.[6]. It can be recovered by inserting(6.10)into (3.14)usingm∂mI1 =
−2m2I2 and the above value ofI2 (for Λ = ∞). In the variablesb it reads

−m∂mb0(x) = β0[b0](x),

(7.3)β0[b](x) = (ε − 4ζ )b(x) + 2ζxb′(x) + 1

2
b′(x)2 − b′(x)b′(0) + Tm

b′(x)

1+ b′′(0)
ε

,

where we recallTm = 4T Admθ/ε. Thus theβ-function at leading order has a simple a
well-definedΛ = ∞ limit.

We now turn to the next order correction.

7.1. Theβ-function atT = 0

We first detail theT = 0 limit, which has a well-definedΛ = ∞ limit. At order 1/N ,
deriving(7.2)w.r.t. m, we obtain ( )
(7.4)−m∂mb = β0[b0] + 1

N
β0[b0]db1[b0]

db0
+ O

1

N2
.
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Replacingb0 by b, using(7.2), we obtain theβ-function at order 1/N

β[b] = β0

[
b − 1

N
b1[b]

]
+ 1

N
β0[b]db1[b]

db
+ O

(
1

N2

)

(7.5)= β0[b] + 1

N

{
β0[b]db1[b]

db
− b1[b]dβ0[b]

db

}
+ O

(
1

N2

)
.

This expression is still symbolic. The derivativeddb
b1[b], e.g., is the sum over the deriv

tives w.r.t. all derivatives ofb, and in the above expression is multiplied by theβ-function
of the corresponding derivative, obtained by deriving(7.3)w.r.t.x. Since atT = 0,b1[b](x)

depends only onb′(x) − b′(0) andb′′(x), (7.5)gives

β[b] = δb1[b](x)

δb′′[x] β0[b]′′(x) + δb1[b](x)

δ(b′[x] − b′(0))

(
β0[b]′(x) − β0[b]′(0)

)
(7.6)− {

εb1[b](x) + b1[b]′(x)
[
b′(x) − b′(0)

] − b′(x)b1[b]′(0)
}
.

Inserting the expression(6.12)with T = 0 one finds:

β
(
b(x)

) = εb(x) + 1

2
b′(x)2 − b′(x)b′(0) + 1

N

1

Ad

∫
ddp

(2π)d

× {
2xc(p)2hx(p)2[xε + 2xεhx(p)i2(p) + 2b′(0) − 2b′(x)

]
+ 4c(p)hx(p)2i3(p)

[
b′(x) − b′(0)

]
× [

2xε + 2xεhx(p)i2(p) + b′(0) − b′(x)
]

+ 2εhx(p)2[3+ 2hx(p)i2(p)
]
i3(p)2[b′(0) − b′(x)

]2

+ 2c(p)2hx(p)
[
b′(x) − b′(0)

][
xε

(
1+ i2(p)hx(p)

) + b′(0) − b′(x)
]
(7.7)+ εhx(p)

[
2+ hx(p)i2(p)

]
i4(p)

[
b′(0) − b′(x)

]2}
.

A more compact expression can be found if one uses(6.17)as a starting point. The firs
term on the l.h.s. of(7.6)is replaced byδb1

δax
(−m∂0

max) and one uses

(7.8)−m∂0
max = εax + [

b′(x) − b′(0)
]
b′′′(x)(ax)

2 = εax + [
b′(x) − b′(0)

]
∂xax.

One finds a form rather similar to(6.17)

−m∂mb = εb + 1

2
b′2 − b′b′(0)

(7.9)

+ 1

N

[
2x2g̃1(a) + 2x

(
b′(x) − b′(0)

)
g̃2(a) + 2

(
b′(x) − b′(0)

)2
g̃3(a)

]
with

(7.10)g̃1(a) = ε
(
ag′

1(a) − g1(a)
)
,

(7.11)g̃2(a) = εag′ (a) − 2g1(a),
2

(7.12)g̃3(a) = ε
(
g3(a) + ag′

3(a)
) − g2(a).
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All terms proportional to∂xax have canceled. Also note that we have used analytici
the derivation. Issues related to the non-analytic regime will be discussed in a subs
publication.

7.2. Theβ-function at non-zero temperature

At non-zero temperature theβ-function to order 1/N is independent of the UV cuto
Λ only for d < 2. Its expression is more complicated and we give here only its form
d < 2. The derivation and explicit expressions for the functions are given inAppendix H,
together with some comments aboutd > 2.

β1[b](x) = βT =0
1 [b](x) + Tm

[
x
(
g̃4(ax) + a0g̃5(ax)

)
+ b′(x)

(
g̃6(ax) + a0g̃7(ax) + g̃8(a0)

)]
+ T 2

m

[
g̃10(ax) + a0g̃11(ax) + a2

0g̃12(ax) + xa′
0(ε − a0)g5(ax)

+ αb′(x)
(
εg7(ax) + φ(a0)

)]

(7.13)

+ T 3
m

[
b′(x)

(
ψ(a0)α

2 + ψ̃(a0)ᾱ
) + αε2(g11(ax) + 2a0g12(ax)

)]
,

where theT = 0 expressionβT =0
1 [b](x) was given above.

8. Conclusion

In this article we have computed the effective action of the field theory of random
ifolds at largeN . The 2-replica part of this quantity is what is needed to compute
renormalized disorder to order 1/N . Although similar in spirit (one must compute the d
terminant of fluctuations around aN = ∞ saddle point) the problem solved here is mu
more complex than for the standard 1/N expansion (say in theφ4-model), first becaus
one needs to perform the calculation of fluctuations around the saddle point at fixed
aged field value, second because this involves four-replica matrices. It does however
involve spontaneous replica-symmetry breaking of the Parisi type, but rather some
simpler explicit (vector) symmetry breaking.

To handle such additional difficulties we have introduced in this paper two compl
mentary methods. The first one is graphical and uses a diagrammatics which is
handle both theO(N) and the replica indices. In this diagrammatics the zero-temper
diagrams are reasonably easy to compute. Much more subtle are the finite-T diagrams.
Interestingly, only orderT andT 2 are found to be non-vanishing to this order in 1/N . It
is even simpler ford = 0, where the result for theβ-function is polynomial. (This can b
derived by using Bogoliubov’s subtraction operator.) The second method uses an alg
formula for the determinant of fluctuations around the saddle point. The algebra
four-replica matrices is worked out and one uses an expansion in number of free
sums to compute all components iteratively in a given order of this expansion. Sin

only need the two-replica part, this is a finite calculation, although rather tedious and has to
be performed with Mathematica. The two methods are complementary, since any forgotten
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diagram of the graphical method can be tracedto some term in the algebraic result, a
vice versa. They are also, to our knowledge, new, henceforth the detailed exposition

Having obtained the effective action, we rewrote it in terms of the dimensionless r
malized disorder. By varying with respect to the infrared cutoff, we obtained theβ-function
to order 1/N . We noted that thisβ-function is UV finite atT = 0.

It is important to note that the derivation was made, strictly speaking, using an an
action. This is familiar forN = ∞, where the same strategy was applied successfully
Although the derivation was done in the analytic regime, theβ-function could then be
continued to the non-analytic one. This was done via a careful analysis of the so
when it reaches the Larkin scale. A similar analysis will be performed in a forthcomin
publication, together with a comparison to the two-loop result, and a detailed analy
the physical consequences of the FRG flow derived here.
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Appendix A. The large-N formalism for the effective action

Before studying specific models, in the following sections, we first present sche
cally the framework of the large-N calculations.

A.1. General properties of the1/N expansion

The general problem can be formulated as follows. We want to compute the effectiv
actionΓ [u] defined as the Legendre transform ofW[J ] = lnZ[J ] (J being the source
field conjugated tou), in the case where the partition function can be written as

(A.1)Z[J ] =
∫

D[ψ]e−NS[ψ,j ],

wherej = J/
√

N is the rescaled source andψ is some auxiliary field (or a set of suc
fields). Here all space coordinates and indices are suppressed and integrals and s
plicit, in order to exhibit the structure more clearly.

The first step is to writeW[J ] in an 1/N expansion using the standard saddle po
method. One finds

(A.2)W[J ] = NW̃ [j ],
(A.3)W̃ [j ] = W0[j ] + 1

N
W1[j ] + 1

N2 W2[j ] + · · · ,
where thej -dependent saddle-point valueψj of the auxiliary field is solution of
(A.4)S′
ψ [ψj , j ] = 0.
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The expansion yields

(A.5)W0[j ] = −S[ψj , j ],
(A.6)W1[j ] = −1

2
tr lnS′′

ψψ [ψj , j ],

(A.7)

W2[j ] = − 1

4!S
′′′′
abcd [ψj , j ]〈φaφbφcφd〉(S ′′)−1

+ 1

3!22
S′′′

abc[ψj , j ]S′′′
efg[ψj , j ]〈φaφbφcφeφf φg〉(S ′′)−1.

More generally, theWn(j) are obtained from the loop expansion of the field theory

lnZ[j ] = NW0[j ] + ln
∫

D[φ]

(A.8)

× exp

(
−1

2
φS′′[ψj , j ]φ −

∞∑
p=3

N1− p
2

p! ∂ψa1
· · ·∂ψap

S[ψj , j ]φa1 · · ·φap

)
.

In these formula, the indicesa, b, . . . summarize all spatial coordinates, indices, etc., of
field.

The effective action is then defined as

(A.9)Γ [u] = NΓ̃
[
v = u/

√
N

]
,

(A.10)Γ̃ [v] = vjv − W̃ [jv], v = W̃ ′[jv].
The equation forjv can formally be inverted into an expansion in 1/N using(A.3),

(A.11)jv = j0
v + 1

N
j1
v + · · · ,

which yields in turn the expansion for the effective action

(A.12)Γ̃ [v] =
∞∑

p=0

N−pΓ̃ p[v].

One finds that the leading order is simply the Legendre transform ofW0[j ],
(A.13)Γ̃ 0[v] = vj0

v − W0[j0
v

]
, v = (

W0)′[
j0
v

]
,

where here and below(Wn)′[j ] = ∂jW
n[j ]. Since one has∂vΓ̃

0[v] = j0
v , it satisfies the

self-consistent equation

(A.14)Γ̃ 0[v] = v∂vΓ̃
0[v] − W0(∂vΓ̃

0[v]),
and one has the usual relation between the second derivative matrices(W0)′′[j0

v ] =
[ δΓ̃ 0[v]

δvδv
]−1.

