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We compute the Functional Renormalization Group (FRG) disorder-correlator function R(v) for
d-dimensional elastic manifolds pinned by a random potential in the limit of infinite embedding
space dimension N . It measures the equilibrium response of the manifold in a quadratic potential
well as the center of the well is varied from 0 to v. We find two distinct scaling regimes: (i) a “single
shock” regime, v2 ∼ L−d where Ld is the system volume and (ii) a “thermodynamic” regime,
v2 ∼ N . In regime (i) all the equivalent replica symmetry breaking (RSB) saddle points within the
Gaussian variational approximation contribute, while in regime (ii) the effect of RSB enters only
through a single anomaly. When the RSB is continuous (e.g., for short-range disorder, in dimension
2 ≤ d ≤ 4), we prove that regime (ii) yields the large-N FRG function obtained previously. In
that case, the disorder correlator exhibits a cusp in both regimes, though with different amplitudes
and of different physical origin. When the RSB solution is 1-step and non-marginal (e.g., d < 2
for SR disorder), the correlator R(v) in regime (ii) is considerably reduced, and exhibits no cusp.
Solutions of the FRG flow corresponding to non-equilibrium states are discussed as well. In all cases
the regime (i) exhibits a cusp non-analyticity at T = 0, whose form and thermal rounding at finite
T is obtained exactly and interpreted in terms of shocks. The results are compared with previous
work, and consequences for manifolds at finite N , as well as extensions to spin glasses and related
models are discussed.

PACS numbers:

I. INTRODUCTION

A major difficulty in devising analytical methods to
handle glassy systems, such as systems with quenched
disorder, is to describe accurately the many metastable
states which play a role both in the statics (equilibrium)
and the dynamics, as well as the barriers separating
these states. Two main general methods have been
developed. The first is a mean-field theory, based on the
Gaussian variational method (GVM), which, in the stat-
ics, captures the many states by a multitude of saddle
points exhibiting spontaneous replica symmetry break-
ing (RSB)1. Being highly versatile, the GVM has been
applied to numerous problems, notably in spin glasses,
and has later been extended to the dynamics2,3. The
second method is the functional renormalization group
(FRG) which has been applied successfully to disordered
elastic systems and random field spin models, both in the
statics4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28

as for the driven dynamics29,30,31,32,33,34,35,36. Although
its range of applications is at present smaller, it is a
powerful and promising method which allows to compute
fluctuations not captured by mean-field theory. The
(relevant) coupling constant in FRG is the disorder
correlator R(u). In contrast to standard field theories
it is not a number but a function of the field u, defined
for the microscopic model in Eq. (6). Since the two
methods GVM and FRG are rather different in spirit,
and historically have developed along separate tracks,
it is important to compare them whenever possible. A
further goal is to understand whether and how they may

be extended to a broader range of models.

In this paper we focus on disordered elastic systems,
where both methods have been applied. As we discuss,
some of the conclusions and ideas may extend to other
models with quenched disorder. Besides being of direct
interest for experiments, including vortex lattices, mag-
netic systems, density waves5,37,38,39,40,41,42, models of
manifolds in a random potential provide the simplest
example of a glass phase where numerous metastable
states occur beyond the so-called Larkin scale. As for
random-field systems, the so-called dimensional reduc-
tion phenomenon occurs, which renders conventional
zero-temperature perturbation theory trivial43,44,45, indi-
cating the failure of the latter to capture the complexity
of the energy landscape. A big success of both methods,
GVM and FRG, has been to circumvent this problem.
However, they achieve this in seemingly rather different
ways: The GVM approximates the Gibbs measure by a
hierarchical superposition of Gaussians, encoded in the
Parisi Ansatz1,46. In the FRG, the existence of a cusp
(in the coupling function R′′(u)) beyond the Larkin scale
is related to the existence of many metastable states.
This was nicely illustrated in an early paper by Balents,
Bouchaud and Mézard47. The idea that coarse graining
leads to shocks in the force landscape, and the similarity
of the pinning problem to the Burgers equation, was in-
troduced using a toy RG model with two degrees of free-
dom. However, the function R(u) defined in that work
does not coincide with the one usually studied in field
theory, making a precise comparison difficult.

In this article, we want to make this comparison quan-
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titative. Let us denote u(x), x ∈ Rd, the N -component
displacement (or “height”) field which parameterizes the
position of a manifold of internal dimension d in the N -
dimensional embedding space. The GVM was applied
to the problem by Mézard and Parisi (MP)46, introduc-
ing replicated fields ua(x). For long-range disorder, or
for short-range disorder and internal dimensions above
d = 2, they found a solution with continuous replica sym-
metry breaking (RSB) with a roughness exponent for the
manifold u(x) ∼ xζ given by the Flory estimate. (The
FRG allows one to go beyond this result and to com-
pute deviations from Flory for N <∞.) For short-range
disorder, with d < 2, they found a 1-step RSB solution,
analogous to the one in infinite range p-spin models2,3.

In the infinite-N limit, the GVM becomes formally ex-
act and hence can be compared with the FRG. Two of
us11,13 obtained a self-consistent equation for the cou-
pling function of the FRG, R(u). It was defined from the
effective action of the replicated field theory (for a uni-
form mode u(x) = u), a standard field theory definition,
and computed in the large-N limit, performing the usual
rescaling R(u) = NB̃(u2/N). Although the resulting

self-consistent equation for B̃(x) is formally valid only
below the Larkin scale, the corresponding FRG equa-
tion could be continued “naturally” to scales beyond the
Larkin scale (with a cusp present at u = 0), extend-
ing the flow all the way to the RG fixed point. For
2 ≤ d ≤ 4, where the RSB is continuous, this FRG flow
recovered11,13 the MP result for small overlap, i.e., it
yielded only, even though exactly, the (non-trivial) con-
tribution of the most distant states to the correlation
function. However, quite surprisingly, varying the IR cut-
off m in the confining potential well finally allows for the
reconstruction of the complete self-energy function ob-
tained in the GVM, without ever referring to ultrametric
matrices11,13 .

Despite this quantitative progress in understanding the
connection between FRG and GVM, several questions re-
mained. It is natural that the FRG recovers the contribu-
tion of distant states, since it introduces an external field
which explicitly breaks replica symmetry and hence splits
all the replicas: ua − ub 6= 0. However, one would hope
FRG to describe all states, not just the ones with smallest
overlap. Further, no thermal rounding of the cusp was
found which is physically surprising in view of results re-
lating finite-temperature droplets and FRG22,48,49. Fi-
nally, one would like to describe better the situation
where the GVM yields a non-marginal 1-step RSB so-
lution, namely the case d < 2 with short-range disor-
der, which includes in particular the KPZ problem with
d = 150,51,52,53,54).

The first aim of this paper is to compute the FRG
functions from first principles in the large-N limit. We
take advantage of the recently obtained direct relation
between the field theoretic definition of the FRG function
R(u) and directly observable quantities48,49. This has
allowed for a numerical determination ofR(u) or the force

correlator

∆(u) = −R′′(u) (1)

for N = 1 interfaces at T = 0 in dimensions d = 0, 1, 2, 3
in Ref. 55, as well as for the depinning problem in
Refs. 56,57. It was found that the numerics compares
remarkably well with the ǫ = 4 − d expansion, to 1-loop,
and even better to 2-loop order. The idea, also imple-
mented here, is to subject the manifold, in addition to
the random potential, to an external quadratic potential

well m
2

2

∫

ddx (u(x) − v)2, centered at v. The “mass” m
acts as an infrared cutoff limiting the interface fluctua-
tions. By measuring the free energy V̂ (v) of the system
as a function of v one obtains a random landscape whose
second cumulant is the function R(v). More generally, if
v → v(x) the whole second cumulant functional R[v] is
retrieved.

Here we compute this functional exactly. We find two

distinct scaling regimes with non-trivial infinite-N limits,
the first one where v2 ∼ N0 L−d, the second for v2 ∼ N .
The reason for this peculiar property is that at v = 0
there is spontaneous RSB, which implies the contribution
of many saddle points which are equivalent under replica
permutations. If the “applied field” v remains “small”
(first regime) the spontaneous RSB saddle point is not
significantly modified and all saddle points contribute to
a given observable (though, now, not all of them equiv-
alently). This can be handled by a method introduced
in Ref. 47 , and will be applied here with some improve-
ments. In the second regime, which corresponds to the
more conventional scaling at large N , the applied field is
stronger and the saddle point is modified. We explicitly
compute the v-dependence, and show how, for large v,
a non-trivial FRG function emerges. Specifically, in the
case of a uniform field v(x) = v we obtain:

R(v) −R(0) =

{

L−dr̃(v2Ld) for v2 ∼ L−d, (i)
Nr(v2/N) for v2 ∼ N, (ii)

(2)

with two different scaling functions which we compute.
We check that the two regimes match, i.e., r̃(z) ∼ Az at
large z and r(z) ∼ Az at small z. In the case where the
RSB is continuous (e.g., for 2 ≤ d ≤ 4) we prove that
regime (ii) yields the large-N FRG function obtained in
our previous study11,13 . Hence the natural continuation
(using the FRG flow-equation) performed there is cor-
rect, and one of the main results of the present paper is
to show this rigorously. Remarkably, RSB enters in this
regime only through a single number, an anomaly. In
the case of continuous RSB (including the marginal 1-
step solution in d = 2) we find that both regimes (i) and
(ii) in (2) exhibit a cusp in R′′(v) at the origin, though of

different nature. Specifically, one finds r̃(z) = Bz+C̃z3/2

at small z (at T = 0) and r(z) ∼ Az + Cz3/2 at small z
(for all T in the glass phase). These cusps are caused by

jump discontinuities in V̂ ′(v), called shocks, as the center
of the well v is moved. In regime (i) the scaling function
describes a fluctuation of the energy, as measured by the
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connected correlator

[V̂ (v) − V̂ (0)]2 = 2Ld[R(v) −R(0)] (3)

of order unity as v is moved by a very small amount ∼
L−d/2. Hence we call this regime “single shock regime”.
By contrast, in regime (ii) the variance of the energy fluc-
tuations scales with volume and N . Hence we call this
regime “thermodynamic”, since the scaling function r(z)
encodes the average properties of many shocks. The two
regimes also exhibit different properties with respect to
temperature. In regime (ii), as was found in11,13, the
temperature dependence is weak and the cusp survives
even for T > 0. Regime (i) exhibits a thermal rounding of
the cusp, whose form is obtained in an exact closed form.
We compare its form with the predictions for the ther-
mal boundary layer of the FRG obtained previously48,49

in cases where it can be obtained using droplet arguments
(i.e., at finite N). For sufficiently short-ranged disorder
in d < 2, the equilibrium 1-step RSB solution yields a
considerably reduced regime (ii) with no non-analyticity.
A non-analyticity in this regime would indicate the crit-
icality of the system towards clustering of the states into
an ultrametric superstructure (higher-step RSB). This
kind of criticality is not present in typical samples in
d < 2, and only arise in exponentially rare disorder re-
alizations, as we confirm by studying the configurational
entropy of non-equilibrium states. Possible consequences
of our results for manifolds at finite N are discussed, as
well as extensions to spin glasses and related models.

The outline of the paper is as follows. In Section II
we define the model and the observable to be studied.
In Section III we analyze regime (i) for both continu-
ous and 1-step RSB, discussing various subtleties of the
phase diagram in the 1-step case. We study in particu-
lar the non-analytic cusp arising in the force correlator
at T = 0 and its thermal rounding. Taking the limit of
large v ≫ 1 we establish the matching with the regime
v2 ∼ N , which is analyzed in detail in Section IV. We
rigorously show how to compute the FRG function R(v)
exactly by introducing two replica groups and derive from
it the correct FRG flow equations in all cases, including
the anomaly arising from RSB. The physical significance
of the presence or absence of a cusp in this regime is
discussed. The results are summarized in Section V and
possible applications are discussed.

II. MODEL, OBSERVABLES AND PREVIOUS
RESULTS

A. Model

We consider an elastic manifold parameterized by a
N -component displacement field u(x), also denoted ux,
where x belongs to the internal d-dimensional space.
The manifold is exposed to a random potential, V (x, u),
which lives in a (D = d+N)-dimensional space. Indices
of the field uix, i = 1, . . . , N are shown only when strictly

needed, and we use the notation u · v =
∑N

i=1 u
ivi. We

study the (classical) equilibrium statistical mechanics de-
fined by the canonical partition sum ZV = Tr e−βHV at
temperature T , and denote thermal averages by 〈F [u]〉V
(or sometimes simply 〈F [u]〉) in a given realization of
the random potential. The model is defined by the total
energy:

HV [u] =
1

2

∫

k

g−1
k uk · u−k +

∫

x

V (x, ux) , (4)

where uk =
∫

x uxe
ikx,

∫

x =
∫

ddx and ux =
∫

k uke
−ikx,

∫

k
=
∫

ddk
(2π)d . To fix the average center-of-mass position

ucm := uk=0/L
d we choose a non-zero value for g−1

k=0 =
cm2, which takes the role of a mass, c being the elastic
constant. The mass provides a quadratic well for the
manifold and thus serves as an IR cutoff to limit the
displacement fluctuations. One is often interested in the
scale invariant limit, m → 0. A UV cutoff ∼ Λ−1 in x
space (e.g., due to a lattice) is implicit everywhere. For
specific applications we consider79 :

gk =
1

c(k2 +m2)
, (5)

even though most results apply to more general forms of
gk. The quenched disorder is chosen to possess statistical
translational invariance, with second cumulant

V (x, u)V (x′, u′) = δ(d)(x− x′)R0(u− u′) . (6)

This property entails a useful symmetry - see below -
usually referred to as statistical tilt symmetry (STS). We
always assume O(N) symmetry of the disorder, choosing
the bare correlator to be80:

R0(u) = NB(u2/N). (7)

This scaling with N yields a non-trivial large-N limit.
Among the variety of models parameterized by the func-
tion B(z) one distinguishes short-range (SR) disorder,
one often studied example being:

(I) B(z) = B0e
−z/r2f [SR], (8)

and long-range (LR) disorder, often represented by the
family of power law force correlator81:

(II) B′(z) = − B0

r2f (1 + z
γr2f

)γ
[LR]. (9)

Here, the parametrization of model II is chosen82 such
that the limit γ → ∞ corresponds to model I, and that
the limits γ → 1 and γ → 0 are meaningful. These
two models possess a special scale-invariance property at
infinite N : As discussed below in Section IV, they arrive
at their FRG fixed point after a finite renormalization
time83.
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It is well known 37 that the effect of disorder in model
(4) for any N becomes non-linear, and metastability ap-
pears when the mass is decreased beyond some charac-
teristic scale. As easily seen from dimensional analysis,
the natural unit is the so-called Larkin scale84:

µc ≡
1

Lc
:=

(

B0

c2r4f

)1/ǫ

, (10)

where ǫ = 4 − d. In finite dimensions d > 0, Lc = 1/µc
has the loose interpretation of the smallest typical size of
domains which may be trapped in different metastable
states and thus exhibit glassiness at low temperature.
The energy of such domains is naturally expressed in the
unit of energy

Ec := cµ−d
c (rfµc)

2, (11)

while rf and Lc = 1/µc are the natural scales for embed-
ding space and internal space (i.e. inverse mass) lengths
in the problem. We are free to choose units in which
Ec = Lc = rf = 1, or equivalently, c = B0 = rf = 1,
which we adopt throughout the paper. For complete-
ness, we give the dimensions of all observables used in
the present paper in App. A, which allows to restore the
full dependence on these parameters.

In order to study the model (4) one introduces repli-
cated fields ua(x), a = 1, . . . , n. Using standard meth-
ods, all disorder-averaged correlation functions of the
u(x) field can be expressed as correlation functions of
the replicated fields ua(x) in the theory with partition
sum ZnV = Tr e−S[u] and action S[u]:

S[u] =
1

T

∑

a

∫

k

g−1
k uak · ua−k −

1

2T 2

∑

ab

∫

x

R0(u
a
x − ubx).

(12)

B. Summary of previous studies

1. Gaussian Variational Method (GVM)

Before defining the observable computed in the present
work let us briefly review the quantities studied in pre-
vious publications11,13,46, and the main results obtained
there (details are skipped and can be found in these origi-
nal publications). The model (12) was studied in Ref. 46
using the Gaussian Variational Method (GVM), which
becomes exact in the limit N = ∞. The central observ-
able calculated there is the two point correlation function
of the replicated field:

〈uaik ubjk′ 〉S = Gab(k)δij(2π)dδ(d)(k + k′). (13)

Here we denote by 〈.〉S averages over the replicated ac-
tion (we later drop the subscript S when not strictly
needed). The correlation (13) encodes85 the averages

〈uiku
j
k′〉 = Gaa(k)δij(2π)dδ(d)(k + k′) (diagonal part)

and 〈uiku
j
k′〉c =

∑

bGab(k)δij(2π)dδ(d)(k+k′) (connected
thermal average). The large distance behavior of the first
one defines the roughness exponent ζ of the manifold, i.e.
〈(ux − u′x)

2〉 ∼ |x−x′|2ζ , equivalently Gaa(k) ∼ k−(d+2ζ)

at small k. These hold at fixed scale in the limit m→ 0,
or at small but fixed m for scales smaller than the IR
cutoff, k ≫ 1/m. Another important exponent charac-
terizes how the fluctuations of the ground state energy
(or of the free energy) scale with system size, ∆E ∼ Lθ.
Here, thanks to the statistical tilt symmetry, one has the
relation θ = d− 2 + 2ζ.

Quite generally (13) takes the form:

TG−1
ab (k) = δabg

−1
k − σab(k) , (14)

and within the GVM the self-energy is taken to be k-
independent, σab(k) ≡ σab. It obeys a self-consistent
equation which arises as a large-N saddle-point equation,
reading:

σab = − 2

T
B′
(

2

∫

k

[Gaa(k) −Gab(k)]

)

. (15)

There are two types of saddle points: Either they re-
spect the replica symmetry of the action (12), σa6=b = σ,
which happens in the high-temperature phase (where the
roughness exponent assumes its thermal value, ζ = ζth =
max(0, (2 − d)/2). Or, the saddle points spontaneously
break the symmetry (RSB), σab → σ(u), where u ∈ [0, 1]
labels the distance of replicas in an ultrametric Parisi
scheme describing the glassy, pinned phase.

Let us summarize the results for N = ∞ and g−1
k =

k2 +m2, for which the dependence on the mass is worked
out in Ref. 13.

We start with the case where the glass phase is de-
scribed by continuous RSB (also called infinite-step or
full RSB). Within such a RSB scheme it is found that
the roughness exponent equals its “Flory” value:

ζ = ζF =

{

0 (I)
(4 − d)/[2(1 + γ)], (II)

(16)

and the continuous RSB solution is self-consistent if the
corresponding energy exponent is positive, θ = θF =
d− 2+2ζF > 0. This occurs in dimensions 4 ≥ d ≥ 2 for
both models and any γ, as well as in dimensions d < 2 for
sufficiently long-ranged disorder in model II [γ < γc(d) =
2/(2 − d)], including model I in d = 2.

The replica symmetry is broken for small IR cut-off
m < mc, where mc = mc(T ) is the temperature depen-
dent Larkin mass, which is determined by the instability
of the replica-symmetric (RS) solution:

1 = 4B′′(2TI1(mc)
)

I2(mc), (17)

In(m) =

∫

k

1

(k2 +m2)n
, (18)

and decreases as a function of T from mc(T = 0) = O(1)
to zero as T → ∞. Hence, in that case, an unconstrained



5

0.05 0.1 0.15

m (0)
m

c

1

2

3

4

T^

Liquid
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FIG. 1: Phase diagram for model I in d = 3 for Λ/mc ≫ 1.
The phase transition as given by (17) is everywhere continu-
ous, and the glass phase exhibits continuous RSB. The tran-
sition temperature T̂c diverges as m → 0. An unconstrained
system (m = 0) is therefore always glassy. A similar phase
diagram applies to d > 2 for both models I and II, and
to d < 2 for model II with sufficiently long-ranged correla-
tors, γ < γc (the temperature scale being set, for d < 2, by
I1(mc(T = 0))).

system (m = 0) is always glassy, while a strong confine-
ment m > mc(T ) leads to an ergodic (replica symmet-
ric) high temperature phase. This is illustrated in Fig. 1
where we plot the phase diagram for model I in d = 3.
Since the temperature always enters in the combination
2TI1, where I1 is dominated by the UV cut-off for d > 2,
we have introduced the rescaled temperature:

T̂ = 2TI1(m = 0) =
4TΛd−2

(4π)d/2(d− 2)Γ(d/2)
. (19)

for a circular UV cutoff in k space.
The selfenergy function σ(u) of a continuous RSB so-

lution generally interpolates continuously between two
plateaux at small and large u. For both models (I) and
(II) (with γ < γc in d ≤ 2) σ(u) takes the form86:

σ(u) =
2

2 − θ

m2
c

uc
×







(m/mc)
2−θ, u < um,

(u/uc)
2
θ −1, um < u < uc,

1, uc < u < 1,
(20)

Here mc = mc(T ), and87

uc = ATmθ
c , (21)

um = ATmθ, (22)

where, with In defined in (18)

A =
I2(mc)

2

md−2
c I3(mc)

=
4Ad
ǫ2

, (model I), (23)

A =
4Ad
ǫ2

(

1 +
1

γ

)(

ǫ

4Ad

)
1

1+γ

, (model II), (24)

0.2 0.4 0.6 0.8 1
m π

0.2

0.4

0.6

0.8

1

T
2 π

1/2

FIG. 2: Phase diagram for model I in d = 2 (with a UV cut-
off Λ = 10). The phase transition is everywhere continuous,
and the glass phase exhibits continuous one-step RSB. The
transition temperature has a finite limit Tc → 2π as m → 0.
A similar phase diagram applies to model II with critical long-
range disorder γ = γc in d < 2. The transition line has a
cusp-like behavior as m → 0, [Tc(0) − Tc(m)]/Tc(0) ∼ m2−d

(and ∼ 1/ log(1/m) in d = 2).

and Ad := ǫ
∫

k
(1 + k2)−2 = 2Γ(3 − d/2)/(4π)d/2.

