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We study the replica field theory which describes the pinoiinglastic manifolds of arbitrary internal dimen-
siond in a random potential, with the aim of bridging the gap betwe®an field and renormalization theory.
The full effective action is computed exactly in the limitlafge embedding space dimensidh The second
cumulant of the renormalized disorder obeys a closed sei§istent equation. It is used to derive a Functional
Renormalization Group (FRG) equation valid in any dimensipwhich correctly matches the Balents Fisher
result to first order ir = 4 — d. We analyze in detail the solutions of the lartyeFRG for both long-range and
short-range disorder, at zero and finite temperature. Wecfindistent agreement with the results of Mezard
Parisi (MP) from the Gaussian variational method (GVM) ie ttase where full replica symmetry breaking
(RSB) holds there. We prove that the cusplike non-anatytici the largeN FRG appears at a finite scale,
corresponding to the instability of the replica symmetotution of MP. We show that the FRG exactly repro-
duces, for any disorder correlator and with no need to inR&rsi’s spontaneous RSB, the non-trivial result
of the GVM for small overlap. A formula is found yielding themplete RSB solution for all overlaps. Since
our saddle-point equations for the effective action cantaith the MP equations and the FRG, it can be used to
describe the crossover from FRG to RSB. A qualitative aimglykthis crossover is given, as well as a compar-
ison with previous attempts to relate FRG to GVM. Finally, digcuss applications to other problems and new
perspectives.

I. INTRODUCTION replica measure by a replica symmetry broken (RSB) gaus-
sian, equivalently, the Gibbs measure foas a random su-
Elastic objects pinned by a quenched random potential are perposition of gaussians_|24], and is argued to be exact for
relevant model for many experimental systems. It describe®/ = co. It yields Flory values for the exponetit As for spin
interfaces in magnetsi[1] 2] which experience either shortglasses, computing the next order corrections (i.&/iN) at
range disorder (random bond), or long range (random field)he RSB saddle point is very arduousl[27, 28, 29]. One may
disorder, the contact line of a liquid wetting a rough sudistr question whether it is the most promising route, since isis a
[3, 4], vortex lines in superconductors [5)6117, 8]. Italsop yet unclear whether the huge degeneracy of states encoded in
vides powerful analogies, via mode coupling theory, to comthe Parisi RSB is relevant to describe finite There seems
plex systems such as structural glasses [9]. One importand be some agreement that this type of RSB does not occur
observable is the roughness exponéwif the pinned mani- for low d andN. Certainly, in the simpler but still-non trivial
fold. d = 0 limit, Parisi type RSB found in the GVM should exist
From the theoretical side, this problem still offers consid only at N = oo, apart from the interesting so-called marginal
erable challenges. It is the simplest example of a class afase of logarithmic correlations |30]. For the DP, another e
disordered systems, including random field magnets, wheractly solvable mean field limit is the Cayley tree and thece to
the so called dimensional reductidn [1) 10} 11, 12,13, 14]t is not clear how to meaningfully expand around that limit
renders conventional perturbation theory trivial and esebat  [31,132,33].
zero temperature. The elastic object is usually paranzeigri The second main analytical method is the functional renor-
by a N component vectoii(x) in the embedding spade”, malization group (FRG) which performs a dimensional ex-
andz € R? is the coordinate in the internal space. Apart frompansion around = 4 and was originally developped only to
the case of the directed polymer (DP)Int+ 1 dimensions one loop, within a Wilson schemg |6,/ 34/ 35} 36]. Its aim is to
(d = 1, N = 1), where some exact results were obtainedinclude fluctuations, neglected in the mean-field approsche
[15, 116,11F,1 18] 19], analytical results are scarce. One imThere too, the dynamics [37,138, 39| 40, 41] has been investi-
portant challenge is to understand the DP for aydue to  gated. The FRG follows the second cumulant of the random
its exact relation to the Kardar-Parisi-Zhang growth efqumat potentialR(«) under coarse graining, a full function since the
whose upper critical dimension is at present not known, andield is dimensionless id = 4. It was found thatR(u) be-
even its very existence is debated [20,121.,22, 23]. comes non-analytic already in the 1-loop equatiofi'at 0
Two main analytical approaches have been devised so faafter a finite renormalization, at the Larkin scale.
Each succeeds in evading dimensional reduction, providing Both methods circumvent dimensional reduction by pro-
an interesting physical picture, but comes with its lim@as.  viding a mechanism which is non-perturbative in the bare
The first one is the mean field theory, the replica gaussian vardisorder. The GVM evades DR thanks to the RSB saddle
ational method (GVM)L[24] in the statics and the off equilib- point. The FRG escapes via the generation of a cusp-like
rium dynamical versior [2%, 26]. The GVM approximates thenon-analyticity inR”(u) atuw = 0. Indeed, while the bare



disorder correlator is an analytic function, FRG fixed pgint RSB is invoked, as replica symmetry is broken explicitlyeher
for the renormalized?(u), perturbative ine = 4 — d, are  Since our saddle point equations for the effective actiam co
found only in the space of non-analytic functions, and stibje tain both the MP equations and the FRG, it can be used to
to the condition that the resulting exponénis non-trivial.  describe the crossover from FRG to RSB. A qualitative anal-
Both methods are disconcertingly different in spirit anéit ysis of this crossover is given, as well as a comparison with
an outstanding question in the theory of disordered systemgrevious attempts to relate the FRG to the GVYM [42]. Finally,
how to compare and reconcile them. Comparisons were madegpplications to other problems and new perspectives are dis
between some predictions of the 1-loop FRG and of the GVMcussed. A short version of this work has appeared.in [46]. In
[6,136]. Balents and Fisher obtained the 1-loop FRG equatiom related papel [47], we give all details of the calculatién o
for any NV restricted taD(¢), and found that its solution repro- the O(1/N) corrections, with the aim of understanding finite
duces the Flory value af for LR disorder, but yields subtle but largeN.
corrections for SR disorder, exponentialih The outline of the paper is as follows. In Sectidn Il we de-
Physically both methods capture the metastable states béne the model, the effective action and its physical interpr
yond the Larkin Sca|e:C and it is tempt|ng to compare how tation. In SeCtiOlE]l we Compute the effective action agmr
they describe them. I_[42] a coarse grained random poten?, using the saddle point method and perform a cumulant
tial was defined and it was found within the GVM that its €xpansion (Sectiol V). A graphical interpretation is give
correlator mimics the one in the FRG, exhibiting some nondn Sectiorl¥. In Sectiol ¥l we establish the FRG equation at
analyticity which was interpreted in terms of shock-lika-si largeN (the-function of the theory). Then in Sectibn V1l we
gularities in the coarse grained disorder. Unfortunatilig ~ Perfom a detailed analysis of the FRG equation for a specific
ana|ogy was demonstrated On|y around the Larkin sca|eewhi|C|aSS of disorder Correlators, both below and above theihark
a quantitative and more general connection able to reach pegcale. In Sectiol VIl we compare the FRG with the MP so-

turbatively the true large scale behaviour, as is achiavéiss  lution using RSB. First we recall the MP approach and find
field theoretic FRG, is still missing. agreement with the predictions of the FRG calculation. Next

The need for a study of the FRG at largé is all the we extend these results to an arbitrary disorder correfator

more pressing since we have developped systematic high@fhic_h the GVM gives full RSB. Finally we discus_s the phys-
loop approaches within theexpansionl[43, 44, 45]. Within ical interpretation and compare our approach with the one of

these studies, we have found that higher loop FRG equatior@ef' [42]' SectiofLX presents the conclusior_L The apparalic
for R(u) atu # 0 contain non-trivial, potentially ambigu- contain several generalizations, the calculation of thrd tind

ous “anomalous terms” involving the non-analytic struetur fourth disqrder cumulant_, finite_temperature_ fixed PO"?“”' a
of R(u) atu = 0. We have proposed a solution to lift these an analysis and comparison with the effective action in more

ambiguities in the statics at two loopis|[43] 44, 45]. Sinee th conventional field theories.
large4V limit allows in principle to handle higher-loop cor-

rections (i.e. to treat any) it should be useful to understand II. MODEL AND PROGRAM
the many-loop structure of the field theory. Stated diffélgen
we want to understand which physical quantity preciselysdoe A. Model and large- N limit

the FRG computes? Finally, developping a systempti¥ . . _ .
expansion within the FRG for any should provide a novel We conglder the general modgl for an elastic n_1an|fol_d of in-
handle to attack problems such as KPZ, maybe avoiding thigrnal dimensionl embedded in a space of dimensidh
need for spontaneous RSB altogether if it proves to be nonl h€ Position of the manifold in the embedding space is de-
essential. scribed by a single valued displacement field:), wherez

The aim of this paper is to study the FRG at lafge For belongs to the internal space ands a N component vector

this purpose we first perform an exact calculation of theceffe \.Nh'Ch belongs to the embeddmg space. (lts components
. . . . i =1,..., N, are specified below only when strictly neces-
tive actionT'[u] of the replicated field theory at larg€. Its . ; :

; P sary.) A well studied example is that of an interface (e.gpa d
value for a uniform mode and further expansion in cumulantsmain wall in a magnet) wheré — 2 and N — 1. Thereu(z)
y|elds a def'r."“O” ofthe renormalized d|sorQer consistétit denotes the height of the interface. Other examples areithe d
field theoretic approaches. The second disorder cumulant IS cted polymerd = 1) in a N dimensional space, which can
found to obey a closed seIf-consiste_nt equation. All higler be mapped to thé/-dimensional Burgers and Ka{rdar—Parisi—
mulants can be constructed recursively from the lower Onethang (KPZ) equation [48], or a vortex lattice in the absenc
It can be easily inverted below the Larkin scale and there th%]c dislocations describea bd/ — 3, N — 2, whereu(z) is
solution is analytic and corresponds to the replica symmetr there the deformation from th;idéal CI‘_S"”l| 5, 6]
solution of MP. Varying with respect to an infrared scaleghe YSIAULD, B].

; S : We will study here the equilibrium statistical mechanics of
the mass, we obtain the FR&function in anyd at dominant ; . ; :
. . , such an elastic manifold in presence of quenched disorder,
order, N = oo. The continuation beyond the Larkin scale

is remarkably easier to perform on the resuling FRG equal°d¢1ed by a random potentigl(z, u(x)). Itis described,

tion. Its solution reveals that the FR&actlyreproduces the :cﬂﬁcgglsn realization of the random potential, by the pait
non-trivial result of the GVM with full RSB for small over-
lap. We also give a formula which yields the complete RSB

P 9 y p 2z, = / Dlu] e Hv1l/T |

solution for all overlaps. At no pointin our derivation Pafi (2.1)
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where model studied here is thus a slight generalization of theghod
studied by Mezard and Parisi_[24], henceforth also refetwed
Hy[u] — / 1 Clq)~ Y u(—q) - ulq) + 1 / V(x, u(x)) as MP, in the same limit.
T q 2 T/, Although we will consider the general case, it is useful, as
) ) (2-2) in MP [24] to define two sets of simple models for which
consists out of an elastic energy (expressed here in Fourigfgre specific results will be given. These are, respectively

space and taken to be isotropic), and of a pinning energy duge gaussian, short-range (SR) disorder, correlator
to disorder. Here and below we denote

atq B(z) = ge~ (2.9)
/ = /—d , / = /d% (2.3) _
q (2m) P and the power-law correlations
andu - v = Y wiv’. Throughout, square brackets as e.g. B(z)= —L (a® +2)'77, (2.10)
in A[u] denote a functional, heré of the fieldu, (z), while (v=1)

parenthesis as iA(u) denote functions. . T
A convenient form for the inverse bare propagator, used beWh'Ch’ for infinite V always corresponds to long-range (LR)

disorder, a different universality class, as we will seeohel

low, is: S X
For finite N, the long-range disorder corresponds, at the bare
2 1 m?2 level, toy < 1+ N/2; but this is modified at the renormalized
-1 _ q 2.4 . .. . .
Clg)™ = T ) (2.4) level, and the true frontier LR-SR for finit¥ is non-trivial.

whereT is the temperature and the elastic constant is set to
unity by a choice of units. The role of the additional mass
term m will be discussed below. An additional small scale Having defined the model, and before turning to calculations
(ultraviolet, UV) cutoff A is implied here and will be made |et us first outline what we aim at. All the considerationdia t
explicit when needed. present section are valid for afy, but, since in the next sec-
This model is highly non-trivial and, apart from the casestion we will consider the largéV limit explicitly, we already
of N = 1andd = 0,1, very few exact results are known make apparent the rescalings.
[15, 116,117, 18] 19, 49]. To obtain exact results for large The model defined above has already been studied in MP
embedding spacé&/ — oo, we need to consider a fully [24]. One of the aims of this study was to compute the rough-
isotropic version of the model witt (V) symmetry such that ness exponent of the manifold, defined from the 2-point func-
the model remains non-trivial in that limit. As in standard tion as
large<V treatment (as for instance of th¢ O(N) model)

B. Program

one defines the rescaled field (u(z) —u(z)?) ~ Alz — 2/ |* . (2.11)
v(z) = u(z) _ (2.5) Besides the roughness exponéntthe amplitudeA is also
VN of interest whenever it is universal, as it is the case exg. fo

long range disorder. To this aim the model was replicated

\(/)Ve W'III freerl]y SW'tChhfrO dm o%e to thef o:]her mdthe followm_gl. u — u,), averaged over disorder and self-consistent saddle
ne also chooses the distribution of the random potential oy ;. equations where derived for the 2-point function

be O(N) rotationally invariant. It can be parameterized by its

set of connected cumulants, of the form Gar(q) = (va(qQ)vp(—q)) . (2.12)
V(z,u)V (@', u') = R(lu — u'[)6%(z — a) This can always be done in a largétimit, and is then solved
= NB((v —v")?)6%z — ') (2.6) viaa RSB ansatz.
con Our goal is in a sense broader. We want to understand the
Vi, ur)...V(zp, up) full structure of the field theory, i.e. all correlation fuiuns
= Nbyy, 2, (~1)PSP (v1,...,v,), p>3 (2.7) andnotonly the 2-point one. We will thus instead study the
» generating function of correlations as well as the effectio-
Ozy iy i= H 6% (zy — 24) (2.8) tion functional which yields the renormalized vertices.isTh
i program, defined here, will be carried out in the following

. sections explicitly for largeV. In this article we will restrict
This adequately models the case of uncorrelated (or shorburselves to dominantorder, but the aim is to understage lar

range correlated) disorder in the internal space, studeee.h puyt finite NV, including calculating of /N corrections. This is
The second cumulant, which plays the central role, is thus dejeferred tol[47].

fined in terms of a functiol(z). The higher cumulants are
not strictly necessary in the bare model, but they appear, as
we will see, under coarse graining. The distribution of dis-
order being translationally invariant, these functioniséa  All physical observables for ani/ can be obtained from the
S®)(vy +v,...,v, +v) = S®(vy,...,v,) foranyv. The replicated action in presence of a source, i.e. an exteone f

1. Effective action and field theory
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J.(z) acting on each replica: and yielding universal results) by considering countemte
only to the second cumulant. The latter is a functi®fu),
_ S Hy [wal /T4, 5 Ja(@)ta(x) a.nd can be viewed as the set.of a_II coupling constants which
Z[J] /HD[u“]e Y ’ simultaneously become marginaldn= 4. To probe renor-

(2.13) malizability to any number of loops, we want to compute the

whereu,(z), a = 1,. .., n are the replicated fields (each one &fféctive action from first principles. _
being an\ component vectad?, (). Differentiating with re- The effective action functional is defined as a Legendre
spect to the replicated sourdg(z) in the limitn. — 0 yields ~ transform:

all correlation functions. The finite-information is also in-
teresting. For instance from Llu] + W[J] = / D Ja(@) - ta() (2.20)
Z .= Z[J = 0] = exp(—nFv/T) (2.14) W[J] =l Z[J]. (2.21)

one can retrieve the sample to sample distribution of the fre Strictly speaking the definition is the convex envelde] =

energyFy, = —T'ln 2y, as was done e.g. in a finite size sys- min; ([, >, Ja(z) - us(x) — W[J]). Here we apply the defi-
tem ford = 1 [17,/50]. Thus, unless specified we will kegp  hition to the replicated action, and will content ourselweéth

arbitrary. the differential definition
One can explicitly perform the disorder averagdin{P.13):

0T [u]
e = Jo(x) (2.22)

. Ug (T

z[J] = [ [[Pluale Nt (2.15)

VI _ Ug () (2.23)
§Jo(z) '

which relates a pair of values/, u), later also denoted by
) (J[u],u). SinceI'[u] defines the renormalized vertices, its

/[U(X(I)) = Ja(@) - va(2)] 1 (2.18)  zero momentum limit defines thenormalized disorderThus

‘ in order to compute the renormalized disorder, we only need
where herey,,(x) = v, () - vp(z) and here and below sum- to computeI'[u] (per unit volume) for auniform configu-
mations over repeated replica indices are implicit. We haveation of the replica fieldu,(z) = u, = VNv, (a so-
rescaled the source in a manner complementary to the field: called fixed background configuration). Because of the sta-
tistical tilt symmetry [50) 52| 53], i.e. invariance of diso