In this paper we use the result for the next order:
(A.15)Γ̃ 1[v] = −W1[j0
v

]
.
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For completeness we give the two next orders:

Γ̃ 2[v] = −W2[j0
v

] + 1

2

(
W1)′[

j0
v

](
∂2
j

(
W0))′′[

j0
v

]−1(
W1)′[j0

v

]

(A.16)= −W2(j0
v

) + 1

2

δΓ̃ 1

δv

(
δ2Γ̃ 0

δvδv

)−1 δΓ̃ 1

δv
,

Γ̃ 3[v] = −W3[j0
v

] + (
W1)′[j0

v

](
W0)′′[

j0
v

]−1(
W2)′[j0

v

]
− 1

2

(
W1)′[j0

v

](
W0)′′[j0

v

]−1(
W1)′′[

j0
v

](
W0)′′[j0

v

]−1(
W0)′′[

j0
v

]−1

(A.17)× (
W1)′[j0

v

] + 1

6

(
W0)′′′[j0

v

](
W0)′′[j0

v

]−3(
W1)′[

j0
v

]3
,

where the following graphical rules allow to restore correctly all index contractions
spatial integrals implicit in the schematic notation above. Denote−Γ n by a square with
n inside andWn by a circle with an inside. One treats the circled 1,2,3, etc., as vertice
and considers all tree graphs. A line is a propagatorW ′′

0 [j0
v ]−1 and is thus not a vertex (it i

summed in a line). The sum of these numbers is just the order. The formula are equ
to

= ,

= − 1

2
,

= − + 1

2
− 1

6
.

This has, including the combinatorial factors (from expanding the exponential and nu
of choices), an immediate interpretation as a perturbative expansion with all 1PI g
subtracted. In the last line, the 1–2 graph comes with 1/2! in expanding the exponentia
and adding the two possibilities, the 1− 1 − 1 comes with 1/3!, but then there is a
for selecting the middle one, and the last graph has a 1/3! from expanding the exponentia
There is also a relative minus sign from each vertex added. To justify this graphical method
one simply recalls that quite generally correlation functions, i.e.,W[J ] are given as the
sum of possible tree diagram made withΓ [u] vertices. Since the Legendre transform
involutive, the same is true forΓ [u] in terms ofW[J ] vertices. Thus to writeΓ̃ n[v] one
must simply insert the proper orders in 1/N at each vertex, in all possible ways, so as
match the total order.

Thus all theΓ̃ p[v] can all be expressed as functions of theWp(j0
v ). Inserting the result
(A.5), (A.6), a.s.o. from the saddle point expansion, one obtains theΓ̃ p[v] explicitly in
terms of derivatives of theS functional in(A.1).
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A.2. Summary of main result

Before we detail the calculations in a more pedagogical way for some specific m
below, we first summarize here in compact notations the main result for the two l
orders of the 1/N expansion, with a generalization to a bilocal bare action.

Let us consider aN -component field theory whose action functional can be written

(A.18)S(φ) = 1

2
φG−1φ + NSint[ψxy ],

(A.19)ψxy = 1

N
φx · φy,

whereSint is a functional of the bilocal fieldψxy (which is also a bi-index matrix, if th
field φ carries other indices (e.g.,a, b, . . .). Then its effective action can be written as

(A.20)Γ [φ] = 1

2
φG−1φ + NΓ 0[ψxy ] + Γ 1[ψxy ] + · · · ,

whereΓ 0 is also a functional of a bilocal field and satisfies the self-consistent equati

(A.21)
δΓ 0

δψzt

[ψxy] = δSint

δψzt

[
ψxy + G[ψ]xy

]
,

(A.22)G[ψ]xy =
{
G−1 + 2

δΓ 0

δψ
[ψ]

}−1

xy

and

Γ 1[ψxy ] = 1

2
tr ln

[
1zt,z′t ′ + 2

δ2Sint

δψztδψuv

[
ψxy + G[ψ]xy

]
(A.23)× (

G[ψ]ut ′G[ψ]vz′ + ψut ′G[ψ]vz′ + ψvz′G[ψ]ut ′
)]

,

where 1xyab,ztcd = δxzδytδacδbd .

Appendix B. Toy model

For pedagogical clarity, we will give all details for the simpler case of the toy mod

B.1. Model and effective action to leading order

We study the followingO(N) toy model, defined by the partition sum

Z[J ] =
∫

D[u]e−S[u]+√
Nju =

∫
D[u]e−S[u,j ] =

∫
D[u]D[χ]D[λ]e−S[u,χ,λ,j ]

∫

(B.1)= D[χ]D[λ]e−NS[χ,λ,j ],
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(B.2)S[u, j ] =
∫
x

1

2
(∇u)2 + 1

2
m2u2 + NV

(
u2

N

)
− √

Nju,

(B.3)S[u,χ,λ, j ] = S(u) −
∫
x

[
1

2
λ
(
Nχ − u2) + √

N ju

]
,

(B.4)

S[χ,λ, j ] = 1

2
tr ln

(−∇2 + m2 + λ
) +

∫
x

[
V (χ) − 1

2
λχ

]

− 1

2

∫
xy

jx

(−∇2 + m2 + λ
)−1
xy

jy,

whereλ(x) andχ(x) are local fields (the factori has been absorbed in the fieldλ). The
above expression(B.1) is thus of the form(A.1) whereψ = (χ,λ) is a set of two auxiliary
fields.

The saddle point equation(A.4) thus read

(B.5)

χj (x) = (−∇2 + m2 + λj

)−1
xx

+ jy ′
(−∇2 + m2 + λj

)−1
y ′x

(−∇2 + m2 + λj

)−1
xy

jy,

(B.6)λj (x) = 2V ′(χj (x)
)
.

FromAppendix Aone finds the dominant order

(B.7)W0[j ] = −S[χj ,λj , j ].
Using the saddle point equation one finds

(B.8)
(
W0)′[j ] = −∂jS[χj ,λj , j ] = (−∇2 + m2 + λj

)−1
j.

Thus one obtains

(B.9)Γ (u) = NΓ̃
(
u/

√
N

)
, v = u/

√
N,

(B.10)jv = (−∇2 + m2 + λ
)
v,

(B.11)

Γ̃ [v] = jvv + S[χjv , λjv , jv]
= 1

2
v
(−∇2 + m2 + λ

)
v + 1

2
tr ln

(−∇2 + m2 + λjv

) + NV (χjv )

− 1

2
λjvχjv .

One finds

(B.12)

Γ̃ (v) = 1

2
tr lnG−1

v +
∫
x

1

2
(∇v)2 + 1

2
m2v2 − 1

2

(∇2Gv

)
xx

+ V
(
v2
x + (Gv)xx

)
,

(B.13)
(
G−1

v

)
xx ′ =

[−∇2
x + m2 + 2V ′(v2

x + (Gv)xx

)]
δxx ′.
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This can be simplified further as the complicated part of the effective action is just a co
stant. First one notes that̃Γ (v) = Γ̃ [Gv,v] satisfies

(B.14)∂GΓ̃ [G,v]|G=Gv = 0.

As a consequence one sees that

(B.15)
δΓ̃ [v]
δvi

x

= (−∇2 + m2)vi
x + 2vi

xV
′(v2

x + (Gv)xx

)
.

The effective action (per unit volumeΩ) for a uniform configuration of the fieldvx = v

reads

1

Ω
Γ̃ (v) = 1

2
m2v2 + V

(
v2 + Gv

) + 1

2

∫
q

{
ln

(
q2 + m2 + 2V ′(v2 + Gv

))

(B.16)+ q2 + m2

q2 + m2 + 2V ′(v2 + Gv)

}
,

(B.17)Gv =
∫
q

1

q2 + m2 + 2V ′(v2 + Gv)
,

which can also be written as

1

Ω
Γ̃ (v) = 1

2
m2v2 + V

(
v2 + Gv

) − GvV
′(v2 + Gv

)
(B.18)+ 1

2

∫
q

ln
(
q2 + m2 + 2V ′(v2 + Gv

))
.

Here one can write

(B.19)Γ̃ (v) = Γ̃
[
Gv,v

2],
(B.20)∂GΓ̃

[
G,v2]∣∣

G=Gv
= 0.

For uniform configurations the effective action is simply a function ofv2 such that

(B.21)
1

2
m2 + Ṽ ′(v2) = 1

Ω

dΓ̃ [v]
dv2 = 1

2
m2 + V ′(v2 + Gv

)
,

i.e., it satisfies the self-consistent equation

(B.22)Ṽ ′(v2) = V ′
(

v2 +
∫
q

1

q2 + 2Ṽ ′(v2)

)
.

This defines a renormalized potentialṼ (v2), whose RG flow is studied in Appendix I
of [8].
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B.2. 1/N corrections to the effective action

To next order one has, from(A.6)

(B.23)W1[j ] = −1

2
tr lnS′′[χj ,λj , j ],

whereχj , λj are taken at their saddle point values(B.6). The symmetric matrix of secon
derivatives reads

(B.24)(S′′
χχ )xy = V ′′(χ(x)

)
δxy, (S′′

χλ)xy = −1

2
δxy,

(B.25)(S′′
λλ)xy = −1

2
GxyGyx − (jG)xGxy(Gj)y,

(B.26)Gxy = (−∇2 + m2 + λ
)−1
xy

.

It can be put in the form

(B.27)S′′ = −1

2

(
A 1
1 B

)
.

Its inverse reads

(B.28)(S′′)−1 = −2

( −B(1− AB)−1 (1− BA)−1

(1− AB)−1 −A(1− BA)−1

)
,

(B.29)Axy = −2V ′′(χ(x)
)
δxy,

(B.30)Bxy = GxyGyx + 2(jvG)xGxy(Gj)y = GxyGyx + 2vxGxyvy,

where the last equality holds only forj = j0
v . Note thatA andB do not commute (unles

fields are uniform).
The result for the effective action is thus, from(A.15)

(B.31)Γ̃ 1(v) = 1

2
tr lnS′′(χj0

v
, λj0

v
, j0

v

)
,

(B.32)j0
v = G−1v,

(B.33)Gxy = (−∇2 + m2 + λj0
v

)−1
xy

.

A more explicit form can be given for a uniform field configurationvx = v, with in that
case

(B.34)Axy = −2V ′′(χ)δxy, χ = χj0
v

= v2 + Gxx,

(B.35)Bxy = (
Gxy

v

)2 + 2v2Gxy
v ,

(S′′)−1(q) = 2

1+ 2V ′′(v2 + ∫
k Gv(k))[Πv(q) + 2v2G(q)](

Πv(q) + 2v2G(q) −1
)

(B.36)× −1 −2V ′′(v2 + ∫
k Gv(k))

,
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(B.37)Πv(q) =
∫
k

Gv(q − k)Gv(k),

(B.38)Gv(k) = 1

k2 + m2 + 2V ′(v2 + ∫
k
Gv(k))

yielding finally

Γ̃ 1(v) = 1

2

∫
q

ln
(
1− A(q)B(q)

)

(B.39)= 1

2

∫
q

ln

(
1+ 2V ′′

(
v2 +

∫
k

Gv(k)

)(
Πv(q) + 2v2Gq(v)

))

up to a constant.