In the sequel the value of σ(0) will play a central role,
and we give an explicit expression for later reference:

σ(0) = σ(um) =
2

2 − θ

m2−θ

AT
. (25)

In the case of sufficiently short-ranged disorder in d ≤ 2
(model I or model II with γ > γc(d)) the glass phase is
described by a 1-step RSB solution which is fully char-
acterized by three numbers: the break point uc, and the
self-energy parameters

σ0 ≡ σ(u < uc) = σ(0), (26)

σ1 ≡ σ(u > uc) = σ(1).

The borderline between 1-step and full RSB is charac-
terized by θ = θF = 0: γ = γc for model II in d < 2,
or model I in d = 2. In this case the 1-step solution
can equivalently be obtained as the limit of a continu-
ous RSB solution, which entails that the 1-step scheme
is only marginally stable. In this limiting case of con-
tinuous RSB, mc(T ) remains a decreasing function of
T , However, it vanishes at a finite T = Tc signalling a
continuous glass transition for the unconstrained system
(m = 0) at Tc. The phase diagram for the marginal case
of SR disorder in d = 2 is shown in Fig. 2.

Away from the borderline in the (d, γ) plane, the 1-step
solution is genuinely stable. This includes in particular
the case of the directed polymer and the KPZ problem
(d = 1). The phase diagram in the (T ,m) plane is more
complicated: (cf., Fig. 4 on page 20) and will be dis-
cussed together with the 1-step solution within the GVM
in Section III D 3. The essential difference with the cases
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discussed above is the nature of the temperature-driven
glass transition at small mass which becomes a discontin-
uous random first-order transition. Similarly to ordinary
first-order transitions, two locally stable solutions coex-
ist at least close enough to the transition: Here these
are the RS solution and the 1-step solution. The rough-
ness exponent of all 1-step solutions equals the thermal
exponent, ζ = ζth = (2 − d)/2.

2. Effective action and functional RG

In an effort to connect the results described above to
the functional RG approach, two of us performed a cal-
culation of the effective action Γ[u] for the model (4), cf.
Refs. 11,13. One starts by defining the standard gener-
ating functional W [j] for connected correlations in the
replica theory with, in general, j = (j1(x), . . . , jn(x)):

eW [j] = Z[j] =

n
∏

a=1

ZV [ja], (27)

ZV [ja] =

∫

D[u] e−βHV [u]+
R

x
ja
x ·ux , (28)

and the effective action functional is defined via the Leg-
endre transform:

Γ[u] +W [j] =
∑

a

∫

x

jax · uax ,
δW

δjax
[j] = uax. (29)

In Refs. 11,13 the effective action for a uniform configu-
ration Γ(u) = 1

Ld Γ[{uax = ua}] was studied in the large-N
limit. It has a non-trivial limit in the regime

u2 ∼ N, Γ ∼ N. (30)

It was further computed in an expansion in the “number
of replica sums” (which is effectively a cumulant expan-
sion) as follows:

Γ(u) =
∑

a

m2 (ua)
2

2T
− 1

2T 2

∑

ab

R(uab)

− 1

6T 3

∑

abc

S(3)(uabc) + . . . (31)

up to a constant. Here and below uab = ua − ub,
uabc = ua, ub, uc. This defines unambiguously (for any
N) the second cumulant of the renormalized disorder po-
tential R(u) = Rm(u), where we will usually keep the
m-dependence implicit. At large N , it obeys the scaling
form

R(u) = NB̃(u2/N). (32)

Remarkably, the scaling function B̃(z) satisfies a closed
equation:

B̃′(z) = B′
(

z + 2TI1 + 4I2

[

B̃′(z) − B̃′(0)
])

, (33)

FIG. 3: The MP function [σ](u) + m2 for m > 0. Changing
m2, only the lower plateau will move, while the remainder of
the function (for u > um) remains unchanged.

where z = u2/N , and In = In(m) was given in (18).
As we will show later, this equation is only valid in the
non-glassy regime since it was derived under the im-
plicit assumption that the replica symmetry is not spon-
taneously broken as u → 0. Taking a derivative with
respect to the mass m and introducing a scaled func-
tion b̃(x) = 4Adm

4ζ−ǫB̃(xm−2ζ) a FRG equation was
derived for the renormalized and scaled potential corre-
lator b̃(x) (denoted b(x) in Refs. 11,13). Remarkably,
this FRG equation admits a natural continuation to the
glassy regime. In that continuation a linear cusp exists
for all m ≤ mc. The resulting large-N equation, valid
to all orders in ǫ = 4 − d, exactly matches the equation
previously derived to first order in ǫ (1 loop) but for ar-
bitrary N by Balents and Fisher6 by a quite different
method. In addition, for all universality classes charac-
terized by (d,γ), such that θ > 0 (ensuring continuous

RSB in the GVM), the fixed points b̃∗(x) could be re-
lated to the solution of the GVM. All the above strongly
suggested that the derived flow equation was the correct
large-N limit of the FRG.

3. Relation between GVM and FRG in the case of
continuous RSB

However, establishing a link between the GVM results
and the FRG is rather subtle. To a considerable extent,
this has been achieved for the case of continuous RSB in
Refs. 11,13 , while the same task for situations exhibit-
ing 1-step RSB has remained an open problem, which is
addressed in the present paper. In order to review the re-
sults for the continuous case, we recall the multiplication
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formulae for two ultrametric matrices AB = C:

AcBc = Cc, (34)

(Ac − [A](u))(Bc − [B](u)) = Cc − [C](u), (35)

A(0)Bc +B(0)Ac = C(0), (36)

where:

Ac := Aaa −
∫ 1

0

A(u)du, (37)

[A](u) := uA(u) −
∫ u

0

A(u′)du′. (38)

We also introduce the notation for the diagonal element
Ã := Aaa.

From (20) above one finds:

m2 + [σ](u) = m2
c ×







(m/mc)
2, u < um,

(u/uc)
2
θ , um < u < uc,

1, uc < u < 1,
(39)

and from (14) we obtain

Gc(k) = Tgk, (40)

Gc(k) − [G](k, u) =
T

g−1
k + [σ](u)

, (41)

G(k, 0) = G(k, um) = Tσ(um)g2
k. (42)

Further, using d
du [σ](u) = u

d
duσ(u), we find:

G(k, u) = Tσ(um)g2
k + T

∫

u

um

σ̇(u) du

[g−1
k + [σ](u)]2

, (43)

(we often denote σ̇ ≡ d
duσ here and below) which relates

G(k, u) to the self-energy σ(u), which for g−1
k = k2 +m2

is given by (20) and (39).
In the GVM the 2-point correlation function is thus

given by contributions from states at all distances u as:

G̃(k)

T
= gk + σ(um)g2

k + gk

∫ 1

um

du

u2

[σ](u)

g−1
k + [σ](u)

(44)

Using (39) and integrating over u yields the final result:

G̃(k) ∼ Cm−(d+2ζ)f(k/m), (45)

in the limit m → 0, with f(0) = 1 and f(z) ∼ z−(d+2ζ)

with ζ = ζF , exhibiting the anticipated scaling.
On the other hand the FRG allows one to compute the

two point function using (31) through the exact relation:

(2π)dδ(d)(k + k′)G−1
ab (k) =

δ2Γ[u]

δuakδu
b
k′
|u=0 , (46)

which, upon matrix inversion yields the zero-momentum
correlation function:

G̃(k = 0) = −2B̃′(0)

m4
+

T

m2
. (47)

It turns out that this does not yield the full MP result
(44,45). Indeed, the contribution from the integral over u

in (44) is missing. However, Eq. (47) exactly reproduces
the first two terms in (44), i.e., the contribution from
the most distant states corresponding to 0 < u < um, as
well as the trivial term T/m2 describing the connected
correlations Gc(k = 0). Using the natural continuation
to the glassy regime of the RG flow associated to the
solution of (33), it was indeed inferred that

−2B̃′(0) = Tσ(um), (48)

as will be derived rigorously in Section IV. This is al-
ready a non-trivial result: obtaining it within the GVM
does require the RSB Ansatz, while the FRG considered
in Refs. 11,13 does not make reference to ultrametric
matrices and their properties.

The fact that the FRG calculation of Refs. 11,13 re-
produced only the contribution of the most distant states
within the Parisi hierarchy was argued to arise because
Γ and W were computed by introducing sources which
split all replicas, i.e., uab 6= 0 (and of order

√
N) for all

a 6= b. However, it remained to be understood how the
full result (45) can be recovered and how the crossover
to spontaneous RSB takes place as uab → 0.

This is the aim of the present paper. We will show
the existence of a regime whose large-N limit is different
from (30):

u2 ∼ N0L−d, Γ ∼ N0, (49)

and where RSB cannot be neglected. This will allow us to
recover the complete GVM result, i.e., to correctly per-
form the (non-trivial) zero-field limit uak → 0 in (46). We
first show, in the following section, that it is equivalent,
but physically more transparent, to study the generating
functional W rather than Γ. Further, we will revisit the
attempt by Balents, Bouchaud, and Mézard47 to connect
RSB and FRG. Although we choose a different observ-
able than those authors (so as to connect more directly
to the FRG) we employ techniques similar to theirs, at
least in the regime v2 = O(1).

C. Observable studied here

The observable studied here is the free energy V̂ [v] of
the elastic manifold in a quadratic potential well centered
at position vx, and defined by88:

e−V̂ [v]/T =

∫

D[u] e−HV [u;v]/T , (50)

HV [u; v] =
1

2

∫

k

g−1
k |uk − vk|2 +

∫

x

V (x, ux) ,

with gk = k2 + m2. For a uniform vx = v, vk =
v(2π)dδ(d)(k) one has89:

HV [u; v] = HV [u] −m2v

∫

x

ux +
1

2
Ldm2v2. (51)
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It is then clear from the definitions (27,50) that the statis-

tics of V̂ [v] can be obtained from the functional W [j]
with:

jk =
g−1
k vk
T

. (52)

Hence we denote Ŵ [v] = W [j = (g−1v)/T ], such that:

eŴ [v] = e
1

2T

R

k
g−1

k

P

a v
a
kv

a
−k

∏

a

e−V̂ [va]/T . (53)

It is thus clear that the functional can be expanded in a
cumulant expansion, i.e., in the number of replica sums:

Ŵ [v] =
1

2T

∑

a

∫

k

g−1
k vakv

a
−k +

1

2T 2

∑

ab

R̂[vab]

+
1

6T 3

∑

abc

Ŝ(3)[vabc] + ..., (54)

up to a constant, where again vabx = vax − vbx, etc. Each

term in the expansion is a functional, R̂[vab] ≡ R̂[{vabx }]
with fixed a, b, etc., and represents the free-energy cumu-
lants:

V̂ [v]V̂ [v′]
c

= R̂[v − v′], (55)

and similarly for higher cumulants (the overbar denoting
the disorder average over the random potential V ). For
a uniform configuration vx = v one has

R̂[v] = LdR̂(v) (56)

which defines R̂(v). Note that with arguments in brack-
ets [...] we denote functionals, while (...) is reserved for
functions. When discussing uniform v we usually switch
to the function R(v), separating out the volume factor.

As shown in Refs. 48,49 by performing the Legendre
transform (29), this observable is directly related to the
function R(u) of the FRG:

R̂(v) = R(v), (57)

i.e., the two functions are the same, and this holds for the
functionals, too. Therefore, by computing R̂[v], which
we do here for large N , we simultaneously compute R[u]
as defined from the effective action (31). The fact that
(55) defines an observable which is easy to measure has
allowed for a numerical determination55 of R(u) or, more
precisely, of the force correlator ∆(u) = −R′′(u), for N =
1 interfaces at T = 0.

The derivative of R(u) at T = 0 contains information
about the shocks. Indeed, if one computes the ground
state u(x; v) for a fixed well position and defines the cen-
ter of mass displacement ū(v) := L−d ∫ u(x; v), one finds
that the latter exhibits jumps as v is varied. The statis-
tics of these jumps is encoded in the functions R̂, Ŝ etc.,
for instance one has:

[ūi(v) − vi][ūj(v′) − v′j ] = m−4L−d∆ij(v − v′), (58)

and the cusp of ∆ij(v) = −∂i∂jR̂(v), i.e. the derivative of
∆ at argument 0, is proportional to the second cumulant
of the jump sizes.

We now turn to the calculation of this observable in
the large-N limit. We will perform separate calculations
for the two scaling regimes v2

x ∼ O(1) and v2
x ∼ O(N) in

the next Sections and check that they match.

III. REGIME OF SMALL v, v2
x = O(1)

We want to compute the generating functional (27) in
the form

eŴ [v] =
∏

a

ZV [ja] , jak =
g−1
k vak
T

. (59)

This can be carried out at large N through the saddle-
point method as in Ref. 46, introducing the term
iλab(Nχab−ua ·ub) and integrating over the field u. This
is detailed in the next Section where we study the case
where v2

ab ∼ O(N) which distorts the saddle point away
from (14,15). In this section, we study v2

ab = O(1) and
the above saddle points are unchanged (more precisely,
they are shifted only by terms at most of order O(1/N)
which are discarded). Since there is spontaneous RSB,
there are in fact many saddle points equivalent under
replica permutations. Hence the above average must be
written as a sum over all equivalent saddle points:

∏

a

ZV [ja] = Cn
∑

π

〈e
P

a

R

x
ja
xux〉π, (60)

where π ∈ Sn belongs to the group of permutation of n
replica which is used to label the saddle points. Around
each saddle point the measure is Gaussian with correlator
〈uaxuby〉π = Gπab(x−y) := Gπ(a)π(b)(x−y) where Gab(x) is
the ultrametric matrix given by (14). Hence we obtain:

eŴ [v]−Ŵ [0] =
˜∑

π
exp

[

1

2T 2

∑

ab

∫

k

g−2
k Gπab(k)v

a
−k · vbk

]

,

(61)

where ˜∑
π denotes a normalized average over permuta-

tions, i.e., ˜∑
π1 = 1. The remainder of this Section is

devoted to the analysis of this formula.

In principle, by expanding this formula in powers of v
to all orders, and regrouping terms one could check that
it is indeed possible to put it into the form (54), and to

compute all the cumulants (we denote by Ŝ(n) the n-th
cumulant). This is a formidable task, however, and we

will focus here only on the second cumulant function R̂.
Before computing it directly, let us give a flavor of the
direct expansion in powers of v.
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A. Direct expansion in powers of v

The expansion of (61) in powers of v starts as:

Ŵ [v] − Ŵ [0] =
˜∑

π

1

2T 2

∑

ab

∫

k

g−2
k Gπab(k)v

a
−k · vbk

+O(v4) . (62)

Let us recall the structure and parametrization of a hi-
erarchical Parisi matrix. Dropping temporarily the k-
dependence one has76,77

Gab = [G̃−G(n)]δab +G(n)(1ln)ab , [RS], (63)

Gab = [G̃−G(1)]δab + [G(1) −G(n)](1l(n)
uc

)ab

+G(n)(1n)ab , [1-step RSB], (64)

Gab = [G̃−G(1)]δab +

∫ 1

n

du
dG(u)

du
(1l(n)

u )ab

+G(n)(1ln)ab , [continuous RSB]. (65)

We have defined 1l(n)
m as the matrix made of n/m identical

blocks along the diagonal, each block being the m by m

matrix with all entries equal to one, and 1l(n)
n = 1ln. As

an example,

1l
(12)
3 =







































1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1







































. (66)

With these formulae one easily checks that

Gc :=
∑

b

Gab = G̃−
∫ 1

n

G(u)du + nG(n) ,

n→0
= G̃−

∫ 1

0

G(u)du . (67)

For symmetry reasons, the permutation average must
yield a replica symmetric matrix

˜∑

π
Gπab = αδab + β . (68)

Setting a 6= b one finds β = (n− 1)−1
∑

b6=1G1b = (Gc −
G̃)/(n−1), while multiplying with δab shows that α+β =

G̃. Thus, one finds:

˜∑

π
Gπab =

1

1 − n

[

(Gc − nG̃)δab + G̃−Gc
]

n→0→
[

Gc + n(G̃−Gc)
]

δab + G̃−Gc, (69)

which is a replica symmetric matrix by construction, but
with non-trivial entries in the case of RSB. Terms of
higher order in n have been neglected, except for the
linear term in the replica diagonal part which we retain
for later use.

Inserting in (62) we finally have

Ŵ [v] − Ŵ [0] (70)

=
1

2T 2

∑

a

∫

k

g−2
k

[

Gc(k) + n(G̃(k) −Gc(k))
]

|vak |2

+
1

2T 2

∑

ab

∫

k

g−2
k (G̃(k) −Gc(k))vak · vb−k +O(v4) .

On the other hand, expanding (54) we obtain, for n = 0:

Ŵ [v] − Ŵ [0] =
1

2

∑

ab

∫

k

(

δab
Tgk

− 1

T 2
R̂′′
k [0]

)

vak · vb−k

+O(v4), (71)

since the fourth cumulant must start as v4 and the third
as v6 (as one cannot construct STS invariant combina-
tions of smaller degree - see Appendix B of Ref. 22 for an
argument in the case N = 1). Here and below we adopt
the notation

R̂′′
xx′ [v] =

δ2R̂[v]

δvixδv
i
x′

, (72)

∫

xx′

eikx+ik
′x′

R̂′′
xx′ [v] = (2π)dδ(k + k′)R̂′′

k [v] , (73)

where the last line uses translational invariance and one
has set vx = v after taking the derivatives. Further,
we have assumed O(N) symmetry so that the second
derivative of R is diagonal and independent of the O(N)
index i in (72) (where no index summation is assumed).

Identifying (70) and (71) shows that for n = 0:

G̃(k) = Tgk − g2
kR̂

′′
k [0] , Gc(k) = Tgk, (74)

the second identity being a simple consequence of the
STS symmetry. Hence, once the functional R̂ = R of the
FRG is known, the correlation function computed via the
GVM can be retrieved as:

˜∑

π
〈ua−kubk〉π =

˜∑

π
Gπab(k) = Tgkδab − g2

kR
′′
k [0]. (75)

This property of R, here guaranteed by its definition (61)
via the effective action, does not hold for the observable
defined in Ref. 47 (having a similar form but with G →
G−1). This made the comparison of their results with
the FRG problematic.

To evaluate the identity (74) at k = 0, we use that for
a uniform v, d/dv =

∫

dx δ
δvx

, and thus:

R̂′′
k=0[v] =

1

Ld

∫

xx′

R̂′′
xx′ [v] = R̂′′(v), (76)



10

which yields:

G̃(k = 0) =
T

m2
− R̂′′(0)

m4
. (77)

This relation is exact, and the task is hence to evaluate
R̂′′(0). There is however a crucial subtlety in evaluating

this derivative at v → 0. If one uses that R̂(v) = R(v),
together with the result of Refs. 11,13:

R̂(v) = NB̃(v2/N) , v2 ∼ N (78)

a relation also obtained directly in Section IVB, one finds
that (77) coincides with formula (47). However, this re-
sult is valid only in the region v2 ∼ N and, as pointed
out above, it does not reproduce the full MP result for
G̃. To obtain the latter, as we show below, one needs to
be more careful in the v → 0 limit and compute R̂′′(0)
in the region where v2 ∼ L−d ≪ N . One could say that
the v → 0 and N → ∞ limit do not commute, or more
accurately, that to obtain contributions of all ultrametric
states (and not just the most distant ones) one must take
the limit v → 0 with great care.

The next order O(v4) is obtained in App. B by the
direct expansion method and in the next Section by a
more powerful method which can handle all orders, and
to which we now turn.

B. Second cumulant from a two-group analysis

While the results of the previous section were com-
pletely general and independent of the RSB scheme, we
now focus on a specific choice of external sources. In or-
der to compute the second cumulant function, one best
uses two sets of replica, which we denote by vax = v1

x

for a = 1, . . . , n/2 and vax = v2
x for a = 1 + n/2, . . . , n.

Inserting into (54) we find

Ŵ [v] − Ŵ [0] =
1

2T

n

2

∫

k

g−1
k (v1

k · v1
−k + v2

k · v2
−k) (79)

+
1

2T 2

n2

2
(R̂[v21] − R̂[0]) +O(n3),

where

v21 := v2 − v1, (80)

since all higher cumulants yield higher powers of n. We
compare this with expression (61), slightly rewritten as:

eŴ [v]−Ŵ [0] = (81)

˜∑

π
exp

[

1

2T 2

∑

ab

∫

k

g−2
k Gab(k)v

π(a)
−k · vπ(b)

k

]

.

In order to perform the sum over permutations, we in-
troduce Ising spins τa as in Ref. 47:

va =
v1 + v2

2
+ τa

v21

2
, (82)

where τa = −1 if π(a) ∈ [1, n/2], τa = +1 otherwise.
Each configuration {τa} is left invariant by [(n/2)!]2 per-
mutations, the number of distinct spin configurations be-

ing C
n/2
n = n!/[(n/2)!]2. They all correspond to vanish-

ing total magnetization, i.e.,
∑n

a=1 τ
a = 0. Inserting (82)

into (81) the term linear in τ vanishes, and one finds:

eŴ [v]−Ŵ [0] = exp

[

n

4T 2

∫

k

g−2
k Gc(k)(|v1

k|2 + |v2
k|2)

]

× 1

C
n/2
n

′
∑

{τ}
exp

[

1

2T 2

∫

k

g−2
k

|v21
k |2
4

∑

ab

Ĝab(k)τ
aτb

]

,

Ĝab := Gab −Gcδab (83)

The first factor equals the term proportional to n in (79),
as seen upon using (74). The prime on the sum indicates
that the sum extends over all Ising spin configurations
subject to the global constraint

∑n
a=1 τ

a = 0. Identifying
the above expression with (79), we arrive at the formula:

R̂[v] − R̂[0] = lim
n→0

4T 2

n2

1

C
n/2
n

(84)

×
′
∑

{τ}

[

exp

(

∫

k

g−2
k

8T 2
|vk|2

∑

ab

Ĝab(k)τ
aτb

)

− 1

]

.

Note that we have simplified notations by renaming
v21 → v. At this stage we can check the small-v ex-
pansion again:

1

2

∫

k

R̂′′
k [0]|vk|2 = (85)

lim
n→0

T 2

2n2

∫

q

g−2
k

2T 2
|vk|2 ˜∑′

{τ}
Ĝab(k)τ

aτb.