8[“’7]] = %/C(Q)_lva(_Q) 'Ua(Q)
+

Jo(x) = VNja(z) . (2.17)  der term in the replicated actiof {2116) under the trarciati
) ) ) ) Ve (2) — v (z) + w(x), and of theO(N) invariance one can
We have also introduced the bare interaction potential argue, and this is what we find below, that for the mogel (2.4)
. 1 the scaled effective action per unit volume (which for a uni-
U(X) = 573 > B(Xab)— 3178 > S(Xabs Xbes Xea) +- - - - _forrrf1 mode is simply a function af,) should have the follow-
ab abe Ing rorm
(2.18) X X
which is a function of au by n replica matrixy,, and has a (o) = T(w) = —m20 + 17 224
cumulant expansion in terms of sums with higher numbers of (v) : LiN (u) or"" Ya +U(w), (2.24)

replicas. Because of translational symmetry &{dV) invari-

g
ance it depends only on the matrix whereL* is the volume of the system, and here and below we

use the notation:
)NCab ‘= Xaa + Xbb — Xab — Xba (219) (225)

VU = Vg * Up
and the form of each cumulant is restricted. For instance on

(3) _ RY: N2 Y _ N
h?SS Tr(]vl’w’t%) _tS(g?}alll] v2) 7(Ut2h ”36) > (v .dvl)g disorder. Furthermore, whenevé(vv) can be expanded, up
etc.. The matrix potential/(y) can thus be considered as ; °7 .t o eeor

a convenient way to parameterize the disorder (here the bare

for then by n replica matrix. This defines the renormalized

disorder). - _ -1 50 2 1 G2 .2 2
The physical object which contains the information aboutU(m’> T 9T2 Z B(vgp) = 3173 Z S(Vaps Vier Vo) T+ -
the field theory at large scale is the effective action. Ihis t ab abe (2.26)

generating function of the 1-particle irreducible diagseend

in conventional field theories its formal expansion in pasver
of the field yields the renormalized vertices. All correbati Vab 1= Vg — Vp (2.27)
functions are then obtained simply as tree diagrams frosethe B
renormalized vertices. In particular it is known that witli ~ then [Z2bB) defines thenormalized cumularitinctionsB(z)

d = 4 — e expansion at zero temperature to at least 2-loogetc.. As we will see below this is correct up to some very
order the theory can be renormalized (i.e. rendered UV finitesubtle behavior at coinciding replica vectors (ug, = 0 for

where here and in the following we denote
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some paita, b). Also note that the constant pz(ﬁ(v.v =0) zero, mathematically due to the prescription to take the con
is the free energy. vex envelope, and physically because one can always lower
The main result of the following sections will be the exactthe magnetization at no cost in free energy per unit volume
calculation of the uniform part of the effective action, iof by introducing a domain wall. The above propeffiy{2.31) can
the functionU (vv). This will be performed within a largé/ be extended to a giveqpmode. Finally, note that i@ = 0
expansion: the above does not hold since there is no large fagtor
) and the probability distribution is directly given by thetiaa
Tow) — T 15 S(@ = ¢).
Ulvw) = Uolve) + NU1 (vo) + (2.28) (What i)s then the physical meaning of the quantity that we
will be computing in the next sections? Let us in analogy to

and here we will obtain the dominant ordés(vv); the Cor-  the magnetization for a ferromagnet define the center of mass
rectionsU; (vv) are calculated ir_[47]. It will be a function of of an interface:

a scale parameter. We choose to add a mass-tenvhich
provides such a scale. It is a convenient choice since for w— L /u(x) (2.32)
m = oo one had/ = U: Fluctuations are totally suppressed NY2L4 ], '
and the effective action equals the action. One can then pr
gressively lower the mass down to zero, starting from thiis in
tial condition, since ultimately one is interested in thessya
less limit. Another choice is to change the UV cutoff, as will
be discussed again below.

It is now useful to give a more direct physical interpreta-
tion of this quantity, in addition to the above field theoteti
interpretation.

%ince we have added a mass in the elastic enErdly (2.4), which
acts as an extra quadratic well bounding the fluctuations of
the interface, the disorder-induced fluctuations of the:erasf
mass are always finite. One expects that they diverge typical
asw ~ m~¢ asm — 0, thus their behavior as a function of
m is of high interest and yields e.g. the information about the
roughness exponent.

One can then define the probability distributitn (w) of
the center of mass of the interface in a given realization of
the random potentidl (and in presence of the quadratic well
induced by the mass). One can see that by definition the gen-
The effective action for a uniform background is also knownerating function for a uniforny is the Laplace transform of
to be related to the distribution of the order parameter. Lethe probability distribution ofv, namely
us recall the relation for a simple pure ferromagnet. The
unnormalized probability distribution of the order paraere 7 (j) = /dw1 oo.dwp Py (wy) ... Py (wy) e NL'Y, jawa ,

= ﬁ [, #(x) whereg(z) is the local magnetization is by (2.33)

definition then by the same saddle point argument as for the ferromagnet
1 one expects, at least naively, that
2@) = [plals (2= 15 [ol0) e @229

whereS|¢] is the action which describes the ferromagnet (e.g.
a ¢* theory or a Landau Ginsburg model). The functionalSymbolically one can write:
W (J) evaluated for a unifornd reads:

2. Effective action as the distribution of the order
parameter

Pl{wa)] = — lim. ﬁ I By (wr) - Py () . (2.34)

Py (wi)...Py(w,) =~ e~ LNT{wa}] , (2.35)
Lijo
W) = /dq) Z(®)e provided this is taken with a grain of salt. Thus one can also
L I 2(®) 4+ ®) _think of the renormali_zed disordév’U(p -v) as parameteriz-
= /dq’ e’ Tt : (2.30)  ing the set of correlations of an effective equivalent toydeio
(d = 0) which has the same set of correlations as the center of
In the large-volume limit, the saddle point can be taken andnass variable in the original model.
since the Legendre transform is involutive, this yields e Thep-th connected moment of the center of mass is identi-
lation between the effective action @t= 0 per unit volume cal, up to a volume factor, to the zero momentum limit of the
and the probability distribution of the order parameter as: ~ connected m point correlator of thefield, e.g.

—T(®) = Lli_rgoéan(CI)). (2.31) (Way -+ Way ), = % (Var (1) - - va, (ap)),,

w0 (2.36)

In the thermodynamic limit the effective action per unit-vol and, once the effective action is known, both can thus be ob-

ume can very well be a non-analytic function. This is the caséined in principle as the sum of all tree graphs made from
e.g. in the ferromagnetic phase where its left and rightseco F[p] vertices. For instance the 2-point function should be ob-
derivatives atb = M do not coincide I/ is the spontaneous tainable from:

magnetization per unit volume). While the right derivatate 1 1., .

® = M is related to the inverse susceptibility, the left oneis ~ (Waws) = 75Gab(q = 0) = 5[ v =0l (2.37)



and the connected 4-point function from: which has a well defined larg®-limit and can be expanded
. in1/N as:
WqWpWeWq o = _Gabcd qi = 0 ~ 1
< T el =0 W= W5+ =W+ @6)
_ // -1 -1
NId ;[F [v="0]]g [I"'[v =0]],; Deferring the calculation of the corrections to a future pub
erg

lication [47], we obtain here the dominant orderliAV as:

<[ = Oesan (2:38) WOL] = —STxs Ag.d) (37)
this however assumes analyticity, which as we will see belowwherey; and)\; depend onj(z) and are the solutions of the
does not always hold. Another integral relation holds saddle point equations obtained respectively by settizgto

the functional derivatives (at fixet(x)):
(wawp) = /dw1 - dwy, wiwa Py (wr) . .. Py (wy) 5S[x, A, 7] 0 3.8)
=W, =0) Aap (@) X=Xi A=A;
aNT 55[x; A, J
~ —LINT{wa}] (2. oW ] =0. 3.9
/dwl dw, wiwse (2.39) xab() Nmxs A=Ay (3.9)
The resultis
[ll. CALCULATION OF THE EFFECTIVE b ) )
ACTION X5 (@) = (Gj)azpe + (G5 : J)ax - (G )ow (3.10)
. N o i (2) = 204U (x;5(2)) (3.11)
Let us now consider explicitly the largh’ limit. One can Gj_l —C N (3.12)

rewrite for anyN the starting generating function (21[5-2.16)

as: whereG is a matrix with both replica indices and spatial co-
ordinates and inversion is carried out for both. Here and be-

ZlJ] = /D[u]D[X]D[/\]Q*NS[U-,XJ\»J] (3.1) low, replica indices are raised whenever explicit depengen
is given, e.gxap = Xf;b. The notation for theV-component

Slux M) = 5 [ €@ vul=0) val) = [ dale) -vala)  VESONE ¢ )iy = 3. f, Ceyi) 1S @ shorthand for a
2/q z matrix product, and everywhere we denote by
1.
+ / U(X(x)) - 52/\ab(x) [Xab(x) - ’Ua(‘r) : vb(x)] ) (32) 8abU(¢) = aqbabU((b) (313)

. o ) the simple derivative of the functidlii(¢) with respect to its
where the replica matrix fielgf(z) = xau(x) has been in-  matrix argument,;. Of course, if, for a giveni(xz) there are

troduced through a Lagrange multiplier mathy,(z). Here  several solutions to these equations, then one must sum over
and below summations over repeated replica indices are iny|| saddle points, to the same order

plicit. One can then explicitly perform the functional igte-

tion over the field:(x) and obtain: WIj] = In (Z e—Ns[xsp(j),Asp(j),j]) _ (3.14)
sp
ZlJ] = /DXD/\(NS[X"A’J] (3.3)  This case will be discussed below, for now we ignore this pos-
1 sible complication, as well as issues of stability of theddad
S[x,\,j] = =Trln(C™! +i)) point.
2 . Now we want to take the Legendre transform and trade the
+ / U(x(x)) — 1,\ab(a;)xab(x) variablej for the variablev to obtain the effective actioR[u].
e 2 One also defines the scaled functional, and j/t§ expansion
1 . Sl =1 s through:
5 [ @€ i) (3 N
oo I'[u] = NT'[v = u/VN] (3.15)
where the inversion and trace are performed in both replica S 1
space and spatial coordinate space. Tlo] = Tolo] + er[v] e (3.16)

It has now the standard form for a saddle point evaluation otl_ S = , :
; = - hen C[v],W[j]) and Co[v],Ws[4]) are also two pairs of Leg-
the functionabV(J) = In Z() except that the saddle point endre transforms. Thus the dominant order of the effective

is not, in general, uniform in space. It is useful to define the” : ) . LT
scaled functionaﬁ/(j) through action functional in the large¥ limit is given by

WIJ] = NW[j = J/VN], (3.5) Tolv] = /z va () - Jy () = Wolji] (3.17)
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with W [4] given by [37),[312) and whegie () is thev(z)- It is interesting to rewrite it with the help df{323) as a fun

dependent source solution of: tional of G,, andv only:
5WO [Jv] o o _ _l
Sie(e) v () . (3.18) Lo[Gy,v] :=To[v] = 5 IrInG,
1 _
One can now derive a self-consistent functional saddletpoin +3 / Cormpy Wa(@)06(y) + (G)az.by]
equation forT'y[v]. First we establish the relation between i
andj,, namely + / Uov(z) + (Go)pa) - (3.27)

a(2) = (Gy : Jo)ax <  Jo(z) = (G;1 D 0)az , (3.19)

where from now on we define

We have dropped a constantn. (321) has the property
9cTolG,v]|g=c, =0, (3.28)

Gy :=Gj, (3:20)  \yhere the derivative acts only @, leaving fixed alb, since

Eq. (3ID) is obtained noting that this coincides with the saddle point equati@a{B.23). This
makes apparent that it can also be obtained frowaa-

 OWolje] d Shvs N i ational methodwhere the average of the field is fixed, as
va(@) = 5je(x)  dja(2) [ss A J] o we detail in AppendbAA. Since the explicit non-triviat
p . oA J:;;, dependence if(3P27) using {3 23) is purely in terms of the
— _/ { Xj(y) + ,J'(y) ] bilinearsu, (z) - v, () at the same space points, it also shows
y L0da(z) Ox;(y) ~ Odalz) ON;(y) ] |,—;, that one can write:
-5 L (D Lo g 3.29
aja(l') i aja(w) i jo - Jv)azx Fo[’l}] = 511 : v+ UO[’U . ’U] , ( . )
(3:21)  where the interaction (i.e. disorder) part satisfies
where we have used the saddle-point equationk (838), (3.9). 0o [v - v]
We can now usd(3.19) in the saddle point equatibn$ (3.8), S0 () ol = 0, r#Y (3.30)
(33) and defining (va(2) - v (y))
and is the solution of a self-consistent functional equmatio
Xv = Xjo » Av = )\]U 9 -
this yields a self-consistent equation foy(z) _ Oolv-v] U(vo(z) + (Go)e,z) (3.31)
b 3(va(@) -vp(z)) e '
Xo (7) = va () - v6(2) + (Gov)az,ba (3.22) _ _ §Uslv - v
ST . (cms WO (R W L SIS P
(G azby = (C7 )z ybab + 200U (X0 (%)) (z — y) 6(va () - vp(x))
(3:23) A generalization of this equation is presented in Appehdix B
which is also a self-consistent equation €éy. Since the Leg-
endre transform is involutive, one can also write: IV. SELF-CONSISTENT EQUATION FOR
STo[v] THE RENORMALIZED DISORDER
5o () = ju(®) = (Gt : V) az (3.24)

A. Uniform configuration and saddle point
which determines the derivative Bf [v] once [3.2B) is solved. equation

One can however do better. Usi_@.lg)m.ﬂ). one oby et ys now consider the simpler problem of computing the ef-
tains the effective action for a spatially varying fieig): fective action for a uniform field configuration, which can be

ey . solved self-consistently. To be more specific we will focas o
Tofv] = v+ (G + v+ Sxv, v o] » (3.25) the form [Z%) for the elastic energy. Also, to simplify nota
which gives tions and since we will restrict ourselves to dominant oider
1/N, we drop the indexg, so we set:
1 . 5 N N
Polv] = 5 /Iy C ooy Ve ()06 (y) Io—L , U —U (4.1)
1 - dsoon
+=Trin(C™ + 20U (x, +/U v an g . : :
2 ( (xw)) w (@) For a uniform fieldv,(z) = v, the effective action{3.29)

b per unit volume takes the form:
+ / va(2)0abU (X () )vo (€)= X5 () OabU (X () - )

(3.26) D(v) == LdI‘(v) = %m%g + U(wv) . (4.2)
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Note that these are now simply functions (not functionafs) oto saddle points obtained via replica permutations, and the
a N x n-component vector, and (vv) is a function of the: ~ above equations are solved by a hierarchical Parisi ansatz f

by n matrix v, vy. ~ X(v=0)as = x(v=0)(u) where0 < u < 1 is the overlap be-
Eqg. (32F) yields also a formula fdf,(vv) (up to a con-  tween replicas andb. We will give more details about this
stant): correspondence in the following.
) For now we will study the opposite limit of “strong” explicit
U(vv) = U(xy) + = /tr{ In((g? +m?)3 + 279U (x)) symmetry breaking field_(aﬂzab_z Ug — Vp #* _O). Then we
2/, expect that the renormalized disordé&fuvv) is given by a sin-

gle saddle point and can be expanded in replica sums in terms

2 2 2 2 -1
g +m’) [(q +m7)d+ 2T8U(X”)] } (4.3) of unambiguous renormalized cumulants, i.e. up to a cohstan

The trace acts in replica space, and the log is a function of a

matrix, to be defined as usual. SinteJ4.3) contains thealeriv 7 _ 1 B(v? 1 (02 w2 2
. - ) . . = E b)) — E s Vb Ung ) oo e
tive 9,,U° (vv) we must first determine the latter. One finds (o) = 57 — (va) = 3773 (Vas Vhe: Vea)

abce

that analogous t¢{3.B1) (4.10)
- This is the limit solved here, which we will show below is the
OapU (vv) = BapU (Xv) (44)  natural limit in the FRG, and amounts, as we will discuss, to

ab _ 2 2 -1 forcing the manifold in distant states within the RSB pietur
= v, T 0 +2T0U (x, 4.5 . .
Xo' = Vale + /[(q +m)o+ Oo)lay (4-5) The rich crossover to RSB contained [0 {4.5), when some of
thew,, are set to zero will be discussed below.

q

Since one can replace the matfik/(y,) by U (vv) in the
denominator of[{4]5), this is also a self-consistent equati B. Cumulant expansion
which involves onlyd,;,U (vv). Here inversion is simple
by n matrix inversion and is the Kronecken by n identity =~ We now transform equatiori{4.5) for the formal function
matrix §,;,. One must be careful that U(vv) in a set of equations for the second, third, fourth, a.s.o.
cumulants. This is performed through an expansion in sums
over an increasing number of free replica indices, &snolot
an approximation The such obtained equations are as exact
} as [4D), i.e. exact to dominant order at laf§ealbeit more
is afirst derivativeof U (vv) with respect to the matrix ele- explicit. In fact, they allow a recursive exact calculation
mentwv, - v,. One can also check that taking the derivativeall cumulants Their increasing complexity will illustrate the
of @3) with respect ta, - v, correctly reproduce§(4.5). A wealth of information summarized ih{3.5).
direct derivation use8xd(vv) from Eq. [£5). A more clever Let us first rewrite[[415) using an infinite series:
way is to remember that because [of (3.28), one is allowed to ~
differentiate only with respect to the expliait in y, in the 0apU (vv) = JapU (xv) (4.11)
first term, and that the remaining terms can be written as a
function of G, only, and using agaili.{3.P8).