Appendix C. Calculation of order 1/N for the random manifold

We now sketch the derivation of̃Γ 1 for the case of the random manifold.
It was shown in Ref.[8] that the partition sum(2.4)can be put in the form

(C.1)Z[J ] =
∫

Dχ Dλe−NS[χ,λ,j ],

(C.2)

S[χ,λ, j ] = 1

2
tr ln

(
C−1 + iλ

) +
∫
x

U
(
χ(x)

) − i

2
λab(x)χab(x)

− 1

2

∫
x,x ′

ja(x)
(
C−1 + iλ

)−1
ax,bx ′jb(x

′),

where the inversion and trace are performedin both replica space and spatial coordin
space. It has again the form(A.1) whereψ = (χab(x), λab(x)) is a set of 2-replica-matri
auxiliary fields. The saddle-point equation(A.4) reads (see Ref.[8])

(C.3)χab
j (x) = (Gj )ax,bx + (Gj : j)ax · (Gj : j)bx,

(C.4)iλab
j (x) = 2∂abU

(
χj (x)

)
,

(C.5)G−1
j = C−1 + iλj ,

whereGj is a matrix with both replica indices and spatial coordinates and inversi
carried out for both. Here and below, replica indices are raised whenever explicit d
dency is given, e.g.,χab ≡ χab

j . The notation for theN -component vector(G : j)ibx =∑
c

∫
y Gbx,cyj

i
c(y) is a shorthand for a matrix product, and everywhere we denote by

(C.6)∂abU(φ) := ∂φabU(φ)
the simple derivative of the functionU(φ) with respect to its matrix argumentφab.
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The dominant order,W0[j ] andΓ̃ 0[v], was computed in Ref.[8], thus here we stud
only the next order. It is given by

(C.7)Γ̃ 1[v] = 1

2
tr lnS′′[χj0, λj0, j

0],
(C.8)j0

ax = (
G−1

v : v)
ax

,

(C.9)
(
G−1

v

)
ax,by

= (
C−1)

x,y
δab + 2∂abU

(
χv(x)

)
δd(x − y).

Note that when computing the fluctuations around the saddle point we considerχab and
χba as independently fluctuating fields, symmetry being restored at the saddle poin
also possible to perform the calculation with symmetric matrices only).

The matrix of second derivatives can again be put in the form (see the previous se

(C.10)S′′ = −1

2

(
A i1
i1 −B

)
,

and one can show that

(C.11)tr lnS′′ = tr ln(1− AB),

(C.12)Aabx,cdy = −2∂χab∂χcd U(χ(x))δxy,

(C.13)

Babx,cdy = Gax,dyGcy,bx + (j : G)cyGax,dy(G : j)bx

+ (j : G)axGbx,cy(G : j)dy + Mab,cd

= Gax,dyGcy,bx + vbxGax,dyvcy + vaxGbx,cyvdy + Mab,cd

and note thatA andB do not commute (unless fields are uniform). The last equali
valid only whenj = j0

v is inserted.
For uniform fields one finds

(C.14)Γ̃ 1[v] = 1

2

∫
q

ln
(
1− A(v)Bq(v)

)
,

(C.15)A(v)ab,cd = −2∂χab∂χcd U(χv),

(C.16)Bq(v)ab,cd =
∫
k

Gad
v (k)Gcb

v (q − k) + vbvcG
ad
v (q) + vavdGbc

v (q),

(C.17)Gab
v (k) = [

C(k)−1 + iλv

]−1
ab

,

(C.18)χcd
v = vcvd +

∫
k

Gcd
v (k),

(C.19)iλab
v = 2∂abU(χv).

We note that the above matrices arenot a priori symmetric ina ↔ b or in c ↔ d since we
have chosen the representation where all components of the fields fluctuate freely. T

reader will notice later (when coming back tothe main text) that in fact the final matrix
ABq will possess such a symmetry.
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Appendix D. The excluded replica-formalism

In this section, we calculate the terms at orderT andT 2 using the excluded replica
formalism. This gives an independent derivation of the moon-shaped building blocks
and in Section4.2.

We start by recalling that corrections at finite temperature are more difficult to ob
The simplest example is given inAppendix E. Here we want to understand this by maki
two contractions betweenB(ua(x)−ub(x)) andB(ua(y)−ub(y)). Be the first contraction
(focusing on the replica-structure)

(D.1).

The following possible contractions are

(D.2)+ − − .

At zero temperature, we have found in Section4.3that only the first term contributes. Th
enabled us to do the calculation atT = 0.

The general case is more complicated, since there are now three more possible con
tions, one may draw, i.e., 4 for eachB ′′. This looks discouraging. Two ways out of th
dilemma can be thought of. The first, calledrecursive constructionor successive construc
tion, tries to add one more link to a chain ofB ′′. The decisive simplification then is th
whenever arriving at, e.g.,

(D.3)

no more links can be added to the right, since the rightmost vertex isB ′′
aa , which is

a constant. This procedure has however onecrucial deficiency: contractions are non
commutative! Let us illustrate this on the diagram

(D.4).

If one first does the two leftmost contractions, then the two rightmost contraction
not possible. On the other hand, when doing first the two rightmost contractions, th
leftmost are possible! Working with this formalism, i.e., using its implied simplificatio
one has to number the lines. This is pretty awkward, since one wants to be able to in
diagrams as such, without having to number lines. This is especially important here
one wants to recognize the chains which give rise toHab(p). Also note that problem
arise at finite temperature, since there one has additional lines to add, and not all lin
needed to get a 2-replica term, i.e., there are lines which can be discarded, and
diagram would be a 2-replica term. A very instructive example is the simplest 2-loop
diagram at finite temperature, which is derived inAppendix E. One sees that diagram
can be grouped differently to cancel, and that these different cancellations corresp
different paths in the contractions.
One way out of the dilemma is theexcluded replica approach, which at 2-loop order has
as its descendent the sloop-algorithm[4]. Here we explain theexcluded replica approach.
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We start by writing the trivial relation

(D.5)
∑
a,b

Bab =
∑
a �=b

Bab +
∑
a

Baa.

The first term on the r.h.s. is the excluded replica disorder, the second a constant
performing contractions, the second termdoes not contribute. Thus one can perform p
turbation theory instead with

∑
ab Bab with

∑
a �=b Bab. The big advantage is that th

last two terms in(D.2) do not contribute. The backdraw is that the final result is a
over excluded replicas, which has to be projected onto the 2-replica term, and on
have more terms at intermediate steps. The final projection can be done forma
replacingBab → Bab(1 − δab), expanding and then collecting the 2-replica contri
tions.

We now introduce the excluded replica-formalism. Recalling that

p−→ = 1

1− 4I2(p)B ′′(χab)

(D.6)= 1

2

[
(ua − ub)

2]Hab(p)
[
(ua − ub)

2].
We then proceed as follows: whenever we have a long chain with some replica cons
lines (as above) and with doubled lines (or single lines when inserting vertices), w
always sum the double-line part, resulting inHab. We then have to sum explicitly the res
and project it onto the 2-replica-contribution (in general). For illustration, we start wit
open chain. This is, say when fixing one end to have replicasa andb

(D.7)
�p−→ .

We furthermore observe that the combinatorial weight for either having a rep
conserving double line ( ), or a doubled line up ( ) or down ( ), is the
same. We do not draw crossed lines; by definition they are incorporated into the
binatorial factor. The above has to be projected onto the 2-replica sum. Writing
Hcd(p) with excluded indices asHcd(p)(1 − δcd), and multiplying all terms, one a
ways has to take the term with theδcd , and(D.7), summed over all lengths of the cha
is ∑

all lengths

�p−→

= Hab(p)

∞∑
n=0

(−4I2(p)Haa

)n

= Hab(p)
1

1+ 4I2(p)Haa(p)

(D.8)= Hab(p)
(
1− 4I2(p)B ′′

aa

)
.

This object is well known: it is the chain times the moon-diagram, seeFig. 5. We remark
the important point that, even though we have an infinity of diagrams to sum up, in the



hould
have
re-

er

as

m, no
e are
e rest
in) or

rm is
st one

to be
P. Le Doussal, K.J. Wiese / Nuclear Physics B 701 [FS] (2004) 409–480 451

projection onto 2 replicas (or since we are already fixing two replicas, maybe we s
better say onto one replica) all but 1 non-trivial term vanish. (Also remark that we
been a bit sloppy to amputate the lastu2 legs. Otherwise, that is not so easy to rep
sent.)

We need another intermediate result. Summing all diagrams which conserve the low
index, we obtain

(D.9):= + · · · + + · · · .
We want this sum , projected onto 1 replica, . Using the same procedure
above, we find

S(p) := = 2I2(p)

∞∑
n=0

(−2I2(p)Haa

)n

= 2I2(p)
1

1 + 2I2(p)Haa

(D.10)= 2I2(p)
1 − 4I2(p)B ′′

aa

1 − 2I2(p)B ′′
aa

.

The 2-replica contribution is

(D.11)= × × = S(p)Hab(p)S(p).

This half-chain is very practical, since when inserted into a more complicated diagra
further restrictions apply. In a diagram involving this half-chain and some “rest”, ther
two 2-replica contributions: the half-chain projected onto the 1-replica part times th
projected onto 2 replicas (taking care of the replica-conserving line of the half-cha
the 2-replica part of the half-chain times the 1-replica-part of the rest.

We continue on the orderT 2-term. We have the following terms before projection:

+ + 1

2

(D.12)+ 1

3
+ · · · .

A dashed line denotes the identity; one would like to print this on a torus. The first te
very symbolic, since it is not a geometric sum but a log, and there should be at lea
vertex. The second is 0 (coinciding replicas in the chain)

(D.13)= 0.

We now have the choice of where to project onto the 2-replica term. The rest has

projected onto the 1-replica term. We first project one of the half-chains onto a 2-replica-
term, using(D.11). The 2-replica term is shaded in dark grey. The rest consequently has to
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be projected onto the 1-replica terms, shaded in light grey. We obtain the classC1:

C1 = +

+

(D.14)+ + · · · .

Denote byn the number ofHab in each diagram, which have lines starting at differ
replicas. Each suchHab contributes a factor of(1− δab), for a product of

(D.15)
∑

i1,i2,in

(1− δi1i2)(1− δi2i3) · · · (1− δini1).

We need all indices to be restricted to be identical. The terms which lead to that restricti
are either the product of allδ’s (1 term) or any one of theδ’s left out. This gives anothern
terms, but with a different sign, for a total of

(D.16)C1 = S(p)Hab(p)

∞∑
n=0

(1− n)
[−Haa(p)S(p)

]n
,

where it is important to note that also the first term in(D.14) for n = 0 is correctly given
by the above formula. We note the auxiliary sum

(D.17)
∞∑

n=0

(1− n)(−x)n = 1+ 2x

(1+ x)2 .

We give the intermediate results

(D.18)
1

1+ Haa(p)S(p)
= 1− 2I2(p)B ′′

aa,

(D.19)
S(p)

1+ Haa(p)S(p)
= 2I2(p)

(
1− 4I2(p)B ′′

aa

)
,

(D.20)1+ 2Haa(p)S(p) = 1+ 2I2(p)B ′′
aa

1− 2I2(p)B ′′
aa

the above sum is

(D.21)C1 = 2I2(p)Hab(p)
(
1+ 2I2(p)B ′′

aa

)(
1− 4I2(p)B ′′

aa

)
.

This reproduces diagram(4.52).
We now turn to the diagrams where the half-chain is always projected onto the 1-r
contribution, whereas the non-trivial terms come from omitting aδ belonging to one of the
Hab with lines entering into different replicas. With the same shading for 1- and 2-replica
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terms as above, this is

C2 = +

(D.22)+ + · · · .