If we denote the normalized average Aab := ˜∑′
{τ}τaτb =

1

C
n/2
n

∑′
{τ} τaτb then one has Aaa = 1. Further, the iden-

tity 0 =
∑

b Aab = Aaa + (n − 1)Aa6=b implies Aa6=b =
1/(1−n) and one can thus write Aab = (1−nδab)/(1−n)

and
∑

ab ĜabAab = −n2/(1−n)[G̃(k)−Gc(k)]. Using this
in (85) we recover the result (74) of the previous Section.
Note that the same result is obtained from the piece ∼ n2

in the replica-diagonal part of (70), while the two-replica
sum vanishes.

To evaluate the restricted spin sum in (84) we use the
same method as in Ref. 59, leading to Parisi’s nonlinear
diffusion equation in the form discussed by Duplantier58.
We first eliminate the constraint of zero magnetization
and rewrite (84) as:



11

R̂[v] − R̂[0] = lim
n→0

4T 2

n2

2n+1Γ(−n)

[Γ(−n/2)]2

∫ ∞

−∞
dy
∑

{τ}

[

exp

(

∫

k

g−2
k |vk|2
8T 2

n
∑

ab=1

Ĝab(k)τ
aτb + y

n
∑

a=1

τa

)

− exp

(

y

n
∑

a=1

τa

)]

(86)

which makes use of an identity derived in Ref. 59, valid
for n < 0 only.

The evaluation of a spin sum such as it appears in (86)
is standard in the mean-field theory of spin glasses. Here
we summarize the main steps following Duplantier58. We
write the matrix which couples the spins as

qab =
1

4T 2

∫

k

g−2
k |vk|2Ĝab(k),

q(u) =
1

4T 2

∫

k

g−2
k |vk|2G(k, u), (87)

with qc =
∑

b qab = 0. Using (43) this becomes

q(u) =
1

4T

∫

k

|vk|2
[

σ(um) +

∫ u

um

σ̇(u)du
[

g−1
k + [σ](u)

]2

]

(88)

Let us now assume that qab has a K-step ultrametric
structure with breakpoints at

n ≡ u0 ≺ u1 ≺ · · · ≺ uK ≺ uK+1 ≡ 1, (89)

and entries parametrized by q(u) with

q(u) = qℓ, for uℓ 4 u ≺ uℓ+1. (90)

Further we define q−1 ≡ 0. Let us introduce the “partial
partition sums”:

gℓ(y) ≡ euℓψℓ(y) := (91)

∑

{τa},a=1,..,uℓ

exp





1

2

uℓ
∑

a,b=1

τa (qab − qℓ−1) τ
b +

uℓ
∑

a=1

τay



 ,

which defines gℓ(y) and ψℓ(y) for ℓ = 0, . . .K + 1. Obvi-
ously, gK+1(y) = 2 cosh(y) exp[q̃ − q(1)].

The expression (86) can then be rewritten as:

R̂[v] − R̂[0] = lim
n→0

−2T 2

n

∫ ∞

−∞
dy [g0(y) − (2 coshy)n]

= −2T 2

∫ ∞

−∞
dy [ψ0(y) − ln(2 cosh y)] , (92)

where we used that [Γ(−n/2)]2/Γ(−n) = −4/n+O(n0).
As shown in Ref. 58, the functions gℓ(y) satisfy a re-

cursion relation, the idea being as follows. Consider one
of the n/uℓ equivalent groups of size uℓ, for instance the
first one a = 1, . . . , uℓ. It contains uℓ

uℓ+1
subgroups of

size uℓ+1
77. The only coupling between the subgroups

is through the matrix ∆qℓ1
n
uℓ

with ∆qℓ = qℓ − qℓ−1
90,

which couples uniformly all spins in the group. They can

be decoupled by a Hubbard-Stratonovich transformation,
adding a term z

√
∆qℓ

∑

uℓ

a=1 τa, where z is a Gaussian
random field of variance ∆qℓ, acting on all spins in the
group. This allows to perform configurational sums inde-
pendently within each subgroup and yields the recursion
relation:

gℓ(y) =

〈

gℓ+1

(

y + z
√

∆qℓ

)

uℓ
uℓ+1

〉

z

, (93)

where here and below 〈. . .〉z :=
∫∞
−∞

dz
2π . . . e

−z2/2 denotes
the average over a unit Gaussian.

C. Continuous RSB: Second cumulant from an
evolution equation

In the case of continuous RSB, we have to take the
continuum limitK → ∞ in the above: ∆uℓ = uℓ+1−uℓ →
0, q(uℓ) ≡ qℓ → q(u) and ∆qℓ → 0, while ∆qℓ/∆uℓ →
dq(u)/du. For the function ψ(uℓ, y) ≡ ψℓ(y) → ψ(u, y),
Eq. (93) yields a differential equation:

∂uψ = −1

2

dq(u)

du

[

∂2
yψ + u(∂yψ)2

]

, (94)

with initial condition:

ψ(uc, y) = ψ(1, y) =
q̃ − q(1)

2
+ ln[2 cosh(y)] , (95)

where we assume q(u) to be constant for uc < u < 1, as
is generally the case, cf., (20).

Eq. (94) must be integrated from uc to um, where q(u)
reaches its lower plateau q0 = q(um). If q0 6= 0, the
recursion (93) for ℓ = 0 shows that we have to perform a
last convolution to obtain

ψ(0, y) = 〈ψ(um, y + z
√

q(0))〉z . (96)

The solution of (94) with initial condition (95) behaves
at large |y| like:

ψ(u, y)
|y|→∞≈ |y| + 1

2

(

q̃ −
[
∫ 1

u

du′ q(u′)

]

− uq(u)

)

,

(97)
as can be seen by substituting (97) into (94). This is
also confirmed by noting that for |y| ≫ 1 the sum in
(86) is dominated by the configuration with all τa =
sign(y), which leads to the simple approximation (97)
for ψ(u, y). This behavior implies ψ(um, y) ≈ |y| + qc =

|y|, since qc = 0 from the condition Ĝc = 0. Hence
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the integral (92) converges, the subleading terms of ψ
decaying exponentially at large |y|.

We can now state the main result of this section. In
the regime v2 = O(1), the second cumulant functional

can be obtained from the saddle point of the GVM as
follows:

R̂[v] − R̂[0] = 2T 2

∫ ∞

−∞
dy y [M(0, y) − tanh(y)] , (98)

where the function M(u, y) = ∂yψ(u, y) is the solution of

∂uM = −1

2

dq(u)

du

(

∂2
yM + 2uM∂yM

)

, (99)

M(uc, y) = tanh(y), (100)

in the interval u ∈ [um, uc], and

M(0, y) =
〈

M(um, y + z
√

q(0))
〉

z
. (101)

Eq. (98) follows from Eq. (92) by integration by parts, us-
ing that limy→±∞ y {ψ(0, y) − ln[2 cosh(y)]} = 0 as dis-
cussed above.

From the above and (87) we see that the dependence of

the functional R̂[v] on the field vx occurs only through the
combination q(u) = 1

4T 2

∫

xy h(x − y, u)v(x) · v(y), where

h(k, u) = g−2
k G(k, u). Hence for a uniform vx = v one

easily sees that q(u) ∼ Ldv2 and we can expect that (98)
will assume a scaling form with scaling variable vLd/2.
This dependence on the system size is very different from
the one in the regime v2 = O(N) and will be commented
on further below.

The convolution (101) only results in an additive con-
tribution to the potential correlator. This can be seen
using the identity:

∫ ∞

−∞
dy y

[

〈Φ(y +
√

Qz)〉z − Φ(y)
]

=

−Q
2

[Φ(∞) − Φ(−∞)] , (102)

proven in App. C for functions Φ whose derivative de-
creases faster than 1/|y| at infinity. Applying (102) to
Φ(y) = M(um, y), we can rewrite (98) as:

R̂[v] − R̂[0] = −1

2

∫

k

g−2
k G(k, um)|vk|2 (103)

+2T 2

∫ ∞

−∞
dy y[M(um, y) − tanh(y)].

This result can also be derived via an alternative route,
providing a useful check of the above formalism: In
(86) we can directly separate out the contribution form

the most distant states by writing Ĝab(k) = Gab(k) +

Ĝ(k, 0)(1 − nδab), with G
c
(k) = 0, and G(k, 0) = 0.

One can easily check that the piece Ĝ(k, 0)(1 − nδab)
produces the first term in (103). The remaining part
leads to the same expression as (86), with the replace-

ment Ĝ → G. The only difference in the subsequent

evaluation is that there is no need for a convolution in
the end, since G

c
(k) = 0. This establishes (103).

Note that the first term in (103) has the expected form
for the contribution from the plateau 0 ≤ u ≤ um, cf.,
Eqs. (44,48), with a coefficient of |vk|2

− 1

2
g−2
k G(k, um) = −1

2
Tσ(um) = B̃′(0), (104)

independent of k. Clearly, this term is the only contri-
bution in the case of a replica symmetric solution. We
now show that it also gives the dominant contribution at
large v2 of order O(N0), but v2 ≫ L−d.

1. Limit of Ldv2 ≫ 1

In this case, Eq. (99) can be rewritten as

− 1

2
(M ′′ + 2uM ′M) =

dM

dq
→ 0 (105)

since q is large (from now on we denote ∂y by a prime).
One can integrate this equation to M ′ + u(M2 − 1) =
0, where the integration constant (w.r.t. y) is fixed by
the fact that M(uc, y) → 1 for large y, which cannot be
changed by the evolution (99). The solution of (105) is
then M(u, y) = tanh(uy). One can check that the flow of
M is attracted to this simple “fixed point” as u → um, if
v ≫ v∗, with v∗ defined below. In that case, the second
term in (103) becomes:

2T 2

∫ ∞

−∞
dy y [tanh(umy) − tanh(y)]

= 4T 2

(

1

u2
m

− 1

)∫ ∞

0

dy y [tanh(y) − 1] , (106)

and the large-v behavior of the second cumulant in this
v2 = O(1) regime is thus:

R̂[0] − R̂[v]
v→∞≈ Tσ(um)

2

∫

x

v2
x +

π2

6
T 2

(

1

u2
m

− 1

)

.

(107)
The leading behavior is quadratic in v and corresponds to
the contribution of the most distant states to the full (in-
verse) correlation. Hence it should match the result ob-
tained in the FRG for the regime v2 ∼ N , cf. Eqs. (47,48)
or equivalently, Eqs. (77,78). Indeed, it does!

For a uniform vx = v and in the limit T → 0, one finds
for both models (8,9), using (20,22):

R̂[0] − R̂[v]
v→∞≈ m2−θv2Ld

A(2 − θ)
+

π2

6A2
m−2θ. (108)

This suggests a crossover around v ∼ v∗ defined as:

m2Ldv2
∗ = m−θ ↔ v∗ = (mL)−d/2m−ζ . (109)

The physical meaning of this crossover scale will be
discussed in more detail in the context of the models
with one-step RSB below, cf. Sec. III E.
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2. Perturbation expansion for Ldv2 ≪ 1

Since for q(u) = 0, one has M(u, y) = tanh(y) =:
m0(y) there is a uniquely defined expansion in powers
of q, which since q ∼ v2 is equivalent to the direct expan-
sion in powers of v2 of Sec. III A:

M(u, y) = m0(y) +m1(u, y) +m2(u, y) + . . . . (110)

Each mn(u, y) contains only terms of degree qn. They
satisfy the recursion:

ṁn = −1

2
q̇(u)



m′′
n−1 + u

(

n−1
∑

p=0

mpmn−p−1

)′

 , (111)

where here and below dots denote ∂u. The initial condi-
tions are mn(uc, y) = 0. The final result for R̂[v] is:

R̂[v] − R̂[0] = −2T 2q(0) + 2T 2
∑

n≥1

∫ ∞

−∞
dy y mn(um, y)

=:
∑

n≥1

Rn[v], (112)

where we recall that 4T 2q(u) =
∫

k g
−2
k |vk|2G(k, u).

Hence Rn contains all terms of degree qn ∼ v2n, and
we are thus effectively computing the derivatives at the
origin, R̂(2n)[v = 0].

This calculation is performed in Appendix D, and the
results are indeed consistent with the direct expansion of
Sec. III A although the method is quite different. The
lowest order term reads:

R1[v] = −2T 2

∫ 1

0

q(u)du

= −1

2

∫

k

g−2
k

[

G̃(k) −Gc(k)
]

|vk|2 , (113)

using that
∫ 1

0
G(u) = G̃−Gc, recovering the result (62,69)

which yields, at small v, the full result of Mézard-Parisi
for the correlation function.

The next-order term is:

R2[v] =
2

3
T 2

(

∫ 1

0

du q2(u) −
[∫ 1

0

du q(u)

]2
)

. (114)

As discussed in Refs. 8,22,38,48,49 the fourth deriva-
tive at zero of the FRG function R(4)[0] is a direct mea-
sure of susceptibility fluctuations. Indeed we find that
our present result has the general form of susceptibility
fluctuations within a Parisi Ansatz, defined and derived
in Ref. 46 .

3. Thermal boundary layer: General formula

It is possible to resum the derivatives, order by order
in temperature and derive the thermal boundary layer

(TBL) form:

R̂[v] − R̂[0] = −1

2

∫

k

g−2
k G̃T=0(k)|vk|2

+T 3r̂1[v̂] + T 4r̂2[v̂] + . . . , (115)

where the first term is the “zero-temperature limit” of the
leading small-v quadratic term91, and the higher-order
terms in the expansion in T are scaling functions of the
boundary-layer variable:

v̂k = vk/T, (116)

q(u) =
1

4

∫

k

g−2
k |v̂k|2G(k, u). (117)

This structure, which appears already in the 1-loop FRG,
can be computed exactly in the large-N limit here.

This structure appears already in the 1-loop FRG
where one finds that at T > 0 the non-analyticity of
R[v] is thermally rounded.22,31,32 Since temperature is
irrelevant in the RG sense when θ > 0 this rounding oc-
curs only in a layer determined by vmζ ∼ Tmθ, which
becomes smaller and smaller as T → 0, hence the name
thermal boundary layer. Here, for the first time we com-
pute its exact expression in the large-N limit.

We now perform a (slightly more formal) expansion
which allows to obtain (115). The idea, looking at (99),
is that the nonlinear term contains an extra factor of u

and that for um ≤ u ≤ uc one has u ∼ T . Hence it is
natural to expand in the nonlinearity to generate a low-
temperature expansion. Of course this must be checked a
posteriori. Further, we find it more convenient to use q(u)
instead of u to parameterize the ultrametric distance.
Thus rewriting (99) as ∂qM = − 1

2

[

M ′′ + u(M2)′
]

, and
expanding M = M0 +M1 + . . . , formally in powers of u,
we have to solve the hierarchy:

∂qM0 = −1

2
M ′′

0 , (118)

∂qM1 = −1

2
(M ′′

1 + 2uM0M
′
0) , (119)

∂qMn = −1

2

(

M ′′
n + 2u

n−1
∑

p=0

MpM
′
n−1−p

)

. (120)

Note that this hierarchy is formally similar to (111),
apart from a shift in the index of the linear term on the
RHS which indicates that we actually perform a different
resummation.

The initial condition is M0(uc, y) = tanh(y),
Mn≥1(uc, y) = 0. Again, primes stand for ∂y. We de-
fine:

R̂[v] − R̂[0] = R0[v] + R1[v] + . . . , (121)

R0[v] = −2T 2q(0) (122)

+2T 2

∫ ∞

−∞
dy y [M0(q(um), y) − tanh(y)] ,

Rn≥1[v] = 2T 2

∫ ∞

−∞
dy yMn(q(um), y), (123)
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where we use the notation Rn to distinguish from the ex-
pansion in powers of q discussed in the previous Section,
and different from the r̂i[v] defined in (115).

The equation forM0 is a simple diffusion equation with
solution:

M0(q(u), y) = 〈tanh(y +
√

q(uc, u)z)〉z , (124)

q(uc, u) := q(uc) − q(u). (125)

Thanks to the identity (102), when M0(q(um), y) from
(124) is substituted into (122), we obtain

R0[v] = −2T 2q(uc), (126)

whereby the terms proportional to q(0) = q(um) cancel.
In the limit T → 0 (126) becomes the same as the first
term in (115), since:

G̃(k) = Gc(k) + (1 − uc)G(k, uc) +

∫

uc

0

duG(k, u)

T→0≈ G(k, uc). (127)

Here, we used Gc, uc ∼ T and the fact that G(k, u) has a
finite limit as T → 0.

To obtain the next order term, R1[v], we solve
Eq. (119):

M1(q, y) = −
∫ q(uc)

q

dq′dy′ D(q, y; q′, y′) (128)

×u(q′) [(M0M
′
0)(q

′, y′)] ,

where:

D(q, y; q′, y′) = − θ(q′ − q)
√

2π(q′ − q)
exp

[

− (y − y′)2

2(q′ − q)

]

(129)

is the (reverse) diffusion kernel satisfying (∂q + 1
2∂

2
y)D =

δ(q− q′)δ(y− y′), and u(q) is the inverse function of q(u)
for um < u < uc. Eq. (128) can be rewritten as:

M1(q, y) =

∫ q(uc)

q

dq′u(q′) × (130)

〈

(M0M
′
0)(q

′, y + z
√

q′ − q)
〉

z
,

which inserted into (123) gives:

R1[v] = 2T 2

∫ q(uc)

q(0)

dq′u(q′) × (131)

×
∫ ∞

−∞
dy y〈(M0M

′
0)(q

′, y + z
√

q′ − q(0))〉z .

We can now use the identity (102) for Φ = M0M
′
0 which

has rapidly decreasing derivatives and satisfies Φ(±∞) =
0. This yields:

R1[v] = 2T 2

∫ q(uc)

q(0)

dq u(q)

∫ ∞

−∞
dy y(M0M

′
0)(q, y) .

Integrating by parts over y and using the solution (124)
for M0 one finally obtains:

R1[v] = T 2

∫ q(uc)

q(0)

dqu(q)

∫ ∞

−∞
dy
[

1 − 〈tanh(y + z1
√

q(uc) − q) tanh(y + z2
√

q(uc) − q)〉z1,z2
]

. (132)

Note that we have used (M2
0 −1) as primitive of 2M0M

′
0,

since we need it to vanish for large argument. Using

ψ(a− b) :=

∫ ∞

−∞
dy [1 − tanh(y + b) tanh(y + a)]

= 2(a− b) coth(a− b), (133)

we obtain the exact scaling functional for the thermal
boundary layer92:

R1[v] = T 3r1[v̂], (134)

r1[v̂] = 2

∫ qc

qm

dq û(q) ×
〈

z
√

2(qc − q) coth(z
√

2(qc − q))
〉

z
,

(135)

where:

û(q) :=
u(q)

T
(136)

has a finite limit as T → 0, where we introduced the
definitions:

qc := q(uc) = q(1) =
1

4

∫

k

g−2
k |v̂k|2G(k, uc), (137)

qm := q(um) = q(0) =
Tσ(0)

4

∫

k

|v̂k|2, (138)

q̃ =
1

4

∫

k

g−2
k |v̂k|2G̃(k). (139)
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4. Thermal boundary layer: Uniform v and scaling
function for m → 0

Let us consider here a uniform vx = v for which one
has:

q(u) =
m4v̂2Ld

4
G(k = 0, u). (140)

Here and below we define:

G(û) = G(k = 0, u = T û). (141)

One can rewrite r1[v̂] ≡ Ldr1(v̂) with:

r1[v̂] =
m4v̂2Ld

2

∫ Gc

Gm

dG û(G)

〈

z
m2|v̂|Ld/2

2

√

2(Gc −G) coth

[

z
m2|v̂|Ld/2

2

√

2(Gc −G)

]〉

z

, (142)

where here we denote Gm := G(um) and Gc := G(uc)
(not to be confused with the connected correlator Gc).
Let us now specify to models I and II. One finds:

G(û) =
8

A(4 − θ2)

1

m2+θ
− 2

2 + θ

A
2
θ

û1+ 2
θ

, (143)

where A was given in (23). Hence:

û(G) =
Amθ(4 − 2θ)

θ
2+θ

[8 − (4 − θ2)Am2+θG]
θ

2+θ

, (144)

with ûc = Amθ
c , Am

2+θGm = 2
2−θ and Am2+θGc =

8
4−θ2 − 2

2+θ (
m
mc

)2+θ. Using (144) we obtain the TBL func-

tion as a double integral in (142). In the limit m ≪ mc

this simplifies to:

r1[v̂] = m2v̂2LdHθ

(

1√
2A

v̂

v∗mθ

)

, (145)

Hθ(x) =
1

2

(

2

2 + θ

)
θ

2+θ
∫ 2

2+θ

0

dt

t
θ

2+θ

〈

zx
√
t coth(zx

√
t)
〉

z
,

where v∗ = L−d/2m−1− θ
2 is the scale obtained in (109).

Further, from (23), A depends only on d and γ. The scal-
ing function Hθ depends only on θ, while the argument
is scaled by the characteristic displacement v∗ multiplied
by the scaled temperature Tmθ. This indicates that the
scaling function of the thermal boundary layer exhibits
universality for θ > 0 since only scales of order 1/m con-
tribute to the final scaling function, all features of q(u)
with u ≫ um being subdominant.

5. Non-analytic cusp from the T → 0 limit of the TBL

The TBL functional (134) exhibits a non-trivial large-
argument limit, v̂ = v/T → ∞ (or, equivalently, qc →
∞):

r1[v̂] ≈
4√
π

∫ qc

qm

dq û(q)
√
qc − q , (146)

using that 〈|z|〉z =
√

2/π. This limit must match the
T = 0 limit of the functional R[v], denoted RT=0[v].
More precisely, as we will show in the next subsection,
r1 must match the cubic term ∼ v3 of RT=0[v], i.e., the
cusp non-analyticity.

