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Consider an elastic line or an elastic membrane embedded in a material con-
taining pinning sites. This model applies to a score of different physical situa-
tions, from vortex lines or domain walls to fracture fronts and charge density
waves, and leads to a rich phenomenology because of frustration: elasticity
wants to keep the object straight or flat, whereas the disordered environment
tends to distort it in such a way to occupy as many favorable pinning sites
as possible. It is intuitively clear that these two competing ingredients are
enough to generate metastability: many different microscopic configurations
are locally stable, giving birth to a complex energy landscape as often invoked
to describe other ill-condensed systems (glasses, spin glasses, proteins, etc.).
This metastability leads in turn to a host of fascinating effects specific to
disordered systems: non-trivial self-similar roughness, slow dynamics (aging,
creep), intermittent depinning (avalanches). A major theoretical difficulty is
to devise a formalism able to take into account and describe the diversity of
these (sample dependent) metastable states. One example of such formal-
ism is the “Replica Symmetry Breaking” scheme of Parisi, which encodes in
a rather magical way the complexity of the spin glass landscape. Another
route, devised by Daniel Fisher in the context of pinned elastic objects, is the
Functional Renormalisation Group (FRG). The validity, scope, and interpre-
tation of FRG has recently been clarified, after several years of work, by a
remarkable series of papers by Pierre Le Doussal, Kay Wiese and associates
[1,2,3].

Call ~x the internal coordinates of the elastic object (say, along a vortex
line) and φ(~x) the distortion field. Self-similar roughness means that sta-
tistically, φ ∼ xζ , where ζ is the roughness exponent. FRG was initially
proposed as a way to get around the perturbative “dimensional reduction”
result ζ = (4 − D)/2 (where D is the internal dimension, D = 1 for a line).
Although correct to all orders in perturbation theory, it turns out that this
result totally neglects the possibility of different metastable states. The hint
of something going wrong appears when one scrutinizes the way the full cor-
relation function of the pinning force, ∆ℓ(φ − φ′), renormalizes with scale
ℓ – and not only the disorder strength ∆ℓ(0), as standard RG does. One
finds at a finite scale ℓ∗, the second derivative of ∆ℓ(φ → φ′) diverges to
infinity;1 the fixed point of the RG flows must therefore be searched in the
space of functions ∆ that have a cusp at the origin (i.e. an infinite second

1The scale ℓ
∗ is in fact the scale at which metastability appears for the first time. For

scales smaller that ℓ
∗, called the Larkin length in this context, elasticity dominates and

prevents the object from deforming, so that a single ground state is found.
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derivative), and not in the space of regular functions. This program, per-
formed by D. Fisher to first order in ε = 4−D, indeed leads to an exponent
ζ ≈ 0.2083..ε 6= ε/2, with a linear cusp: ∆∞(u) ≈u→0 ∆∞(0) − a|u|. The
work of Le Doussal & Wiese extends the above formalism to higher order
in ε, an endeavor laden with subtleties which were at first thought to be
unsurmountable. Perhaps even more interestingly, their work allows one to
set up an intimate test (experimental or numerical) of the FRG formalism
by measuring, not only the exponent ζ , but the whole fixed point function

∆∞(u), in particular the famous cusp.2 The idea here is that the correlator
of the random force imposed by the disorder on the elastic object can be
numerically reconstructed by adding an extra parabolic pinning potential of
the form m2

2
(φ − φ0)

2 centred around a variable level φ0. For each φ0, one
determines the ground state configuration {φ(x)}φ0

and its center of mass
φcm(φ0). The remarkable result of [1] is that ∆∞(u) is proportional to the
correlator of φcm − φ0 for two φ0s chosen a distance u apart, in the limit
m → 0. This prescription was used in [2] to compute numerically ∆∞(u) for
elastic objects of dimensions D = 1, 2, 3 and compare the results to the FRG
prediction. The results are spectacular: not only the existence of a linear
cusp is confirmed, but the whole function ∆∞(u) is 1% away from the one
loop estimate (with a discrepancy well predicted by the two-loop result!).

What is the physics contained in the cusp, and why is it related to metasta-
bility? Based on a schematic, D = 0 version of the model, Leon Balents,
Marc Mézard and myself conjectured in [5] that the cusp in ∆∞(u) is related
to discontinuities in the effective force as a function of the center of mass
position φcm. The physical idea is that as φcm increases, the system switches
discontinuously from one favorable metastable state to another at a position
φ∗ where both metastable states have exactly the same energy. Just below
φ∗ the elastic object is dragged backwards whereas just above φ∗ it is pushed
forward, resulting in jump in the force and a stick-slip, avalanche-like motion.
The singular a|u| contribution to the correlator ∆∞(u) basically reflects the
statistics (density, amplitude) of these discontinuities [5]. In fact, for D = 0,
the FRG equation maps into the Burgers equation where the velocity is the
analogue of the pinning force, and time plays the role of the scale ℓ. The
above force discontinuities are the familiar shocks that are formed as the
velocity field evolves from a smooth initial condition (i.e. a smooth pinning
disorder at the microscopic scale). The work of Le Doussal et al. confirms
and makes more precise this analogy: numerically, the ‘shocks’ in the effec-
tive force, responsible for the cusp, appear very clearly [2,3]; analytically, the
FRG for D > 0 can indeed be written in the form of a ‘functional’ Burgers
equation, meaning that the renormalisation flow does not need to be for-
mulated in terms of correlators of the disorder but directly in terms of the

random pinning force field itself, without any averaging.

2Among the many problems solved by these authors, let us quote the physics of the
depinning critical point in the presence of an external force and the description of “droplet”
excitations within FRG [4].
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These theoretical breakthroughs are important, not only for the problem
of pinned systems and their physical properties, but more generally for our
understanding of disordered systems. The relation between metastability,
shocks in the FRG and Replica Symmetry Breaking can be understood in
full details in the context of pinned elastic objects [5,6]. One would hope to
find a formulation of the spin-glass problem such that the FRG strategy can
be implemented or adapted – this might solve in a particularly elegant way
the present replicas vs. droplets deadlock. Finally, the extension of these
ideas to treat the role of activated events in glassy dynamics and aging,
initiated in [4], would certainly be worth pursuing.
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