This self-consistent equation fé{J (vv), i.e. for the uni-
form part of the effective action is one of our main resultd an I, := / _ ’ (4.12)
the remainder of this paper is devoted to analyze it. It dosta k (k2 +m2)"

a huge amount of information, since it encodesfthedistri- where thex-th power here denotes the matrix product.

bution(i.e. all cumulants) of the renormalized disorder, and is  gjnce we consider a gaussian bare mddel]2.18) where only
thus quite non-trivial to analyze. It includes both the Gaus e second cumulant is non-zero one has:

sian variational Method (GVM) of Mezard-Parisi{24] and the
functional renormalization group (FRG). For simplicityew 2 Vi ~ab ' e

now consider the bare disorder to be gaussian and set all bare —210aU (xv) = T B + da Z B'(xv%)
cumulants except the second cumul®&ft) to zero. ¢ (4.13)

_ The GVM is recovered upon setting = 0 which is 0ne  ing that,, Yu» = 2(6., — 1) [B4]. The same quantity for
limit in which the equation “simplifies”. One sees thRI14.5) ihe renormalized disorder reads:

then reproduces the Mezard Parisi equations, the self gnerg

oU (vv)

OanU(vv) = 3lon ~00)

(4.6)

Xo = 0w+ ThS+T Y Ia(—2T00 (v0))"

n=1

oab and two point functiorG ., (k) in Ref. [24] being: — 2T, U (vv) = %(_B;b + 6up Z B')
Oab = 2T 00U (Xv—0) (4.7) , ¢
Gap(k) = G, (k) (4.8) 7 |- D S g 0ab Y Sgﬂcg]
g cg
v=0)ab = Ga k). 4.9
(tom)as = [ Gunlh) (4.9) e (414

In the glass phases, these exhibit spontaneous replica symhere we denot&., = B'(v2,), Supe = S(v2,, v}, v2,) and
metry breaking (RSB) with multiple solutions correspordin Siﬂbc denotes a derivative with respect to the first argument



of the functionS (S has the symmetries implied by replica We can now expand in number of sums:
permutation symmetry). All matrices we will encounter can
be parameterized as:

~ ~(0 0 1
Xab = ab + Gt (4.15) B'(Xa) = B (X)) + B" (X )+ (4:21)
Tap = xfl%) + xfl? + xﬁ) +... (4.16)
2o = 2@ + 20 1 2@ 4 (4.17) andthe equivalence di{4113) alhd(4.14) uslng{4.20), iespli
where z,;, do not contain any explicit Kroneckey,;, the
upper index denotes the number of free replica sums, e.g. B, =B (X(b)) (4.22)
CO I L@ - Si i ¢
Ty = DopTabsfs Tap = D pgTabifg- SiNCE Under matrix 1 ZS B (0)) () 4.23)
product(X?),, or Hadamar productX,;)? the number of labg = Xab ) Xab .
sums can only increase, one gets only a finite number of terms
in projecting out on terms with a given number of free replica
sums.
If we parameterize in the same way: and so on for higher cumulants. Thus to obtain the second
renormalized cumulant we only need to compute thef@g}t
X2 = Xab + SabXa (4.18)  of x2* which contains zero sum and no expligjt. One has
X% = Yab + OabXa (4.19) ingeneral:
then one easily sees that:
= x® gy P -l (824

B/(~ab) = §ab[ /(Xaa + )2(1) - Bl()?aa)] + B/()Zab)

Xov ) — abZB ac - Xab abZB Xac .
Thus for the second cumulant we need ogy andx!. Since
(4.20) one has, to be explicit:

[( 2T8U) Veap) abZBae af :zbz f+Bbf +ZBac cb
7

4 ~ ~ o~ ~ o~ ~ o~ ~ o~
+ﬁ 250«17 Z Bae l/l(]h ab Z quh+Saqh) Z(B(/ZESI/IIJ}L + Bl’)esl;bh) + Z(Bt/zcsébh—’—Bl/)cSéah)
egh gh eh he

L. (4.25)

where all terms not written have at least three free replicavith no other contributions from higher cumulants at &ny
sums (this is the case f6r(S?) as well as terms involving the  Appendix[D contains a non-local extension of this formula.
fourth cumulant and higher). Similarly—279,U)?)., hasat  Eq. (£29) can be integrated with the result

leastp — 1 free replica sums (from th@(B?) term). This is

much more what we need, which comes only frem{¢.14) andB(ﬁ) — B(UZ +2T1, + 41, [B'(v2) — B’(o)])

using [4.11): )
2l {B’ (v2 + 27T, + 41[B'(v?) — B’(o)]) } .

(4.30)

sz%) = Vg Up — 212B;b (4.26)
O =11, . (4.27)
This yields: A direct derivation from[(313) is also possible.

R0 = (vg — w)? + 2TL + 4L(Bl, — B.,). (4.28)
Thus we find that the renormalized second cumulant satlsf|e|§| h | - ized disord be o
a closed equation at arfy: igher cumulants of the renormalized disorder can be ob-

) ) ) tained by the same method usiig(4.23) and its extensions.
B'(v%) = B'(v3, + 2T 1, + 415(B'(vZ,) — B'(0))) (4.29)  They can also be obtained by the graphical method. For sim-

C. Higher cumulants
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plicity here we give only the expression of the third cumu- ~ ~
lant. The complete expression for the fourth cumulant, to- ; ; Q
gether with all calculational details and an introductiortrte ’ REN ,
graphical method, can be found in Appendix C. ’w' ’w r ®

The third cumulant is found to be: 1 0 o o 1 ) o oes o

5B (7)) BT () Y) TB'(v7)
~ 6715 ~ ~
S(z,y,2) = msymr,y,z [B’(x)B'(y)} FIG. 2: Examples for vertices and the 1-loop tadpole diagndrich

R B _ _ is dominant at largeéV.
+24tsym, , (B (@) - B'(0))B (@)B'(y)]

81, B (y)B'(2) B(x) (431)  e.c>e Ci D iy

where sym , . is 1/6 times the sum of all permutations of

x,y,z. Note that this relation is exact for all values of the FIG. 3: The four 1-loop diagrams correcting the disorder.afdot
massm, and not just a fixed point form. The only input in represents a verte®, a solid line the fields, and its correlator. A
the derivation is the absence of a third cumulant for the bar@ashed line attaches two fieldsto a vertex3. We do not draw
model (n = co). It would be interesting to include an addi- replica-indices.

tional bare third cumulant. The fourth cumulant is derived i

appendi{C, where also details for the graphical method are

given. obtained from contracting
N wt—ub)2y N (u;—uZ)2
521;3((IN2))5Z;B( ) - (5.1)

V. GRAPHICAL INTERPRETATION

In order to simplfy the calculation we omit the terms taken at
In this section, we sketch how the central results at lavge coinciding replicas (e.g5’(0)), they can be added at the end.
can be obtained graphically, first the saddle-point eqoatio Contracting[5l) twice between pointsandy gives
#29), which gives the effective disord&ras a function of

the bare disordeB, and second thg-function [6.9). ﬁCQ [B,((ugug)z)B,( (uzfug)2)

The graphical rules for the perturbation theory of the repli 2 ~*¥ — N N
cated model have been described in detail in [55]Xok 1 9 D b o bve e b
and we refer the reader to this work for elementary details. =B (ata) )B"((uy Nuy) ) (s N”y)
Here there are in additioV components of the field?, the g F W b
propagator being diagonal in all indices. For the present pu +o B (Late) ) (Ha—tiy) B'((“y;\;‘y) )
pose we are mostly interested in the countingvinand since N
it is difficult to represent graphically both vector- and liep- +iB//((ui—uZ)2) (ug—ub)? B//((UZ—U§)2) (uy—uy)®
indices, we work with unsplitted vertices (séel[55]) andcspe N N N N N
ify the replica content only when needed. Disorder vertices + higher replica terms (5.2)

may contain arbitrary number of derivatives and some exam-
ples are represented on Fig. 2. As usual there is a factor drhis is graphically depicted on figufg 3. The important ob-
1/N per derivative (i.e. per dashed line) at each vertex (segervation is that only the first diagram, with a closetbop
e.g. Fig[2, using? = u?/N), N per vertex, andV per loop. is contributing in the limit of largeV. This analysis can be

We consider the effective action, i.e. the sum of all 1-repeated to higher loop order. Again, only diagrams as the
particle irreducible diagrams (1P1), and later focus orgits first one on figur&l3 contribute. Especially, there are nosoop
replica part. We start our analysis Bt = 0 with the three
possible 1-loop diagrams, as presented on figlire 3. They are

. .O. .

~ > @;.,295955?5

FIG. 1: Graphical representation of the third cumulant. fibgtion

is explained inl[47]. The first diagram yields the terms prtipal to  FIG. 4: Loops which give additional factors bf N, as explained in
12, the second diagram the terms proportionalstin Eq. {£31). the main text.
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[ Y=Y S <>

* 0 f((x)). Taylor-expanding the latter leads to the above combi-
- 0 O O natorics.

B= Z M A Gt Gt i By the same arguments the full effective action can be writ-

O O O ten as the sum over tree-like (but not tree) diagrams repre-
¢ ¢ ¢ sented in Fig5 where, in addition, each vertex can be diesse
by an arbitrary number of tadpoles (see Hig.2). Each tadpole
brings an additional factor df’, thus tadpoles contribute to

the two replica term only & > 0. At finite temperature, any

FIG. 5: Tree-configurations which contribute B{v?).

<O> COD <O> @ =8 () of thev?’s could be contracted, leading to the relacement
@ = e + n/wwt+lmf\mb, +1MMM-O-O+...
2 <O> 6 (O) .« =B(®) (v — v%)% = (v* — ") 4+ 2T'1; . (5.4)

- (This offers another possibility to verify the combinatsin
FIG. 6: Self-consistent equation at leading order ®i(v2,) = B3.) Thus the final result is

B'(xab). The wiggly line denotes a derivative, and is combinato-

rially equivalent to choosing on8. At finite T' one can attach an B/ (22) _ /( 2 B2\ P )

additional arbitrary number of tadpoles to aBy B'(v") = B'(v” +2T1 + 4L[B'(v") — B'(0)] (5.5)
We now illustrate how to recover thefunction. Applying

ith th t | 4 0r 6 on i 4—m8/6m to B implies to derive each integral w.ria ap-
wi ree propaga“ors or more”, as loops 4 or b on iglire pearing in each loop of FIg 5. Diagrammatically this amounts
Also, there are no “meta-loops”, i.e. loops formed by loops

asloop o guEl. Finaly, oy iarams as those o gury 050 1 e e of FOS ane o the bonds (aah
survive, which as building block have only the eIementaryterm
1-loop diagram with a closed loop contributing a factor\af

as the first diagram on figuké 3. These are tree-like diagrams, 9 (
where the nodes are made out®fand the links out of the
before-mentioned 1-loop diagram (two parallel replicadn

in the splitted diagrammatick [55] which produce the dekire Since the two trees attached to the lobpare nothing but
2-replica term). At junction points the replica lines branc B(v*), derived once, and again itself with things attached,
also in parallel. These are of course not tree diagrams, i.é.e. B'(v?) as given in[[2b). This reproduces tiie= 0 term
they are 1Pl and contribute to the effective action. Note orin €3).

Fig.[ that since there is B/ (272) factor per vertex, but that ~ The second contribution comes from derivifig;. The
each vertex (except one) comes with two propagators (factaggraphical derivation is complicated, and we refer the inter
T?) the counting in temperature is right to produce a 2-repliceested reader ta_[47] where a more complete, but much more
term with the expected/(27?) global factor (the 3-replica involved, diagrammatic method is presented.

terms proportional td” have been discarded etc.).

We are now in a position to derive the self-consistent equa-
tion (£29). The key-observation is that deriviligv?) once V1. FUNCTIONAL RENORMALIZATION
with respect to its argument, amounts in the graphical in- GROUP EQUATIONS

tepreation of figurEl5 to choose one of the bare vertigeg),
and deriving it. B’ (v?) thus isB’ (v?), with as many branches
attached as one wants. Every branch consists out of a 1-lodffe will now study the self-consistent equation, exactfos
integral <& = I, times another tree; the latter is again co, for the second cumulant correlator of the random potential
B(v?), given that one of the bare vertices is chosen, i.e. agaithat we have derived in the previous Section:

B'(v?). Since attaching loops tB’(v?) amounts to deriving . _ _

B'(v?) once for every loop, we arrive at B'(z) =D (50 + 271, + 4I(B'(z) — B/(O))) , (6.1)

—maifg) [B’(&)Q - 219’(1)2)3'(0)} (5.6)

m

A. From self-consistent to FRG equation

. L which involves only the two one loop integrals:
B (02) [45,(B'(v%) - B'(0))] g P

B'(v?) = 3 A
; ¢ I =/0 %ﬁ (6.2)
:B’(v2+4IQ[B’(v2)—B’(O)]) . (5.3) A gay )
2= /0 2r)d (L m2)? (6:3)

Note that we have added the term with coinciding replica-

indices, dropped previously. The combinatorial factor esm where we have indicated symbolically that a short scale UV
from the expansion of the exponential functiorein®. That  cutoff is needed for, to be finite ifd > 4 and for I, for

it indeed resums t®’ with a shifted argument is natural: For d > 2.

a functionf(x) taking the expectation valug(x)) in a the- There is a simple way to obtain directly the solutions of
ory with only a first momentz) is equivalent to calculating (&) which we will detail below. It is also interesting tatu



this equation into a FRG equation for the functié(w) as a
function of the scale parametet. Indeed this yields thg-
function of the field theory in the limit of infinitév, which is
our main goal. Let us show first how one does it.

Let us first take a derivative df{8.1) with respecttoOne
obtains:

B//(x)

TG B" (x + 2T + 41(B'(z) — B'(O))) .

(6.4)
Taking the derivativend,,, of &1) and usind{Gl4) gives:
B B//(x)
14 4LB"(z)

+4(mdmI2)(B'(x) — B'(0))
+4L,mdy, B (z) —4]2m8ml§/(0)} . (6.5)

mOm, B’ () [2m8mTll

Regrouping the terms one obtains:

mdyB'(x) = B" () |2md,,, T1; — 4Iymd,, B'(0)
+ 4(mdn L) (B (z) — B’(o))] .(6.6)

From [&5) one also has

md,, B'(0) = 37(0)
" 1+ 41,B"(0)

Inserting [&F) into[(616 ) finally yields

2mdn(T1) . (6.7)

~ 1
8mB’ =B 2(mo,T1)) ——————
m (.CC) (.CC) (m 1) 1+ 4[231/(0)

+ 4(mdn L) (B (z) — B’(O))} .(6.8)

This equation is valid for any space dimensiénlt can be
integrated once w.r.t: to obtain the final result

mom B(z) = MB/@)
1+ 41,B"(0)

+2(mdh ) [E’(x)Q —2B'(0)B'(z)] , (6.9)

where we have dropped am-dependent integration constant.
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B. General features: Analytic vs non-analytic
solution

Before solving this equation let us first find the conditions u
der which there exists an analytic solution. This will give u
insight in the phases of the model. One notes fiord (6.4) that:

1 1
B"(0) B"(2TI)

— 4l . (6.10)

Form = oo the starting value i3”(0) = B”(0) > 0, in
any dimensioni. (The force correlator decays for small dis-
tances.) Asn is decreased several things can happen.

Let us start withl" = 0. Then ford < 4, sincel, diverges
for smallm, one sees fronl{6.10) th&"’(0) becomes infinite
asm — mJ, where the Larkin mass.. is the solution of:

A
4Sd / dq
o

with Sp = 1/(2¢'7%2T[d/2]) and has the standard depen-
dencem, ~ B"(0)'/¢ of the inverse Larkin length on the
bare disorder (a Larkin length. = 1/m. can be defined).
Since B”(0) is like R""(0) positive, this divergence is the
usual one of the FRG, as also found in 1- and 2-loop stud-
ies [35,035] 43, 24, 4%, 56], where it signals that the fumctio
R(u) becomes non-analytic and that a cusp singularity forms
atu = 0 in the second derivative R” (u), i.e. in the correla-
tor of the pinning force. This is usually interpreted as agla
phase with many metastable states beyond the Larkin length.
Thus ford < 4 the function always becomes non-analytic at
large scale (small mass), and there is a single glass phasse. F
d > 4, sincel, is convergent, the cusp occurs only if the bare
disorder is sufficiently large.