We now perform an explicit calculation for a uniform
vx = v. From (142) one finds in the limit of large v̂Ld/2:

LdR1(v) = R1[v] ≈ ρ(m4v2Ld/4)3/2, (147)

ρ =
4√
π

∫ Gc

Gm

dG û(G)
√

G(uc) −G , (148)

which produces a cusp non-analyticity at zero temper-
ature. The coefficient ρ can be computed explicitly for
models I and II using Eq. (143,144) and one finds:

ρ =
16

3

√

2

πA
mθ
c

(

m−2−θ −m−2−θ
c

2 + θ

)3/2

(149)

×2F1

[

3

2
,

θ

2 + θ
,
5

2
, 1 −

(mc

m

)2+θ
]

.

One can check that in the limit m ≪ mc, one has
ρ ∼ m−(3+θ/2) and that the prefactor agrees, using (147),
with the one obtained from the large v̂ limit of (145). We
have thus obtained the exact leading non-analyticity at
zero temperature: it consists in a linear cusp in the force
correlator, −N−1

∑

i ∂
2
vi
R[v] ∼ |v|. This non-analyticity

is of the same kind (i.e., proportional to |v|) as the one
found in the standard FRG (e.g., to one loop for any N),
and in the large N FRG in the regime v2 ∼ N , which
will be discussed in detail in the next Section. However,
there are differences in the dependence of the amplitude
of the cusp on m, L and N . Anticipating the results
of Sect. IV, they can be summarized as follows. In the
regime m≪ mc one finds:

R̂T=0[v] − R̂T=0[0] = Ld
[

R̂T=0(v) − R̂T=0(v)
]

(150)

=
C1

m2θ

(

v

v∗

)2 [

1 − b
|v|
v∗

+O

(

v2

v2
∗

)]

, v2 = O

(

N0

L
d
2

)

,

=
CN
m2θ

(

v

v∗

)2 [

1 − a
|v|
vc

+O

(

v2

v2
c

)]

, v2 = O(NL0),
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where a, b, as well as C1, CN are numerical prefactors
(with C1/CN = Gc/Gm > 1). Note that the two

scales v∗ = (mL)−d/2m−ζ and vc =
√
Nm−ζ are very

different. The non-analytic corrections in the regime
v2 = O(L−d/2N0) are related to the occurrence of shocks
in the system, as the quadratic well is moved. Their con-
tribution starts dominating once v > v∗.

From (149) one finds that the amplitude of the cusp
is zero at the Larkin mass mc, and then grows linearly
as function of mc −m. This is in contrast to the large-v
regime, where the amplitude jumps to a finite value at
mc, cf. Eq. (264) below.

Let us finally point out that a cusp non-analyticity
proportional to |v| in the regime v2 = O(L−d/2N0) was
found in Ref. 47 , but with an amplitude scaling differ-
ently with m. This resulted from a calculation of a rather
different observable which is reviewed in Appendix E.
A closely related cusp singularity was also found in the
study of shocks in Burger’s turbulence.59 (for a recent
discussion of their relation to FRG see Ref.48).

It is important to note that the non-analyticity found
here at T = 0 in the regime v = O(1) is a robust feature
that occurs irrespectively of the type of the ultrametric
RSB scheme (whether continuous or 1-step, marginally
or fully stable). As will be discussed below it reflects the
switches in the minimum energy, and shock-like jumps in
position, which occur as the energies of two states cross
upon moving the harmonic well. It is, not surprisingly,
rounded by temperature. In that sense it has some sim-
ilarities with shocks discussed for interfaces N = 1, and
for Burgers turbulence. In contrast, in Section IV the
cusp in the regime v2 = O(N) will be seen to rely on
the marginality of the RSB-scheme with respect to clus-
tering fluctuations on the largest scales. That type of
marginality only occurs naturally for systems exhibiting
continuous RSB. As we will see, in that case a cusp oc-
curs even at finite T , in contrast to the above discussed
non-analyticity which forms only in the limit T = 0. As
we will discuss later, it is related to a more global trans-
formation of the set of states as v is varied.

6. T → 0 limit of R[v]

The above described perturbation expansion is also
perfectly suited to analyze the limit T = 0, where it turns
into a rigorous expansion in |v|. A similar expansion was
pointed out in Ref. 47 . To exhibit the dependence on
T and v, we define q = v2Ldγ/T 2 by introducing the
reduced coupling function:

γ(û) =
1

4

∫

k

g−2
k

[ |vk|2
v2Ld

G(k, u = T û)

]

, (151)

where in this paragraph we denote by v2 a suitable av-
erage of vk, such as v2Ld =

∫

x
v2
x =

∫

k
v2
k, such that

vk/|v|Ld/2 is just a form factor. As mentioned before,
γ(û) and its inverse û(γ) have finite T = 0 limits, taking

values between γ(ûc,m) = γc,m and ûc,m, respectively.

After rescaling y ≡ |v|Ld/2ŷ/T , the evolution equation

(99) for M(q, y) ≡ M̂(γ, ŷ) becomes:

∂γM̂ = −1

2

[

∂2
ŷM̂ + |v|Ld/2û(γ)∂ŷ(M̂

2)
]

, (152)

M̂(ûc, ŷ) = tanh

(

Ld/2|v|ŷ
T

)

T→0→ sign(ŷ), (153)

and the second cumulant takes the form;

R̂[v] − R̂[0]
T=0
= −1

2

∫

k

g−2
k GT=0(k, ûm)|vk|2 (154)

+2v2Ld
∫ ∞

−∞
dŷ ŷ[M̂(ûm, ŷ) − sign(ŷ)].

From (152) it is easy to see that the above described
procedure corresponds to a power series expansion in |v|,
the term corresponding to RT=0

n [v] being proportional to
|v|2+n. We will show below that in the case of a one step
RSB the zero temperature correlator can be obtained in
closed form.

7. Comparison with the TBL from droplet arguments

It is interesting to note certain analogies with formu-
lae obtained from droplet arguments, where one assumes
rare quasi-degeneracies of the ground state. In d = 0 it
was found in Refs. 48,49 that:

R̂′′
ij(v) := ∂2

vivj R̂(v) = R̂′′
ij(0) + (155)

+m4T
〈

yiyjF
(

m2y · v
T

)〉

y
+O(T 2),

F (z) =
z

4
coth(z/2)− 1/2 =

1

4
[ψ (z/2)− 2] ,(156)

where y ≡ u21 = u2 − u1 is the difference between the
center of mass displacement of the ground state (u1)
and of the excitation (u2). They are characterized by
an (unnormalized) distribution D(y) = P (y,E = 0)
where P (y,E)dydE is the (normalized) joint distribution
of position and energy differences between the two states.
Here we denote 〈...〉y :=

∫

dy...D(y), which can be nor-
malized using the STS identity 〈yiyj〉y = 2δij/m

2. In
some simple cases (e.g., the Sinai model, corresponding
to N = 1 with random field disorder) D(y) is known an-
alytically. The above formula can be generalized48,49 to
any d:

R̂[v] =
1

2

∫

xy

δR̂[v]

δvixδv
j
y

|v=0v
i
xv
j
y

+T 3

〈

F
(∫

xx′

g−1
xx′vx · u12

x′ /T

)〉

u12

, (157)

with F ′′(z) = F (z), and a formula for all cumulants was
also obtained.
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Given the similarities between the formulae (155) and
(134), it is tempting to interpret the latter in terms of
a droplet size density, summed over all ultrametric dis-
tances u. To this end, we rewrite (134) for uniform
v̂ = v/T as:

LdR1(v) = v̂2T 3

∫ q̂c

q̂m

dq̂ û(q̂)〈ψ(|v̂|
√

2(q̂c − q̂)z)〉z,(158)

where we note that q̂(û) := q(û)/v̂2 and its inverse func-
tion are independent of v̂.

As shown in App. F, the force correlator splits into a
longitudinal and transverse part, describing forces par-
allel and orthogonal to the displacement vector ~v. Note
that due to the O(N) symmetry the correlator is only
a function of |v|. The TBL contribution to the force

correlators is Ld∆
(1)
L (v) = −LdR′′

1 (|v|) and Ld∆
(1)
T (v) =

−LdR′
1(|v|)/|v|, respectively. They can be cast in the

form (for details see App. F):

− Ld∆
(1)
L,T (v) = T

∫ ∞

0

db ρRSB
L,T (b)ψ(b|v̂|), (159)

with the densities

ρRSB
L (b) = (160)
∫ q̂c

q̂m

dq̂ û(q̂)
〈

(z4 − z2)δ(b − z
√

2(q̂c − q̂))
〉

z
,

ρRSB
T (b) = (161)
∫ q̂c

q̂m

dq̂ û(q̂)
〈

(1 + z2)δ(b − z
√

2(q̂c − q̂))
〉

z
.

This has precisely the same form as the droplet expres-
sions for the force correlators, which from (155) are found
as:

−∆drop
L,T (v) = (162)

R̂′′(0) −m2T + T

∫ ∞

0

db ρdrop
L,T (b)ψ(b|v̂|) +O(T 2),

whereR′′(0) ≡ ∂2
vi
R(v = 0) (for any fixed i), and the den-

sities ρdrop
L,T (b) are given in (F5). Note also that formulae

(132,133), and the appearance of the function ψ, bear
similarities to expressions obtained in the case N = 1
for averages over a uniform density of shocks rounded by
temperature48,49.

In order to go further in the comparison and extract
observables such as shock and droplet density and their
size distribution, a more detailed description of higher
moments is needed for the present model. Work in this
direction is in progress.

D. The case of 1-step RSB (d ≤ 2, γ ≥ γc)

As mentioned before, the GVM saddle point for a 1-
step situation is characterized by the “break point” uc

[≡ u1 in the notation of (89)] and the two self-energy
parameters σ0,1 (26). Similarly, the correlation func-
tion G(k, u) and the coupling q(u) assume only two off-
diagonal values G0,1 and q0,1. The former has the follow-
ing interpretation: The measure on configuration space
describing fluctuations both due to disorder and thermal
noise can be constructed independently for each mode k,
following Ref. 46.

For the displacement in each environment one picks a
set of “state centers” uαk as93

uαk = u0
k +

√

G1(k) −G0(k) ξ
α
k , (163)

u0
k =

√

G0(k) ξ
0
k, (164)

where the ξ0k, ξ
α
k are chosen from independent univariate

Gaussian distributions. Note that in a given environ-
ment the (infinite) set of uαk are globally displaced by
the same (random) u0

k. Each state corresponds to a par-
tial Gibbs measure which is assigned a weight Wα (with
∑

αWα = 1), such that the total Gibbs measure in this
environment is the weighted superposition of the partial
Gibbs measures, i.e., in one thermal realization one picks
a state α with probability Wα and the mode uk takes the
value

uk = uαk +

√

G̃(k) −G1(k) η
α
k , (165)

where ηαk are chosen from independent univariate Gaus-
sian distributions and account for thermal noise inside
a given state. In each environment the weights Wα are
independent random variables chosen from the distribu-
tion P (W ) ∼W→∞ W−(1+uc), the glass transition corre-
sponding to the divergence of its first moment at large
W , which implies that only a few states dominate the to-
tal Gibbs measure.94 An analogous construction applies
in the case of continuous RSB, where the obvious gener-
alization of the above to K-step RSB has to be taken to
the limit K → ∞.

With a general 1-step Ansatz of the form (14) we ob-
tain the correlation functions:

G0(k) = Tσ0g
2
k, (166)

G1(k) = Tσ0g
2
k +

T

uc

(

gk −
1

g−1
k + Σ1

)

, (167)

where Σ1 := [σ](uc) = uc(σ1 − σ0) As always, on the
saddle point, STS implies Gc(k) = Tgk, and we note:

G̃(k) = Gc(k) + ucG0(k) + (1 − uc)G1(k). (168)

With such a 1-step Ansatz the GVM free-energy density
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takes the form:46

φ(uc) ≡
F(uc)

NLd

= f0 −
1

2T

∑

b

B

(

2

∫

k

G̃(k) −Gab(k)

)

+
1

2

∫

k

[

g−1
k G̃(k) − T

n
Tr logG(k)

]

(169)

= f̃0 +
1

2T
[ucB(χ0) + (1 − uc)B(χ1)] (170)

+
T

2

1 − uc

uc

∫

k

[

Σ1

k2 +m2 + Σ1
− ln

(

k2 +m2 + Σ1

k2 +m2

)]

,

where we denote the square of transverse intra/inter-
state fluctuations as:

χ0,1 = 2

∫

k

[

G̃(k) −G0,1(k)
]

, (171)

and we have absorbed quantities that depend only on
T and m, but not on uc and Σ1, into the constants f0
and f̃0. The free-energy density (169) is minimized with
respect to G by the saddle point satisfying δF/δGab = 0
[Eq. (15)], taking the 1-step form:

σ0,1 = − 2

T
B′(χ0,1). (172)

In order to describe equilibrium thermodynamics, the
breakpoint uc has to be chosen so as to extremize (max-

imize) F , as usual in replica treatments. However, other
choices of uc are of physical interest as well, as discussed
in detail below.

1. Instability of the RS solution

Let us derive the phase diagram in the 1-step case. For
simplicity we restrict to d < 2 and Λ/mc = ∞. We recall
that we use the natural units introduced in Section II.
Performing the integrals, the free-energy density reads
(dropping the constant f̃):

φ(uc) ≡ F(uc)

NLd
=

1

2T
[ucB(χ0) + (1 − uc)B(χ1)]

+
AdT

ǫ(2 − d)

1 − uc

uc

{

Σ1

(m2 + Σ1)
2−d
2

(173)

−2

d

[

(m2 + Σ1)
d
2 −md

]

}

,

where we have used
∫

q

1

1 + q2
=

Γ(1 − d/2)

(4π)d/2
=

2Ad
ǫ(2 − d)

. (174)

In d = 0 (a particle) the last line of (173) becomes
−2 ln(1+Σ1/m

2). In φ(uc) above, Σ1 and uc can be con-
sidered as two independent variational parameters. The

variation with respect to Σ1 (at fixed uc) yields back the
saddle-point equation:

Σ1 = −2uc

T
[B′(χ1) −B′(χ0)] , (175)

where from (171) one has:

χ0 =
4Ad

ǫ(2 − d)

T

uc

[

1

m2−d − 1 − uc

(m2 + Σ1)1−d/2

]

,

χ1 =
4Ad

ǫ(2 − d)

T

(m2 + Σ1)1−d/2
. (176)

The replica-symmetric solution (uc = 1, χ1 = χ0 = χRS,
Σ1 = 0) is valid at high temperature/large mass, but
becomes unstable when the condition

4Ad
ǫmǫ

B′′ (χRS[m,Tc]
)

= 1 (177)

is met, with χRS = 4Ad

ǫ(2−d)Tm
d−2. This defines a unique

function Tc(m) for masses m ≤ mc smaller than the zero
temperature critical mass:95

mc = mc(T = 0) =

[

4Ad
ǫ
B′′(0)

]1/ǫ

. (178)

The function Tc(m) describes the location of a contin-
uous glass transition towards a 1-step RSB phase for
mc ≥ m ≥ m∗. Here, m∗ denotes the mass where
Tc(m) attains its maximum. For m < m∗, the line
Tc(m) has little physical significance, since in that regime
the glass transition occurs in a discontinuous manner at
T > Tc(m), as will be discussed below.

It is interesting to note46 from (163-165), using (166-
168), that as m → 0 the thermal fluctuations of the dis-

placement field u within a state, G̃−G1 = T/(k2 +m2 +
Σ1) remain bounded and massive and occur only at the
Larkin scale.

By contrast, the r.m.s. difference in displacement be-
tween two states in a given sample, uα − uα

′

, scales as
G1 − G0 = T

uc
[ 1
k2+m2 − 1

k2+m2+Σ1
]. Hence, the ther-

mal fluctuations between states, which are active at any
T > 0 in a given sample, occur at all scales up to 1/m.
Note that these r.m.s. differences in displacement have
a finite T = 0+ limit, if T/uc goes to a constant in that
limit (which is generally the case as shown below). These
fluctuations are responsible for the roughness of the man-
ifold ζ = (2 − d)/2 with a non-zero amplitude even as
T → 0.

Finally, sample-to-sample fluctuations include in addi-
tion the term G0 ∼ Tσ0/(k

2 +m2)2 whose mass depen-
dence is controlled by σ0. These fluctuations also occur
at all scales smaller than 1/m.

2. Metastable states and configurational entropy

The break point 0 < uc < 1 is a priori a free parameter
of the 1-step Ansatz. In order to describe the thermo-
dynamic equilibrium, one should choose uc = u

eq
c which
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extremizes the free energy:

dφ

duc
(ueq
c ) = 0, (Equilibrium) (179)

(at fixed Σ1) as was done in Ref. 46. As in most glassy
problems with a 1-step structure, at low temperatures
T ≪ Tc the equilibrium break point is proportional to
the temperature96

u
eq
c ≈ Tωeq. This is shown in App. G,

where ωeq is computed as well.
However, the function φ(uc) encodes much more in-

formation than just the equilibrium physics. It can be
interpreted60 as the quenched “replicated free energy”,
i.e., the free-energy density per replica of a set of uc

clones (replica) which are bound to remain in the same
metastable state of the energy landscape. With this in-
terpretation one can alternatively write the total free en-
ergy as a sum over states. Their number N (f) at fixed
free-energy density f increases exponentially with the
volume and N . One thus introduces the configurational
entropy, or complexity, Σ(f) = log[N (f)]/NLd. The to-
tal Boltzmann weight of uc clones can then be written
as:

exp
[

−NLdβucφ(uc)
]

(180)

≈
∫

df exp
{

−NLd [βucf − Σ(f)]
}

,

where β = 1/T . In the large-N limit, the configurational
entropy becomes the Legendre transform of the replicated
free energy:

βucφ(uc) = βucf − Σ(f), Σ′(f) = βuc. (181)

Knowing φ(uc), one easily obtains an implicit
parametrization of the configurational entropy as a
function of the free-energy density:

f =
d[ucφ(uc)]

duc
= φ(uc) + ucφ

′(uc), (182)

Σ = βu
2
cφ

′(uc). (183)

We see in particular that the equilibrium prescription
(179) corresponds to choosing the states with vanish-
ing configurational entropy. Since the configurational
entropy is an increasing function of f , the so selected
states have the lowest free-energy density in typical sam-
ples and thus describe indeed the quenched equilibrium
free energy.

However, the equilibrium may not be possible to reach
dynamically, which suggests a different choice for uc. The
choice is constrained by the requirement that the 1-step
solution be stable (as was the case for uc = u

eq
c ).

Metastable states of the free-energy density above the
equilibrium value f eq are described by breakpoints in the
range u

th
c < uc < u

eq
c , where the lower boundary is deter-

mined by the so-called replicon instability of the 1-step
scheme, i.e., the condition:78

4Ad

ǫ(m2 + Σ1)
ǫ
2

B′′(χ1) = 1. (Threshold) (184)

A comparison with (177) shows that at fixed temper-
ature T < Tc(m∗), this implies m2 + Σ1 = m2

c(T ),
where mc(T ) > m∗ is uniquely defined as the solution
of Tc(mc(T )) = T . One can prove that solutions of the
1-step saddle-point equations with condition (184) exist
for all T < Tc(m∗) and m < mc(T ) (but nowhere outside
this parameter regime).97 The states described by u

th
c

are merely marginally stable and are often referred to as
“threshold states”. Since they are usually the most abun-
dant metastable states of the system they are most likely
to trap the dynamics after a fast temperature quench for
m < m∗.

Another choice for uc of interest is the value uc =
u
cp
c > u

eq
c where the 1-step scheme becomes unstable

with respect to a clustering fluctuation among the ex-
isting states78. The latter is equivalent to the condition:

4Ad
ǫmǫ

B′′(χ0) = 1. (Cusp for FRG at large v) (185)

This condition ensures that the second cumulant in the
regime v2 ∼ N is non-analytic at v = 0, as we will discuss
in Sec. IVB 4.

We emphasize that the kind of marginal stability im-
posed by (185) is clearly distinct from the marginality
(184) due to the replicon mode, which is usually imposed
to select dynamical threshold states in 1-step systems98.
The latter is also the marginality property of continuous
RSB systems that ensures the presence of collective soft
modes in classical62 and quantum mean-field spin, elas-
tic or electron glasses66,67,68? , and leads to a universal,
saturated pseudogap in the local field distribution of spin
and electron glasses63,64,65.

While the replicon instability (184) indicates the
fragility towards fragmentation of existing states into
substates, the condition (185) signals the instability to-
wards the formation of clusters among previously equiva-
lent states. When m≪ mc these two instabilities involve
rather different length scales. This can be seen as follows:
The replicon instability corresponds to each state uαk in
(163) giving birth to a new cluster of substates labelled

by β, uαk → uα,βk = uαk +δuβk , where each δuβk occurs with
a probability W ′

β (with
∑

βW
′
β = 1). This rearrangment

implied by the additional substructure involves scales of
order 1/mc since dG(u) = Tdσ(u)/(g−1

k + [σ][u])2 with
[σ][u ≥ uc] = Σ1 ∼ m2

c . On the contrary (185) signals
the instability towards u0

k splitting into several clusters

u0
k → u0

k + δuβk , generating substates uβ,αk . This rear-
ranges the original uαk into clusters labelled by β, and
obviously involves scales up to 1/m.

The above two kinds of instabilities have been analyzed
in detail in the context of the spherical p-spin model in
Ref. 74. More recently they have been discussed in the
context of lattice-glass models61 and optimization prob-
lems69,70,71, where they are sometimes referred to as in-
stabilities of the first (clustering) and second (fragmenta-
tion) kind99. They also appear as the instabilities driving
the transitions between the two types of one-step phases
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FIG. 4: Phase diagram for model I in d = 1. The solid line
for m > m∗ indicates a continuous glass transition, where the
renormalized force correlator B̃′(x) displays a cusp at the ori-
gin. For smaller mass, m < m∗, the glass transition towards
the one-step RSB phase (as a function of T ) is discontinuous
and takes place dynamically as a freezing transition at Td, or,
if equilibrium can be attained, as a genuine thermodynamic
transition at the lower temperature Tc. A similar phase dia-
gram applies in d < 2 for model I and model II with γ > γc.

adjacent to an intermediate two-step RSB phase in cer-
tain mixed spherical spin models.72

For model I in d = 1, i.e., the directed polymer prob-
lem, we have checked explicitly that u

th
c < u

eq
c < u

cp
c , and

we expect this to be generally true for 1-step solutions.
This is illustrated in Fig. 5. For the associated config-
urational entropies this implies Σth > Σeq = 0 > Σcp,
and thus the states selected by the clustering instability
(185) have negative configurational entropy. Anticipat-
ing the analysis of Sec. IVB 4, we conclude that samples
exhibiting non-analytic shock-like behavior in the regime
v2 ∼ N where an FRG equation was previously derived,
correspond to exponentially rare realizations of the disor-
der occurring with probability P ∼ exp

[

−NLd|Σ(ucp
c )|
]

,
as derived explicitly in App. G.