The first term is 0, since it necessarily has crossed indices:

(D.23)= 0.

EachHab which is projected onto a single replica again contributes a factor of(1 − δab)

Starting from the second diagram, we have to leave out exactly 2δ’s in

(D.24)
1

n
(1− δi1i2)(1− δi2i3) · · · (1− δini1).

The first has already been left out in plotting(D.22), accounting for the factor ofn. Leaving
out two δ’s leads to a factor ofn(n − 1)/2, since they are indistinguishable. The res
contains two factors ofHab; the remaining factors are allHaa:

(D.25)C2 = 1

2
Hab(p)2S(p)2

∞∑
n=2

(n − 1)
[−Haa(p)S(p)

]n−2
.

With the sum

(D.26)
∞∑

n=2

(n − 1)(−x)n−2 = 1

(1+ x)2
,

and using(D.10)and(D.18)we obtain

(D.27)C2 = 2I2(p)2Hab(p)2(1− 4I2(p)B ′′
aa

)2
.

This reproduces the term(4.53).
We now turn to the diagrams of orderT . First of all, note that the following two dia

grams have no contributions proportional toB ′′
aa :

(D.28)and .

The reason is that they have no doubled line, as in

(D.29)and .

Note that both diagrams necessitate a replica-conserving double line (i.e.,or ).

Otherwise they vanish. The replica-conserving double line can be more generally replaced
by all chains, which start and end with a double line, and which conserve the index running



-
e

the
454 P. Le Doussal, K.J. Wiese / Nuclear Physics B 701 [FS] (2004) 409–480

through. The chains with one index entering and one index exiting are

+ +
(D.30)+ + · · · .

Each of these has the form (withn + 1 half-chains)

(D.31)S(p)

n∏
j=1

(
(1− δij ij+1)S(p)Hij ij+1(p)

)
.

The only replica-conserving term is obtained by usingδij ij+1 in eachfactor. The projection
onto the 1-replica term is denotedR (for replica-conserving)

R = + +
(D.32)+ + · · ·

and is evaluated as

R = S(p)

∞∑
n=0

[−S(p)Haa(p)
]n = S(p)

1+ S(p)Haa(p)

(D.33)= 2I2(p)
(
1− 4I2(p)B ′′

aa

)
,

where the last identity can be found in(D.19). This reestablishes the two factors of(1 −
4I2B

′′
aa) in diagram(D.29). Note thatR is introduced in Section4.2.

We can also give an equivalent interpretation of(D.21). It is Hab times summed half
chains, but since the indices are forced to be equal at the end, we can drop one of thδ’s in
(D.31). Instead of(D.33)this is

T = S(p)

∞∑
n=0

[−S(p)Haa(p)
]n

(1− n)

(D.34)= 2I2(p)
(
1+ 2I2(p)B ′′

aa

)(
1− 4I2(p)B ′′

aa

)
,

where the combinatorial factor(1 − n) is due to the fact, that one can drop one of
δ’s. We have also used the simplifications of equations(D.17) ff. T is nothing but ,
introduced in Section4.2.

Appendix E. The 2-loop diagram with a tadpole and graphical interpretation of
perturbation theory

For simplicity of notations, this calculation is done for a 1-component fieldu. We also

note R(u) := B(u2). We here calculate the 2-loop diagrams at finite temperature. This
shows how the naive rules one uses at zero temperature can be misinterpreted.
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All diagrams have two verticesR, two lines between these twoR’s, and a tadpole at
tached to one of theR’s:

(E.1)

This is a graphical representation ofR′′′′
abR′′

cd (δaa + δbb −2δab)(δacδbd + δadδbc)
2, together

with combinatorial factors. Projecting onto 2-replica-terms only gives:
(E.2)
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The interesting diagrams proportional toR′′′′(0) are:

(E.3)

One sees that one has cancellation either in one column or in one line. One can interp
as follows: making first contractions between the twoR’s, identifying the replicas of the
upperR, one can say that no tadpole can be added to the upperR. This is the cancellation
in the first column. Equivalently, one can first draw the tadpole. If one does this conn
replicasa and b on the upperR, then one can say that it is no longer possible to
correlators connecting the twoR’s. This is the cancellation in the first line, as opposed
the first column.

Appendix F. Details of the algebraic method

F.1. Algebra of 4-replica matrices

The 4-replica matrices needed in thetr ln calculation of Section5 can be parameterize
as in(5.5) and(5.10). They form an algebra, and to solve Eq.(5.11)one needs to write
explicitly the components of an arbitrary product of such matrices.

Let us consider two matricesM1 andM2 parameterized respectively by(xi
a, y

i
ab, z

i
ab,

t iabc, u
i
ab, v

i
abc,w

i
abc, g

i
abcd) for i = 1,2. Then the productMab,cd = ∑

ef M1
ab,ef M2

ef,cd is
itself parameterized by(xa, yab, zab, tabc, uab, vabc,wabc, gabcd) and one finds:

xa = x1
ax2

a + 2y1
aax

2
a + 2x1

az2
aa + 2

∑
f

y1
af z2

af ,

yad = x1
ay2

ad + 2x1
a t2

aad + 2y1
aay

2
ad + 2

∑
f

y1
af t2

af d ,

z = z1 x2 + 2t1 x2 + 2z1 z2 + 2
∑

t1 z2 ,
ab ab a aba a ab aa

f

abf af
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tabd = z1
aby

2
ad + 2t1

abay
2
ad + 2z1

abt
2
aad + 2

∑
f

t1
abf t2

af d,

uac = x1
au2

ac + u1
acx

2
c + v1

accx
2
c + x1

aw2
aac + 2y1

acz
2
ca + 2y1

aau
2
ac + 2u1

acz
2
cc

+
∑
f

[
2y1

af w2
af c + 2v1

acf z2
cf + u1

af u2
f c + v1

aff u2
f c + u1

af w2
ff c

]
+

∑
ef

v1
aef w2

ef c,

vacd = x1
av2

acd + x1
ag2

aacd + 2y1
act

2
cad + 2y1

adt
2
dac + u1

acy
2
cd + u1

ady2
dc + 2y1

aav
2
acd

+ v1
accy

2
cd + v1

addy
2
dc + 2u1

act
2
ccd + 2u1

adt
2
ddc

+
∑
f

[
2y1

af g2
af cd + 2v1

acf t2
cf d + 2v1

adf t2
df c + u1

af v2
f cd + u1

af g2
ff cd

+ v1
aff v2

f cd

] +
∑
ef

v1
aef g2

ef cd,

wabc = w1
abcx

2
c + g1

abccx
2
c + 2t1

abcz
2
ca + 2t1

bacz
2
cb + z1

abu
2
ac + z1

bau
2
bc + z1

abw
2
aac

+z1
baw

2
bbc + 2w1

abcz
2
cc + 2t1

abau
2
ac + 2t1

babu
2
bc

+
∑
f

[
2g1

abcf z2
cf 2t1

abf w2
af c + 2t1

baf w2
bf c + w1

abf u2
f c + g1

abff u2
f c

+ w1
abf w2

ff c

] +
∑
ef

g1
abef w2

ef c,

gabcd = w1
abcy

2
cd + w1

abdy
2
dc + g1

abccy
2
cd + g1

abddy
2
dc + z1

abv
2
acd + z1

bav
2
bcd

+ z1
abg

2
aacd + z1

bag
2
bbcd + 2t1

abct
2
cad + 2t1

bact
2
cbd + 2t1

abdt
2
dac

+ 2t1
badt

2
dbc + 2t1

abav
2
acd + 2t1

babv
2
bcd + 2w1

abct
2
ccd + 2w1

abd t2
ddc

+
∑
f

[
2t1

abf g2
af cd + 2t1

baf g2
bf cd + 2g1

abcf t2
cf d + 2g1

abdf t2
df c

(F.1)+ w1
abf v2

f cd + g1
abff v2

f cd + w1
abf g2

ff cd

] +
∑
ef

g1
abef g2

ef cd,

where we have made replica sums explicit.
Using these multiplication rules one can rewrite Eq.(5.11)in terms of a set of non-linea

equations for the components ofMλ in terms of the components of̄M. Unfortunately no
closed solution seemed possible (except in some very special cases). The next step is thu
expand each component in number of replica sums as in(5.13). This results in a hierarch
of equations for components with increasing number of replica sum. For instance the
sum components behave under multiplication as in(F.1), dropping all terms with replica
sums, and so on. These equations can be solved iteratively, as discussed in the text.
one needs the zero- and one-sum components of the matrixM̄, the calculation of which
we now detail.

F.2. Calculation of the matrixM
We start by computing the matrixM in (5.1). As in the following subsections there are
two stages. First make all Kronecker-deltas explicit, then expand each term in the number
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of replica sums. As discussed in the text, all intermediate free sums over two or
replicas can be dropped.

A straightforward calculation from(2.6), for a model with only a bare second cumula
gives

Mab,cd = (
2T ∂χab∂χcd U(χ)

)∣∣
χ=χv

= − 2

T

(
δabcd

∑
e

B ′′
ae + δabδcdB ′′

ac − (δacd + δbcd )B ′′
ab

(F.2)− (δabc + δabd)B
′′
cd + (δacδbd + δbcδad)B

′′
ab

)
,

whereB ′′
ab = B ′′(χ̃ab

v ), and χ̃ab
v = χaa

v + χbb
v − 2χab

v ; χab
v is given by its saddle poin

value(2.16). Note that since one takes everything at the saddle point at the end, wh
symmetric ina, b, all expressions resulting from two derivatives are symmetric:B ′′

ab = B ′′
ba

(even if one chooses the fluctuating fields a priori non-symmetric).
The matrixχ̃ab

v still contains explicit Kronecker-deltas. As in the main text, one wr

(F.3)χ̃ab
v = χ̃ab + δabχ̃a,

whereχ̃ab andχ̃a contain no Kronecker delta, and are computed below. Then one see

(F.4)B ′′(χ̃ab
v ) = δab

[
B ′′(χ̃aa + χ̃a) − B ′′(χ̃aa)

] + B ′′(χ̃ab).