At non-zero temperatur€ > 0 (@I0) shows that fo?2 <
d < 4 thermal fluctuations do not change the scenario. Since
I, remains finite, temperature only slightly renormalizes the
value ofm,. downward, as

A
4Sd / dq
o

for A > m.. Ford < 2 the effect of thermal fluctuations
is more important. For definiteness let us consider the set of
models with power law correlationE{2110). Th&n{$.10) be-

qdfl 1

@ +m2? ~ B0)

(6.11)

qd—l 1

@ +m22 " BI2TSAT2/(d— 2))

(6.12)

A general method to study (and solve) the FRG equatiofOmes:

&3) is then to start fromm = oo where the initial condition
is B(xz) = B(z) inthe presence of a UV momentum cutaff
or a lattice with lattice constant = 1/A. Then one studies
how B(z) evolves asn is slowly decreased.

1 1
_ = —(a® +2T1)'"™ —4I, .
B"(0) g7

(6.13)

Since both integrals diverge for small masgas- 1/m?~¢,

There are thus two possible paths to solve the problemy, . 1/m%-4 one can distinguish three cases:

namely the direct inversion of the self-consistent equnediod
the solution of [G18) with the above initial condition. Both

are studied below. These two methods are clearly equivalent

when the solution3(z) is analytic atz = 0. Indeed, in the
above derivation, we have assumed tB4t0) exists. This

will not always hold, as we now discuss. What the proper

ensuing modifications are is a subtle point which will be ex-
amined later.

(i) If disorder correlations decay fast enough> ~.(d) =
2/(2 — d) then thel; term wins and as — 0 one has
B"(0) — 0, indicating that disorder is subdominant,
resulting in a high-temperature phase. In that case the
solution is analytic as» — 0. There is however a more
complicated behavior for intermediate valueso{see
AppendixE).
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(i) If disorder correlations decay slower, i.¢. < v.(d), C. FRG equation for rescaled disorder, d <4
the term proportional té; wins and the solution always

becomes non-analytic at some Larkin mass. The equatiorl{6l8) is valid (faV = oo) in any spatial dimen-

siond. Since one has the exact relation:

(iii) In the marginal casey = 4.(d) there is a transition at 1 )
some critical temperaturg. between a high tempera- —§m3m11 =m~I (6.18)
ture phase and a glass phase.
one sees that the FRG equatibnl6.8) has a well defined limit

These features are very general and each of these cases will— o© for d < 4. It makes formulae somewhat simpler so
be studied in more details below. we will start by considering this case; the cake> 4 will

One can immediately see that the existence of an analytig® Studied later. Note that although the equation has a well-
solution forB(«) is in one to one correspondence to the exis-defined limit, its solution may require a UV cutoff (e.g. as is
tence of a locally stable replica symmetric solution of the M Manifestly the case in integratirig (@l 18) above).
equations. Indeed the condition for the stability of the R&-s Thus from now on we study < 4 and consider the infinite
dle point is precisely that the replicon eigenvalue be pasit UV cutoff limit. Then one has
namely thatl[24]: —e 9

m d
I, = AdT ; Ay = e =) (6.19)

(3 —
3-3

Arep(p) = 1 — 4L (p)B" (2T 1) (6.14)

_ 2 2\—1 2 2\—1 with e = 4 — d. It is convenient to define the rescaled dimen-
L(p) = /k(k Fm) (k4 p) 4 m) (6.15) sionless function:

be positive for allp. The RSB instability occurs when the b(x) = 4Agm* € B(zm~2°) , (6.20)
lowest eigenvalue, which correspondgte- 0, vanishes. The ) ] )
condition ., (p = 0) = 0 is equivalent to the vanishing of where( is a fixed numper, but for now arbitrary. Note that
@I0), i.e. of the divergence d” (0) and the emergence of whether one works witl# or the rescaled(z) does not make
non-analytic behavior. Thus the generation of a cusp in th@ny difference for the possibility of a non-analyticity oda
FRG coincides at largd/ exactly with the instability of the ~Vergence of the second derivative. o
RS solution. Thenb(z) satisfiethe FRG equation in the infinit&F limit:

It is easy to see that an analytic solutiBiiz) of @) and — mOnb(x) = B[]
(&.8) cannot describe the glass phas# at 0. Indeed when m o ,
B(z) is analytic, Eq.[[Z31) and similar results for higher cu- = (e = 4Q)b(z) + 2¢xb'(z)

mulants indicate that the full effective action is analyficis 1, o ., b (x)
then immediate to obtain correlations from its derivativesr +§b ()7 = 6(2)b"(0) + T 14 20O + Cm -
instance, from[[Z.36) the 2-point functiongat= 0 is simply: ¢ (6.21)
R/
1 (a(q) - up(q)) |q=0 = %5@1) - 2B (3) (6.16)  The rescaled temperature, and the energy expdharg de-
N m m fined as
On the other hand, setting= 0 in (&) one finds: 444
Tn=T—m (6.22)
~, , €
B'(0) = B'(2T1) . (6.17) 0=d—2+2C. (6.23)

Thus atT" = 0 one recovers the dimensional reduction (DR) To obtain [E2I1) we have also integratéd16.8) once, so there
resultu? ~ m~472¢ with ¢ = (pr = (4 — d)/2 instead s a priori am-dependent integration constant.

of a non-trivial value for¢ expected in the glass phase. Fur- We emphasize that this FRG equatibn{$.21) that we have
thermore since the effective action is analytic, all higb@n-  derived is valid, to dominant order iry NV, in any dimension
nected cumulants will trivially vanish & = 0 (or be equal d < 4 and at any temperatuf@. In a previous study [36] Ba-

to the bare ones if the bare model contains such higher cuents and Fisher studied another limit: arbitrafybut only to
mulants) from the DR property. Clearly, in the glass phasefirst order ine = 4 — d andT = 0. If we consider the dom-
the DR scaling is expected to be incorrect and a non-analytimant order inV of their equation, we find that it is identical
solution should be found, as well as a way to escBpel(6.17)o theT = 0 part of [6.21) (up to some changes in notation).
Below we find how such a mechanism occurs within the FRGEquation [6.211) however is valid &l ordersin ¢, an impor-

It will emerge from our study that for the case where dis-tant point which the method used in_[36] could not address.
order is relevant in the large scale limit (i.e. the long mng Comparison of[{6.31) to our recent 2-loop, i&(?) studies
casey < ~.(d) mentioned above) the non-analytic solution of requires to expand to next order iiN and is performed in
the FRG equation will correspond to the full replica symme-[41].
try breaking solution of MP. The situation for the short rang  Furthermorel{6.21) includes the effect of temperaturelto al
case is more delicate. Both are discussed below. orders ine. Expanding the term proportional {6 to lowest



order in disordeb, one finds the ternT,,,b’(x). This is the
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This means in turn that the FRG equati@n (6.21) is fully in-

large-V limit of the tadpole term obtained in the 1-loop FRG tegrable, a feature not immediately obvious if one does not

atT > 0 [41,[57[58[59]:
~ N ~
OR(u) =T 07R(u)
=1

— 9 B(v?) = TB' (v*) + %023”(02) ,  (6.24)

where for infiniteV the last term drops out. (It appears how-

ever to next order in /N [41].)

The form and the effect of the temperature termIn{6.21)

to all orders ine is radically different from its 1-loop trun-

cation. Indeed, in the 1-loop FRG the temperature is known

to smoothen the cusp and render the functitfa) analytic
in a boundary layer, ~ T, (e.g. forN = 1 [41,157,.60])

with R"(0) ~ 1/T,,. Here however, as further analysis ith @) = 2'(yo) [Z2]. We have used thatd,,y(z) =

confirms below, ford > 0 the divergence ob”(0) is self-
reinforcing since it kills the term proportional g,,. We find
that it usually occurs at a finite (Larkin) scale. In the masgi
case’ = 0, we will find non-trivial analytic finite-temperature
fixed points.

VII. DETAILED ANALYSIS OF THE FRG

EQUATIONS

A. Inversion of self-consistent equation

Let us now show how one can invert the self-consistent equa-

tion (&1). We first rewrite it in terms of the rescaled coatet
b (z) = 4Agm2S—¢
< B (™ (a4 (¥ (x) ~ (0) + 2T im™))
€
(7.1)

where in the term proportional to temperature, dox 2 we
meanlim_. 7'I; choosing a bare temperatdfe~ A(—%

(this choice is known to be necessary to give a universal anguming analyticity, i.e. thalim, oy’ (z)(

know that it originates from a self-consistent equationdbn
servation not made in Ref.[36]). To better understand this i
tegrability property let us show thdf{6]121) can be transfed
into alinear equation. Let us first take a derivative bf{d.21)
and express it in terms of the new functigfx) (Z3)

/!
—mOmy = (6—2C)y+2<wy’—y'(y—yo)+Tm1y—y6 , (7.7)

€

where we denotg), = y’(0). Converting this into an equation
for the inverse function(y) one finds:

/
Thexg

momx = (€ — 2¢)yx’ + 2¢x — (y — yo) + o

(7.8)

—y/(x)mdpz(y(x)) and have canceled a factor g5 on
both sides. (The validity near= 0 beyond the Larkin length
is reexamined below).

One recovers now that the general solution of this linear
equation is[[Z]1) since it is the sum of the general solution o
the homogeneous part

@ = m*¢lym ], (7.9)

whereg is an arbitrary function, and of a particular solution

1 -
T = Z(y —yo) = T (7.10)
The y dependence obviously satisfi€s{7.8) and for the con-
stant part to work we use:

/

Yo
1_ %

€

- mamyO = (6 - 2<)y0 + Tm

(7.11)

— O Ty = —2(Ty + Trn - (7.12)

The first line comes from evaluating{y.7) at= 0 and as-
z)(y(z) — yo) = 0,

finite 3 function, see e.g. the discussion in Ref| [47]). One canyng equality which will not work beyond the Larkin length
of course keep an explick dependence everywhere, but that (m < m,), as found below.

leads to needless complications without changing thetresul
The above equatiofi{Z.1) is easily inverted into

y 1 ~
where we define
y=ylx)=—b'(z) (7.3)
yo = —b'(0) = —4A4m>~<B'(0) (7.4)
Ty, = 2T 1m> (7.5)

with T,,, = T,,,/(2—d) for d < 2, and® is the inverse function
of —B'(z) i.e.

(=B")(2(y) =y . (7.6)

Now that we have clarified the connections between the two
approaches (self-consistent equation and FRG) we can try to
find solutions valid in the small mass limit. To analyze the so
lutions of the largelV FRG equation[{6.21), two approaches
are legitimate, corresponding to different points of vifike
first, natural in mean field, is exact integration. But thee on
discovers that the solution becomes non-analytic uporhreac
ing the Larkin mass. It thus raises the non-trivial questian
how to continue this solution beyond the Larkin length. Be-
fore doing so, we will first examine a second point of view,
more familiar from standard RG arguments.

B. The FRG point of view: Search for fixed points

The standard RG approach amounts to construct and compute
the 8-function of the theory, and then search for a fixed point



(function) which describes the large scale physics. Uguall
finding the basin of attraction of the fixed point, or relating
arbitrary initial conditions to the final approach of the fixe
point is an unmanageably difficult task. It is fortunatelyaal

besides the goal of the RG which is to compute universal large

scale physics independently of the irrelevant detailsebtre
model. Here, however, because of the lafgdimit, we can
integrate the RG flow exactly and in principle “solve” anyéar
model. Let us temporarily ignore this integrability feaand
focus on finding the zeroes of thefunction.

The p-function was derived previously within anexpan-

sion and non-analytic fixed points were found to one loop

[6,135,136] and also to two loops [43./145] 55]. In the latterecas
additional “anomalous” terms are present in thinction for
the non-analytic theory to be renormalizable and a meaningf

fixed point to exist. Viewing the right hand side &f{8.21) as

the largeV limit of the trues-function, let us follow the same
strategy and ask whether we can find non-trivial fixed points

Let us studyl’ = 0 and use the equivalent linear form of
the FRG equation. We want to find the solutiafis) of

(€ —2Q)yx’ +2¢x — (y —yo) = 0.

Yo Is a fixed number (we want to impogg = y(0)), since we
are looking for a fixed point function. Keeping arbitrary,
one first tries a linear solution = ay + b which yieldsa =

1/e andb = —yo/(2¢). Writing () = (y/€) — yo/(2() +

¢(y) one finds a homogeneous equationgand thus

z(y) =

(7.13)

(7.14)
Imposing nowy, = y(0), i.e. z(yo) = 0, fixes the value
of o and one finds théamily of zero temperature fixed point
functions, parameterized ky

€—2( 5
2(e Yo

Y Yo

e 2C

Sincez > 0, yo > 0 one must havcgfL2< > (0 and thus

—_%
e—2¢ |

r=a"(y) = y (7.15)

€
0 —.
<(< 5
The casg = § corresponds to a Larkin random force model.
For the same reason, we must exclude the brgnshy, and
thusz*(y) is given by the unique solution df{7]15) with> 0
ando < y < yo. Finally, for¢ = 0 we find the fixed point:

(7.16)

p=a' () = (- —olnly/y)) . (7.07)

An important observation is that all of these fixed points ex-
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with 4 = /2(e —2¢)|¥’(0)|, implying that the second
derivative diverges ag — 0+

~ A

" 0

b (x) NG +0(z”) . (7.20)
Recalling thaty = —¥'(x) we see that all fixed points with

¢ > 0 correspond to a power-law long-range correlétar),
while ¢ = 0 corresponds to a gaussian short range disorder.
If we follow the standard RG arguments, we can now sort the
models[[ZB) into these universality classes. Since fobére
model

B'(z) ~ 277, (7.21)

and since the decay dt(u) in (Z8) at large: can be argued
to be identical forB and B (for LR fixed points) we find

4—d
¢=¢M) 50+ 7)
or ¢ = 0 for short range correlations. These values are valid
to dominant order i /N. In [36] the effect of theD(1/N)
terms in the 1-loop FRG equation was studied, i.e. the cerrec
tions of ¢ were estimated to ord&?(e) and at zero tempera-
ture. For SR disorder it was found that the result of the GVM
(i.e. Flory) is corrected by termsy exponentially smallinV,
ie.Csr = ((v = & + 1) + aye + O(e?). For LR disorder
with v > ~*(NV) the result [Z22) was found to be uncor-
rected toO(e). (The crossover SR to LR occurs-@t such
that{(v*) = (sr). One can in fact argue th&i{7]122) is always
exact in the LR case (see e.g. discussion in Ref. [55]).

Several important remarks are in order. First we have found
the fixed points of the inverted linear forfai(l7.8) of the FRG
equation. A valid question is whether this is equivalent to
finding the fixed points of the initial form of thg-function
@21). Second we have found fixed poirtssumingthat
momyo = 0. Since this idifferentfrom what has been found
previously in[ZZIIl) ai’ = 0, one can ask whether these result
are compatible.

These two questions have a common answer. Examining
more closely what has really been done in this Section, we
note that it is equivalent to declaring bofi{d.21) ahdl(7.8)
valid for anyxz > 0 and interpreting everywherg = y(0™)
in (Z8) and, equivalently (0) asb’ (0) defined by continuity
asr — 0T. This is legitimate since the transformation from
@21) to [ZB) is certainly valid for > 0 and we note that
this answer the second question above sincelEQd. (7.7hee. t
derivative of [6.211), evaluated at— 07 yields:

—mIny(07) = (e=2Q)y(07) - lim ' (@)(y(z)—y'(07))
(7.23)

(7.22)

hibit automatically the expected cusp. Indeed one finds thawhich works both in the regime: > m. where the solution

7' (yo) = 0, i.e.z(y) in (ZIB) vanishes and has a minimum at is analyticy (0*) = y(0) and in the fixed point regime. — 0

Y = Yo' when the cusp has developed and the last terfainl(7.23) has a
non-zero limit according td {79, 7120).

We expect these fixed points to be the physically correct
solutions at smalin. We now investigate whether we can
confirm this by providing the solution at infinit®, for ar-
bitrary massm, i.e continue our solutio{4.1) beyond the
Larkin length.

(y—90)* +O((y —w)?) . (7.18)

() = —

T =
Y 2(e = 2¢)yo
This gives

b (z) = b'(0) + Avz + O(x) (7.19)
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C. Full solution beyond the Larkin mass X

We now show that one can connect the two regimes, i.e. the
regime form > m,. where an analytic solution exists to the
asymptotic one, formn — 0, studied in the previous Section.
This can be done here because of the full integrability of the
infinite-V limit and provides a rare and non-trivial insight into
what happens around the Larkin scale.