Note that upon approaching the limit of a marginal
one-step solution, i.e., for d ≤ 2 and γ ↓ γc, the three
values u

th
c < u

eq
c < u

cp
c merge and the one-step saddle

point becomes simultaneously marginal with respect to
both instabilities discussed above.

3. Phase diagram

In this section we establish the phase diagram and dis-
cuss some of the subtleties associated with the choice of
uc. The situation is closely analogous to a particle in a
random environment (d = 0) analyzed in Ref. 73. The
phase diagram of a typical case, model I in d = 1, is
shown in Fig. 4, and explicit values given in the analysis
below refer to this specific case.

The glass phase exhibits everywhere 1-step RSB. Right
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FIG. 5: The breakpoint uc as a function of m at constant
temperature T = 0.8 in the glass phase (m < mc(T ) = 0.673)
for model I in d = 1. The labels cp, eq, and th indicate thresh-
old, equilibrium and cusp states. Notice that u

cp exceeds 1
at small enough m. The same would be true for u

eq and u
th

for Tmax > T > Tc(0) and Tmax > T > Td(0), respectively.

on the instability line Tc(m) where (177) is obeyed, there
is only one admissible value for uc:

u
crit
c (m) = −Tc(m)I2

2 (m)

I3(m)

B′′′(χRS)

B′′(χRS)

= −4Ad
ǫ2

Tc(m)

m2−d
B′′′(χRS)

B′′(χRS)
, (186)

which yields the fluctuation-dissipation ratio relating re-
sponse and correlations at the glass transition.73 It in-
creases monotonously with decreasing m, and reaches
u
crit
c = 1 at m = m∗ (= 1/e = 0.3678, with Tmax

c =
Tc(m∗) = 3/e = 1.1036 in d = 1 for model I where
A1 = 3/4). For states to be dynamically or thermody-
namically of significance, u must always be smaller than
1, and thus the line Tc(m) looses its significance below
m∗.

For m > m∗ the glass transition is continuous in the
sense that G1−G0 smoothly goes to 0 as T ↑ Tc(m). For
m < m∗ the temperature-driven transition is discontinu-
ous with a sudden jump between intervalley and intraval-
ley correlations occurring at some T ∈ [Tc(m), Tmax

c ].
The location of the transition depends on the point
of view. From a thermodynamic (static) standpoint
the glass transition takes place at the line given by
u
eq
c (m,T ) = 1, indicating that the replica symmetry must

be broken spontaneously to extremize the free energy,
which gives rise to a non-analyticity in the free energy.
For model I, one finds the explicit result

Tc(m = 0) =

(

2Ad
dǫ

(2e)d/2
)− 2

ǫ
d=1
= 0.9028. (187)

However, metastable states exist already at higher tem-
perature. In the mean-field limit N → ∞ they induce
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a dynamical freezing transition at the line Td(m) defined
by u

th
c (m,Td) = 1. For model I one finds

Td(m = 0) =

(

e2d/2Ad
ǫ

)−2/ǫ
d=1
= 1.0268. (188)

The resulting phase diagram is naturally very similar to
the one for a particle in a random environment (the limit
d = 0 of a random manifold)73, and it also strongly re-
sembles the one of the spherical p-spin model, whereby
the mass m takes the role of the external field h74. In the
latter the glass phase is known to be everywhere of 1-step
nature, the transition (at fixed h) being continuous for
|h| > h∗ and discontinuous for |h| < h∗.

4. Second cumulant

To evaluate the second cumulant of the renormalized
disorder potential V̂ , we introduce as before the coupling
q0,1, connected to G0,1 via:

q0,1 =
1

4T 2

∫

k

g−2
k G0,1(k)|vk|2 . (189)

We need to apply the recursion relations (93) only once
(since here K = 1) to calculate:

g1(y) ≡ exp[ucψ1(y)] (190)

= e
q̃−q(1)

2 uc
〈[

2 cosh(y + z
√
q1 − q0)

]uc
〉

z
,

and using similar steps as in the derivation of (86) and
(103) we obtain:

R̂[v] − R̂[0] = −2T 2q0 (191)

−2T 2

∫ ∞

−∞
dy {ψ1(y) − ln[2 cosh(y)]} .

Recalling that qc = q̃ − [ucq0 + (1 − uc)q1] = 0, one can
see that ψ1(y) − ln[2 cosh(y)] ∼ qc/2 = 0 at large |y|,
and thus the integral in (191) indeed converges. In the
following we examine various limits of this formula.

5. Large Ldv2

Let us introduce the notation Q = q1 − q0. At large v

(large Q) one can use that 〈(2 cosh(y + z
√
Q))uc〉z Q→∞∼

2 cosh(ucy)e
u
2
cQ/2, as can be shown using a saddle-point

method. This yields the large-v limit:

R̂[v] − R̂[0]
v→∞∼ −2T 2q0 (192)

−2T 2 1

uc

∫ ∞

−∞
dy {ln[2 cosh(yuc)] − uc ln[2 cosh(y)]} .

Evaluating the integral we find the final result:

R̂[0]− R̂[v]
v→∞∼ T

2
σ(0)

∫

x

v2
x +

π2T 2

6

(

1

u2
c

− 1

)

, (193)

which matches the full RSB result (107), if we formally
replace um by uc. These two expressions are indeed iden-
tical in the case of a marginal 1-step solution, as it oc-
curs in d = 2. In that case, θ = 0, and the analysis
of the crossover to large v in Section (III C 1) remains
unchanged.

6. Small Ldv2

For small Ldv2 one can expand in Q as follows:

ψ1(y) − ln[2 cosh(y)] (194)

=
1

uc
ln〈euc[ln cosh(y+z

√
Q)−ln cosh(y)]〉z +

q̃ − q(1)

2

=
1

2
(1 − uc)[1 − tanh2(y)]Q+ . . . ,

where qc = 0 was used. Performing the y-integrals, one
eventually finds:

R̂[v] − R̂[0] = −2T 2q0 − 2T 2(1 − uc) × (195)
[

Q− uc

3
Q2 +

4uc

45
Q3 +

4uc

315
(3uc − 5)Q4 +O(Q5)

]

.

As it must be, the leading term is:

R̂[v] − R̂[0] = −2T 2

∫ 1

0

q(u)du, (196)

which yields the GVM result for two-point correlations.
Indeed, (196) matches the expression (113), which should
not depend on the RSB scheme. Similarly, inserting the
one-step form for q(u) in (114) one checks that it repro-
duces the second-order term from (195). In fact, one can
check that (195,114) agree with:

R̂[v] − R̂[0] = −2T 2

[

tr(q) +
1

3
tr(q2) (197)

+
4

45

(

∑

b

q3ab + 2tr(q3) − 3tr(q2)tr(q)

)

+
4

315

(

−3tr(q4) − 12[tr(q2)]2 + 30tr(q2)[tr(q)]2

+5
∑

b

q4ab − 20tr(q)
∑

b

q3ab +O(q5)

)]

.

where we have used qc = 0 and defined tr(A) =
limn→0

1
nTr(A). Note that

∑

b q
3
ab = tr((q · q)q), where

the dot is the Hadamard-product.

7. Low-T expansion

Let us now consider the low T expansion, i.e., the
thermal boundary layer, using similar notations as in
(III C 3). In the T → 0 limit uc → 0, but ûc ≡ uc/T →
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ωeq has a non-zero limit, and so do q0 and q1 when ex-
pressed in terms of fixed v̂ = v/T , as in (116). Hence
it is convenient to define, for the present 1-step case, an
expansion in uc

100, analogous to (121):

R̂[v] − R̂[0] =

∞
∑

p=0

Rp[v], (198)

obtained by expanding (194) in powers of uc at fixed Q.
This yields:

R0[v] = −2T 2q1, (199)

R1[v] = −T 2
uc

∫ ∞

−∞
dy

{〈

[

ln cosh(y + z
√

Q)
]2
〉

z

−
〈

ln cosh(y + z
√

Q)
〉2

z
−Q

}

, (200)

Rp≥2[v] = −2T 2 u
p
c

(p+ 1)!
(201)

×
∫ ∞

−∞
dy

〈

[

ln cosh(y + z
√

Q) − ln cosh(y)
]p+1

〉c

z

.

The expression for R0 has been simplified using an inte-
gration by parts and the identity (102), and is found to
match the result (126) for the continuous case. The term
q̃ − q1 = −ucQ has been included in R1. The term mul-
tiplied by u

p
c in(201) is the (p + 1)th connected average

(cumulant), as indicated by the superscript c. After a
calculation summarized in App. H we finally obtain the
thermal boundary layer:

R1[v] = 2T 2
uc

∫ Q

0

dq
〈

z
√

2q coth(z
√

2q)
〉

z
, (202)

which agrees with the result for continuous RSB (134)
as expected, since both formulae should apply for the
borderline case of a marginal 1-step solution.

8. Cusp and full correlator at T = 0

The case of one-step RSB is sufficiently simple to allow
for a complete calculation of the non-analytic T = 0 limit
of the full functional R̂[v] in the regime v2 ∼ 1. Let us
define the variable:

w := uc

√

Q =
ûc

2

[∫

k

g−2
k [G1(k) −G0(k)] |vk|2

]1/2

,(203)

which will be shown to be of order O(1) when the
crossover to the shock-dominated regime occurs, see
(212) below. It tends to a finite limit as T → 0. For
a uniform vx = v this becomes:

w =
1

2

[

Ldû2
cv

2m4(G1 −G0)
]1/2

=
v

2v∗

[

ûc

mθ

(

Σ1

m2 + Σ1

)]1/2

, (204)

with G0,1 ≡ G0,1(k = 0) as given by (166,167). Note that
the characteristic scale for v (determined by w ≈ 1) is

not exactly the scale v∗ = L−d/2m−1− θ
2 for shocks found

for continuous RSB in (109), but rather (for m ≪ Σ1)

∼ v1step
∗ = v∗m

θ
2 ∼ L−d/2m−1. However, the two scales

become the same in the case of marginal one step RSB
since there θ = 0.

Let us first obtain the T = 0 cusp for a uniform vx = v
by taking the limit of large v/T of the thermal boundary
layer. In that limit the expression (202) tends to101

LdRT=0
1 (v) = 2ûc

∫ ( w
ûc

)2

0

dq′〈|z|
√

2q′〉z =
1

û2
c

8w3

3
√
π

=

(

mLd/2|v|
)3

3 (πûc)
1/2

(

Σ1

m2 + Σ1

)3/2

, (205)

using 〈|z|〉z =
√

2/π. This finite non-zero limit as T → 0
(cf., App. G) is thus the exact expression for the leading

non-analyticity of R̂[v] − R̂[0] at T = 0, which is again
cubic ∼ |v|3 (corresponding to a “linear cusp” of the force

correlator −R̂′′[v]). Note that in this regime, v2 ∼ L−d,
the cusp exists irrespective of the choice of uc, including
the equilibrium solution. This is to be contrasted to the
regime v2 ∼ N where, in the case of a non-marginal one-
step solution, a cusp exists only for the choice uc = u

cp,
see the discussion in Sec. IVB 4.

We now obtain the full functional R̂T=0[v] for arbitrary
vx, using the variable w defined in (203). By using (190)
in (191) and taking the limit of small uc, we find at T = 0:

R̂[v] − R̂[0]|T=0 = −1

2

∫

k

g−2
k GT=0

0 (k)|vk|2

+RT=0(w), (206)

where:

RT=0(w) = − 2

û2
c

∫ ∞

−∞
dŷ

[

−w
2

2
+ ln〈e|ŷ+zw|〉z − |ŷ|

]

= −w
2

û2
c

∫ ∞

0

8ŷ dŷ

1 +
exp(2wŷ)(1+erf[(w+ŷ)/

√
2])

1+erf[(w−ŷ)/
√

2]

,

=







−w2

û2
c

[

2 − 8|w|
3
√
π

+O(w2)
]

, w ≪ 1,

− π2

6û2
c
, w ≫ 1.

(207)

From the expansion for w ≪ 1 we again recover (205)
with, in the uniform-v case RT=0(w) → LdRT=0

1 (v). The
asymptotics for w ≫ 1 is in agreement with the result
(193) for continuous RSB (with ûm → ûc).

From this expression one can compute the force corre-
lator, which, from O(N) symmetry, splits in transverse
and longitudinal parts as defined in App. F.

The non-analytic parts of the longitudinal and trans-
verse force correlators in the regime v2 ∼ L−d/2 are

proportional to −R′′
T=0(w) and −R′

T=0(w)
w , respectively¿

They are plotted in Fig. 6, both exhibiting a linear cusp
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FIG. 6: Nonanalytic contribution to the force correlator in
longitudinal ∆L(w) and transversal ∆T (w) direction, at T =
0 in the case of 1-step RSB. The rescaled displacement w is
defined in (204).

at the origin. Note that the full correlator of the force in
addition contains a constant which derives from the v2

term in (206). Further decay from this constant to zero
at infinity occurs (for any γ > 0) in the regime v2 ∼ N .

E. Interpretation of v∗ and the thermal boundary
layer

What happens to the manifold as the center of the har-
monic well is moved? Let us first focus on the case of a
one step RSB for which the construction of the statisti-
cal measure is significantly simpler and was recalled in
(163,164). From this construction we know that at low
temperatures a certain state center ξαk dominates, but
there is at least one excited state which differs in energy
by a typical amount T/uc. Changing the position of the
harmonic well by an amount v shifts the relative energies
of these two low lying configurations (states), noted u1,2,
by an amount:

∆E =

∫

k

g−1
k vk · [u1(k) − u2(k)]. (208)

One can expect a switch from one state to the other, and
thus a macroscopic jump, as the energies of two states
cross. This occurs typically when |∆E| ∼ T/uc = û

−1
c .

Recalling that [u1(k) − u2(k)]2 is of the order of G1(k)−
G0(k), one finds:

∆E2 = 2

∫

k

g−2
k |vk|2[G1(k) −G0(k)]. (209)

Hence, comparing with Eq. (203) the jump occurs typi-
cally when:

w ∼ O(1). (210)

We thus understand the scale of variation of the func-
tional R̂[u] given by (206,207). The argument is even

simpler for a uniform center v (vk = Ld/2vδk,0) which
couples only to the k = 0 mode of the excitation,
the energy shift being m2Ld/2v[u1(0) − u2(0)]. Since

[u1(0) − u2(0)]2 = 2(G1 − G0), we see that the energy
shift (208) competes with the typical excitation energy

û
−1
c when v is of the order of v1step

∗ as defined below Eq.
(204). Since the energy difference is finite, the jump is
thermally smoothed at finite temperature, but turns into
a sharp shock for T → 0, which is at the root of the
non-analyticity in (207).

We can obtain better insight into the physics for shifts
of order v ∼ v1step

∗ by examining the force-correlator.
We consider uniform v for simplicity. To be specific we
define −R̂′′(v) := −∂2

|v|R(v) which corresponds to the

longitudinal force correlator. From (206), we see that for

v ≫ v1step
∗ the correlator is simply constant and equal to:

− R̂′′(v ≫ v1step
∗ ) = m4G0(k = 0). (211)

This has a simple interpretation in terms of the hier-
archical construction (163,164): One can imagine the
states (characterized by ξα) as parabolic potential val-
leys within a big parabolic potential valley as determined
by the global center u0

k, and accordingly write schemati-
cally V (u) = V0(u

0)+Vα(ξα) for the total potential. For

v ≫ v1step
∗ , the manifold has jumped to a different state

center, and therefore the part of the force arising from
V ′
α(ξα) does not contribute to the correlator. However,
u0 is very robust under shifts of v ≪ N1/2, and jumps
only once v2 ∼ N , as we will see in the next section.
The force corresponding to the big valley, V ′

0 (u0), thus
remains constant. Since the disorder potential competes
against the quadratic well Ldm2(u0)2/2, that part of the
force is of order V ′

0(u) ∼ Ld/2m2u0
k=0, which leads to

(211).

For v ≪ v1step
∗ we see from (205) that the force corre-

lator behaves as

−R̂′′(v ≪ v1step
∗ ) = (212)

= m2

[

m2G1(k = 0) − |v|
v1step
∗

2

(πûc)
1/2

(

Σ1

m2 + Σ1

)3/2
]

.

The first term can be understood as m4 times the intra-
state correlator

〈

u2
〉(α)

. The force correlations rapidly
decrease with growing v. Indeed, we can understand the
non-analytic piece ∼ |v| as being due to shocks which oc-
cur with a finite density along the v-axis. Note the large
prefactor ∼ Ld/2 of |v|: It indicates that the product of
the density and size of shocks scales as ∼ Ld/2, that is,
in such a way that the system size rather than 1/m acts
as a cutoff. Further work is in progress to clarify the
properties and the distribution of these shocks.

Let us close the discussion of shocks by sketching the
analysis in the case of continuous RSB. The typical scale
in that case, v∗ = v1step

∗ m−θ/2, can be retrieved by the
same argument as above for the one-step RSB. However,
now the energy difference between two states at ultramet-
ric distance u is typically of order T/u. This competes
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with the energy shift induced by the displacement of the
well:

∆E2 = 2

∫

k

g−2
k |vk|2[G(uc, k) −G(u, k)]

∼ Ldv2m4

û1+2/θ
. (213)

The largest response is due to transitions between states
differing at the largest scales, i.e., u ≈ um ∼ mθ. The
above energy comparison at this scale immediately yields
v∗. However, there is no sharp selection of shocks that
involve the highest hierarchy scale. Smaller shocks con-
tribute as well, even though their weight decreases with
increasing u characterizing the shock. Note that from the
construction of the measure of pure states it is clear that
when a shock occurs at scale u = ur (in a finite K-step
RSB scheme), the whole sub-hierarchy of state-centers
usk with K ≥ s ≥ r changes. Note that in general shocks
characterized by a larger u correspond to smaller spatial
rearrangements.

IV. REGIME v2 ∼ N

We now compute the functional Ŵ [v] = W [j =
(g−1v)/T ] defined in Section II C, and more explicitly its

second cumulant part R̂[v], in the regime v2 ∼ N . This
is the standard regime for the large-N analysis, and in
Refs. 11,13 the associated saddle-point equation was ob-
tained. There the focus was on the calculation of the ef-
fective action Γ[u], and in particular its two-replica com-
ponent R[u], part of which will be of use here, too, to

obtain Ŵ [v] and R̂[v]. We find, as announced in Section

II C, that the functionals R̂ and R are identical. The cal-
culations carried out here are, however, rather different
in spirit from the one in Refs. 11,13 . We obtain R̂[v]
from imposing external fields va = ±v to two groups
of replicas, whereas in Refs. 11,13 the case of uab 6= 0
for all a 6= b was considered. It is reassuring that the
two approaches yield consistent results. The advantage
of the present approach is that it includes RSB effects,
and hence it provides a complete derivation of the FRG
equation on all length scales (below and above the Larkin
scale).

A. General saddle point

To analyze the saddle point in the regime v2 ∼ N it is
convenient to introduce the rescaled variables:

ũ =
u√
N
, ṽ =

v√
N
. (214)

We can now rewrite the definition (59) and decouple the
partition sum with the help of two auxiliary fields as:

eŴ [v] =
∏

a

ZV

[

ja =
g−1va

T

]

=

∫

D[ũ]D[χ]D[σ]e−NS ,

S =
1

T

∑

a

∫

k

g−1
k

(

1

2
ũa−k · ũak − ṽa−k · ũak

)

(215)

+

∫

x

[

U(χx) +
1

2

∑

ab

σabx
(

χabx − ũax · ũbx
)

]

,

where the replica matrix field χabx has been introduced
through a purely imaginary Lagrange multiplier matrix
σabx . A standard choice, as in previous sections, is g−1

k =
k2 +m2 but our analysis is more general. We have also
included the source term shifting the center of mass. U
is a function of a n× n replica matrix102 ũũ ≡ ũa · ũb:

U(ũũ) = − 1

2T 2

∑

ab

B((ũa − ũb)2)

− 1

3!T 3

∑

abc

S(3)(. . . ) + ... , (216)

containing the information about the bare disorder via
its cumulants, e.g., its second cumulant being (as in (7)):

R0(u) = NB(ũ2). (217)

Note that the rescaling (214) was performed in order
to make explicitly appear a factor of N in front of the
action S, which allows for a saddle-point analysis. One
now explicitly performs the functional integration over
the field ux to obtain:

eŴ [v] =

∫

D[χ]D[σ]e−NS[χ,σ,ṽ] , (218)

S[χ, σ, ṽ] =
1

2
Tr ln

[

1

T
(g−1 − σ)

]

(219)

+

∫

x

[

U(χx) +
∑

ab

1

2T
σabx χ

ab
x

]

− 1

2T

∑

ab

∫

x,x′

ṽax [(g − gσg)−1]abxx′ ṽbx′ ,

where the inversions and the trace are performed in both
replica and spatial-coordinate space. We use the short-
hand g−1 ≡ (g−1)abxy = g−1

xx′δab, which is diagonal in
replica space.

Eq. (218) has now the standard form for a saddle-point

evaluation of the functional Ŵ [v] =: NW̃ [ṽ] except that
the saddle point is not, in general, uniform in space. At
dominant order in 1/N , we obtain

W̃ [ṽ] =
1

N
ln
∑

sp

(

e−NS[χṽ ,σṽ,ṽ]
)

. (220)

We have allowed for different saddle-points (“sp”) to con-
tribute. To alleviate notations, we did not add an index
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indicating the different saddle-points to χṽ and σṽ. They
depend on ṽx and are the solutions of the saddle-point
equations obtained, respectively, by setting to zero the
functional derivatives (at fixed ṽx):

δS[χṽ, σṽ, ṽ]

δσabx

∣

∣

∣

∣

χ=χṽ ,σ=σṽ

= 0, (221)

δS[χ, σ, ṽ]

δχabx

∣

∣

∣

∣

χ=χṽ ,σ=σṽ

= 0 . (222)

Solving these equations, one can obtain R̂[v] from its
definition (54).