Inserting this form into(F.2)above one finds that the contribution of the pieceδab[B ′′(χ̃aa +
χ̃a)−B ′′(χ̃aa)] cancels exactly and thus one obtains thatM is given by(F.2)but with now
B ′′

ab = B ′′(χ̃ab), i.e., the part with no Kronecker delta.
We can now continue the calculation from(2.16)by expanding in the number of replic

sums. First we define

(F.5)
(−2T ∂Ũ0)

ab
= δab

∑
c

Uac − Uab,

(F.6)Uab = 2

T
B̃ ′

ab + 2

T 2

∑
g

S̃′
abg,

whereB̃ ′
ab = B̃ ′(v2

ab) and similarly for the three-replica term (which will drop later o
From there and(2.16)we obtain, dropping all higher order sums, the expansions

(F.7)χ̃a = −2T I1 − 2T I2

∑
e

Uae,

χ̃ab = v2
ab + 2T I1 + 2T I2

[
Uab − 1

2
(Uaa + Ubb) + 1

2

∑
e

(Uae + Ube)

]

+ 2T I3

[∑
e

Uab(Uae + Ube) −
∑

e

UaeUeb

∑( )]

(F.8)−

e

UaaUae + UbbUbe − 1

2
UaeUea − 1

2
UbeUeb .
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Thus in each of theB ′′
ab = B ′′(χ̃ab) matrices appearing in(F.2)the argument can be Taylo

expanded, i.e., as

(F.9)B ′′
ab = B̄ ′′

ab + B̄ ′′′
ab

∑
f

Oabf ,

where we have defined̄B ′′
ab = B ′′(χ̄ab), B̄ ′′′

ab = B ′′′(χ̄ab) and

(F.10)χ̄ab = v2
ab + 2T I1 + 4I2

(
B̃ ′

ab − 1

2
(B̃ ′

aa + B̃ ′
bb)

)
,

Oabf = 4

T
I2

(
S̃′

abf − 1

2
(S̃′

aaf + S̃′
bbf )

)
+ 2I2(B̃

′
af + B̃ ′

bf )

+ 8

T
I3

[
B̃ ′

ab(B̃
′
af + B̃ ′

bf ) − B̃ ′
af B̃ ′

ef

(F.11)−
(

B̃ ′
aaB̃

′
af + B̃ ′

bbB̃
′
bf − 1

2
B̃ ′

af B̃ ′
f a − 1

2
B̃ ′

bf B̃ ′
f b

)]
.

It will turn out below that at the end we will only needOaaf = 4I2B̃
′
af . We will not perform

this expansion and replacement now. First, we turn to the calculation of the matrix̄N and
perform the productMN̄q , keepingB ′′

ab unspecified.

F.3. Calculation of the matrix̄Nq

We now compute the second matrix,N̄q , expanded up to one free replica sum. One

(F.12)N̄
q
ab,cd = vavdḠ

q
bc + vbvcḠ

q
ad + T Π̄

q
ab,cd,

(F.13)Ḡq = C(q)δ +
∑
n�1

C(q)n+1(−2T ∂Ũ0)n,

(F.14)

Π̄
q

ab,cd = J
q

1,1δadδbc +
∑
n�1

J
q

1,n+1

(
δad

(−2T ∂Ũ0)
bc

+ δbc

(−2T ∂Ũ0)
ad

)

+
∑

m�1, n�1

J
q

m+1,n+1

(−2T ∂Ũ0)m

ad

(−2T ∂Ũ0)n

bc
,

(F.15)J
q

i,j =
∫
k

1

(k2 + m2)i

1

((q − k)2 + m2)j
.

In addition to(F.6)we also need

(−2T ∂Ũ0)2
ab

= −
∑

e

Uab(Uae + Ube) +
∑

c

UacUcb

4 ∑ ′ ′ ′ 4 ∑ ′ ′
= −
T 2

e

B̃ab(B̃ae + B̃be) +
T 2

e

B̃aeB̃eb.
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Since(−2T ∂Ũ0)3
ab, etc., contains only at least 2-replica sums, it can be dropped. We d

(F.16)N̄
q
ab,cd = N

q
ad,bc + N

q
bc,ad,

N
q

ad,bc = 1

2
T J

q

1,1δadδbc + C(q)δadvbvc

+ vavd

(
C(q)2(−2T ∂Ũ0)

bc
+ C(q)3(−2T ∂Ũ0)2

bc

+ T δad

(
J

q

1,2

(−2T ∂Ũ0)
bc

+ J
q

1,3

(−2T ∂Ũ0)2
bc

)
+ 1

2
T J

q
2,2

(−2T ∂Ũ0)
ad

(−2T ∂Ũ0)
bc

(F.17)+ T J
q

2,3

(−2T ∂Ũ0)
ad

(−2T ∂Ũ0)2
bc

)
.

We obtain

(F.18)

N
q

ad,bc = δadδbcL
1
ab + δadP

1
a,bc + δbcP

2
b,ad − UbcvavdC(q)2 + 1

2
T J

q

2,2UadUbc

+ (
vavdC(q)3 − T J

q

2,3Uad

)∑
f

[
Ubf Ufc − Ubc(Ubf + Ucf )

]
,

(F.19)L1
ab = 1

2
T J

q

1,1 + T J
q

1,2

∑
f

Ubf ,

(F.20)

P 1
a,bc = C(q)vbvc − T J

q

1,2Ubc + T J
q

1,3

∑
f

[
Ubf Ucf − Ubc(Ubf + Ucf )

]

− 1

2
T J

q

2,2Ubc

∑
f

Uaf ,

(F.21)P 2
b,ad = vavdC(q)2

∑
f

Ubf − 1

2
T J

q

2,2Uad

∑
f

Ubf .

This yields

N̄
q
ab,cd = δadδbcL

q
ab + δadQ

q
a,bc + δbcQ

q
b,ad

− 2

T
(B̃ ′

bcvavd + B̃ ′
advbvc)C(q)2 + 4

T
J

q

2,2B̃
′
adB̃ ′

bc

+ 4

T 2

(
vavdC(q)3 − 2J

q

2,3B̃
′
ad

)∑
f

[
B̃ ′

bf B̃ ′
f c − B̃ ′

bc(B̃
′
bf + B̃ ′

cf )
]

+ 4

T 2

(
vbvcC(q)3 − 2J

q

2,3B̃
′
bc

)∑
f

[
B̃ ′

af B̃ ′
f d − B̃ ′

ad(B̃ ′
af + B̃ ′

df )
]
,

(F.22)L
q = T J

q + 2J
q

∑
(B̃ ′ + B̃ ′ ),
ab 1,1 1,2

f

af bf
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(F.23)

Q
q

a,bc = vbvc

(
C(q) + 2

T
C(q)2

∑
f

B̃ ′
af

)
− 2

T
B̃ ′

bc

(
T J

q

1,2 + 2J
q

2,2

∑
f

B̃ ′
af

)

+ 4

T
J

q
1,3

∑
f

[
B̃ ′

bf B̃ ′
cf − B̃ ′

bc(B̃
′
bf + B̃ ′

cf )
]
.

F.4. Final calculation of the matrixM

We now perform the matrix multiplication

(F.24)Mq
ab,cd =

∑
ef

Mab,ef N̄
q
ef,cd = − 2

T

[
B ′′

abN
q
ab,cd − δab

∑
g

B ′′
agN

q
ag,cd

]
,

where we have defined

N q

ab,cd = (
N̄

q

ab,cd + N̄
q

ba,cd − N̄
q

aa,cd − N̄
q

bb,cd

)
= L

q
ab(δadδbc + δbdδac) − L

q
aaδacd − L

q
bbδbcd + δadQ

q
a,bc + δbdQ

q
b,ac

− δadQ
q
a,ac − δbdQ

q
b,bc + δbcQ

q
b,ad + δacQ

q
a,bd − δacQ

q
a,ad − δbcQ

q
b,bd

− (Ubcvavd + Uadvbvc + Uacvbvd + Ubdvavc − Uacvavd

− Uadvavc − Ubcvbvd − Ubdvbvc)I
q

2

+ T J
q

2,2(UadUbc + UbdUac − UadUac − UbdUbc)

+ (
vavdC(q)3 − T J

q

2,3Uad

)∑
f

[
Ubf Ufc − Ubc(Ubf + Ucf )

]

+ (
vbvcC(q)3 − T J

q

2,3Ubc

)∑
f

[
Uaf Uf d − Uad(Uaf + Udf )

]

+ (
vbvdC(q)3 − T J

q

2,3Ubd

)∑
f

[
Uaf Uf c − Uac(Uaf + Ucf )

]

+ (
vavcC(q)3 − T J

q
2,3Uac

)∑
f

[
Ubf Ufd − Ubd(Ubf + Udf )

]

− (
vavdC(q)3 − T J

q

2,3Uad

)∑
f

[
Uaf Uf c − Uac(Uaf + Ucf )

]

− (
vavcC(q)3 − T J

q

2,3Uac

)∑
f

[
Uaf Uf d − Uad(Uaf + Udf )

]

− (
vbvdC(q)3 − T J

q

2,3Ubd

)∑
f

[
Ubf Uf c − Ubc(Ubf + Ucf )

]
( 3 q )∑[ ]
− vbvcC(q) − T J2,3Ubc

f

Ubf Uf d − Ubd(Ubf + Udf ) .
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Performing the matrix product yields the parameterization of the matrixM̄, where we have
not yet fully expanded in sums, as (theq-dependence is implicit)

αab = − 2

T

1

1− 4
T

B ′′
abLab

,

xa = αaa

∑
f

B ′′
af Laa,

yad = −αaaB
′′
adLad + αaa

∑
f

B ′′
af (Qa,ad − Qa,f d),

zab = −αabB
′′
abLaa,

tabd = αabB
′′
ab(Qa,bd − Qa,ad),

uac = αaaB
′′
acLcc,

vacd = αaa

[
B ′′

ad(Qd,dc − Qd,ac) + B ′′
ac(Qc,cd − Qc,ad)

−
∑
f

B ′′
af T J

q

2,2(UadUfc + UfdUac − UadUac − UfdUfc)

+
∑
f

B ′′
af (Uf cvavd + Uadvf vc + Uacvf vd + Uf dvavc

− Uacvavd − Uadvavc − Uf cvf vd − Uf dvf vc)I
q

2

]
,

wabc = 0,

gabcd = αabB
′′
ab

{
−(Ubcvavd + Uadvbvc + Uacvbvd + Ubdvavc

− Uacvavd − Uadvavc − Ubcvbvd − Ubdvbvc)I
q

2

+ T J
q

2,2(UadUbc + UbdUac − UadUac − UbdUbc)

+ (
vavdI

q

3 − T J
q

2,3Uad

)∑
f

[
Ubf Ufc − Ubc(Ubf + Ucf )

]

+ (
vbvcI

q

3 − T J
q

2,3Ubc

)∑
f

[
Uaf Ufd − Uad(Uaf + Udf )

]

+ (
vbvdI

q
3 − T J

q
2,3Ubd

)∑
f

[
Uaf Ufc − Uac(Uaf + Ucf )

]

+ (
vavcI

q

3 − T J
q

2,3Uac

)∑
f

[
Ubf Ufd − Ubd(Ubf + Udf )

]

− (
v v I

q − T J
q

U
)∑[

U U − U (U + U )
]

a d 3 2,3 ad

f

af f c ac af cf
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− (
vavcI

q
3 − T J

q
2,3Uac

)∑
f

[
Uaf Uf d − Uad(Uaf + Udf )

]

− (
vbvdI

q

3 − T J
q

2,3Ubd

)∑
f

[
Ubf Uf c − Ubc(Ubf + Ucf )

]

(F.25)− (
vbvcI

q

3 − T J
q

2,3Ubc

)∑
f

[
Ubf Uf d − Ubd(Ubf + Udf )

]}
.