It is instructive to start our analysis with the specific powe

law models with LR correlationE{Z.110), together with theea m=m
of SR correlationd(2]9), in the form of a Gaussian. The s@) —
lution for an arbitrary bare potenti#l(z) is more subtle, and yo (m) yc_yo(n]: ) Yy
will be given in Sectiof . VIITD, and appendixIH. m>m
For the power law correlators the inverse functionInl(7.1) c
is:
FIG. 7: The functionz(y) given by [Z2¥) or[[Z29). The physical
_B/(2) = g & () = (g)—l/v ey branch is the one with < yo.
(@ + 2)7
(7.24) ) o _ _
For gaussian correlations it is: Yo < Y. iS non-zero, indicating an analytic solutig(x) =

—b'(x). For largem only the first term on the r.h.s. di{Y.2)
—B'(z)=ge™* & 2z=9®(y)=In(g/y). (7.25) contributes and one recovers essentially the bare dis@tder
Decreasingn simply amounts to translate the curve upward
We can now insert this result into the general solution (@f2) along positiver, andy, increases as the curugy) cuts the
the self-consistent equatioq.is arbitrary, but the convenient axisz = 0 closer to the minimum. It reaches it at the Larkin
choice (to later obtain a fixed point){s= ((v) such thatthe mass, solution ofy = y., i.e.
m dependence of the first term drops. Let us define

m26a? + Ty, = (Gy/e)/ O+ =T, . (7.33)
G =4A49. (7.26)

. For SR disorderyy = y. = € givesm¢ = g/e. Exactly as

We then obtain, for power law models: m — m the solution acquires a cusp and one finds:

—1/v B ’ o ~ ] — 7
. (%) N %(y o) - mEa? — T (7.27) b (x) —(0) = /—2(c— 200 (0)z  (7.34)
. i.e. the same result d5(7119).
_ — (1 2C 2 - - N . .
—t'(0) = yo = g(m™>*a> +Tpn) "7, (7.28) Although it is a priori not obvious how to follow this solu-

since we wany(0) = yo i.e.(yo) = 0. This solution is valid tion form < m., the following remarkable property indicates

. how to proceed. If we compute thefunction, i.e. the r.h.s.
for m > m. and the value of (0) is the DR result{{&7). For : ~ . ,
short range disorder the solution far > m, is of (Z8) using [Z27) atn = m. and¢ = ((v) we find that
it exactly vanishesSimilarly thes-function ford’(«) alsoex-

z=In(Gm /y)+ € "y —yo) — T (7.29) actly vanisheéo_r all z > 0 provided we use als@{ZR3), i.e
, . all v'(0) are defined a#’(0"). Thus atm = m, the func-
—(0) = yo =gm~e ", (7.30)  tion has already reached its fixed point form= z*(y), and
freezedor m < m.. For the disorder correlators studied here,

having set{ = 0 in that case. We recall thg{z) = —b'(z). ing td{727) di (7] : :
Note that the bare disorder is recoveredifor— co. We have ?é":lz:ﬁgg l;gsﬁiggoﬁi?g t: b*(:Z)) and jgésurr:bgtc :\//f(])(le\;: Iftor

kept temperature, but here we discuss only the case where

m < m.. In particulary, = —b'(0%") freezes ain. and one
_ _ g has—md,,yo = 0 for m < m,, exactly as was discussed in
0=007)=d=2+2(7)>0, (7.31) the previous Section.
i.e.2 <d<4,o0rd<2withy < v.(d) = 2/(2 — d). In that The solution forn < m. is thus:

caseT’, decreases as decreases, and, as mentioned above . 1/ 1 ~
the role of temperature is minor. v =(u/9) te Y —yo) = Te m<me

Let us plot the r.h.s o {Z27)TZR9) on Fig. 7. The curve —b'(07) =yo =g1T. ", (7.35)
x(y) has the indicated shape in all cases. It cuts theaads) L ) ) _
aty = yo and has a minimum’(y.) = 0 aty = y. with where the parametef, is defined in[[Z33), thus it exactly
identifies with the zero temperature fixed poildi {I.15) with
Yo = gl/(1+v)(€/7)v/(1+7) ’ (7.32) ¢ = ((v), as can be explicitly verified. This is easily un-

derstood a posteriori, since the same functions appeamand i
independenbf m, andy. = ¢ for SR disorder. Forn > both cases we have two conditions to fix the two undetermined
m. the minimum occurs at negativeand the slope ay = amplitudesr(yo) = 2’(yo) = 0. It does however heavily rely
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on the exact power law form of the model, so it is not imme-mass
diately obvious how it will extend to aarbitrary bare model
B(z). One clearly cannot expect in the general case that con- I T
vergence to the fixed point will be completed within a finite @Met =S\ T
scale. The solution to this puzzle is given below.

Similarly the solution for the Gaussian SR disorder correla g 4507 — 0, ~ = 1 corresponds to the logarithmically

tor form < m. is given by settingn = m. in (C29), [Z3D)  orrelated disordeB(z) = —gln(a®+z). It has been studied

with yo = € (which determiness.). for finite NV in [Bd] where it was shown that there is a transition

The result of this section thus provides unambiguously JoranyN atT, = /g (g = o/N inthe notations of Refl [30]).
solution beyond the Larkin scale which connects with the zer Ta above recsult is in agreement with this value?erThhere

temperature fi)fed point. It justifies the previous Sectiod an ¢4, n7 — 1,2 there is also a line of fixed points faf > 7.
the value obtained fo¢. We found that for power law and \,ith 3 continuously varying dynamical exponent (and alse on
gaussian models the freezing mechanism apparefitinl (7.28); 7 ~ 7., with a different dynamical exponent and some
leads to: form of RSB). Since the dynamical exponentis perturbagivel
related tob”(0), obtained above for infinitév, it would be
particularly interesting to study th&/N corrections in this

(7.40)

—mOny(07) = (e —2Q)y(0") , m>m,. (7.36)

—mdmy(07) =0 , m<me. (7.37) case.

) . Let us now examine the case of SR disorfer (2.9) #a 2.
The fixed point is reached at = me. More details are given in the AppendX F. One Has =

2T1 = (T/7)In(A/m). The analytic solutiod{Z29)Y{7130)
D. Role of temperature becomes

In the case where disorder is relevant i.e. 46y) > 0 (i.e. -1 —1() 7.41
2 <d< 4 d< 2fory < v, = 2/(2-d)) we found ’ fl(yﬁ//ﬂy_)f_ewiy o) (7.41)
in the previous Section that temperature plays only a minor Yo = gm A (7.42)

role since the convergence to the non analytic zero tempera-
ture fixed point occurs on a finite (Larkin) RG scale. Whetherwith ¢ = 2. Thus there is a transition & = 7. = 2. For
it should be called a zero temperature fixed point can also b# < T, we findy, to increase as: decreases and reagh =
debated since it is reached whép, = T,,. . A proper def- ¢atthe Larkin mass. Forn < m,. the solution remains frozen
inition of the renormalized temperature may then include th to (Z41) withy, = e. ForT > T, we find thaty, flows to
denominator in[[6.21). zero and disorder is irrelevant. The physics is the sameeas th
Let us now examine the marginal cake) = 0,y = v.(d) ~ one contained in the variational method for the periodic etod
andd = 2 for SR disorder. We give here the main results,in d = 2 [6] which exhibits a (so-called marginal) 1-step RSB
further details are examined in the Appenidix F solution.
The analytic solution is given bY{7P7) and given by The casey > 7.(d), (d < 2) is discussed in AppendX E.
(Z28), where her&,,, = 44,T/(e(2 — d)) does not flow as  Although an analytic solution exists as — 0 and disorder

m is lowered. Let us examine the second derivative, is formally irrelevant, there are some freezing phenoména a
: intermediatem. It corresponds to the case where MP find,
1 , 1 g\ 1 in addition to a RS solution, a 1-step RSB solution which is
T % o) =—1{(—) — = so called non-marginal (different in nature from the ong ste
b"(0) VYo \ Yo € ; LS
solutions obtained in the cage= 0).
1 T o a’m?¢ ! 38
=—||= = -1 7.
(g + ) . (.39

VIIl. COMPARISON BETWEEN THE RSB

which is a rescaled version df{6]113). The first line[In{¥.38)
holds more generally (in the infinite UV cutoff limit) and to AND THE FRG APPROACH

obtain the second we have get= ((v), § = 6(y) and as-
sumedd < 2. Setting nowy = ., i.e.f = 0, we find that
there is a transition at a temperatdte= T, defined by

In this Section we compare the FRG approach at |&fgeith
the GVM using RSB. Since the two methods study the same
model in the same limit (larg&’) a precise connection should
e(2—d) exist.
( )(97/6)1/(1“) ; (7.39) We start by comparing the two methods at the level of the
results of the calculations. We first perform the comparison
such that fofl’ > T the solution is analytic for al downto  for power law models. Then we generalize the FRG solution
m = 0, given by [Z2FF) and” (0) remains finite and given by to arbitrary bare disorder correlator. Based on these tgsul
(Z38). This is a line of analytic fixed points which termiesit we address the deeper connections between the two methods,
at7T.. ForT < T, the solution freezes as in the previous and emphasize what we learn from them about the physical
Section, and becomes non-analytic at and below the Larkisonsequences.

€(2—d) =
T, = T, =
444 444
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A. Zero momentum correlation function from the andX‘ = [o](u > u.). The last two equations are the RSB-
FRG matrix inversion formulaey(u) is assumed to be continuous.

. : . . Taking a derivative ofl{814) w.r.t1 gives
Our main result up to now is a non-trivial solution for the 9 E) 9

renormalized disorder correlatd(z) as a function of the , , " 1

scale parametern, i.e. the effective action for the zero mo- ¢ (u) =0'(u)4B (X(”))/ (k2 +m2 + [o](u))2 (8.8)
mentum mode._Since this function is once differentiabée, i.

B(z) = B(0)+B'(0)z4+0(z*?), we can extract fromits first  This equation admits two solutions: Eithefu) is constant,
derivative the 2-point correlation function at zero moment  or satisfies thenarginality condition

(see SectiohI[BI2):

1
1= 4B”(>2(u))/ . (8.9)
(wala) - 0(d") = 3 {uala) - s(a') (B 5 o] (0))?

= Gup(q)(2m)46%q + ¢) (8.1) We thus look for a solution of the full RSB equations (see

T B'(0) Fig.[d) with a non-trivial functiono(u) for u,, < u < u,.

Gaup(q=0)= W‘Sab -2 — joined by two plateaus
= % ab — bn(0) m~97%¢  (8.2) o(u) =o(uc), u>ue (8.10)
m 244 o(u) = o(um) , u<upy, . (8.11)

where in the last equation we have used the definiflon6.20%mijar forms are valid fof3 (k, u) andx(u). The breakpoint
for the rescaled functioly and added the index to recall its u. is related to the physics at the Larkin scale, which, at

dependence on the mass. weak disorder, can be much smaller than the UV scgle
_Inthe ca§e9 > 0, for the power-law model§ (2110), we thus \ypile .. depends on the IR cutoff.. (E3) also yields by
find, usingb/,, (0) = —yo from (Z283) continuity a closed equation which determings

Ga =0)=2 2¢ 2 4 Tm -, —d—2¢

#6(¢ =0) =2g(m:"a ) m L 4B 2T/ 1 / 1 |
1 1 [e\T™ w (B2 4+m2+30) ) [ (k%2 +m?+ X¢)?
. —d-2¢
Syl b m ., (8.3) (8.12
d K as well as
and, form > m, the DR result[[66)[(6.17) (where. is s
determined by[{Z33)) and, we recdll= ¢/(2(1 + 7)). 1=4LB"(X(um)) , (8.13)
o ) since[o](u) = 0 for u < u,,. To solve these equations one
B. Explicit full RSB solution at large NV firsts determines the functida](u) (see below), then finds.
anduy,.

Let us recall the RSB solution at largéand resolve carefully
the MP saddle-point equation in presence of a mass. We onl
assume that there is indeed full RSB, to be checked a post
riori. Let us first reexpress the general solution, validdar
arbitrary B, in a rather compact form.

In the RSB method one first parameterizes the correla-
tion matrix asGq, (k) = G(k,u) and the self-energy matrix gnqy; — o (no RSB) form > m..
TGy (k) = (k% + m?)day = 0y = o(u), in terms of the To find [o](u) for arbitrary B and cutoff, one notes![6] that
overlap0 < u < 1 between (distinct) replicas andb (and  \yith the help of [BB) and{8.4) can be expressed as a func-

One can already note at this stage that{8.12) is exactly the
ondition [EIP) which determines the Larkin mass equiv-
alent to the vanishing of the replicon:

Y. =m? —m? form < m, (8.14)

denoteG = G,,). The saddle point equations then read tion of [o] as
2
= ——B'(x 8.4
U(U) T (X(U)) ( ) O'(LI) _ _EBI (BI/)_l 1 T ,
' . d 4], wEmETE
X(u) =2 [ (G(k) = G(k,u)) (8.15)
g e , where(B")~! is the inverse function oB”. Then one notes
= (u®) +/ dw/ _ 2T2‘7 (w) = (85) thatu as a function ofr of [o] is from (B) simplyl/u =
u k (K +m? + [o](w)) do /d[o]. This yields immediately, using the chain rule:
1
(U = 2T/ S (8.6) . 3
e k2 +m2+ X, u:—4T[ka]
with k (P Fm2 (o] ()°

[0](u) = uo(u) — /O“ dw o (w) (8.7) xB" ((B”)1< ! >> . (8.16)

1
4, e
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[o](u) + m? (810)
m2 m® + [o](u) = (Au)*/* (8.20)
c ! ~ 1 1+2v oy 1
A= Ta gy A @2
Upm =ml/A (8.22)
u. =md/A (8.23)

with = d — 2+ 2¢, ¢ = ¢/(2(1 + «v)). Using [BIb) one
finds them-independent result

2

m L o(u) = ﬂ/pwufpr% . (8.24)
3 3 3 u In particular one has the value of the lower plateau (see Fig.
0 Um Uc 1 B
. . . 2 2 2 2 2 ~
FIG. 8: Full RSB solution for the functiofr](u) + m* and a fi om(0) = o (um) = m Am?>%  (8.25)

nite massm. o(u) has identical behavior, with two plateaus at val- T 92_9 E T 2.9

ueso(u = 0) ando(u = uc.). In both cases, upon increasing the

mass onlyy,, varies (increases) and the lower plateau moves up, thé-€t us already note the relatiaR,d,,,20,,, (0) = 1 which will
rest of the function being unchanged, see Hgs18.51) f.értékt.  be demonstrated to hold more generally below.

The dashed line is the zero mass solution. The lower breakpgi
reaches the upper one at the Larkin mass: = m. above which : P :
the solution becomes RS. The FRG gives exactly the loweealat C. Correlation functlo?olrILII\Q/Ig solution compared
value foro(u = 0) = o(u = um) and itsm-dependence. From it,

the full RSB solution can be reconstructed, see SeETionEVIll The inversion formula yielding the diagonal correlatioarfr
the RSB solution is

Upon inversion one obtains the exact functfefh(u), and in- Caalg = 0) = T 14 am(0) n /1 du  [o](u)
serting into [B-IB) (u). More precisely, we see that the sum — ** m2 m2 u, uZm?+ [o](u)
[0](u) + m? is am-independent function aof, and thus from (8.26)

@I8)0(u) is alsom-independent. Then one solves the self-and is a sum of contributions from all overlaps< u < 1. In
consistent equatiof(8112) fat., and finally obtains. from  particular the contribution from states witlero overlapi.e.
the above. The result can be written using{B.12) in the @mplthe most distant states, is:

form

Gaalq = 0)uo = Glg,u = 0) = p%p . 827

1 3
_ _4T[fk (k2+m§)2} B (B//)—l 1 . ]
te = [ iy — — * We can now compare with the FRG. One has, uging d —

Thusu, depends only on the Larkin mass and is independent Tom(0) 2 oy
of m (See appendiIG for another derivation and a discussionGaa(q = 0)|u=0 = v mTAm_ -
of this useful property). Similarly one obtains: Loy
_ 21+79) e+ (yg)ﬁm*d*ﬂi
IS " -1 1 ey 4Aq(1+7)
u, = —47T-=B"" | (B") — FRG
13 4]2 = Ga;éb (q = ) , (828)
1
I3 = / T rmep (8.18)  as given by[[813). Thus, for this power-law model, we found
k

that the FRG gives exactly and only the contribution from the

dnost distant states (the lower plateau in the RSB solution).

Let us apply these considerations to the power law mod . )
@I0). For this model the Larkin mass is determined b efore discussing the reasons and consequences, let us show

. that this feature is much more general than power law models,
(Z33). Next one has: ;
) and holds in any case where full RSB holds.