The explicit form of the saddle-point equations is:

(χṽ)
ab
x = (Gṽ)

ab
xx +

1

T 2
(Gṽ : g−1 : ṽ)ax · (Gṽ : g−1 : ṽ)bx

≡ (Gṽ)
ab
xx + ũaxũ

b
x , (223)

(σṽ)
ab
x = −2T

∂

∂χab
U((χṽ)x) , (224)

TG−1
ṽ = g−1 − σṽ , (225)

where Gṽ is a matrix with both replica indices and spa-
tial coordinates; thus inversion is carried out for both.
The notation for the N -component vector (G : j̃)bx :=
∑

c

∫

y
Gbcxy j̃

c
y is a shorthand for a matrix product, but

consistent with our above conventions, we do not write
the vector indices of j explicitly. We have defined the
average displacement induced by the source:

ũax ≡ ũax(v) :=
1

T
(Gṽ : g−1 : ṽ)ax . (226)

It is a function of v and of the chosen saddle point “sp”
and to simplify notations we drop in what follows the
dependence on v except when an ambiguity arises. As
detailed in Refs. 11,13 , ũ(v) arises in performing the
Legendre transform to obtain Γ[u] fromW [v], as one may
see from (29) and (52), i.e.:

Γ[u] +W [v] =
1

T
u : g−1 : v , (227)

u = Tg :
δW [v]

δv
, (228)

and using that for a given saddle point:

W̃sp[ṽ] = −S[χṽ, σṽ, ṽ] . (229)

Taking the total derivative w.r.t ṽ, which is equivalent to
differentiating only the explicit ṽ dependence in (221),
one recovers (226). While in Refs. 11,13 we had chosen
sources ṽa − ṽb 6= 0 such that ũa − ũb 6= 0 and therefore
assumed a unique saddle point, here we allow for sponta-
neous RSB and hence for many saddle points. In general
the set of saddle points will include the set of all permu-
tations π which leave ṽ invariant103, i.e., ṽπ(a) = ṽa for
all a = 1, ..., n. Hence the ũax(v) in (226) is identical to
a partial average 〈uax〉π (corresponding to a single saddle
point labelled by π) while the thermodynamic average

corresponds to the full average over all equivalent saddle
points, 〈uax〉 =

∑

π〈uax〉π . In the limit ṽ → 0 the sad-
dle point equations (223) become identical to the saddle-
point equations of the GVM, with Gv → G and σv → σ
taking the values of the solution given by Mézard-Parisi
(see also below). Performing the sum over equivalent sad-
dle points sp in (220) one recovers the results of Section
III.

B. Analysis for a uniform v

According to the general strategy to compute R̂[v],
as described in Section III C, we now solve the saddle-
point equations (221) and (222), specifying the source
ṽax = ṽx(1, 1, . . . ,−1, . . . ,−1) with n/2 entries +1, and
n/2 entries −1. For simplicity we restrict here to a uni-

form vx = v, for which R̂[{vx = v}] = LdR̂(v). From the
definition (54) and the replica-sum expansion (79) one
has:

L−dW̃ [v] =
m2

2T
nṽ2 +

1

2T 2

n2

2
B̂(4ṽ2) +O(n3),

R̂(v) = NB̂(ṽ2), (230)

up to a (v-independent) constant. The matrices χṽ and
σ are now independent of x, and Gṽ is translationally
invariant. We parametrize the n × n replica matrix χṽ
by:

χṽ =

(

χ1 χ2ṽ

χ2ṽ χ1

)

, (231)

where we anticipate that the diagonal blocks will turn
out to be independent of ṽ. We use similar notations for
σ and G:

σṽ =

(

σ1 σ2ṽ

σ2ṽ σ1

)

, Gṽ(k) =

(

G1(k) G2ṽ(k)

G2ṽ(k) G1(k)

)

,

(232)
Note that σ1 and G1 should not be confused with the
variables used for the 1-step solution. The saddle-point
equations (223)-(225) now become:

χ1 = ũ2
J +

∫

k

G1(k), (233)

χ2ṽ = −ũ2
J +

∫

k

G2ṽ(k), (234)

TG−1
ṽ (k) =

(

g−1
k 1l − σ1 −σ2ṽ

−σ2ṽ g−1
k 1l − σ1

)

, (235)

σabṽ = −2T
∂

∂χab
U(χṽ), (236)

and must be solved for a given value of ṽ. We have in-
troduced the notation J ≡ 1n/2 and 1l for the n

2 × n
2

matrices:

J
ab = 1 , 1lab = δab . (237)
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In general, we expect that χab1 is an ultrametric ma-
trix while χab2ṽ = χ2ṽJ

ab, and similarly for σab1 and σab2ṽ.
This Ansatz for the solution is motivated by the ex-
pectation that states in different groups will be very
distant in phase space (at least as distant as the far-
thest equilibrium states, as described by u = 0), and
thus their mutual overlap will not depend on the spe-
cific replica in either of the groups. Further, we have
ũax = ũ(1, 1, . . . ,−1, . . . ,−1), and one can show that our
Ansatz implies

ũax = ṽax, (238)

which means that the average displacement is tied to the
center of the harmonic well. This holds because (226)
implies Tgkũk = [Gc1(k) − Gc2ṽ(k)]ṽk, where Gc1(k) =
∑

bG1,ab(k) (the sum being restricted to the n/2 replica
in the same group as a) and Gc2ṽ(k) =

∑

bG2ṽ,ab(k) (the
sum being restricted to the n/2 replica in the group
not containing a). Within our Ansatz, as n → 0,
Gc1(k) = Tgk and Gc2ṽ(k) vanishes (see (243) below),
which establishes (238).

To evaluate (236), let us split the set of indices a into
two groups, a+ for the first n/2 replicas, i.e. those for
which ṽa = ṽ, and a− for the remaining n/2 replicas,
and consider for simplicity a bare model with gaussian
disorder104:

U(χṽ) = − 1

2T 2

∑

a+,b+

B(χaa1 + χbb1 − χab1 − χba1 )

− 1

2T 2

∑

a−,b−

B(χaa1 + χbb1 − χab1 − χba1 )

− 1

T 2

∑

a−,b+

B(χaa1 + χbb1 − χab2ṽ − χba2ṽ) . (239)

One can easily see that Eqs. (236,239) imply the STS
property σc =

∑

a σ
ab
ṽ = 0. Applying the inversion for-

mulae (34-36) to (235), we find the exact relation (to all
orders of n) Gc = Gc1 + Gc2ṽ = Tgk from the connected
part (235). Further, to lowest order in n one finds [cf.,
(40,41)]:

[G1](k, u) = Tgk −
T

g−1
k + [σ1](u)

, (240)

G1(k, 0) = g2
kTσ1(0), (241)

G2ṽ = g2
kTσ2ṽ, (242)

and, to precision O(n):

Gc1(k) = Tgk − (n/2)g2
kTσ2ṽ, (243)

Gc2ṽ(k) = (n/2)g2
kTσ2ṽ.

Up to negligible corrections of order O(n) the saddle-
point equations for the diagonal blocks are the same as
those in the regime v = O(1), cf., (14,15), independently

of the external field ṽ:

σab1 = − 2

T

[

B′(χaa1 + χbb1 − 2χab1 )

−δab
∑

c+

B′(χaa1 + χcc1 − 2χac1 )

]

,

for a, b in the + group. An analogous equation holds for
the − diagonal block. This is not surprising since the
external field v does not separate the replica within a
group. Since these saddle-point equations have a unique
physical solution, we will identify σ1 ≡ σ henceforth,
and also drop the subscripts 1 on G1 and χ1. In Parisi’s
parametrization of ultrametric matrices, the saddle-point
equation is conveniently rewritten as

σ(u) = − 2

T
B′
(

2

∫

k

[G̃(k) −G(k, u)]

)

, (244)

σ̃ =

∫ 1

0

σ(u) du. (245)

The saddle-point equation for the off-diagonal part is:

σab2ṽ = − 2

T
B′(χaa + χbb − 2χab2ṽ) , (246)

which within our Ansatz σab2ṽ = σ2ṽJ
ab reduces to a single

equation

σ2ṽ = − 2

T
B′
(

4ṽ2 + 2

∫

k

[G̃(k) −G2ṽ(k)]

)

. (247)

Before analyzing these equations let us indicate how to
extract R̂(v) from its solution. Let us first rewrite the
part of the action at the saddle point which depends ex-
plicitly on v (in fact, on v · v):

S[χṽ, σṽ, ṽ]|expl

Ld
= − m4

2T 2
ṽaGabṽ (k = 0)ṽb (248)

= − m4

2T 2
nṽ2 [Gc(k = 0) −Gc2ṽ(k = 0)]

= ṽ2

(

−m
2

2T
n+

σ2ṽ

2T
n2

)

.

Since the derivative of W̃sp[ṽ] = −S[χṽ, σṽ, ṽ], w.r.t. ṽ
(in fact, w.r.t. ṽ · ṽ) only involves the explicit part we
find, and comparing with (230):

− 2

T
B̂′(4ṽ2) = σ2ṽ. (249)

We now discuss various cases according to whether or not
the replica symmetry is broken in the diagonal block, (the
saddle point of the GVM), indicating whether or not the
system is in a glass phase.
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1. Replica-symmetric region

Assuming replica-symmetry, σ(u) = σRS, we have:

G(k) = Tgk1l + TσRSg2
kJ, (250)

G2ṽ(k) = TσRS
2ṽ g

2
kJ. (251)

This reduces the saddle-point equation (244) to:

σRS = − 2

T
B′ (2TI1) , (252)

independently of ṽ, and Eq. (247) becomes:

σRS
2ṽ = − 2

T
B′ (4ṽ2 + 2T

{

I1 + [σRS − σRS
2ṽ ]I2

})

,(253)

where In =
∫

k g
n
k . Comparing with (252) we see that

σRS
2,ṽ=0 = σRS, as is expected in the absence of external

fields.

2. Identification with FRG below the Larkin scale:

It is convenient to introduce the function B̃′ via the
change of variables:

− 2

T
B̃′(4ṽ2) ≡ σRS

2ṽ . (254)

Plugging it into (247), we see that it satisfies exactly the
self-consistency equation (33):

B̃′(x) = B′
(

x+ 2TI1 + 4[B̃′(x) − B̃′(0)]I2

)

(255)

as derived in Ref. 13 for the second cumulant function of
B̃(x) which occurs in the effective action (defined there

via R(u) = NB̃(ũ2)). Since (255) uniquely specifies B̃
up to a constant, a comparison of (254) and (249) shows
that

B̃′(x) = B̂′(x) , (256)

i.e., we have recovered, in the glassy regime, the general
identity R̂ = R announced in (57,78).

From the self-consistency equation (255) a FRG equa-

tion for B̂(x) can be derived, following [cf., Eqs. (6.1)-
(6.8)] in Ref. 13

−m∂mB̂
′(x) = B̂′′(x)

[

4(m∂mI2)[B̂
′(0) − B̂′(x)]

− 2m∂mTI1

1 + 4I2B̂′′(0)

]

, (257)

with initial condition B̂(x) = B(x) for m = +∞.
At this stage we only know that the FRG equation

(257) is valid in the replica symmetric region, i.e., for
m > mc(T ) (see discussion in Section II B). At the

Larkin mass, B̂′′(0) diverges, signaling a cusp in the force
correlator, as can be seen from the condition (17) and
(255). Hence at m = m+

c the equation (257) is still valid,
but the second term (involving the temperature explic-
itly) is negligibly small there and can be dropped. It is
now crucial to establish how to continue this equation
below the Larkin mass. To this end we compute B̂(x) ex-
plicitly beyond the Larkin mass, i.e., in the glassy region,
where RSB occurs within the replica groups, and derive
the correct FRG equation for m < mc.

3. Self-consistency equation for the second cumulant below
the Larkin mass

The saddle-point equation (247) together with (249)
yields the correct continuation of the self-consistency
equation (255) below the Larkin mass:

B̂′(x) = B′
(

x+ 2

∫

k

G̃(k) + 4B̂′(x)I2

)

. (258)

We expect that:

B̂′(0) = −T
2
σ(u = 0), (259)

remains valid when replica symmetry is broken (with of
course a different and non-trivial value for σ(0)) since
it expresses the equality σ(u = 0) = σ2,ṽ=0 between
the self-energy associated with distant equilibrium states,
and that associated with the coupling among the two
replica groups in the limit of zero forcing, ṽ → 0. In-
deed, one can check using (241) that (259) is a solution
of (258), given that (244) holds. Note that (259) insures

that the function B̂(ṽ2) perfectly matches the large v2

limit of the v2 = O(1) results (107,193), irrespective of
the scheme of RSB, as it should.

Eq. (258) can be rewritten in a form similar to (255):

B̂′(x) = B′
(

x+ 2TI1 + 4I2[B̂
′(x) − B̂′(0)] + 2

∫

k

Ak

)

= B′
(

χ0 + x+ 4I2[B̂
′(x) − B̂′(0)]

)

, (260)

where

χ0 := 2

∫

k

[

G̃(k) −G(k, 0)
]

, (261)

and

Ak = G̃(k) − Tgk − Tσ(0)g2
k

=

∫ 1

0

du[G(k, u) −G(k, 0)] (262)

is an anomaly which is non-zero if and only if the replica
symmetry is broken. (To get the second line in (262),
we used the generally valid inversion formula G(k, 0) =
Tσ(0)g2

k.)
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4. Correlator and FRG equation below the Larkin mass

From (260) we easily obtain the behavior of the force

correlator, −B̂′(x), at small argument. If the RSB so-
lution is marginally stable with respect to a clustering
instability at the largest scales, i.e., if the condition

1 = 4I2B
′′(χ0), (263)

holds, with χ0 defined in (261), one finds a non-analytic
cusp in the correlator:

− B̂′(x) =
Tσ(0)

2
−
[ −2x

(4I2)3B′′′(χ0)

]
1
2

+O(x). (264)

This type of marginality is automatically ensured in the
case of continuous RSB, which is marginal with respect
to fluctuations on all scales (see App. I) including those
corresponding to um, which entails (263). For a 1-step
solution, however, it occurs naturally only on the tran-
sition line Tc(m) for m > m∗, while in the glass phase
it requires the specific choice uc = u

cp, cf. (185). In the
case of a non-marginal 1-step solution, the latter choice
differs from the value of uc corresponding to thermody-
namic equilibrium, and was shown to describe rare disor-
der configurations in Section III D 2. On the other hand,
for a fully stable saddle point with 1 > 4I2B

′′(χ0), one
finds the regular correlator:

− B̂′(x) =
Tσ(0)

2
− xB′′(χ0)

1 − 4I2B′′(χ0)
+O(x2). (265)

We emphasize the difference between these results and
the generic non-analyticity (147,205) found in the regime
v = O(1) at T = 0, occurring irrespectively of the RSB

scheme. The cusp in the regime v = O(
√
N) analyzed

here is present even at finite temperature, provided the
RSB scheme is marginally stable in the sense of condition
(263). The non-analyticity thus reflects the criticality of
the system being at the brink of an instability towards
an additional clustering of the topmost level of an ul-
trametric structure. In the 1-step case, the instability is
towards a two-step RSB with an additional step in the
lower plateau72? .

Taking a derivative of (258) with respect to x and using
it to simplify (257), one finds13 repeating the steps of
Eqs. (6.4)-(6.6) in Ref. 13:

−m∂mB̂
′(x) = B̂′′(x) × (266)

{

4m∂mI2[B̂
′(0) − B̂′(x)] +A(m)

}

,

where

A(m) = −2m∂m

[

TI1 +

∫

k

Ak

]

+ 4I2m∂mB̂
′(0)

= −2m∂m

∫

k

G̃(k) + 2Tσ(0)m∂mI2 . (267)

This equation is the general FRG equation valid in all
regimes. In the non-glassy RS regime Ak = 0 and the

amplitude A(m) is identical to the last term in (257). In
the glassy region Eq. (266) is certainly valid for all x > 0,

and it is also valid at x = 0 if B̂′′(0) <∞, i.e., if the RSB
solution is not marginal in the sense of (263). But even if

the solution is marginal, and hence B̂′′(0) is infinite (i.e.,

B̂′(x) exhibits a cusp), both sides of the equation have
a non-trivial limit at x = 0+ which yields another valid
equation as can be checked using (264). Another useful
expression for A(m) is obtained by rewriting the second
equation in formula (267) as:

A(m) = −m∂mχ0 − 2TI2m∂mσ(0) (268)

where we used the definition (261) and (262). The second
term in (268) can be rewritten using the saddle-point
equation (244) at u = 0, and taking a derivative w.r.t.
m one obtains

A(m) = −[1 − 4I2B
′′(χ0)]m∂mχ0 (269)

a formula valid in all cases and regimes. We already point
out and will discuss further below that the amplitude
A(m) vanishes if the marginality condition (263) is met.

Let us now analyze in more detail the case of continu-
ous RSB which includes as a limiting case the marginal
1-step case occurring in d ≤ 2 with γ = γc(d). In
Ref. 13 it was found that the consistent FRG equation105

for m < mc(T ) was (266) without the last term, i.e.,
A(m) = 0. As we discussed above, this matches the
established equation (33) at m = m+

c . The validity of
(266) for m < mc was inferred from the study of the

FRG equation in inverted variables x = x(B̂′), noting
that for models I and II the FRG flow completely stops

at m = m+
c (the beta function is identically zero hence

its natural continuation is to remain zero below mc). In
Section VIII-D of Ref. 13 the analysis of the FRG flow
was extended to an arbitrary bare model (i.e., an arbi-
trary B(x)). It was found that the natural continuation

is such that the function B̃′ retains a cusp for allm ≤ mc.
This was found to coincide with the marginality condi-
tion at um, and hence lead to (263,264).

From the above general expression (269) we see that
the vanishing of the amplitude A(m) = 0 is a direct con-
sequence of the marginality of the continuous RSB at
u = um, i.e., condition (263), and thus confirms the cor-
rectness of the assumption made in Ref. 13. In addition
we discover here that the cusp can be avoided if there is
a non-zero amplitude A(m). This possibility was natu-
rally not considered in Ref. 13, where the analysis was
based on the self-consistency equation without anomaly
and the ensuing FRG equation. While the amplitude
A(m) always vanishes in the case of continuous RSB, a
zero amplitude requires a specific choice of the break-
point uc = u

cp in the case of 1-step RSB, as discussed in
the next Section.
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C. Discussion of the FRG flow

1. General considerations

Let us analyze the generalized self-consistency
Eq. (260) for the renormalized correlator function B̂′(x).
It depends only on the (given) bare disorder function,
B′(x) and a number, χ0 = χ0(m,T ), defined in (261).
This is the only input from the saddle-point solution in
the regime v ∼ O(1), which introduces an anomaly in
the glass phase. We emphasize again that in the case of
one-step RSB, χ0 does not only depend on T and m, but
also on the choice of the breakpoint uc.

Since the force correlator (the derivative of the poten-

tial correlator) scales like B̂′ ∼ m−2θ+d+2ζ, with typical
values of the argument scaling as m−2ζ , it is natural to
define the rescaled force correlator (as in Refs. 11,13 ):

b̃′(x̂) :=
4Ad

m−2θ+d+2ζ
B̂′ (m−2ζ x̂

)

. (270)

At this stage, if we ignore all other information from the
v ∼ O(1) regime, the two exponents ζ and θ are unde-
termined. Let us assume for now that they can be fixed
by requiring that b̃′(x̂) reaches a non-trivial fixed point.

From (260) one deduces that b̃′ satisfies the equation:

b̃′(x̂) =
4Ad
m2−θB

′
(

χ0 +m−2ζ

(

x̂+
b̃′(x̂) − b̃′(0)

ǫ

))

,

(271)
where we have used I2 = Ad/(ǫm

ǫ) in the limit of infinite
cut-off, and consequently set θ = d−2+2ζ, as expected,
so that the last two terms in the argument of B′ (the
bare disorder) scale the same way. The only information
needed from the v ∼ O(1) regime is the value of χ0, given

by the saddle-point solution. It fixes the value of b̃′ at
the origin:

b̃′0(m,T ) := b̃′(0) =
4Ad
m2−θB

′(χ0) = − 4Ad
m2−θ

Tσ(0)

2
.

(272)
The above two equations then completely determine the
FRG flow of b̃′, describing the evolution of the force cor-
relator as the mass m is decreased. The corresponding
flow equation was given in (266). Here we directly solve
(271) focusing on models I and II, which admit simple so-
lutions. We distinguish the case of continuous RSB (full
or marginal one-step), which we only briefly recall since
it was discussed in detail in Ref. 13, and non-marginal
one-step RSB which requires a novel and thorough anal-
ysis. The difference between the two cases can be grasped
immediately. For continuous RSB, comparing (272) and
(25), valid in that case for models I and II, we immedi-

ately see that b̃′(0) reaches a fixed-point value with the
same choice of exponents as in the v ∼ O(1) regime. By

contrast (171) and (175) suggest a rapid decrease of b̃′(0)
as m→ 0 as discussed below.

Some features are independent of the RSB scheme and
worth mentioning. Consider model I, B(x) = e−x. If one

makes the choice ζ = 0, then b̃(x̂) is the solution of

b̃′(x̂) = b̃′0 exp

[

−x̂− b̃′(x̂) − b̃′0
ǫ

]

. (273)

which has clearly a fixed-point form provided b̃′0, given
by

b̃′0 = −4Ad
mǫ

exp[−χ0(m,T )], (274)

reaches a fixed point as m → 0. Similarly for model II,

B′(x) =
[

1 + x
γ

]−γ
, and (272) together with the choice

ζ = ζ(γ) = ǫ/[2(1 + γ)] leads to the equation:

b̃′0 = − 4Ad

mǫ γ
1+γ

[

1 +
χ0(m,T )

γ

]−γ
. (275)

Upon inversion this allows us to simplify the equation
(271) for the rescaled force correlator as:

b̃′(x̂) = b̃′0



1 +

(

|b̃′0|
4Ad

)
1
γ

1

γ

(

x̂+
b̃′(x̂) − b̃′0

ǫ

)





−γ

,

(276)

which reaches a fixed point if b̃′0 does. Note that these
expressions, as well as (271), are valid for all m, both
above and below the Larkin mass.