We now finish the expansion in sums, using(F.9), (F.11)and defining the notations

(F.26)A
q
ab = 2

1− 4B̄ ′′
abJ

q

1,1

,

(F.27)A
q
aa = 2

1− 4B ′′(2T I1)J
q
1,1

,

(F.28)

αab = − 1

T

[
A

q
ab + 2

(
A

q
ab

)2

(
2

T
J

q

1,2B̄
′′
ab

∑
f

(B̃ ′
af + B̃ ′

bf ) + J
q

1,1B̄
′′′
ab

∑
f

Oabf

)]
,

(F.29)Lab = T J
q

1,1 + 2J
q

1,2

∑
f

(B̃ ′
af + B̃ ′

bf ).

The result is given in the text in Section5, as well as

P1yad = 2J
q

1,1

(
A

q
aa

)2

(
4

T
J

q

1,2B̄
′′
aa

∑
f

B̃ ′
af + J

q

1,1B̄
′′′
aa

∑
f

Oaaf

)
B̄ ′′

ad

+ 2

T
AaaJ

q

1,2B̄
′′
ad

∑
f

(B̃ ′
af + B̃ ′

df ) + J
q

1,1A
q
aaB̄

′′′
ad

∑
f

Oadf

(F.30)− 2

T

C(q)

(1− 4B ′′(2T I1)J
q
1,1)

∑
f

B̄ ′′
af (va − vf )vd ,

P1zab = 2J
q

1,1

(
A

q
ab

)2

(
2

T
J

q

1,2B̄
′′
ab

∑
f

(B̃ ′
af + B̃ ′

bf ) + J
q

1,1B̄
′′′
ab

∑
f

Oabf

)
B̄ ′′

ab

(F.31)+ 4

T
AabJ

q

1,2b
′′
ab

∑
f

B̃ ′
af + J

q

1,1A
q
abB̄

′′′
ab

∑
f

Oabf .

Appendix G. More remarks on the graphical method

G.1. Diagrammatics
The diagrammatic 1/N expansion can be constructed by using
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Theorem.

(G.1)

B̃ ′(v2) =
[

∂

∂χ
+ ∂

∂v2

](
B(χ) + 1

N
B(1)

(
χ(v), v2) + 1

N2
B(2)

(
χ(v), v2) + · · ·

)
,

(G.2)B(1)(χ) =
∑

all 1PI diagrams with1 loop,

(G.3)B(2)(χ) =
∑

all 1PI diagrams with2 loops,

(G.4)· · · = · · ·
(G.5)χ(v) = v2 + 2T I1 + 4I2

[
∂χB

(
χ

(
v2), v2) − ∂χB

(
χ(0),0

)]
.

Some explication and precisions are in order: 1-particle-irreducible diagrams (1P
w.r.t. lines being correlators〈vv〉, and vertices beingB(n)(χ). The r.h.s. of Eq.(G.1) are
diagrams made out of bare vertices. We have separated theχ -dependence from the explic
v-dependence: the latter arev’s which are connected with a line. These are the terms in
1/N -calculation, which explicitly containv. Note thatv’s always pair. Side-chains on
come from the fact that finally one insertsχ . Note thatχ as defined here is an object whi
contains terms at all orders in 1/N . The diagrams are 1PI, a fact which is important for
order 1/N2. It means thatB(2) doesnot contain the diagram made out of2 closed loops
connected by a single line.

Fig. 6. Some typical 1/N -diagrams and the classes they belong to. The wiggly line indicates the deriv
the black circle is aB̃ (or derivative), the grey circle aB (or derivative). We have restrained from drawing

contribution due to the explicitv-dependence. These terms do not play a role in the argument, and are only
tedious supplements one has to keep track of.
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Fig. 7. Diagrams at order 1/N (first), 1/N2 (next two) and 1/N3 (rest).

Proof. Draw a collection of diagrams contributing tõB (seeFig. 6). This drawing contains
vertices made out of derivatives ofB(v2) (not B(χ) – we have drawn the complete
expanded diagram). Now derive that object with respect tov2, giving a couple of terms
Any of these terms singles out oneB, namely the one derived.

ThisB may be part of a tree, by which we mean that either it is a point or by cuttin
one of the attached legs, the diagram will fall apart. Then it is contained in the first te
the r.h.s. of Eq.(G.1), since any attachment which can be made to it in the form of a
is taking care of by choosing the above givenχ . Note that for this to be true,χ has to be
exactly the object given above, i.e., on the r.h.s. of Eq.(G.4)there has to be the full̃B to all
orders in 1/N . In the diagrammatic language this is clear: Having a higher-order dia
and taking the derivative at one of the tree-like vertices, this diagram may still conta
arbitrary loop somewhere attached to the tree.

TheB which has been derived may as well be part of a closed loop. By this we
that when we cutoff all parts of the diagram which can be disconnect from our chosen
by one cut, there remains more than the vertex itself. This object is of higher connec
it can either be a loop (at order 1/N ); it can be a diagram in the form of an 8 or a circle
which one has added an additional line between two arbitrary chosen points on it (a
1/N2). Higher order diagrams are given inFig. 7. �
G.2. An alternative derivation of theβ-function (T = 0)

We now give a general derivation of theβ-function to all orders in 1/N , following our
results of the last section. This derivation is restricted toT = 0, since it is rather compli
cated at finiteT . To make the derivation more transparent, and to avoid having to d
with respect tov2 on the r.h.s. of Eq.(G.1), we introduce the auxiliary functioñB(v2, u2).
By u2 we shall denote a pair of background-fields that are non-trivially connected
line of propagators, whereasv2 denotes the background-field which is inserted intoB, but
which is not connected to any propagator. Note that this decomposition is unique; th
paring ofu’s is natural, and that deriving with respect tov2, but notu2 can combinatori-
cally be interpreted as choosing any vertexB and deriving it once. This object is thus bet
fitted for calculations thañB(v2) = B̃(v2, u2)|u2=v2. However the latter object is of cours
the only one with a physical meaning.

We now start from a modified version of Eq.(G.1), namely

(G.6)∂v2B̃
(
v2, u2) = ∂

∂χ

(
B(χ) + δB

(
χ,u2)),

δB
(
χ,u2) = δB

[
B ′(χ(v)

)
,B ′′(χ(v)

)
, . . . , u2]

= 1

N
B(1)

[
B ′(χ(v)

)
,B ′′(χ(v)

)
, . . .

]

(G.7)+ 1

N2 B(2)
[
B ′(χ(v)

)
,B ′′(χ(v)

)
, . . . , u2] + · · · ,
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χ = χ(v) = χ
(
v,u2) = v2 + 4I2

(
∂v2B̃

(
v2, u2) − ∂v2B̃(0,0)

)
(G.8)≡ v2 + 1

ε

(
∂v2b̃

(
v2, u2) − ∂v2b(0,0)

)
,

where we are a little bit sloppy with thenotations, suppressing the argumentu of χ(v). We
define the dimensionless quantities

(G.9)b
(
v2, u2) = 4εI2B̃

(
v2, u2) = 4Adm

−ε B̃
(
v2, u2),

(G.10)b0(χ) = 4Adm
−εB(χ),

(G.11)δb
(
χ,u2) = 4Adm−εδB

(
χ,u2).

As in the main text, we use the notationin(p) = In(p)
Ad

= In(p)
εI2

. Theβ-function is

−m
∂

∂m
∂v2b

(
v2, u2)

= ε∂v2b
(
v2, u2) − (

4Adm−ε
)m∂

∂m

∂

∂χ

(
B(χ) + δB

(
χ,u2))

= ε∂v2b
(
v2, u2) + ∂2

∂χ2

(
b(χ) + δb

(
χ,u2))(−m

∂χ

∂m

)

(G.12)+ ε
∂

∂λ

∣∣∣∣
λ=1

[
1

λ

∂

∂χ
δb

(
λb′

0, λb′′
0, . . . , u2)].

Note that in the last equation, we have been a little bit sloppy with the notation.
this means is that having rescaledB to b0, them-dependence of the integrals is cancel
Thus we can evaluate all integrals atm2 = 1. The derivative w.r.t.λ is easily understoo
as follows: having a diagram withn + 1 vertices, the integrals scale likem−nε . First, this
accounts for the factor ofε. Second, in order to get the right combinatorial factor on

instead ofn + 1, one has to subtract one contribution, which is done by the factor o/λ

in front of δb.
We need two more equations. First, starting from Eq.(G.7) and deriving w.r.t.m, we

obtain (exact!)

−m
∂χ

∂m
= 1

ε

(
−m

∂

∂m

)[
∂v2b

(
v2, u2) − ∂v2b(0,0)

]

(G.13)�= 1

ε

(
−m

∂

∂m

)
∂v2b

(
v2, u2) − ∂v2b(0,0),

where an equality would suppose thatdue to dimensional reduction∂mB̃ ′(0) = 0.
Deriving Eq.(G.7)w.r.t. v2, we obtain (also exact)

(G.14)
∂χ

∂v2 = 1+ 1

ε
∂2
v2b

(
v2, u2).

Deriving Eq.(G.6)by v2 gives with the help of Eq.(G.14)

( ) ∂2 [ ( )] ∂χ

(G.15)∂2

v2b v2, u2 =
∂χ2

b0(χ) + δb χ,u2

∂v2
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(G.16)= ∂2

∂χ2

[
b0(χ) + δb

(
χ,u2)](1+ 1

ε
∂2
v2b

(
v2, u2)).

Therefrom we infer that (to all orders)

(G.17)
∂2

∂χ2

[
b0(χ) + δb

(
χ,u2)] = ∂2

v2b(v2, u2)

1+ 1
ε
∂2
v2b(v2, u2)

.

This equation can also be written as

(G.18)
1

∂2

∂χ2 [b0(χ) + δb(χ,u2)]
= 1

∂2
v2b(v2, u2)

+ 1

ε
.

This procedure can be repeated to obtain

(G.19)
∂3

∂χ3

[
b0(χ) + δb

(
χ,u2)] = ∂3

v2b(v2, u2)

(1+ 1
ε
∂2
v2b(v2, u2))3

,

∂4

∂χ4

[
b0(χ) + δb

(
χ,u2)]

(G.20)= ∂4
v2b(v2, u2) + 1

ε
(∂4

v2b(v2, u2)∂2
v2b(v2, u2) − 3[∂3

v2b(v2, u2)]2)
(1+ 1

ε
∂2
v2b(v2, u2))5

.

Eliminating ∂χ
∂m

and ∂2

∂χ2 [b0(χ) + δb(χ,u2)] from Eq.(G.12), we obtain

−m
∂

∂m
∂v2b

(
v2, u2)

= ε∂v2b
(
v2, u2)

+ ∂2
v2b(v2, u2)

1+ 1
ε
∂2
v2b(v2, u2)

1

ε

(
−m

∂

∂m

)(
∂v2b

(
v2, u2) − ∂v2b(0,0)

)

(G.21)+ ε
∂

∂λ

∣∣∣∣
λ=1

[
1

λ

∂

∂χ
δb(λb′

0, λb′′
0, . . .)

]
.