B" (B") M y)) = _9(1+1) (4Ady) o (8.19) D. Solution of the FRG equation for arbitrary

44,4 g disorder correlator B

In the limit of infinite UV cutoff A limit, using I, = In SectiorYIIQ we found how to continue the solution of the
(m?)=/2A4/e and I3 = (m?)~17</2A,/4 we obtain from FRG equation beyond the Larkin scale. It involved freezing
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of them dependence af, = —'(0) atm = m. and worked  which should be valid both fan > m. andm < m.. Taking
only for two special forms of disorder correlators, whictpha m-%- of @38) yields, using{8.36) again

pened to be already fixed point forms. It is important to find

the solution for a more general form of the bare correlator

B(z), and this is what we achieve here.
Let us examine whether we can find a solution for angf
the FRG equatior{7.8) in inverted variables

MO xm(y) = (€ —=2C)yx,, (y) +2¢xm(y) —y+yo , (8.29)

which correspond to a more general functiBfr). We take
special care here to indicate tha},(y) is anm dependent
function ofy (we notez), (y) = dyx»(y) and we recall that
ym(z) = —b. (x)). The idea is to play with then depen-
dence ofyy = yo(m) since this is really all the freedom we
have. Let us restrict our analysis for simplicityfo= 0, the
generalization being straightforward. The definitiorygfm)

is given implicitly by

Ty (Yo(m)) =0
for all m. The total derivative thus vanishes:

d
m—

dm

(8.30)

(@m (yo(m)))

MOy T (Y0) + T3, (Y0)MOmYo
0. (8.31)

Together with[[8:29) aj = v, it yields (recall thatz,,, (yo) =
0):

(MOmyo + (€ — 2¢)yo) @7, (o) = 0. (8.32)

There are only two possible solutions:
mOmyo + (€ —2Q)yo =0 (8.33)
2 (yo) =0. (8.34)

The first holds before the Larkin scale and the second, whic
implies a non-analytié(y), beyond. We now want to find the
solution beyond the Larkin scale, i.e. assuming tHjaty,) =
0, together withz(yo(m)) 0, which of course implies
MO T, (Yo) = 0.

Equation [82B) withy, = yo(m) is trivially separable and
admits the general solution

1
= mP Y Z
OOd /
—m?2¢ ﬂﬂf yo(m’)mFQg , (8.35)

where for nowyg(m) is arbitrary and so is the function
®(y). (Itwill be identified below with(—B’)~! as in Section
VI[J. The first condition one must impose is the definition

Ty (yo(m)) =0, i.e.

2 Yo(m) 1
0=m>e <4Adm2C—€) +Zuo(m)
o0 d /
—m?% nﬂf yo(m'ym/~% (8.36)

m

€

Yo(m)

1 m
4Ad7”l”L2C_€

e 4Ay

[ v ( )] 00+ (e~ 2618 =0
(8.37)

In order to satisfy this equation, at least one of the factors
must vanish. The regime < m. corresponds to the first, the
regimem > m, to the second factor being zero.

Form > m. one hagmon,yo(m) + (¢ — 2¢)yo(m)] = 0
leading to

yo(m) = Am2¢~¢ (8.38)
and the above solution becomes:
1

This can clearly be identified with the analytic solution of
the self-consistent equatidi{lF.1) found before in Se{iith
and thus implies tha® is the reciprocal function of-B’.
Eq. [830) is trivially satisfied by

Yo _
Applying — B’ to (8.40) fixesA to be
A= —444B'(0), (8.41)

and one recovers the dimensional reduction result.
The interesting new information is obtained far < m..
Then the first factor if{8.37) vanishes, i.e.

@ ( ) .
lE)eriving (83%) w.r.ty one sees thaf {8K2) correctly implies

l'/(yo) =0 ;

thus the solution fob/(z) has a cusp.[{842) determines the
functionyy(m) for m < m.. Note that if the power law in
the correlator holds only asymptoticallyy(m) will nicely
converge to a constant (for the right choice(®fdue to the
asymptotic power law tail, but may vary arbitrarily accaorgli
to the irrelevant corrections to power law. This is studied i
more details in appendixIH.

It is convenient to rewrite the final result, i.e. EJS_(8,36)

@B.242) in the form:

€

1
0=~ +

€

m

44,

Yo(m)

TA A< (8.42)

(8.43)

b, (0) = 4A4m* B’ (Xm(0)) (8.44)
4A, 1
A= e = 8.45
P T B0 (849
/ o0 li
Xm (0) = —bm(o)m_2< — dnﬂf L (0)ym/7% | (8.46)
€ m m
where we use the notatiof,,(0) = YERG(0). The con-

nection with the RSB solution becomes obvious in this form.



21

Comparing with[[8.113), the equatidn (8145) of the FRG solu- Note that Eqs[{8.31) and{8]152) have been hypothesized by
tion identifies with the marginality condition at= u,,,, the  Parisi and Toulouse for the SK-modgl[61]. However, it has
lower plateau of the RSB solution, see Hifj. 8. It allows to de-been shown that there they are only approximately satisfied,
terminex.,»,(0); the two other equations are self-consistentlysee e.g.[43][74].

obeyed and givé!,(0). Comparing with[BW) ati = u,, Analysis of these equations shows that, up to the break-
yields the identification point, one has:

Xm(U=0) = X(u=up) = n°(0) (8.47) om(u) =oo(u)  u>u,  (853)
Tom(0) To(um) —b,.(0)

_ _ —d+2¢ [om] (u) +m® = [oo)(u)  u > up (8.54)
mAi . md 244  (8.48) o) = om(0)  u<um  (8.55)
and thus we obtain: [om] (u) =0 U< Uy .  (8.56)

GERC(¢) = GVM(q,u=0) = G‘GVM(q)|u:0 . (8.49) up isthusuniquely defined from the solution at zero mass by

It thus holds for an arbitrary disorder correlator, prodde om(0) = oo (um) (8.57)
solution to Eqs [[8.44)[{8.15) exists, i.e. for the clashioft- [00] (Up) = m? . (8.58)
tions B(u) which yield full RSB (also called continuous RSB)

within the MP approach. Of course, equatidis{B.44).]8.45)ndeed one has, taking derivatives RI{8.57) dnd {8.58}.w.r.
were derivedvithout any assumption about replica symmetrym™m~:

breaking ,
Extension toI' > 0 is obvious. Adding the last term of / On20m (0) = 00 (Um) o2 tm (8.59)
([Z8) and following the same steps as above, one finds: Um0 (Um)Opm2um =1, (8.60)
€T, , where here we introduce for conveniengg: = 5-0,,.
mOmyo + (e — 2Q)yo + @ (o) —1 T (Y0) = 0. These two equations give
(8.50) 1
Vanishing of the first factor yields the finit8 analytic solu- Up = ———— . (8.61)

tion studied in the previous Section (equivalent to the RS so On20m(0)

lution of MP). Continuation beyond the Larkin mass implies one thus finds that the functien (u) is implicitly given by
2}, (yo) = 0, in which case the additional temperature term in

@Z38) vanishes and one is back to the= 0 equations[(8.45), 1
@23): Thus only the value of the Larkin mass depends on 70 (” - 3m2gm(o)> =om(0) (8.62)
temperature, everything else is independenft of

Sinceo,, (0) can be extracted from the FRG, we see that

E. Full RSB solution from the ERG result can obtain the full functiowr(u) from the FRG
' One notes that the upper breakpaifjf = u. is indepen-

In the previous Section we have shown that the FRG yieldslent ofm. As shown in Sectior{VIIIB)u,,, increases upon
om(u = 0) (via b),(0)) i.e. the value of the RSB function increase ofm, and reaches. at the Larkin mass, i.e. for
only atu = 0. In fact, as we now discuss, by varying the u,,, = u,.

mass one can scan the whole functigim) of MP for anyu, Let us show how one can recast the correlation function of
and thus the FRG yields the same information as contained iMP, given in [8.2b) at zero momentum, entirely using FRG
the functiono(u). Remarkably, we can obtain an explicit ex- data.

pression forr(u), even though the argument of this function, a —0 1 0
the “overlap” is not obviously related to any quantity in the M = 7m (0)

FRG. Furthermore, we can also compute the full correlation- T m? . m?
function of Mezard Parisi, if one knows onty,, (0) for all m, 4 Ydu /1 1
which is given by the FRG. w, U2 \m2  m2+ [0,](u)

Thus from now on we assume that we know oaly(u = Ldqu /1 1
0) as a function ofn through the FRG, together with some +/ — (—2 - ﬁ) . (8.63)
general properties of the MP solution. As we have already we UT\MS - mE X
found in SectiorCVII[B, and is shown more directly in Ap- Using our previous results gives:
pendix[3, the GVM saddle point equations, upon assuming

full continuous RSB, satisfy the two “RG equations” Gau(g=0) 1 om(0)
# = W + m4 (864)
In(lom](u) + m*) =0, (8.52) +/u w2 \m2 [o0](u)

(
valid for anyu such thato’(u) # 0. One can thus relate the n 1 11
solutiono,,, (u) at finitem to the solution at zero mass (u). 2 )
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The saddle point method allows to write in the limit of infi-

u, = u, one finds that the correlation function can be ex-nite N:

pressecentirely from the knowledge of,,(0). To see this,

note that

% - —d (1> = —d(Dp20m(0)) = =02 20, (0)d(m?) .

(8.65)
This gives
Gaalg=0) 1 n om(0)
T  m?2 m?

Me 1 1
+/m2 dp? (W — F) 9220,,(0)
1 1 1
+ (— — 1) (—2 — —2) ,  (8.66)
Ue m mZ
where we have used that](u,) = p?. After an integra-

tion by part and using agaifi {8161) @at= u. one finds the
remarkably simple formula

Gaa(g=0) _ o (0) ™ dp? 1
aaT — 777717,4 —‘,—/ —4(9H20'H(0)+W

Me dou 1
2 b

valid for m < m.. Recalling the relation between, (0) and

(8.67)

“T(u) _ o~ L) ZG—NL“‘f«@:u/W) ., (8.68)

wherel'(v) satisfies the saddle point equatidask42)l (4.3), and
#3), and thé  _ denotes a sum over saddle points whenever
more than one solution exisis [75]. To be accurate the saddle
point method computes

=V N), (8.69)

N vt
where the limit is takemt fixedv.
As mentioned in Sectiof IVIA, the saddle point equations
#3) containboth the FRG and the GVM. They depend on

the set ofv,, and when expanded in cumulants, takaily

vab = v, — Uy £ 0, they lead to the FRG equations. This
approach clearly consists in imposing explicit breaking of
replica symmetry. Also we expect that in that case a single
saddle point exists. This is indicated by the fact that thengu
tity B”(v?)~! = B”(x,) ! — 41l plays the role of a replicon
eigenvalue and remains frozen and positiverfor 0.

By contrast, MP studied the case wherewly = 0 and
found spontaneouseplica symmetry breaking, i.e. multiple
saddle points, differing by permutationsf replicas.

We can now make contact between the two approaches and
understand why we have obtained via the FRG the correla-
tions of MP corresponding to the distant states. Let us focus

B’(0) we see that the MP result is a simple average of the coren the mode; = 0, and define the center of mass variable

relations corresponding to masses betweeandm,.. Note
that one can derive a similar formula f6f(k, «) obtained by
MP as a function of,,(0).

In summary, although strictly speaking our FRG result

gives only the contribution of distant states to the 2-poort

relation function, it does allow to obtain the whole MP résu
although we do not yet have a derivation within the frame-
work of the FRG alone. One should also note that the formula
@B.48) is in a sense equivalent to the inversion formula of hi

erarchical matrices which relatggu) = 2 [, G — G(k,u) to

= %u(x) (i.e. without rescaling inV) and consider:

Z(J) = /da1 iy Py (@) ... Py (i) e L' X Jate
(8.70)

| Py (u) is the probability distribution of; in a given disorder

configuration:

Py (@i /D (u— —/u(z)) e Mvl/T - (8.71)

the self energy (u). This raises the question of whether the In the present paper we have compufed(8.70), scaling
FRG equations “know” about ultra-metric matrix inversion. v/N, and taking allJ, different in order to impose all,;, #

These result hold for continuous RSB and the case of no3 ~ O(1).

Because of this scaling withV we obtained a

marginal RSB (when the marginality condition is not obeyed)differentsaddle point than MP (shifted by see [32)), and

is discussed in AppendX E.

F. Discussion: Explicit versus spontaneous
replica symmetry breaking

Let us examine what has been achieved and how it compares

with other works.

since allJ, are different, this saddle point has explicit RSB.
According to SectiofIl! this giveE[u] whenu scales as/N,
i.e. we determined the averaged probabillfy (P.34), (2{86)
fixedw = @/v/N.

On the other hand MP found that:

7lLd(Gﬂ)ab(q:0)71a'71b .

e 2

Py (1) - .- Py (in) = (8.72)

We are interested in the behavior of the effective action of 4
the replicated field theory falV large. Let us focus here on One should in principle be able to recover the 2-point corre-

the uniform configuration, for which'(u) = LT (u), where
we denotd’(u) the effective action per unit volumé&T (u)

lation function [82B) obtained by MP adding small sources
J, as in [87D) and taking derivatives & = 0. Clearly,

then represents the free energy per unit volume, dependirtg reproduce the MP result, these should be taked,as-

on a setu,, a = 1,...,n in presence of external sourcég

which impose field averag€s,(z)) = u,. The usual free

energyF is recovered fot, = 0, F = TT'(u = 0).

O(N®) — 0 and notO(v/N) so as to maintain the unper-
turbed MP saddle point. For instance the diagonal 2-point co
relation function is obtained using = J, all othersJ, = 0,
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and differentiating twice w.r.t/. (The off diagonal one in- N = 1 toy model wherd/y, satisfies an exact RG equation of
volves(J,—J,0,...)). Equivalently it should be obtainable the Burgers-KPZ type with random initial conditions. Sheck
from the effective action fofi,, = @, — @ = O(N°). Thus  well known to develop in this equation, provide an appeal-
scalingi,, ~ VN andJ ~ /N as was done here selects ing physical picture for the singularities in the energydan
the distant states in the MP solution. The fact that we obtairscape responsible for the non-analyticity in the FRG beyond
exactly the MP result for these states shows that there is nidie Larkin length¢1o.
intermediate scaling regime. Comparison between this study and the present one shows
We emphasize that our primary aim here is not to recovegeveral important differences, with interesting physimah-
the MP result, but to understand what exactly the FRG presequences. The scaling In in N, and the definition of the
dicts, in view of getting a better understanding of FRG withi “renormalized” disorder are different. As here, the aushafr
e.g. the--expansion. Extension of the FRG beyond the LarkinRef. [42] focus on the zero mode, but with a different scaling
scale requires giving a meaning to the limit- 0. We find ~ with system size: They defing := L~%? [ u(x) = L%/?4,
here that what the FRG actually computes (froifd ™)) is  such that fluctuations af, remain of order one. Other quan-
a second moment ab in presence of a small extra external tities are:
sourcev/N j, such that allb,, # 0, i.e. an average, such that

when there are several states, the different replicas asech Uv(¢o) = =T'In Py (¢o) (8.74)
in maximally separated statas+ 0). Uy (¢0)Uv (¢h) = Rem(po — ¢f) = Bgewm ((¢o — 0)?) .
Note that the quantity computed by the FRG specifies the (8.75)

system’s preparation, while such a procedure still has to be
worked out for the MP solution. In presence of a broken Sym-ryiq gefinition means that the modg sees an equivalent
metry this is an important issue, and the FRG gives a naturg} _ 0 toy model, with random potentidly (¢). Compar-

solution. ing with (Z3%) and[Z37), we see that since the rescaling in

It would be interesting to understand further the limit ; S5 gitferent there can be no relation betweRfiy,,, (0) or
vap — 0 coming from our solution, which one can call the B (0) and the two point correlation function, neither the
crossover from FRG. to .RSB' It is cIearI_y non-trivial. For one of MP, nor the one obtained here in the FRG. To obtain
instance, one question is what we get if we take a sourc ' !