2. FRG flow for continuous RSB

As discussed in Ref. 13 for model I and II the flow is
particularly simple. The structure of (273) and (276) im-

ply that b̃′(x̂) = Φ(x̂ + x̂0) is always given by the same
master function Φ, shifted by an amount x̂0 which de-
pends on m only through b̃′0. For model I the master
function is the solution of Φ(x) = −ǫ exp[−x−1−Φ(x)/ǫ].
The shift x̂0 must be positive, and x̂0 = 0 leads to a cusp
(infinite slope) at the origin. In the case of continuous
RSB x̂0 freezes to zero as m decreases below mc(T ). One

checks that b̃′0 reaches its fixed point value atm = mc(T ):

− b̃′0 = ǫ, (I) (277)

−b̃′0 = ǫ

[

4Ad
ǫ

]
1

1+γ

, (II)

and remains constant everywhere in the glass phase. This
implies in particular that b̃′ reaches its fixed point al-
ready at the phase transition mc(T ) and sticks to it for
all smaller m, a result inferred in Refs. 11,13 from the
vanishing of the beta-function at mc(T ). The FRG flow
for models with continuous RSB is illustrated in Fig. 7.

As shown in Ref. 13 for models different from I and II,
and such that there is continuous RSB for allm < mc(T ),
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FIG. 7: FRG flow of the renormalized and rescaled corre-
lator b̃(x̂) for model I in d = 3. The reduced temperature

was chosen to be T̂ = 0.5 and the curves correspond to
1 ≤ m/mc(T̂ ) ≤ 5.5 in steps of 0.5, from top to bottom.

For m < mc(T̂ ) the force correlator sticks to its fixed point b̃′∗
(thick line) as given by (273) with b̃′∗(0) = ǫ = 1. Due to the
specific form of B(x) in models I and II, the flow reduces to a
m-dependent horizontal shift of an otherwise constant master
function Φ(x).

such as linear combinations of I and II with various pow-
ers, the flow is slightly more involved. For m > mc(T )
the flow is not a simple translation in x but the shape also
changes as irrelevant parts of B̂′(x) decay. Atm = mc(T )

a cusp appears and remains for all m < mc(T ) as b̃′0 (and
the shape of the function) converges slowly towards one
of the above fixed-point values (277).

In the continuous RSB case, the existence of this fam-
ily of non-analytic fixed points is related to the vanish-
ing of the amplitude A(m) in the FRG equation. In
Ref. 13 they were derived directly from (266) assuming
A(m) = 0. For d > 2 and d < 2, γ ≥ γc, they lead
to the same exponents ζ = ζ(γ) and θ = θ(γ) as the
study of the v2 = O(1) GVM regime, cf. Ref. 46 . Hence,
all parts of the effective action scale consistently. Note
that in the limit case d < 2, γ = γc = 2/(2 − d), the
glass phase is described by a marginal one-step RSB so-
lution. As discussed in details in Ref. 13 (Section VI.D
and Appendix F), the high-temperature phase T > Tc is
described by a line of analytic fixed points which solve
(271) with ζ = (2 − d)/2 = ζ(γc), θ = θ(γc) = 0. In that

phase b̃′(x) converges to one of these fixed points. This
line of fixed points terminates on a cuspy fixed point, to-
wards which b̃′(x) converge for T < Tc, and which has
the form (276, 277) with γ = γc.

By contrast, in the non-marginal one-step case, both
for models I and II, the shift x̂0 generically vanishes only
at mc(T ) and becomes positive again in the glass phase,
unless the choice u = u

cp is made for the breakpoint, as
we now discuss (see also Fig. 8).

0.2 0.4 0.6 0.8 1

mc

m

0.5

1

1.5

2

x

T = 0.8

cp

^
0

eq th

FIG. 8: The shifts x̂0 as a function of m at constant temper-
ature T = 0.8 for model I in d = 1. The minimal shift x̂0 = 0
is attained at the glass transition m = mc(T ) = 0.673 and
signals a cuspy correlator. In the glass phase, only the cusp
condition u = u

cp maintains x̂0 = 0 and hence a cusp. Equi-
librium and threshold states have regular correlators (x̂0 > 0)
in the glass phase.

D. FRG flow: new physics for one-step RSB

1. Main analysis of FRG flow for one step RSB

The situation is radically different in the case where the
saddle point is solved by a non-marginal one-step RSB
scheme. This happens for d < 2 and γ > γc(d) = 2/(2 −
d). As discussed in Section III D 2, one may consider
several possible choice for the breakpoint uc. To interpret
what is actually computed in each case, one should go
back to the definition (50) of the observable V̂ [v] whose
second cumulant is computed here in the regime v2 ∼ N .

Let us first discuss the choice uc = u
eq
c , where one

computes the cumulant of the observable V̂ [v] = V̂ eq[v]
defined as the equilibrium free energy of a manifold (i.e.,
a directed polymer d = 1, or a particle d = 0), in an
external quadratic well at position v and non-zero tem-
perature T , in the limit of infinite N . More precisely, for
every m this prescription selects the metastable states of
the lowest free energy density in typical disorder. This
condition is by definition equivalent to requiring the con-
figurational entropy to remain fixed to Σ = 0 as m varies,
and thus closely resembles the “iso-complexity” condition
often used to describe the rapid quench in systems un-
dergoing one-step RSB75.106

The first observation is that for m < mc(T ), A(m) > 0
and this ”anomalous” term acts as an ”effective tempera-
ture” in the FRG equation (266) which avoids the occur-
rence of a cusp, similarly as a finite temperature does in
the case of finite N . Let us evaluate this amplitude at low
temperature (i.e., away from the glass phase boundary,
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T < Tc) and m→ 0. One has:

χ0 ≈ 4Ad
ǫ(2 − d)

T

uc
md−2, (278)

and as shown in Appendix G T/uthc = 1/ûeq
c has a finite

limit as T → 0. Hence χ0 diverges as m → 0 and for
model I B′′(χ0) = −B′(χ0) = e−χ0 decays exponentially
fast to zero. For model II, 4I2B

′′(χ0) ∼ m−2+(2−d)γ ,
hence in all cases where γ > γc one finds:

A(m) ≈ −m∂mχ0 ≈ 4Ad
ǫ

T

uc
md−2. (279)

This term in the FRG equation (266) has precisely the
same form and scaling as a standard (one loop) temper-
ature term107 with T → T/uc, avoiding the occurrence
of a cusp. Remarkably, this temperature takes in the
limit m→ 0 the same value as the effective temperature
Teff which arises in the modified fluctuation dissipation
relation in such systems2,73.

Let us now discuss in more detail the solution of the
self-consistent equation (271). We start with model II. If
in (270) we choose the exponent values from the region
v2 ∼ O(1), i.e., ζ = (2 − d)/2 and θ = d− 2 + 2ζ = 0 we
find that:

b̃′0 ∼ m−2θ̃ , θ̃ = 1 − 2 − d

2
γ, (280)

where θ̃ < 0 for γ > γc. Hence, with this scaling the
second cumulant in the region v2 ∼ O(N) tends to zero.
To study this flow for m → 0 one can instead use the
choice θ → θ̃ in (270) and find a fixed point for the scaled
function defined in that way. Indeed, one can check easily
that with the same ζ = (2 − d)/2, as m→ 0:

B̂′(x) = m2−2θ̃ b̃∗′(xm2ζ) (281)

b∗′(x̂) = γγ
[

4Ad
ǫ(2 − d)

T

uc
+ x̂

]−γ
, (282)

which indicates that the force fluctuations are reduced
by a factor m−2θ̃ in the region v2 ∼ O(N) as compared
to the region v2 ∼ O(1). For model I, also obtained by
taking γ → ∞, the effect is even stronger, the decay of
correlations being exponential of the form:

B̂′(x) ∼ e−
1

m2ζ
4Ad

ǫ(2−d)
T
uc e−x, (283)

which cannot be put in the form of a scaling function as
in (270). The equilibrium flow for that case in d = 1
is shown in Fig. 9. It simply amounts to the horizon-
tal shifting of the master function Φ(x) by x̂eq

0 , which is
plotted in Fig. 8. While the correlator first grows with
decreasing mass in the high temperature phase (like in
d > 2), it decreases again within the glassy phase. The
reason is that as m decreases below mc, the stability of
the one-step energy landscape increases and suppresses
sample-to-sample fluctuations of the global shift u0

k of the
states, which in turn sets the scale for force-fluctuations.

1 2 3 4
x

0.5

1

1.5

2

2.5

3
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FIG. 9: FRG flow of the equilibrium correlator b̃(x̂) for model
I in d = 1, at the reduced temperature is T = Tmax/2.
The dashed lines (light blue) correspond to m/mc(T ) =
{2, 1.5, 1.25}, from bottom to top, and the dotted lines (pur-
ple) to m/mc(T ) = {0.4, 0.3, 0.2} from top to bottom. Note
that the correlator only exhibits a cusp exactly at the contin-
uous transition, m = mc(T ), with b̃′0(mc(T )) = ǫ = 3 (thick
line). Due to the specific properties of model I the correla-
tor always equals the same master function, displaced by a
m-dependent horizontal shift x̂0.

2. Force correlator, shocks and the cusp

In the limit γ → γc one has θ̃ → 0, as one recovers
the marginal one step solution,108 and B̂′(0) then scales
in the same way in the two regimes v2 ∼ 1 and v2 ∼ N .
As noted previously the value of B̂′(0) from the v2 ∼ N
regime described by FRG is proportional to the contri-
bution of the lower plateau to the two point correlation
at k = 0. It also gives the sample to sample fluctuations
of the global shift of states, u0

k, in a given sample (163).
While in the case of continuous RSB they scale as the
relative fluctuations of the states, this is not the case for
the non-marginal one step, since there G0(k) [and σ0] is
much smaller than G1(k) − G0(k). In the non-marginal
one step case it is the upper plateau which dominates the
two point correlation (for any k ≪ 1/mc). Upon moving
the potential well by v ∼ N1/2, the global shift of states
becomes a function of v, u0

k = u0
k(v), the connected cor-

relator of u0
k(0) and u0

k(v) being described by G2v(k).
In this regime the free energies are of order N , and one
may expect that configurations centered around u0

k(0) or
u0
k(v) differ typically by quantities of order E(N) which

diverge as N → ∞ (at least as N1/2). In that case, when
two levels cross as a function of v, the switching of the
equilibrium position takes place as a function of the scal-
ing variable E(N)/T . Hence, it turns into sharp jumps
as N → ∞ even at finite T .

If these jumps are of order N1/2 in the displacement
v, they show up as a non-analyticity in the force corre-
lator. This is what is observed in the case of marginal
one step and continuous RSB. On the other hand, stable
(i.e., non marginal) one step systems seem to have a much
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smoother landscape leading to an analytic response of the
system to a displacement of the well. This indicates that
if there are shocks, their size does not scale with N1/2,
i.e., the system proceeds in small, and effectively rounded
jumps in contrast to the marginal cases.

The non-analytic response of systems with continuous
RSB is tightly bound to their marginal stability with re-
spect to clustering. This criticality of the system im-
plies an anomalous response to a field (v) pulling apart
two replica groups, whereby the above argument suggests
that this proceeds via the occurrence of shocks of size
N1/2. Notice that the presence of the non-analyticity
only relies on the marginality at um whereas it is insen-
sitive to the marginality of the RSB scheme at larger u

(deeper down in the ultrametric hierarchy). This indi-
cates that the shocks are really associated with jumps
on the largest scales involving u0

k(v). That is, the whole
hierarchy of states is affected, and not only part of it, as
it can happen in the regime v2 ∼ 1.

3. Some subtleties of the FRG flow for one step RSB

Although we have focused on the flow at small m, in-
teresting features also happen around the Larkin mass.
Atmc a cusp appears and A(m) first vanishes atm = mc,
but then becomes positive again. This behavior indicates
that a bifurcation in the lowest free energy state occurs
at mc, where metastable states appear and the system is
critical. However, the further evolution of the system for
m < mc is smooth in the sense that the system becomes
uncritical again, with no further bifurcations occurring.
This is seen to translate into a response which is regular
when the harmonic well is displaced by v with v2 ∼ N .

To complete the discussion of the equilibrium FRG
flow, we mention a subtlety (corresponding to the choice
uc = u

eq
c ) which arises for temperatures in the range

T ∈ [Tc(0), Tmax
c ]. An inspection of the phase diagram

in Fig. 4 shows that as m→ 0, the thermodynamic equi-
librium is given by a replica symmetric saddle point in
the GVM, which is reached from the glassy phase by a
discontinuous transition upon decreasing T . In that tem-
perature regime, one natural continuation of the FRG
flow from large to small mass is to maintain the con-
dition dφ/duc = 0, defining u

”eq”
c even though it cor-

responds to u
”eq”
c > 1 in the region where the genuine

equilibrium is described by a RS solution. This reflects
the fact that the selected states are thermodynamically
irrelevant, in the sense that their Gibbs weight is neg-
ligible. Nevertheless, there are small corners of phase
space where metastable states exist even when the mass
is small, and among those states, the ones selected by
u
”eq”
c still correspond to those with the lowest available

free energy density in typical disorder. We have verified
that this branch of one-step solutions indeed exists down
to m = 0 for all temperatures T < Tmax.

We now turn to the discussion of other possible choices
for the breakpoint. If one chooses uc = u

th
c one presum-

ably computes the cumulant of an observable, V̂ [v] =

V̂ [v]th, defined as the free energy of the threshold states
for the manifold in an external quadratic well at position
v. These threshold states being known to be relevant for
the dynamics, we may conjecture that the quantity com-
puted using this criterion will find an interpretation as
a part of the dynamical effective action. Note that un-
der this prescription the configurational entropy of the
selected states, Σth(m) grows with decreasing mass, re-
flecting either the bifurcation or birth of threshold states.

Another choice of breakpoint, and the only one which
leads to a cusp, is uc = u

cp. Then the amplitude
A(m) = 0. Hence it leads to similar fixed points as for
the continuous RSB case. In particular, it yields a fixed
point of b̃′0 and freezes the renormalized correlator to the
cuspy shape it attains at mc(T ). The exponents are then
the same, i.e., ζ = ζ(γ). Note then that θ = θ(γ) < 0
which means that the temperature is relevant. That such
a choice can be made was conjectured in Refs. 11,13 for
T = 0. Here we show it to be possible at any tempera-
ture. It is not difficult to prove that one-step solutions
satisfying the cusp condition (185) exist for all T ≤ Tmax

and m < mc(T ). Note, however, that one finds u
cp > 1

for m < m∗ and T > T̃c(m), where T̃c(m) is the (un-
physical) branch of the instability line defined by (177),
see Fig. 5.

A natural question is then: what observable would be
selected by this process? As discussed in Sec. III D 2 the
choice u

cp appears to select metastable states that only
exist in rare disorder configurations (the smaller m the
rarer). It remains to be understood whether such an
observable could be constructed by imposing some con-
straint on the metastable states.

E. Non-uniform v

The above analysis is easily generalized to a non-
uniform vx, and allows to compute the functional R̂[v] for
a non-uniform vx in the regime v2 ∼ N where it takes
the form R̂[v] = NB̂[v2] where B̂[v2] := B̂[{ṽ2

x}x], i.e.
it is a functional of the field ṽ2

x. We just give the final
saddle-point equations and the resulting self-consistent
equation for B̂, which generalize the one obtained in
Ref.13 (for R[v]) in the replica symmetric region (see
Eq. (3.31) there with the correspondence in notations

δŨ0[v·v]
δ(va(x)·vb(x))

→ σṽ(x)). One easily sees that the diago-

nal blocks (in the space of two replica groups) are again
independent of ṽx and therefore independent of x, and
thus simply correspond to the MP solution. Generaliz-
ing (247), the saddle-point equation in the off-diagonal
sector yields a single equation, which now involves space
indices:

σ2,ṽ(x) = − 2

T
B′
(

4ṽ2
x + 2

[∫

k

G̃(k)

]

− 2Gxx2,ṽ

)

, (284)
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where

Gxx2,ṽ = T

∫

y

g2(x− y)σ2,ṽ(y) , (285)

which generalizes (242). As in the uniform case
σ2,ṽ=0(x) = σ(0). Solving for the function σ2,ṽ(x) yields
the desired functional since:

− 2

T

δB̂[w2]

δw2
x

∣

∣

∣

∣

w2
y=ṽ2y

= σ2,ṽ(x) , (286)

which is the analog of Eq. (249). These equations gen-
eralize (260) to a non-uniform field ṽx. It would be in-
teresting to see whether FRG equations can be derived
also for the non-local parts of the functional B̂, but this
is left for future investigation.

V. DISCUSSION AND CONCLUSION

We have computed the renormalized disorder-
correlator R(v) in the large N limit for an elastic mani-
fold in a O(N) symmetric random potential in presence of
an external quadratic well. It was obtained as a physical
observable describing the correlation in free energy when
the center of the quadratic well is varied by v. It contains
direct information about shocks, i.e., abrupt switches be-
tween two competing equilibrium positions that occur as
v is varied. We have demonstrated the existence of two
large-N scaling regimes v2 ∼ 1 and v2 ∼ N and obtain
closed expressions in each regime, and their zero and low
temperature limits. Our results provide a direct connec-
tion between the GVM approach (v = 0) using replica
symmetry breaking saddle points and previous large N
FRG approaches.

We found that as v is increased shocks start to oc-
cur at a uniform displacement of the well of order v ∼
v∗ ∼ L−d/2 which decreases with system size or, equiva-
lently for a non uniform displacement vx of order one but
confined to a bounded region of volume one in space109.
These shocks are rounded by temperature, but turn into
a non-analytic cusp of the force correlator at T = 0. Our
results bear some similarities to shocks found in Burgers
turbulence in large dimension. The shocks can be inter-
preted within the RSB picture of an ultrametric phase
space, which predicts that in a given disorder environ-
ment there exist several states, all centered within a sin-
gle big valley whose position itself fluctuates from sam-
ple to sample. The shock regime v . v∗ then describes
the energy crossing between states as the harmonic well
is shifted, and accordingly, it is sensitive to the replica
symmetry breaking structure of the GVM approach. In
particular, one finds that all GVM saddle points related
by replica permutations contribute to the computation
of observables. Beyond this regime, the force correla-
tor remains constant in a large interval N1/2 ≫ v > v∗
which reflects the sample-to sample fluctuations of the
force density associated with the big valley, itself related

to the sample-to-sample fluctuations of the global dis-
placement u0 of the valley.

This value of the force correlator matches perfectly
with the value obtained from FRG calculations in the
regime v2 ∼ N . In that regime it was found that FRG
recovers only the fluctuations among most distant states,
which is governed by the (non-trivial) lower plateau of the
self energy function, σ0. It is now clear that the FRG in
this regime captures the shock structure of the big valley
position u0(v). Indeed, imposing a position of the well on
the scale v2 ∼ N affects the global shift u0 itself, which
may lead to shocks. We have computed the decaying
correlations between u0(0) and u0(v), as well as the force
correlator. In the case of systems with continuous or
marginal one step RSB, such as manifolds in 2 ≤ d ≤ 4
or directed polymers in long range correlated disorder,
we have found that their marginality towards a cluster-
ing instability implies a cusp also in this second scaling
regime v2 ∼ N . This reflects the fact that the shift of the
center of the well provokes shocks which are abrupt even
at finite T because they involve the crossing of energies
which scale with N . By establishing the persistence of
the nonanalytic force correlator throughout the regime
of small m and T , we have proved that the previously
obtained FRG flow had been correctly extended into the
glassy regime.

A major step forward has been achieved in the case
where the regime v2 ∼ 1 displays a non-marginal one-
step RSB, a problem which was left open in the previ-
ous FRG study. In particular we have found that in the
regime v2 ∼ N the force correlator is non-analytic only
at the glass transition, but not within the glassy regime.
We interpret the latter in terms of a smooth energy land-
scape where the manifold evolves smoothly (on the scale
N1/2) as the center of the harmonic well is varied. In the
glassy regime the disorder correlator becomes strongly
suppressed with decreasing mass which is a consequence
of the increasing stability of the one-step landscape and
the associated smallness of sample-to-sample fluctuations
of u0. Further, we have shown how the exact FRG equa-
tions in the regime v2 ∼ N can be extended into the
glassy regime, and how replica symmetry breaking trans-
lates into an anomaly in the FRG flow equation. More-
over, the possibility of studying non-equilibrium branches
of metastable states in a one-step system by tuning the
break point parameter uc was found to be equivalent to
tuning the anomaly in the FRG equation.

The present study raises many questions. First, at
finite N the two scaling regimes in v are not clearly dis-
tinct. The main task is then to determine which aspect
of either regime will persist at finite N . Until now the
FRG flow equation in the loop expansion seemed to con-
nect more directly to the regime v2 ∼ N . In particular
one then expects that the shocks of the regime v2 ∼ N
should become rounded by temperature at finite N , as
was found in FRG calculations in the loop expansion and
forN = 1. However, the present study raises the possibil-
ity of a new regime in the FRG accessible only at smaller
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v. The interpretation of the cusp at T = 0 in terms
of shocks remains valid, and offers an interesting venue
for future studies going beyond the mean field picture of
switching between states. These concepts also generalize
to other disordered systems, e.g., to spin glasses, where
the statistics and properties of shocks can be studied by
similar methods. Work is in progress in this direction.
This should yield valuable new insight into the structure
of the phase space and elementary excitations, such as
droplets.
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APPENDIX A: RESTORING DIMENSIONS

In the main body of the text we used the natural units
rf for transverse lengths, µc for the mass (and 1/µc for
longitudinal lengths in d > 0), and Ec for energies. In
order to recover the full dependence on the parameters
B0, rf and c, one simply has to restore the dimensionful
units so as to render all quantities dimensionless:

Masses and longitudinal lengthscales:

m, k,Λ → 1

µc
[m, k,Λ]

L → Lµc,

Temperature and energy densities:

T → T/Ec,

φ, f → 1

Ecµdc
[φ, f ] ,

Transverse fluctuations:

u, v → 1

rf
[u, v] ,

G(k = 0) → µdc
r2f
G(k = 0),

∫

k

G(k), χ → 1

r2f

[∫

k

G(k), χ

]

,

Self-energy and other auxiliary functions:

σ,Σ1, g
−1(k) →

r2f
µdcEc

[

σ,Σ1, g
−1(k/µc)

]

,

In → Ec
r2f

(

Ecµ
d
c

r2f

)n−1

In,

B̂(n)(z) →
r2nf
µdcE

2
c

B̂(n)(z/r2f),

R̂(v) → 1

µdcE
2
c

R̂(v/rf ),

R̂[v], Rn,Rn → 1

E2
c

[

R̂[v/rf ], Rn,Rn

]

,

Ŵ , q,Q, u, b̃ → Ŵ , q,Q, u, b̃. (A1)

With these substitutions all equations turn into dimen-
sionless identities, whereby in some cases additional fac-
tors of c = µd−2

c Ecr
2
f need to be restored. Note that

amplitudes such as A being dimensionlee are unchanged.