We now take the limit ofv2, u2 → 0. We suppose that(−m ∂
∂m

)(∂v2b(v2, u2) −
∂v2b(0,0)) → 0 in that limit. Further∂2

v2b(v2, u2) can either remain finite or diverg

However
∂2
v2b(v2,u2)

1+ 1
ε ∂2

v2b(v2,u2)
remains finite whatever∂2

v2b(v2, u2) will do. Supposing that this

argument is indeed correct (are there additional IR-divergences?) the conclusion is that

(G.22)−m
∂

∂m
∂v2b(0,0) = ε∂v2b(0,0) + lim

u,v→0
ε

∂

∂λ

∣∣∣∣
λ=1

[
1

λ

∂

∂χ
δb(λb′

0, λb′′
0, . . .)

]
.

Theβ-function thus is equivalent to

∂ ( )
−m
∂m

∂v2b v2, u2
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= ε∂v2b
(
v2, u2) + [

∂v2b
(
v2, u2) − ∂v2b(0,0)

]
∂2
v2b

(
v2, u2)

+ (
ε + ∂2

v2b
(
v2, u2)) ∂

∂λ

∣∣∣∣
λ=1

[
1

λ

∂

∂χ
δb(λb′

0, λb′′
0, . . .)

]

(G.23)− ∂2
v2b

(
v2, u2) lim

v,u→0

∂

∂λ

∣∣∣∣
λ=1

[
1

λ

∂

∂χ
δb(λb0, λb′

0, . . .)

]
.

Using Eq.(G.14), this can also be written as

−m
∂

∂m
∂v2b

(
v2, u2)

= ε∂v2b
(
v2, u2) + [

∂v2b
(
v2, u2) − ∂v2b(0,0)

]
∂2
v2b

(
v2, u2)

+ ε
∂

∂λ

∣∣∣∣
λ=1

∂

∂v2

[
1

λ
δb(λb′

0, λb′′
0, . . .)

]

(G.24)− ∂2
v2b

(
v2, u2) lim

v,u→0

∂

∂λ

∣∣∣∣
λ=1

[
1

λ

∂

∂χ
δb(λb0, λb′

0, . . .)

]
.

Integrating the latter equation overv2, we obtain

−m
∂

∂m
b
(
v2, u2)

= εb
(
v2, u2) + 1

2
∂v2b

(
v2, u2)2 − ∂v2b

(
v2, u2)∂v2b(0,0)

+ ε
∂

∂λ

∣∣∣∣
λ=1

[
1

λ
δb(λb′

0, λb′′
0, . . .)

]

(G.25)− ∂v2b
(
v2, u2) lim

v,u→0

∂

∂λ

∣∣∣∣
λ=1

[
1

λ

∂

∂χ
δb(λb0, λb′

0, . . .)

]
,

which of course has to be read atu2 = v2. In a final step, we want to reintroduce prop
quantities. Noting that

(G.26)∂v2b
(
v2, u2)∣∣

u=v2 = b′(v2) − ∂v2δb
(
χ(v), v2)

(which does not needu), we obtain

−m
∂

∂m
b
(
v2)

= εb
(
v2) + 1

2
b′(v2)2 − b′(v2)b′(0) − [

b′(v2) − b′(0)
]
∂v2δb

(
χ(v), v2)

+ ∂v2δb
(
χ(0),0

)
b′(v2) + 1

2

[
∂v2δb

(
χ(v), v2)]2

− ∂v2δb
(
χ(v), v2)∂v2δb

(
χ(0),0

) + ε
∂

∂λ

∣∣∣∣
λ=1

[
1

λ
δb(λb′

0, λb′′
0, . . .)

]
[ ( ) ( )] ∂

∣∣ [
1 ∂

]

(G.27)− b′ v2 − ∂v2b χ(v), v2 lim

v,u→0 ∂λ
∣∣
λ=1 λ ∂χ

δb(λb0, λb′
0, . . .) .
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(Of course∂v2δb(χ(0),0) means first to derive and then to put the arguments to 0.)
note that∂v2δb(χ(0),0) is not 0, at least at orderT . Theβ-function at order 1/N therefore
is

−m
∂

∂m
b
(
v2)

= εb
(
v2) + 1

2
b′(v2)2 − b′(v2)b′(0)

+ 1

N

(
ε

∂

∂λ

∣∣∣∣
λ=1

[
1

λ
b(1)(λb′

0, λb′′
0, . . .)

]
− [

b′(v2)−b′(0)
]
∂v2b

(1)
(
χ(v), v2)

+ b′(v2){∂u2b
(1)

(
χ(0), u2)∣∣

u=0 − lim
v,u→0

∂

∂λ

∣∣∣∣
λ=1

[
1

λ

∂

∂χ
b(1)(λb0, λb′

0, . . .)

]})

(G.28)+ O

(
1

N2

)
.

This might better be grouped as

−m
∂

∂m
b
(
v2)

= εb
(
v2) + 1

2
b′(v2)2 − b′(v2)b′(0)

+ 1

N

(
ε

∂

∂λ

∣∣∣∣
λ=1

[
1

λ
b(1)(λb′

0, λb′′
0, . . .)

]

− b′(v2) lim
v,u→0

∂

∂λ

∣∣∣∣
λ=1

[
1

λ

∂

∂χ
b(1)(λb0, λb′

0, . . .)

]

− [
b′(v2) − b′(0)

]
∂v2b

(1)
(
χ(v), v2) + b′(v2)∂u2b

(1)
(
χ(0), u2)∣∣

u=0

)

(G.29)+ O

(
1

N2

)
.

A caveat is in order: the rescaling has to be done on the level of bare vertices, not
level of renormalized ones. That would give a wrong result. However the derivative
v2 can be taken in any formulation.

G.3. The cased = 0

As one can see from our final result for theβ-function in (7.7), specified tod = 0, it
is a polynom inb of finite order, since the denominators present inhx(p), see(6.13)are
identical 1. Since this come as quite a surprise, we show here why this must be so; a
it is a quite general feature of the 1/N -expansion of a renormalizable theory ind = 0.

We start to warm up with the diagram

(G.30).
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The leading and next-to-leading contributions (inb) are

(G.31)

.

Our strategy is to apply Bogoliubov’sR-operation, see, e.g.,[67–70]and to show that only
the first two terms contribute. Three remarks are in order:

(1) TheR-operation in the context of a 1/N -expansion is maybe not entirely natur
However we have in the above diagrams the property, that the terms already e
tered at 1/N (and thus taken care of in theβ-function at leading order) are exactly th
iterated 1-loop diagrams, thus the first order in 1/N .

(2) In order to extract theβ-function fromR applied to a diagram, we only have to der
(w.r.t. m) the diagrams in the boxes, since only those are counter-terms.

(3) ApplyingR to a functional of the bareb0 gives the result as a functional ofb. Thus
the contributionδβ(b) to theβ-function isδβ(b) = −m ∂

∂m
R[diagram(b0)]. Now

(G.32)R = −

which give as the contribution toβ

(G.33)δβ(b) = −3ε .

The second diagram gives

R

= − −

(G.34)+ .
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In D = 0, the last two diagrams cancel, and

(G.35)δβ(b) = −ε .

This gives also the ratio 6 to be found in the explicit formula: the 3 from the first diag
has to be set in relation to the combinatorial factor of 2 for the second one and a fa
1/ε for the second, which together give a ratio of 6; finishing the test.

We now proceed to higher orders: first we remark that for the chain withn members
(heren = 3) one can show recursively that

(G.36)R
[ ] =

[
−

]n

.

Thus havingn diagrams in the chain and deriving then-dependence gives

(G.37)−m∂

∂m
R

[ ] = nε

[
−

]n−1

.

Of course, ind = 0 the latter vanishes forn > 1.
It is now easy to see that only finite order terms can appear.�

Appendix H. Details of the calculation of the β-function at finite T

H.1. Integrals appearing in theT > 0 correction to the effective action

The following functions have been defined but not given in formula(6.17)in the main
text:

(H.1)g4(ax) = 1

Ad

∫
p

c(p)hx(p) + 1

2
c(p)i2(p)hx(p)2,

(H.2)g5(ax) = −1

2

1

Ad

∫
p

c(p)i2(p)2hx(p)2,

(H.3)g6(ax) = 1

Ad

∫
p

i3(p)hx(p) + 1

2
i2(p)i3(p)hx(p)2,

(H.4)g7(ax) = −1

2

1

Ad

∫
p

c(p)i2(p)2i3(p)hx(p)2,

(H.5)g8(a0) = − 1
∫

i3(p)h0(p),

Ad

p
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(H.6)g9(a0) = −1

2

1

Ad

∫
p

i2(p)i3(p)h0(p),

(H.7)g10(ax) = 1

8Ad

∫
p

− ln
(
1− axi2(p)

) + i2(p)hx(p) + 1

4
i2(p)2hx(p)2,

(H.8)g11(ax) = − 1

16Ad

∫
p

i2(p)2hx(p) + i2(p)3hx(p)2,

(H.9)g12(ax) = 1

16Ad

∫
p

−i2(p)3hx(p) + 1

2
i2(p)4hx(p)2,

(H.10)γ = −1

4
i2
1i2,

(H.11)g13(a0) = −3

8
i2

∫
i2(p)2h0(p),

and we recall that a cutoffΛ/m is implicit in all these rescaled momentum integrals.
These functions are not all independent. Indeed, defining

(H.12)γm,n(ax) := 1

Ad

∫
p

f (p)i2(p)nhx(p)m

one easily establishes the recursion relations

mγm+1,n(a) = a2∂aγmn(a),

(H.13)γm+1,n+1(a) = 1

a
γm+1,n(a) − γm,n(a).

They allow to obtain these functions from derivatives of

(H.14)γ (a) = − 1

Ad

∫
p

ln
(
1− ai2(p)

)
f (p).

Specializing first tof (p) = 1, one finds using(H.13)

(H.15)γ1,1(a) = aγ ′(a),

(H.16)γ1,2(a) = γ ′(a) − i2
1,

(H.17)γ1,3(a) = 1

a

(
γ ′(a) − i2

1

) − γ0,2(a),

(H.18)γ2,2(a) = a2γ ′′(a),
(H.19)γ2,3(a) = aγ ′′(a) − γ ′(a) + i2
1,
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(H.20)γ2,4(a) = γ ′′(a) − 2

a

(
γ ′(a) − i2

1

) + γ0,2(a).

Thus the functionsg10(a), g11(a), g12(a) andg13(a) can all be obtained from derivative
of γ (a) with f (p) = 1. Similarly, g4(a) andg5(a) can be all obtained from derivative
of γ (a) with f (p) = c(p), and similarly forg6(a), g8(a) andg9(a) with f (p) = i3(p),
g7(a) with f (p) = i3(p)c(p).

One may further attempt to relateγ (a) for different functionsf (p). Since∂m2I2 =
−2I3, one can use that

(H.21)i3(p) = 1

4
εi2(p) − 1

4
pi ′2(p) − 1

4
λ∂λi2(p),

whereλ = Λ/m. Integration by part yields identities such as∫
dp

p
pd(p∂p + λ∂λ)H

(
i2(p)

)

(H.22)= −d

λ∫
dp

p
pdH

(
i2(p)

) + λ∂λ

λ∫
dp

p
pdH

(
i2(p)

)
,

which can be used to relate the integrals.