— (jV'N,—jVN,0,...,0) so that we still have sponta- tﬁ1e 2-p((j)|r|1tdc?.rrelcf;1tt|)on ofMP_one Wouldtst.lll havedolvethe
neous RSB im — 2 copies, or if we divide the replicas in two 0Y MOd€! detine Yv (o), i.e. compute:
groups ofn/2 each,J = (jv/N,..jv/N, —j/N,0,..—jv/'N)
so that RSB persists within each packet. /dfbé o ol Pleh e LaUv(ed)/T (8.76)
Another important issue is what happens at large but finite
N. For anyN, if one parameterizes the 2-replica part of the Ths task is difficult, since it requires not only the second ¢
effective action using?(u.;) = N B (u3,/N), one canwrite  muylant, but also higher ones (not computed(id [42]). More

the 2-point correlation function as importantly, it requires the large argument behavigr- ¢, of
-, ) RppMm(y), not obtained in[42], were attention was focused on
Gap(g = 0) = =2By(0)m (8:73)  the Larkin scale (see below). Thus the information conthine

) . in Rggw IS physically interesting but not obviously related to
for a # b. We have determined the functidBiy () for  |arge scale correlations. It is in a sense (e.g. fordhe 0
z = O(N"), i.e.usy, = O(VN). To obtain By (0) for  case discussed if_[42]) closer in spirit to Wilson-Polckins
finite N however, one needs a priori to knalR(u.,) for  type RG [62] versus an RG based on the effective action (see
uay ~ O(N®), i.e. By(z) for z = O(1/N). The two could  [45][Z€]).
be the same, or there could be a boundary layer ofisize A Reexpressed in the variables of the present work, the result
priori the knowledge of this requires including théN cor-  of [42] reads:
rections in the FRG equation (as is examined_in [47]). This i
may help to better understand the connection of this regime t . . L .
RSB. This is important since there are cases (e.gd fer 0, B(u?*) = B'(0)a* + <§L_o) a (8.77)
6 < 0) where we know that Paris-type RSB cannot survive at
finite V. wherec is a constant. Because of the different rescaling, the
non-analytic term has a coefficient growing with the system
size, which expresses again that it is not an effective actio
However, since th&? term is simply the bare disorder, and
A previous studyl[42] aimed at connecting the RSB solutionthe non-analytic term involves only the Larkin scdle), it
to the FRG. The authors defined, for each configuration oseems that this carries information for and only for the jdsys
the disorder, an “effective random potentidFi (¢o) for a  below and around the Larkin length, and does not contain any
given mode (e.g. the zero mode). Starting from the MP soinformation about large scale behavior. Thus, despitelatxhi
lution 872), they computed the second cumulari/pfand  ing shock behavior at the Larkin scale, we think it has little
showed that it exhibits a non-analyticity, reminiscentloé t do with the FRG as a perturbative method to obtain large scale
one found in the FRG. A parallel was drawn withia= 0, behavior. Not surprisingly therRgg\ is non-perturbative in

G. Interpretation: Comparison with BBM approach
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e = 4 — d, contrarily to the one obtained in standard FRG, In fact there may well be deeper connections to be unveiled
which is of ordete. between the Parisi algebra of ultrametric matrices andyibe t
Another important difference with the present approach iof singular differential equations arising in the FRG. Amart

the scaling withN. The approach of [42] used the unper- example where a RSB solution can equivalently be obtained
turbed MP saddle point and thus, as was extensively disdusseia an RG type equation is the Derrida Spohn solution of the
in the previous Section, it focuses @R, = O(N°) while we  DP on the Cayley tree [31]. This has inspired a similar solu-
focus oniq, = O(N), (i.e.v?, ~ 1/N there andv?, ~ 1  tion for a model with translationally invariant disordefBt].
here) . Further work is needed to connect these regimes. On We have thus shown agreement with the main results of
the other hand it seems that the thermal boundary layer can ke full and the marginal one-step RSB solutions of Mezard-

found within this approach.[77]. Parisi. This is also interesting since it has been widelyatizdb
[64] whether the RSB method captures the physics: Our re-
IX. DISCUSSION AND CONCLUSION sults raise no doubt for infinita’.

More puzzling is the situation for SR disorder. There MP

In this paper we have studied the FRG at laNgeFrom an ex- finq both a staple: rgpliga symmetric sqution_ and a 1-step so-
act saddle point calculation of the replicated effectivéomc  lution where minimization over the breakpoint has to be en-
at largeN' we have derived the exact renormalization groupforced (marginality condition violated). For gaussianotis
equation, valid in any dimensiahfor infinite NV, for the field ~ der both solutions of MP hawg = (2 — d)/2. Similarly the
theory of pinning. It is expressed as thefunction for the FRG naturally finds the f!mte temperature RS soluthn with
second cumulant of the disorder correlator, and is exatteas t ¢ = (2 — d)/2 (and one fixed point solution & = 0 with
second cumulant satisfies a remarkably simple closed equ&-= 0)- A non-analytic solution also seems to exist in the
tion. To orderO(e) it agrees with the one derived by Balents FRG, and work is in progress to analyze it further and eluci-
and Fisher. date whether it is related to the non-marginal 1-step smiuti
This result teaches us a lot about how the FRG works an8f MP. Let us note that inl = 0 we essentially know that
helps put the FRG approach to thexpansion on more solid (@part fromry = 1) RSB does not hold at finité/ (the phase
grounds. Since here the FRG flow equation is formally equiviransition predicted by the GVM in that case must go away
alent to a self-consistent saddle point equation, it is/fulte- at finite IV, _T_ > 0_). So there is little doubt_ that the correct
grable, i.e. one can follow the RG flow from any initial con- Pranch at finiteV is the RS one, as also given by the FRG.
dition. It is thus possible to examine in detail what happendor the DP problem witil = 1 on the other hand, it is not yet
around the Larkin length and how the disorder correlator decear whether both branchesfa= 0 fixed point starting from
velops the non-analyticity. Let us emphasize that this és th ¢ = 0 or a finiteT" non-analytic solution witlf = (2 — d)/2)
first time that the emergence of non-analytic behaviour én th ¢&n coexist. One scenario is that they would cross over at
FRG is proven rigourously, beyond perturbative calcutatio Some lower value ofV: = N. yielding the upper critical di-
Indeed, the 1-loop FRG is insufficient per se to provide such &ension of KPZ. The calculation of the FRGfunction to
proof since the runaway d&”” (0) could very well be argued Next ord(_ar ml/N shoulq shed light on this question, and is
to be the analog of the famous Landau ghost, i.e. a flow to s of high interest. Itis presented inf47]. Our methodsthu
strong coupling fixed point without the need, or better the-po prowaes a unique candidate for a field theory of the strong-
sibility, for renormalization within a non-analytic furichal ~ coupling phase.
space. Here we demonstrate that this is not the case, at leastTo summarize, the present method is promising in solving
for infinite V. mean field models, by using explicit rather than spontaneous
If we had restricted the analysis to the self-consistenaequ RSB. It would be of interest to investigate whether other mod
tion, the continuation beyond the Larkin scale would haveels like the SK-model could be solved via the same route.
seemed quite problematic. Remarkably, the FRG equatiorVlore importantly, it may open an alternative road to tackle
equivalent below the Larkin scale, provides an unambiguougisordered systems from a different direction than expemndi
way to continue the flow equation beyond the Larkin scalearound RSB saddle points, a task which still has to be accom-
Even more remarkably, its solution reproduces exactly th@lished. Of course, in the end, the same difficulties may be
small overlap result of the full RSB solution of MP, a non- in store. They could hide in the subtelties due to the non-
trivial result which, within MP, cannot be obtained without analytic behaviour of thg-function at largeV. However we
constructing the full RSB solution. The mechanism for thisare optimistic, since we have understood the infiditdimit,
seems to be that the FRG solution in that case naturally satigt least in the full-RSB case. Also, a solution has been found
fies the so-called marginality condition. In fact, it turng e for N = 1 to two [43,144] 55] and three loop order [65], and
be equivalent to it, and we were able to find a formula yield-for finite Vat 2-loop order.
ing the complete RSB solution for all overlaps. This is siik Let us close by indicating that many extensions of this work
since we did not make any assumption about Parisi RSB. Ware possible and some in progress. One example is the random
avoided the issue altogether by using a method where RSB f&ld problem, still under intense debate![6€, 67], for whigh
not spontaneous, but explicit. have also computed_[68] the effective action at laigeand
Given that the validity of the Parisi Ansatz, e.g. for the SKat 2-loop order. Finally, the same method applies to the dy-
model, has not yet been proven (despite recent progress [63hamics, classical or quantum: it has been shawn [9] that the
it is interesting to find a method which doestrely on RSB. mode-coupling approximation in glasses! [69] identifieshwit
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(non-marginal) mean field (larg€) dynamics, exhibiting ag- Let us consider &-component field,., with components
ing solutions. However this picture leaves out thermally ac ¢¢,4 = 1,..., N, which can carry other indices, coordinates,
tivated processes, and olf N method may be promnising or be a set of fields, etc.... A genef@(V)-invariant form
there too. for the action functional is
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K.J.W. is supported by the Deutsche Forschungsgemein- Yoy = —% Oy s (B.2)

schaft through Heisenberg grant Wi 1932/1-1, and in part by

the National Science Foundation under grant PHY99-07949 WhereS;,[¢] is a functional of thevilocal field+,,,, (which is
also a bi-index matrix if the field carries other indices, etc.).

Then the effective action associatedX@an be written as

APPENDIX A: VARIATIONAL .
FORMULATION Tlg] = 5¢ :C7h g+ NIO[Y] + T +...,  (B.3)

Let us extend the variational method of Ref.1[24] to the casavhereI°[¢] is a functional of the bilocal field),, in (B2)
where the average of the field,(x) is fixed to a non-zero and satisfies the self-consistent equation:

value denoted herg,(z) = VN, (). One defines the vari- 0 ,
N X 3 . or (SSmt [X]
ational Hamiltonian and free energy: [¥] = (B.4)
) 0ty OXay
Hvar[u] = —/ [ua(x) — ﬂa(x)] Xzy = wzy + G[w]my (BS)
e _ N A
X (Gvar)wa,yb [ua(y) - ub(y)] G[w]my =(C +2 61/1 (BG)
zy
Far|Gvar, 7] = _Tln/D[u] exp (—Huyar[u]/T) Xy iS another (set of) bilocal fields.
+(H — Hvar) .. > (A1)
which satisfies (fon positive integer) the usual bourfl = APPENDIX C: CALCULATION OF HIGHER
~Tln Z < Fyar. HereH = NS[u,0] defined in the text, is CUMULANTS
the replicated Hamiltonian. Comparing wifi{3.27) one finds
that In this Appendix we compute the third and fourth renormal-
. ized cumulants of the disorder. One uses the parameterizati
fvar[ var, U ]/T FO[Gvarvia U] ) (AZ)
where the last argument indicates that fr finite U(x) U(vv) 2T2 Z vap) T 6T3 ZS(UgbaUz%caU?m)
should be replaced b§/ (y); in the infiniteV limit U = U. abe
Restricting to a bare model with only a second cumulant one _ 2 02 0202 02 02 4
finds (omitting the bars on)' 24T4 %;Q ab» Vher Vet Vads Vae: V)
. ~ c.1
Uvv(@), (Go)ae) = — 5 ZB vap(2)?, (G0)22) i (1)
2T We need the matridf,, = (—270,U(X))ab|y=vv UP tO the
- N e . w? fourth cumulant:
Bte) = [ B0 g 200 X B~ Bl
éab — Gae + be _ Gab _ Gba ) (A3)
In general,B(s, z) is a function of two variables, which be- +ﬁ[5ab Z S g — Z S1.abg)
comes a function of the suB(s, z) — B(s + z) only as
N — oo, since in that limit(vw) = 0 and(w?) = N, without C.2
fluctuations, in the gaussian meastre—*"/2. e g}; Qe ~ Z Qo] (€2)
_ The equality of [4713) (pushed to the fourth cumulant, he. t
APPENDIX B: EFFECTIVE ACTION IN above formula) and of{Z:14) using{4120), implies:
NON-UNIFORM BACKGROUND: GENERAL .
B = B'(XY) (C.3)
FORMULATION ab = 2 Xab :
Z Sl ,abg — BH Xab))Xz(z? (C4)

In some applications bilocal terms may already be present in
the starting action. Let us thus give a more general and com-
pact result, which also includes that case. It is derived by a_ Z Q! aboh = B//(Xib))xffb) B///( (0 ))( (1)) (C.5)
simple extension of the methods of Secfiah Ill. ah
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Thus we need compute the terms with one and two free replicenatrix M, but only terms with zero, one or two replica sums.
sums X(b andX@) Because Oﬂﬂ"f) it means that we needThe expression ofM?),; given in [£2b) is thus sufficient,

to computex')), x5, x'?) andx?. To compute them we and we also need:
use the definition§TZ 2X-TZ118). We thus need powers of the

= T3z[ BBl + By + By~ BB B, — BBl B + BB, + BB, (C6)

dropping all terms with three or more sums. One then finds:

D =2[, Z B, (C.7)
Y = ——12 Zsl abg T 13 Z L+ B+ ZBM ') (C.8)
2 = —12 Z St aeq + Tlg > BB, (C.9)

ef
Xt(j)) = 12 Z Q, Jabgh T ;112 I3 |-B), Z Sbgh+S/gh) - Z(B:zeg:zbh + By Sty) + Z(B:z Ston+BieStan)
gh eh he
+EI4Z(B;6B;)€< 3.+ By + Bly) — Bl By Bl; — Bl (Bl Bl + By By + Bl Bi ) . (C.10)
ef

which yieldsg'}) andy) using [Z24).

1. Third cumulant

To obtain the third cumulant we now inse}n{;? in CH). One can rewrit&” (¥, ), indeed taking the derivative di{Z129) with
respect ta2, shows that:

0 B//b
B"(x),) = ——2 | c.11
(Xab) 1+ 4.[2ng ( )
This becomes, regrouping the terms?inbg and dividing by the common denominatigf(1 + 41, B”,) we obtain:
Q! D! 1
Zslabg—i_lll2 ab(2 1aag+ Sl bbg)
g
. L 1 1-, =
—oT,B", Z .+ Bl,)+8LB" Z { o+ Biy) = BiuBly — BiyBi, — BlyByy + 584, Blu + 551, By,
(C.12)
This first yields:
. AT, B"(0) o
g, = 2TEBO 5 (C.13)
1+ 41,B"(0)
Inserting this back yields:
~ 2TI,B" - - ~ ~ ~ - - T 1, - 1, -
S]/.abc = #(Bt/zc + BZ/)C) + 813 lll/b (Blllb - B/(O))(Bt/zc + Blgc) - Bllchl/JC + _(Bt/zc)Q + _(Bl/)c)2 (C14)

14 41,B"(0) 2 2
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O O OO
O Ol A

FIG. 9: Graphical representation of the fourth cumulante Tibtation is explained in_[47]. Each diagram correspondsgquare bracket in
Eqg. [CZ1), in the same order.

In terms of functions it gives:

2T,

WB”(O)BH(Q?)(R@) + B'(2))

Si(a,y,2) =

+8LB8" (x) | (B'(x) = B'(0)(B'(y) + B'(2)) = B'(y)B'(2) + 5(B'(y))* + 5(B'(z))?| . (C.15)

1
2

Integrating once, this yields the simple expression fortltirel cumulant given in the text. Note that, up to terms whiahish
atn = 0, it can be expressed only in terms of the functi®fitz) — B'(0).

2. Fourth cumulant

From [C5) one has:

B EI/
/ _ ab
ze: St ape = Z VTN Yabe (C.16)
1 , B/Ib B//{)
- er =3P g Pab oy } , C.17
2 %;Ql bef zf: [1+4IQB;;,, Lo+ anBr)s e (€10

\évhfere we have useB"’(x, )) B /((1 + 41, B",)? obtained by further differentiation di{Z129) with respezt?,. We also
efine

Yabe = Tiz(z? = 4‘[2 [ (Si ,aae + gi,bbe) + gi,abe} + 2IQT(B¢/16 + B{Je)
~ ~ ~ 1 ~, = ~ o~ ~ ~ ~ ~ o~
+813 [ - §(B¢/1a + BlIJb)(leze + BZIJe) + Q(Btlzeleze + BZIJeBlIJe) + lezb(leze + BZIJe) - lezeBl/m} ’ (018)
and

Zapes = T°X (b) =21 {Ql abef Q/Laaef Q1 bbef| T 2I,T(S], aef T S bef) T AIT (B, af + BbeBbf)
+813 [ - (Bt/zag]/.,aef + Bllybgi,bef) - (Baesl,aaf + Bbesl,bbf) + (B afsl,fae + Bbfsl,fbe)
+B:zb(§{,bef + gi,aef) + (B;egi,abf + By, ~{,abf) - (Bclzf‘g{,fbe + Bll)fg{,fae)}
+814 [Bfwaw(QB;f +Bly) + Bl By 2By + Bly) — (By By + By Byp)Biy — 3B, (Bl By + By By.)