APPENDIX B: DIRECT EXPANSION OF Ŵ TO
ORDER v4

The perturbative expansion of (61) to second order
requires

P
(2)
abcd :=

′
∑

π

G
(π)
ab G

(π)
cd . (B1)

In the case of two sets of replica with va = v12/2 for
a = 1, ..n/2 and va = −v12/2 for a = n/2 + 1, ..n, one
has Gab = qab/2 with qab defined in (87). As for the sum

P
(1)
ab :=

∑′
π G

(π)
ab = αδab + β (cf., 68), replica symmetry

restricts this tensor to take the form

P
(2)
abcd = Aδabcd +B(δabc + δabd + δacd + δbcd)

+C1δabδcd + C2(δacδbd + δadδbc) +D1(δab + δcd)

+D2(δac + δad + δbc + δbd) + E, (B2)

the coefficients of which can be obtained by solving the
system of linear constraints arising from the identities

∑

a

P
(2)
abcd = GcP

(1)
cd ,

δabP
(2)
abcd = G̃P

(1)
cd ,

∑

a

δacδbdP
(2)
abcd =

∑

a

G2
ab.

The quantity of interest for the second order expansion
of (61) is the second cumulant:

Ŵ [v](2) =
1

2





∑

abcd

vavbvcvdP
(2)
abcd −

(

∑

abcd

vavbP
(1)
ab

)2


 .

(B3)



35

For the case of two replica groups, one obtains the final
result:

Ŵ [v](2) =
1

2
v4
[

nA+ n2(C1 + 2C2) − n2α2
]

(B4)

=
v4n2(2 − n)

(3 − n)(1 − n)2











∑

a6=1

G1a





2

− (1 − n)
∑

a6=1

G2
1a







=
2v4

3

[

∫ 1

0

G2(u)du −
(∫ 1

0

G(u)du

)2
]

n2 +O(n3).

From this one derives (114) in the text, by recalling that

R2[v] = lim
n→0

4T 2

n2
Ŵ [v](2), (B5)

and G(u) = q(u)/2.

APPENDIX C: A USEFUL IDENTITY

For any function Φ(y) with derivatives decreasing
strictly faster110 than 1/|y| for large |y|, one has

∫ ∞

−∞
dy y[Φ(y + z) + Φ(y − z) − 2Φ(y)] =

−z2[Φ(∞) − Φ(−∞)]. (C1)

Indeed,
∫ ∞

−∞
dy y[Φ(y + z) + Φ(y − z) − 2Φ(y)]

=

∫ ∞

−∞
dy y

∫ z

0

dz′[Φ′(y + z′) − Φ′(y − z′)]

= −
∫ ∞

−∞
dy

∫ z

0

dz′[Φ(y + z′) − Φ(y − z′)]

= −
∫ ∞

−∞
dy

∫ z

0

dz′
∫ z′

−z′
dz′′Φ′(y + z′′)

= −[Φ(∞) − Φ(−∞)]

∫ z

0

dz′
∫ z′

−z′
dz′′

= −z2[Φ(∞) − Φ(−∞)].

Applied to integrals over Gaussian averages, normalized
s.t.

〈

z2
〉

z
= 1, Eq. (C1) implies

∫ ∞

−∞
dy y

[

〈Φ(y +
√

Qz)〉z − Φ(y)
]

=

−Q
2

[Φ(∞) − Φ(−∞)] . (C2)

APPENDIX D: PERTURBATION EXPANSION
FOR Ldv2 ≪ 1

Here we compute the two lowest orders in the expan-
sion defined in Section III C 2. The functions m1,2 satisfy,

from (111):

ṁ1 = −1

2
q̇(u)

[

m′′
0 + u(m2

0)
′] , (D1)

ṁ2 = −1

2
q̇(u) [m′′

1 + u(2m0m1)
′] , (D2)

To lowest order, using that:

m′′
0 + (m2

0)
′ = 0, (D3)

one has to solve:

ṁ1 = −1

2
(1 − u)q̇(u)m′′

0 . (D4)

The solution is:

m1 = p(u)m′′
0 , p(u) =

1

2

∫ uc

u

dũ(1 − ũ)q̇(ũ). (D5)

Integration by parts gives 2p(um) =
∫ 1

0 du (1 − u)q̇(u) =

−q(0)+
∫ 1

0
q(u)du. The integration range can be extended

to the interval [0, 1] since q̇ = 0 outside [um, uc]. Plugging
this into (112) and using

∫∞
0
ym′′

0 = −
∫∞
0
m′

0 = −1, the
term proportional to q(0) cancels and one obtains (113)
in the text.

The next-order correction satisfies, from (D5) and
(D2):

ṁ2 = −1

2
q̇(u)p(u) [m′′′′

0 + u(2m0m
′′
0)′] . (D6)

This gives:

m2 =
1

2
m′′′′

0

∫

uc

u

dũ q̇p+ (m0m
′′
0)′
∫

uc

u

dũ ũq̇p . (D7)

In order to calculate (112), we need

∫ ∞

−∞
dy ym′′′′

0 = −[m′′
0 ]∞−∞ = 0, (D8)

∫ ∞

−∞
dy y(m0m

′′
0)′ =

∫ ∞

−∞
dym0(m

2
0)

′ =
4

3
, (D9)

where on the second line we used (D3). Inserting into
(112) gives

R2[v] =
8

3
T 2

∫ 1

0

du uq̇(u)p(u), (D10)

where p(u) is defined in (D5). Substituting the definition
(D4,D5), uq̇ = 2ṗ+q̇, integrating by parts, using p(1) = 0
one finds:
∫ 1

0

du uq̇(u)p(u) = [p2 + qp]10 −
1

2

∫ 1

0

du (u − 1)qq̇

=
1

4

∫ 1

0

du q2 − 1

4
q(0)2 − p(0)[p(0) + q(0)], (D11)

which with p(0) = 1/2[
∫ 1

0 du q − q(0)] yields the final
result (114) in the text.
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APPENDIX E: THERMAL BOUNDARY LAYER
OF THE EFFECTIVE POTENTIAL

CORRELATOR

Here we revisit and complete the calculation of the ef-
fective potential defined in Ref. 47 , in an attempt to
connect with the FRG function R(u). The effective po-
tential studied there is constructed (see Ref. 47 for de-
tails) from the probability distribution for a given Fourier

mode u = uk (denoted there ~φ0) in a given environment.
This sample dependent probability is denoted here ZV [u]

(unnormalized) and there PΩ(~φ0). The authors then in-
troduce the potential correlator:

V(u− u′) = − lim
n→0

Z(u)n/2Z(u′)n/2 − Z(u)
n/2

Z(u′)
n/2

(n/2)2β2
,

(E1)
describing the second moment of the effective potential
Ṽ (u) = β−1 ln[Z(u)]. This is the central object stud-
ied there. Although it is a very physical object, it is
very different from the effective potential studied here
V̂ (v) - which is also a physical observable - but involves
a source (implemented via a quadratic well). As a re-

sult Ṽ (u) cannot be connected to the standard FRG111.
Some discussion of the differences between the two ap-
proaches was given in Section VIII G of Ref. 13. Here
we discuss more of the differences in details, based on
explicit calculation.

Since this version of an effective disorder is also inter-
esting, it is worth to push here further the calculation
of Ref. 47 . To avoid confusion between u (displace-
ment field) and u (replica overlap) we replace everywhere
u → v, keeping in mind however that its physical mean-
ing is different from the one (position of well center) given
in the text. The above partition function can be evalu-
ated via a saddle point as in the GVM:

n
∏

a=1

Z(va) =
∑

π

exp

[

−β
2
vπ(a)G−1

ab (k)vπ(b)

]

= exp

[

−nβ
4

(k2 +m2)(v2 + v′2)

]

×
∑

π

exp

[

β

2

(

vπ(a)σabv
π(b)
)

]

. (E2)

In the same way as we derived R[v], we can compute

the correlator of Ṽ as:

V(v − v′) = −2T 2

∫ ∞

−∞
dy y

[

M̃(0, y) − tanh(y)
]

,

where M̃ satisfies the same flow equation as M , but with
the ”inverse coupling”:

q̃(u) =
β

4
(v − v′)2σ(u). (E3)

We can now apply our general expressions (126,134) to
the above case and find for the thermal boundary layer:

− V(v − v′) = V0(v − v′) + V1(v − v′) + . . . , (E4)

where:

V0(v − v′) = −2T 2q̃(uc) = −Tσ(uc)

2
(v − v′)2, (E5)

V1(v − v′) = T 2

∫ uc

um

du

(

u
dq̃

du

)

〈

ψ(z
√

2(q̃c − q̃))
〉

z

= (v − v′)2ucσc(1 + γ) ×
∫ 1

mθ

mθ
c

dv v
2
θ −1

〈

ψ

(

z

∣

∣

∣

∣

v − v′

T

∣

∣

∣

∣

√

Tσc
2

(

1 − v
2
θ −1
)

)〉

z

,

where σc = σ(uc). These formulae have well-defined
limits as T → 0 (recalling that uc/T = Amθ

c and
Tσc = 2m2−θ

c /[(2 − θ)A]). For m → 0 the last term
reduces to:

V1(v − v′) → (v − v′)3ucσc(Tσc)1/2

4

Γ[1 + θ/(2 − θ)]

Γ[5/2 + θ/(2 − θ)]
.

With the notation introduced in Ref. 47 (for d ≥ 2),

1 + γ :=
2

θ
− 1 =

4 − d

d− 2
, (E6)

g :=
1 + γ

8
βσ(uc)u

2
c(v − v′)2, (E7)

the above results can be recast into the form:

V(v − v′) = −V0 − V1 =
4

(βuc)2

[

g

1 + γ
− u

3
cΥ2

(

g

u2
c

)]

,

where:

Υ2(x) =
x

2

〈

∫ 1

0

dv v1+γψ

(

z

√

4x(1 − v1+γ)

1 + γ

)〉

z

,(E8)

and ψ(x) = 2x coth(x), as before. Using ψ(x)→2|x| for
large arguments, one further finds:

Υ2(x)
x→∞→

√
2x3/2

[

1

(1 + γ)5/2
Γ(1/(1 + γ))

Γ(5/2 + 1/(1 + γ)

]

.

The term in brackets is easily seen to tend to 1 as 1+γ =
ǫ/(d− 2) → 0. Thus, Υǫ→0

2 (x→ ∞) →
√

2x3/2.112

For large arguments v, the flow of M̃ is attracted to
an intermediate fixed point M̃(u, y) ≈ tanh(uy). This
happens for a large coupling parameter g ≫ 1 (or more
explicitly for displacements such that (v − v′)2m2+θ

c ≫
1). If in addition the mass is sufficiently small, (v −
v′)2 ≪ m−(2+θ), the correlator V is controlled by this
intermediate fixed point and can be shown to scale as

V(v − v′) ∼ g2θ/(2+θ) ∼ (v − v′)4θ/(2+θ). (E9)

An important difference to the FRG correlator R(v)
concerns the scale on which the nonanalyticity lives in
V(v). Comparing V0 and V1 we find that higher order

terms become dominant for v ≥ v∗∗ ∼ m
(2+θ)/2
c , reflect-

ing the fact that the effective potential correlator V is
sensitive to physics on the Larkin scale, rather than to
shocks occurring on the scale m, as is the case for the
FRG correlator.
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APPENDIX F: COMPARISON WITH THE TBL
FOR DROPLETS

Due to the O(N) symmetry, the disorder correlator is
only a function of v = |~v| (for spatially uniform v). Ac-
cordingly, the force correlator splits into transverse and
longitudinal parts:

−∂vi∂vj R̂(v) = ∆L(v)
vivj
v2

+∆T (v)
(

δij −
vivj
v2

)

, (F1)

with ∆L(v) = −R̂′′(v) and ∆T (v) = − R̂′(v)
v , derivatives

being w.r.t v = |~v|. Both correlators are equal at v = 0,

so that ∂vi∂vj R̂(v) is well defined and proportional to δij
at v = 0. Note that at large N one has 1

N

∑

i ∂
2
vi
R =

∆T (v) + O(1/N), and hence the transverse components
dominate the average force correlator.

The TBL contribution to the droplet force correlator
(155) can be expressed in terms of longitudinal and trans-
verse correlators:

− ∆drop
L (v) = T

m4

4

〈

y2
1ψ

(

m2y1
2

v̂

)〉

y

, (F2)

−∆drop
T (v) = T

m4

4

〈

y2
2ψ

(

m2y1
2

v̂

)〉

y

, (F3)

where y1 = y‖ denotes the component of y parallel to v,
while y2 is an arbitrary orthogonal component.

To make contact with expressions obtained for the
manifolds, we recast these expressions into the form:

− ∆drop
L,T (v) = T

∫

db ρdrop
L,T (b)ψ(b|v̂|), (F4)

with the distributions

ρdrop
L (b) =

2

m2

∫

dN−1y⊥ b
2D

(

y‖ =
2b

m2
, y⊥

)

, (F5)

ρdrop
T (b) =

2

m2

∫

dN−1y⊥

(

m2y2
2

)2

D

(

y‖ =
2b

m2
, y⊥

)

.

In computing the force correlators (159) we have used
that:

∂v̂
〈

v̂2ψ(v̂xz)
〉

z
=

〈

2v̂ψ(v̂xz) + v̂z
d

dz
ψ(v̂xz)

〉

z

(F6)

=
〈

v̂(1 + z2)ψ(v̂xz)
〉

z
,

∂2
v̂

〈

v̂2ψ(v̂xz)
〉

z
= (F7)

=

〈

(1 + z2)ψ(v̂xz) + z(1 + z2)
d

dz
ψ(v̂xz)

〉

z

=
〈

(z4 − z2)ψ(v̂xz)
〉

z
.

APPENDIX G: 1-STEP SADDLE POINTS IN THE
GVM AND THEIR LOW TEMPERATURE

LIMITS

Here we first give for completeness the general one-step
saddle-point equations for the equilibrium statics, valid

for any d and Λ. Equations (166,167,168,171,172,175)
form a closed set of equations, which together with
(170,179) determines uc = u

eq
c :

0 =
dφ(uc)

duc
=

1

2T
[B(χ0) −B(χ1) − (χ0 − χ1)B

′(χ0)]

− T

2u2
c

∫

k

[

Σ1

g−1
k + Σ1

− ln(1 + Σ1gk)

]

.(G1)

The easiest way to show this is to consider Σ1 and uc as
independent variational parameters of the saddle-point
equations, s.t. dΣ1/duc = 0, and then use (176).

Let us now analyze the limit T → 0+ of the vari-
ous one-step saddle points for d < 2 and Λ = ∞. It
is easy to see that the corresponding saddle-point equa-
tions (175,176) together with the three possible condi-
tions (179), (184) or (185) admit solutions of the form
uc = T ûc with finite ûc as T → 0:

χ0 =
4Ad

ǫ(2 − d)

1

ûc

[

1

m2−d − 1

(m2 + Σ1)1−d/2

]

, (G2)

χ1 ∼ T → 0,

Σ1 = −2ûc [B′(χ1) −B′(χ0)] → −2ûc [B′(0) −B′(χ0)] .

The three possible values for the breakpoint are:
(i) existence of a cusp in the FRG in the large-v regime
(ûc = û

cp
c ), i.e. condition (185):

4Ad
ǫmǫ

B′′(χ0) = 1, (G3)

(ii) the equilibrium static condition (ûc = û
eq
c ), which

from (G1) using (173) reads:

dφ

dûc
= 0 =

1

2
[B(χ0) −B(0) − χ0B

′(χ0)] (G4)

− Ad
ǫ(2−d)û2

c

(

Σ1

(m2+Σ1)1−
d
2

− 2

d

[

(m2+Σ1)
d
2 −md

]

)

,

and (iii) the condition (184) for threshold states (ûc =
û
th
c ), which is equivalent to:

Σ1 = m2
c(T ) −m2 → m2

c(0) −m2. (G5)

For concreteness, we give explicit results for model I in
the limit m→ 0; an illustration for general m and d = 1
at a fixed temperature can be found in Fig. 5.

For small m, B(χ0) ∼ B′(χ0) ∼ e−χ0 → 0 and σ0 → 0.
One finds, from (G1) for any 0 < T < Tc:

u
eq
c e

d(1−u
eq
c )/ǫ =

T

Tc
, Σeq

1 = 2
u
eq
c

T
e−du

eq
c /(2−d) (G6)

where Tc is given in (187). Using condition (iii), one finds
for any 0 < T < Td:

u
th
c e

2(1−u
th
c )/ǫ =

T

Td
(G7)

Σth
1 = m2

c(T ) = 2
u
th
c

T
e−2u

th
c /(2−d), (G8)
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where Td is the dynamical transition temperature given
in (188). In the T → 0 limit one obtains:113

û
eq
c =

[

21+ d
2Ad
dǫ

]
2
ǫ

=
1

Tc exp(d/ǫ)

d=1
= 0.7937,

û
th
c =

mc(0)2

2
=

1

2

(

4Ad
ǫ

)2/ǫ
d=1
=

1

2
. (G9)

The cusp condition (G3) imposes that χ0 ∼ logm, and
from the saddle-point equations it follows that:

û
cp
c ∼ md−2/ log(1/m) → ∞. (G10)

We finally determine the T → 0 limit of the config-
urational entropy associated to this branch of cuspy
solutions, Σ(ûcp

c ) = û
2
c
dφ
dûc

. For m ≪ mc one finds

Σ1 ≈ 2û
cp
c ≫ m. Hence, the leading term in the con-

figurational entropy is:

Σ(ûcp
c ) ≈ (ûcp

c )2
dφ

dûc

T→0,m→0→ − (ûcp
c )2

2

≈ −8

[

Adm
d−2

(2 − d)ǫ log (4Ad/ǫmǫ)

]2

, (G11)

which is negative. Hence, the condition (G3) selects ex-
ponentially rare configurations.

APPENDIX H: THERMAL BOUNDARY LAYER
IN THE CASE OF ONE-STEP RSB

Here we prove that the thermal boundary layer in the
1-step case can be written as

R1[v] = 2T 2
ucV

(

√

Q
)

, (H1)

where

V (
√

Q) =

∫ Q

0

dQ′〈z
√

2Q′ coth(z
√

2Q′)〉z . (H2)

Since both expressions at small Q are easily seen to be
of order O(Q), it is sufficient to show the equivalence for
the second derivative with respect to

√
Q. Taking the

second derivative of R1[v] in (200), we find

1

2T 2uc

∂2

∂(
√
Q)2

R1 (H3)

= −
∫ ∞

−∞
dy
〈

z2Φ′′
z (Φz − Φ) + z2(Φ′

z)
2

−z2Φ′′
z (Φz′ − Φ) − zz′Φ′

zΦ
′
z′ − 1

〉

z,z′

where Φ = Φ(y) = ln cosh(y), Φz = Φ(y + z
√
Q), and

primes denote derivatives with respect to y. After a par-
tial integration (in y) of the terms containing Φ′′, the

expression simplifies to

∫ ∞

−∞
dy 〈z(z − z′) (1 − Φ′

zΦ
′
z′)〉z,z′

=

〈

(z − z′)2

2
ψ
(

(z − z′)
√

Q
)

〉

z,z′

=
〈

z2ψ(z
√

2Q)
〉

z
, (H4)

where ψ(a) = 2a coth(a) as in (133), and we have used
the fact that z + z′ and z − z′ are independent Gaussian
variables with variance 2.

On the other hand, one finds

V ′(
√

Q) = 2
√

Q〈z
√

2Q coth(z
√

2Q)〉z ,
V ′′(

√

Q) = 〈4z
√

2Q coth(z
√

2Q)〉z
+〈2

√

2Qz2∂z coth(z
√

2Q)〉z ,
= 〈2

√

2Qz3 coth(z
√

2Q)〉z
= 〈z2ψ(z

√

2Q)〉z , (H5)

where we performed a partial integration in the second
but last line (with the remaining term coming form the

derivative of the measure e−z
2/2), completing the proof.

APPENDIX I: GENERAL SOLUTION FOR
CONTINUOUS RSB

The general continuous RSB solution has been derived
in detail for the model g−1

k = k2+m2 in Ref. 13. Here we

sketch its generalization to arbitrary g−1
k . A continuous

RSB Ansatz is always just marginally stable on all scales,
as expressed in the present case by the identity

1 = 4B′′
(

2

∫

k

G̃(k) −G(k, u)

)∫

k

1

[g−1
k + [σ](u)]2

, (I1)

for all um < u < uc. Using (15), which in continuous form

reads σ(u) = − 2
T B

′
(

2
∫

k
G̃(k) −G(k, u)

)

, this leads to

the relation

σ(u) = − 2

T
B′
(

(B′′)
−1

(

1

4
∫

k

[

g−1
k + [σ](u)

]−2

))

.

(I2)
Further, the relation 1/u = dσ/d[σ] allows one to solve
for σ(u).

In particular, using [σ](um) = 0, we find immediately
the general expression for σ(um) = σ(0):

σ(0) = σ(um) = − 2

T
B′
(

(B′′)
−1
(

1

4I2

))

. (I3)



39
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factor of

√
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eq
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