H.2. Calculation of theT > 0 β-function

Below we compute−m∂mb(x) at fixed Λ/m, thus we truly compute−(m∂m +
Λ∂Λ)b(x). It is therefore useful atT > 0 only ford < 2 when all integrals are UV conve
gent and the limitΛ/m → ∞ can be taken with no further redefinitions. The calculat
of theβ-function ford ≥ 2 andT > 0 requires further redefinitions and will eventually
detailed elsewhere.

Taking into account allm-dependence atT > 0 in (6.17)one obtains (up to an additiv
constant)

β1[b](x) = −m∂mb(x)

= δb1

δax

[−m∂0
max

] + δb1

δ[b′(x) − b′(0)]
[−m∂0

m

(
b′(x) − b′(0)

)]
+ δb1

δa0

(−m∂0
ma0

) + δb1

δTm

(−m∂0
mTm

)
+ δb1

δα
(−m∂mα) − εb1 − (

b′ − b′(0)
)(

b′
1 − b′

1(0)
)

(H.23)− Tm

b′
1(x)

1+ b′′(0)/ε
+ Tm

b′(x)

(1+ b′′(0)/ε)2

b′′
1(0)

ε
,

whereb1 is given in(6.17).
One uses that [ ] Tm
 (H.24)−m∂0

max = εax + b′(x) − b′(0) a′
x +

1+ b′′(0)/ε
a′
x,
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−m∂0
m

(
b′(x) − b′(0)

)
(H.25)= [

ε + b′′(x)
][

b′(x) − b′(0)
] + Tm

1+ b′′(0)/ε

[
b′′(x) − b′′(0)

]
,

(H.26)−m∂0
mα = αε + Tm

(
α2

a0 − ε
+ (a0 − ε)2ᾱ

ε

)

and−m∂mTm = −θTm. After a rather tedious calculation one obtains the form(7.13)given
in the text with the following definitions (ford < 2):

(H.27)g̃4(a) = −4g1(a) − ε(ε + θ)g4(a) + ε2ag′
4(a),

(H.28)g̃5(a) = 4

ε
g1(a) − 2g2(a) − εθg5(a) + ε2ag′

5(a),

(H.29)g̃6(a) = −2g2(a) − εθg6(a) + ε2ag′
6(a) − εg4(a),

(H.30)g̃7(a) = 2

ε
g2(a) − 4g3(a) − εg5(a) + ε(ε − θ)g7(a) + ε2ag′

7(a),

g̃8(a) = aε2

ε − a

[
g6(a) + g8(a) + a

(
g7(a) + g9(a)

)] + 4

ε
g1(a) + εg4(a) − εθg8(a)

+ a

[
− 8

ε2g1(a) + 4

ε
g2(a) + εg5(a) + ε(ε − θ)g9(a) + ε2g′

8(a)

]

(H.31)+ a2
[

4

ε3g1(a) − 4

ε2g2(a) + 4

ε
g3(a) + ε2g′

9(a)

]
,

(H.32)g̃10(a) = −ε2(ε + 2θ)g10(a) − εg4(a) + ε3ag′
10(a),

(H.33)g̃11(a) = −2ε2θg11(a) + g4(a) − εg5(a) − εg6(a) + ε3ag′
11(a),

(H.34)g̃12(a) = ε2(ε − 2θ)g12(a) + g5(a) − εg7(a) + ε3ag′
12(a),

φ(a) = ε

ε − a

[
g6(a) + ag7(a) + g8(a) + εg9(a) + ε2g′

10(a) + aε2g′
11(a)

+ a2ε2g′
12(a) + ε3γ + aε3g13(a)

] + 2g′
4(a) + εg′

8(a) − 2ε2γ θ

+ a

[
ε2(ε − 2θ)g13(a) − 2

ε
g4

′(a) + 2g′
5(a) + 2g′

6(a) + εg′
9(a)

]

(H.35)+ a2
[
ε3g′

13(a) − 2g′
5(a)

ε
+ 2g′

7(a)

]
,

(H.36)ψ(a) = ε
[
g′′

10(a) + ag′′
11(a) + a2g′′

12(a) + εg13(a) + aεg′
13(a)

]
,

(H.37)ψ̃(a) = (ε − a)2[g′
10(a) + ag′

11(a) + a2g′
12(a) + εγ + εag13(a)

]
.
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Appendix I. Integrals

I.1. Definitions

(I.1)In :=
∫
k

1

(k2 + m2)n
,

(I.2)I2 = Ad
m−ε

ε
,

(I.3)Ad := 2Γ (3− d/2)

(4π)d/2 .

The momentum dependent ones are

(I.4)I2(p) :=
∫
k

1

(k + p/2)2 + m2

1

(k − p/2)2 + m2 ,

(I.5)I3(p) :=
∫
k

1

[(k + p/2)2 + m2]2
1

(k − p/2)2 + m2 ,

(I.6)I4(p) :=
∫
k

1

[(k + p/2)2 + m2]2
1

[(k − p/2)2 + m2]2 .

Dimensionless rescaled variants

(I.7)in(p) := In(p)

Ad

∣∣∣∣
m=1

,

(I.8)in := In

Ad

∣∣∣∣
m=1

.

I.2. Integrals in fixed dimensions, general formulas

The general case can be treated as follows:

(I.9)jn,m(p) := 1

Ad

∫
k

1

[(k − p/2)2 + 1]m
1

[(k + p/2)2 + 1]n .

Using the usual Schwinger-parameter representation, this can be written as

jn,m(p) = 1

Γ (n)Γ (m)

(
1

Ad

∫
k

e−k2
) ∫

α,β>0

αn−1βm−1(α + β
)− d

2 e−(α+β)e− αβ
α+β p2

= Γ (n + m − d/2)

2Γ (3− d/2)Γ (n)Γ (m)

∫
βm−1

(1+ β)n+m

[
1+ β

(1+ β)2 ,p2
] d

2 −n−m

.

(I.10)
β>0
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We make the change of variablesβ = s
1−s

:

jn,m(p) = Γ (n + m − d/2)

2Γ (3− d/2)Γ (n)Γ (m)

1∫
0

ds sm−1(1− s)n−1[1+ s(1− s)p2] d
2 −m−n

= Γ (n + m − d/2)

Γ (3− d/2)Γ (n)Γ (m)2n+m

1∫
0

{
dy√
1−y

× (1+√
1−y)m−1(1−√

1−y)n−1 + (1+√
1−y)n−1(1−√

1−y)m−1

2

(I.11)×
[
1+y

p2

4

] d
2 −m−n}

,

where we have used another new variabley = 4s(1− s). Note that the large fraction···2 in
the above expression is such that only integer powers of(1− y) survive. Some simplifica
tions occur forn = m, andi3(p) = j1,2(p):

(I.12)jn,n(p) = Γ (2n − d/2)

Γ (3− d/2)Γ (n)222n

1∫
0

dy√
1−y

yn−1
[
1+y

p2

4

] d
2 −2n

,

(I.13)i3(p) = j1,2(p) = 1

8

1∫
0

dy√
1−y

[
1+y

p2

4

] d
2−3

.

I.3. d = 0

(I.14)in = in(p) = 1/4, Ad = 4, ε = 4.

I.4. d = 1

(I.15)Ad = 3

4
,

(I.16)i1 = 2

3
,

(I.17)i2(p) = 4

3(4+ p2)
,

(I.18)i3(p) = 12+ p2

3(4+ p2)2 ,

2(20+ p2)

(I.19)i4(p) =

3(4+ p2)
3 .
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I.5. d = 2

(I.20)Ad = 1

2π
,

i2(p) =
arctanh

( |p|
√

4+p2

2+p2

)
|p|√4+ p2

= ln(2+ p2 + |p|√4+ p2) − ln(2+ p2 − |p|√4+ p2)

2|p|√4+ p2

(I.21)= 2 arcsinh
( |p|

2

)
|p|√4+ p2

,

(I.22)i3(p) = 1

8+ 2p2 + 2 arcsinh
( |p|

2

)
|p|(4+ p2)

3/2 ,

(I.23)i4(p) = 1

6
2F1

(
2,3,5/2,−p2/4

)
.

I.6. d = 3

(I.24)Ad = 1

8π
,

(I.25)i2(p) = 2
arctan

( |p|
2

)
|p| = i

|p|
[
ln

(
2− i|p|) − ln

(
2+ i|p|)],

(I.26)i3(p) = 1

p2 + 4
,

(I.27)i4(p) = 2

(p2 + 4)2 .

Appendix J. Summary of notation

Symbol Definition Defined in equatio

ε ε = 4− d

ζ , θ ζ = roughness,θ = d − 2+ 2ζ (thermal exponent)

u(x), v(x) u(x) = field, v(x) = u(x)/
√

N

In In := ∫
k

1
(k2+m2)n

, I2 = Ad
m−ε

ε , Ad = 2Γ (3−d/2)

(4π)d/2 (2.14)

I2(p) I2(p) := ∫
k

1
(k+p/2)2+m2

1
(k−p/2)2+m2 (4.18)

I3(p) I3(p) := ∫ 1 1 (4.20)
k [(k+p/2)2+m2]2 (k−p/2)2+m2

(continued on next page)
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Symbol Definition Defined in equatio

I4(p) I4(p) := ∫
k

1
[(k+p/2)2+m2]2

1
[(k−p/2)2+m2]2 (4.21)

C(p) C(p) := (p2 + m2)−1

in(p), in in(p) := In(p)
Ad

|m=1, in := In
Ad

|m=1 (6.15), (6.16)

c(p) c(p) := (1+ p2)−1

B(· · ·) second cumulant of bare disorder

B̃(· · ·) second cumulant of renormalized disorder (not rescaled)

B ′
ab, B ′′

ab, B̃ ′
ab , etc. B ′

ab := B ′(χ̄ab), B ′′
ab := B ′′(χ̄ab), B̃ ′

ab := B̃ ′(v2
ab), etc.

b(z) b(z) := 4Adm4ζ−ε B̃(zm−2ζ ) (6.10)

χab(x), λab(x) auxiliary fields

χ̃ab(x) χ̃ab(x) := χab(x) + χba(x) − χaa(x) − χbb(x)

χ̃ab
v , χ̄ab

v χ̃ab
v = χ̃ab(x)|v(x)=v , χ̃ab

v = χ̄ab
v + O( 1

N )

χ̄ab
v = χ̄v = χ̄ab χ̄ab

v := v2
ab

+ 2T I1 + 4I2[B̃ ′
ab

− 1
2(B̃ ′

aa + B̃ ′
bb

)]
Hv(p) Hv(p) := B′′(χ̄v)

1−4I2(p)B′′(χ̄v )
(4.27)

H̃x(p) H̃x(p) := B̃′′(x)

1+4[I2−I2(p)]B̃′′(x)
(6.8)

hx(p) hx(p) := b′′(x)
1+[i2−i2(p)]b′′(x)

(6.13)

T temperature

Tm Tm := 4T Admθ /ε
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