~2B,,. B}, (Bl + By, + Bly) + 2B}, By Bl; + 2B,,(B, B, +Bngge + BiBig)|

which should be further symmetrized overf for later use (indicated by sympbelow).
The fourth cumulant equation yields, regrouping and sifyiolg the denominators (and using also the third cumulanteq
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tion):

1~ S0 Sl abe Sl,abf
ab™ 5,
2 Bab Btlz/b

1~ - 1~ 1~ - -
§Q/1abef + 2123317(5@/1@@# + §Q/1bbef) +20Tsym, ;[ gb(Si,aef + 51 pes)]
+41,T B, (B, Blj + BbeBbj) +8I3B absyrnej (Btlzasl,aef + Bllybgi,bef) - (Btlzegi,aaf + Bgegi,bbf)

+(B s S fae + Bllzfsi,fbe) + B;b(Si,bef + Si,aef) + (BleS1 abs + BreSt.abs) — (BosS1 ppe + BZ/)fSi,fae):|

+81, By, sym, [BéeBge(2Blf + Blp) + By Bl 2By + Bly) — (By By + By Bip) Biy — 3B44(Bls By + By Bi.)
—2B., B}, (BL; + By, + B.;) + 2B B Bl + 2B.,(B., Bl + By B}, + B;eBgf)} : (C.19)

Settinga = b and solving one finds:

AL, TB"(0) . 8T212B"(0) N 8I3B"(0)T

2 S s+ _ . BB C.20
L1 anB(0) ) e TN AL B(0))? | 1+ 46B"(0) (G20

aePaf

1 1
§Qaaef =
This gives the final result for the fourth cumulant:

Qabed = Syrnabcd{
48[—4BOB’bB’ B, +A(B.,)*B. B, +2(B.,)?B.,B,. — AB.,B. .B.,B}. + B.,B.,B}.B.,| I
+192 [ 4(By)? Bl Bl Bl — 4By(B,)* By By, — 8By By, B, By Bl + A(B,)* B}, By Bll. + 4B}, (B,.)* By By,
BB B BB 8By B Bl BBl — SBlaBl BL BBl APl B BBl 4 A BB BB
—4(B,)* B By ad+2BabBacBZ/)dB Bl + (B, )2( )2 Blly +A(By)* B, Bl By, — AB)(B),.)* BBy,
+(Bla)(Ba)* Bra| 3

+192T[2B’ vBL.BL,BY, + 2B, B.,B;.BY, — 2ByB., B, B! + (B.,)*B.,B.. — 2B, B..,B;.B.. — 2B} B., B, B,

LI
(BB B! — 2B, B B’B}7~
(Baw)*B ab 0N 4 aLBY
S I
+32T | By Bl Bl — 22—
. 1+ 4L,BY
- 12
4872 B, B B! + B.,B! B;’c]72~
. (1 + 41,B))2
Fo I3
128772 B;cBch’dB’”}#} (C.21)
. (1+ 41,83

where Sym,,;., denotesl/24 times the sum of all 24 per- as:

mutations of the indices, b, ¢, d, and we noteB), = B'(0), 1 2o 9 o
By = B"(0) and By’ = B'(0). Note that all terms contain- Ulovl = o Z 3173 zb: Slvap Vhes Veal +---
ing B'(0) can be eliminated by the redefinitio,., (x) = e (D.1)
B'(z) — B'(0). The self-consistent equatiof{331) then yields, by a simil
expansion in numbers of sums:
APPENDIX D: CUMULANT EXPANSION 6B[v - v] B (02, (x) + 271
- = = v (x
FOR NON-LOCAL EFFECTIVE ACTION 8(va () - vp(z)) ab !
The cumulant expansion can be generalized to study the ef- + 4/ cgy [6 0Blv -] ~3 OBlv -] D
fective action for non-uniform configurations. The funaog y (va(y) - ve(y))  0(valy) - U“(y)(é 2)

Ulv-v] is a functional of the field?, () and can be expanded
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APPENDIX E: ANALYSIS FOR ALL m AND 6=0,i.e.(=(2—d)/2ford < 2or( =0ford = 2, so that
SHORT RANGE CASE T, = 4A4T /e does not flow. This is the case studied here.

To refine the analysis and study the behavior for all values 1. d<2
of m, let us rewrite from[[€.0) the condition th&remains

analytic for allm. It reads: Following the same steps as in Secfion Ml B, the general so-

lution of the fixed-point conditiomd,,z(y) = 0 in {Z8) for

T> f(m) forall m (E.1) a fixed value of, > 0, imposingz(yo) = 0 is

(B")~* (ﬁ) (4g71) ™7 — a? sy Y Yo, €—2€ Yo\ T
_ 2) _ (gyl)™ —a ) =2 - 2 4 o (L2
f(m) = o, = o, , (B2 e 2 2e Y
. . . Tm€$6 Yo e
where we have also inserted the value of the inverse function +m — -1 . (F1)
with B”((B")~Y(z)) = =, for the power law models. This %o y

condition is equivalentto the vanishing of the replicoe,itis  Taking a derivative ay = y,, we obtain a self-consistency

the line where the RS solution of the GVM becomes unstabl@gndition for zj. One solution isz, = 0, the “zero-
to RSB. temperature” fixed point discussed in Secfion VIl B. The othe
One can then plot (see Fig]10) the functipfm) for the  oneis
three cases defined in the text, BRy) > 0, marginab(v) = T
0 and SRA(y) < 0 whered(y) = d — 2 + {72. The LR and —ex) = (77"24) -1, (F.2)
Yol€ —

marginal cases, which correspond to continuous and one step
marginal RSB solutions, have been discussed in the text anglith the condition that it must be positive. ReinsertindHl)
there the FRG gives back exactly, (0) of the MP solution. ~ we obtain the final form for the finite-temperature fixed point
We defer the detailed study of the SR case to further work,

2¢
and give here a few general remarks. TP T 2 o (@)”‘
First one notices on Fi@0 that solving the FRG equation e 2 2Ce Y
decreasing the mass from infinity one first has the analytic 1 5 2
solution which coincides with the RS one. Fbr> T* = b [Tm - M} [<@> _ 1]
max,, f(m) it remains analytic down te: = 0. ForT < T* 2¢ € Y
a cusp arises when the left branch of the line is reached. Thus _2¢
despite the reentrance of the analytic solution at small _y=v  Tm (@)62C 1 (F.3)
freezing of the FRG solution has already occurred and it is € 2¢ Y

clearly important to understand how to extend the FRG in th
shaded region. On the other hand, a 1-step solution of the ME o . / .
saddle point equations exists, obtained by varying thednee chg}fgng%gﬂ? _f')(()ebddf ;)t' ?ﬁ:ﬁ:uﬂgﬁlzml&%ﬁ glztat
ergy w.r.t.u.. Its precise boundary depends on the model, bufj yo(EjQC) ; g /p e

it is generally contained within the shaded region (for dieta SUch thatl’, s At this point, alsaz;, vanishes and
see [24[ 26,29, 70]). An intriguing property of the GVM is the solutiony’(z) = —y(x) becomes non-analytic. The fixed-
the simultaneous existence, within the rightmost portidthe ~ POint analysis alone does neither fix the valuggmor7...
shaded region near the axis = 0, of two locally stable so- queyer we can now explicitly c_heck that this fixed-point
lutions, one RS and the other 1-step RSB. Thus, although thePlution identifies with the analytic solutiof (7127 _T@)2
line in Fig.[ID is the locus of a continuous transition from RSWhen settingm — 0, usingT,, = T,,/(2 — d) and¢ =

to RSB, in this rightmost portion of the — T’ diagram, the 1- 1/ = (2 — d)/2. This identification works only foi” > T,
step non-marginal RSB solution appears discontinuously, b @nd Sincey is now fixed by [7.28), we can compuie and

fore the line is reached &8is lowered. Work is in progress to find that itis given by[[Z.39). BeloW'. the solution freezes at
make contact between FRG and RSB in this SR case, and {# = " at the zero temperature fixed point.
particular to understand whether there are also two branche

he term in the second line di{F.3) was not present in the

of solutions of the FRG equation in that region. 2. d=2
Let us now solve the fixed point conditiond,,xz(y) = 0 in
APPENDIX F: FINITE-TEMPERATURE (Z8) for¢ = 0, imposingz(yp) = 0. One finds:
_ T, !
€ € €ry — 1

From the RG point of view it is interesting to search for finite Determininaz’ acain one finds. in addition to the solution
temperature fixed points (FP) of the FRG equation, espgciall ~,” ™ iningz, agal inas, 1 " utl

in view of future extensions to finit& (since we know at least To =
in some cases, that these persist at finife It is convenient Y ] 5
to use Eq.[[718). These FPs exist only in the marginal case —o = v (F.5)
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f(m) f(m) f(m)

0(y) >0 0(y) =0 0(y) <0

FIG. 10: The functionf(m) defined in Eq.[(ER).

Reinserting one finds finally the finite-temperature fixedfor all v such thats’(u) # 0. Using that due to (se€(8.5),

points equivalent to (5.2) of MP):
* Y —Yo T ~ 1
x =>————In , F.6 - =
(y) . — In(y/yo) (F.6) G(k) — G(k,u) = ~ T
with e = 2 andT,,, = T'/=. There is thus a line of fixed points I 1
with ¢ = 0in d = 2, parameterized by temperatugg,being —/ 2R m 4 [o](v) (G.3)

again undetermined.
To compare with the solution of the flow equation, we ob-we have
viously need to consider a broader class of SR models with

!
B'(2) = —gexp(—z/a?). The solution is then: O, (G(k) — G(k = _ o'(u) . (G4
, L ( ( ) ( ,U)) (kQ 4 m2 4 [U](U))2 ( )
z=a"In(yo/y) +€ (¥ — vo) (F.7) . _
T(ra®)— \—T/(na?) On the other hand, we can take a derivativd of{G.1) with re-

Yo = gm A (F.8) spect tom?:

with ¢ = 2. For small disordefj, andT > T, = ema® =

2ma?, yo(m) flows to zero asn — 0 and the solution remains Op2o(u) = —4B" <2T/(é(k) — G(k, u)))

analytic. ForT' < T, the solution develops a cusp whg# k

reacheg)y = yo(m.) = ea?, i.e. at the Larkin mass: v / B,z (G(k) — Gk, u)) (G.5)
me = (g/aQE)WA% . (F.9) :

) Eliminating B”(. . . ) one finds:
Thus only forT" = T, the solution reaches fon — 0 an

analytic finited" fixed point associated witQi= 0, of the form P 1

(ED). Thus ind = 2 the line of finite-temperature fixed points m20 (1) L (2t m2 1 [o](w)?
with ¢ = 0 corresponds to the line of critical fixed points as _

the parameted is varied. =— / Om2(G(k) — G(k,u)) . (G.6)

k
APPENDIX G: RG FORMULATION OF THE Taking another derivative with respectdoafter using [GH)
RSB SOLUTION gives
Oz !

In this appendix, we derive simple RG equations for the MP9. 02+ m? j_(?cz] Ok 6m2/ e maz (j:)[o_](u))Q :
solution in the full RSB case. This gives a more directderiva  ** k G.7)

tion of the key-equationE{8b1) arlld(8.52). We start froee (s
@B.4) and[[8b), equivalent to (5.4) of MP):

o(u) = —%B’ <2T/(é(k) - G(kz,u))> . (G.D)

k

Noting that the derivatives of the numerator cancel, we get

/ uo' (w)pao(u) /a’(u)(lwmz[a](u))
O WP S B )

Taking a derivative with respect toyields Since forall, [, (k* + m? + [o](u)) " # 0 and by assump-
tion o’ (u) # 0, RSB reveals its universality in the simple re-

=4B" 2(k) — u 1 lation:
1=4B <2T/kG(k) G(k, ))/k(kuﬂﬂa](zégz)

UOpm20(u) = 14 Opz2lo](u) , (G.9)
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which, upon another derivation, yields the two “RG equa-The left-hand side is plotted on figurel 11; note that alwags th

tions”: first exponent is negative, and the second and third are posi-
q tive. Thus the solution fom = 0 or C = 0 is simplyy, = 1.
m2_2 (m2 + [U](u)) =0 (G.10)  For non-vanishingC andm, the solution can be obtained
5—
d d graphically as the intersection &(y,) with —Om T,
mQﬁa(u) =0. (G.11) Note that there is a solution for aiy.
m

Form — 0, the approach tgy = 1 is obtained by lineariz-
ing F(yo), with the result
APPENDIX H: CONVERGENCE TO THE
FIXED POINT yo — 1~ L& e (H.6)
) 1+~
Since we have found the solution of the FRG equation for ar-
bitrary disorder correlations, it is instructive to studigtcon- APPENDIX It PURE O(N) MODELS,

vergence to the FRG fixed point in the case where the inital NON-ANALYTIC EFEECTIVE ACTION
disorder is not of the simple forfi{Z]10) on an explicit exam-

ple. We start from a disorder correlator which is the superpo|n this Section we recall the corresponding result for the ef

sition of two power laws: fective action of the generic pur@(V) model at largeN.
, g ) g One mechanism by which the effective action may becomes
—B'(z) = @+ 2 +C @@+ 20 (H.1)  non-analytic is given on standard exampledf
with a > ~, s.t. for largez the first term dominates and fixes 1. Self-consistent equation
the exponenf = 5-<—. We will determine the inverse func-
he exponen( 2(1+) . The genericO(N) model in dimensioni is defined by the
tion ®(x) only for C’ small. One finds action:
__ e (Yo, -3-1 1 1 1 u(z)?
¥ () =T e M s L+ Jetuter + v ()]
with C’ ~ C, and we have defined (I-1)

Herem is used as a parameter, the bare mass beipg=

I 1-a+y 43 m? + 2V’(0). For a uniform mode one hagu] = LT[v] in
5 v H3)  terms of the rescaled fietd— u/v/N. One defines:
We have chosel = (v/¢€)” to simplify all prefactors. I'[v] = 122 +V(@?) = W(H?). (1.2)
Inserting into [8:4R), we obtain: 2

ae— 11 cacvo11 e Similarly, one defines
(yom ™ =¢)"7 7"+ C(yom =) 2" =m™ . (H4)

1
511 W(z) = §m22 +V(z), (1.3)
By multiplying with m¢ andy,° , we obtain the equivalent
formula whether absorbing or not the mass into the (bare or renormal-
s sir ized) potential. Again, forn = oo, one hasV = V. The
Flyo) :==yy" — vy’ = _Cm%e i (H.5)  same method as in Sectidn{11) yields the saddle point equa-
tions for infinite N:
F(y, ) V' (0 = V' (v + G(v)) (1.4)
T
= . 1.5
G(v) /q Ermiwriaw) P
More details, a graphical derivation, and th&V expansion
are given inl[4i7]. A condition for the stability of the theasy
that:
! % 2 (v2) := m? + 20" (v?) > 0 forallv?.  (1.6)
2. Solution and FRG equation
Let us start from the form

. . ' A
FIG. 11: The function[{HI5), describing the approach to tledi R 1
point in presence of an additional bare power law tail. Wiz) =W e+ T . 7(12 T 2W’(:c) ) (1.7)



The self-consistent solution of this equation is formally:

1

s (1.8)

(1.9)

andy > 0.
Let us write the associated FRG equation. One has

A
—mO, W' (z) = —m? = 2TW" [z + T/ %
¢ ¢ +2W'(z)

~ A
< (~mon i) / (@ + 2;%@))2

sal4 _ " A 1
W' (z) =W <:v+T/q 7q2+2ﬁ//(:p)>

Y A 1
X(l—QTW (x)/q m) .

(1.10)

(1.11)

Thus:

1! 21171 A 1 2
—mO, W' () = 2Tm*W (x)/ m —m*.
(1.12)

Ford < 4 takingA to infinity, this becomes

W () = 2T S () (21 ()% — m?
€

(1.13)
3. ¢*-theory and non-analytic behavior
For theg? theoryV (z) = 4(x — 1)? this reads:
W(x) = 2m? + 2 1)+9T/A ! (1.14)
T)=—-m =(x — — —_— .
27 2 2 Jy ¢+ 20 ()
2 m? A
z(y) = — +1———T/7 1.15
(y) 5 . S (1.15)

for y > yo with z(yp) = 0. At T = 0, asm is decreased,
there is a transition in any whenm? = m? — g vanishes.
For d > 2, the transition persists fdFfF < 7., and occurs

whenm? — g + ¢gT qu qiz vanishes, with the standard result:

(1.16)

A
1
TC/ _2:17
qg 4

which depends strongly on the UV-cutdff 4, vanishes at the

transition, and in the ordered phase the effective actieneha

non-analytic form. In addition of the brandh{1l115) fgr> 0,

x>z, =1- mT2 - quA q% the functionz(y) has a branch
y =0for0 < = < z., wherez, is the order parameter.
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y

FIG. 12: Relation between andy in scalar field theory: above, at,
and below the critical temperature.

M'*°_ Indeed, from the self-consistent soluti@@{].15), sub-
tracting the same withh = 2. andy = 0 one gets

Moo

2
=Zy+(2 <d—2>/2Tc/ —— (.17

z(y) gy+(y)  ERtd (1.17)

for2 < d < 4. This correspondsté = (2+d)/(2 — d). It

can be recovered by solving the FRG equation. One can look

for fixed-point solutions of the form
W'(x) = m*f(mPz) . (1.18)

If one wants the two first terms to dominate and to scale in the

same way, one needs< 2 andg = «ae/2 — 2. For all three

terms to scale the same way one needs 2, § = 2 — d.

Inserting [LIB) into[[TIB) yields

L af(s) — 5f(2) = 2T 2L ()5 (2) 2 (1.09)

Again this can be transformed into a linear RG equation for
2(f):
! Ad —€/2
(I —af)2'(f) = B=(f) =2T—(2f)"7".  (1.20)

The solutions of the above equation with= 2, 5 = 2 — d
are:

f
A(f) = —2T 2 (25 — 1)(@-2)/2 / te/2(2p — 1)~ /2

€ g

(1.21)
A particular solution is
2(f) = (2f -2 (1.22)
P2y m* 2/(d—2)
W' (z) = 5 +z . (1.23)

In the limit of zero mass this yieldg’ (z) = 22/(4-2),
One can also pursue the RG approach in the ordered phase,

Exactly atT" = T, we should recover that the effective ac- as is done usually in the form of a non-linear sigma model,

tion exhibits the standard power-law non-analytidify/] =

and deal with a non-analytic effective action.
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Although the mechanism for the disordered systems studknow that for infinite V, this is also accompanied by RSB,

ied in the main text seems to be different frgrhhmodels, it

but this does not have to be so in general, i.e. the cusp can

raises the question of the meaning of the non-analyticity irarise without RSB, just from localization (single grounditst
the disordered problem. Is it the signature that we arewigali dominance).
with a glass phase, where a symmetry has been broken? We
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