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Using the functional renormalization group, we study the depinning of elastic objects in presence of
anisotropy. We explicitly demonstrate how the KPZ-term is always generated, even in the limit of vanishing
velocity, except where excluded by symmetry. This mechanism has two steps: First a non-analytic disorder-
distribution is generated under renormalization beyond the Larkin-length. This non-analyticity then generates
the KPZ-term. We compute the�-function to one loop taking properly into account the non-analyticity. This
gives rise to additional terms, missed in earlier studies. Acrucial question is whether the non-renormalization
of the KPZ-coupling found at 1-loop order extends beyond theleading one. Using a Cole-Hopf-transformed
theory we argue that it is indeed uncorrected to all orders. The resulting flow-equations describe a variety of
physical situations: We study manifolds in periodic disorder, relevant for charge density waves, as well as in
non-periodic disorder. Further the elasticity of the manifold can either be short-range (SR) or long-range (LR).
A careful analysis of the flow yields several non-trivial fixed points. All these fixed points are transient since
they possess one unstable direction towards a runaway flow, which leaves open the question of the upper critical
dimension. The runaway flow is dominated by a Landau-ghost-mode. For LR elasticity, relevant for contact
line depinning, we show that there are two phases depending on the strength of the KPZ coupling. For SR
elasticity, using the Cole-Hopf transformed theory we identify a non-trivial 3-dimensional subspace which is
invariant to all ordersand contains all above fixed points as well as the Landau-mode. It belongs to a class
of theories which describe branching and reaction-diffusion processes, of which some have been mapped onto
directed percolation.

I. INTRODUCTION

The physics of systems driven through a random environment
is by construction irreversible. The fluctuation dissipation re-
lation does not hold and one expects the coarse grained de-
scription to exhibit signatures of this irreversibility. In driven
manifolds it has indeed been shown that non-linear Kardar-
Parisi-Zhang (KPZ) terms are generated in the equation of
motion, except when forbidden by symmetry [1, 2]. A ques-
tion which was debated for long time is whether at zero tem-
perature these terms vanish as the velocityv ! 0+. This is
the limit which is relevant to describe depinning (f ! f+
 ).
It was found some time ago that there are two main universal-
ity classes for interface depinning [3–5]. The conclusion was
reached mainly on the basis of numerical simulations, which
measure the interface velocityv(�) as a function of an aver-
age imposed slope�, as well as various arguments related to
symmetry. In the first universality class, the isotropic depin-
ning class (ID), the coefficient� of the KPZ term vanishes
asv ! 0+ and the KPZ term is thus not needed in the field
theoretic description. In the second class, the anisotropic de-
pinning class (AD),v(�) still depends on� asf ! f+
 and
the KPZ term is present even atv ! 0+. For AD, numer-
ical simulations based on cellular automaton models which
are believed to be in the same universality class [6, 7], indi-
cate a roughness exponent� � 0:63 in d = 1 and� � 0:48
in d = 2. On a phenomenological level it has been argued
[6–8] that configurations at depinning can be mapped onto di-
rected percolation ind = 1 + 1 dimensions, which yields
indeed a roughness exponent�DP = �?=�k = 0:630� 0:001,
a dynamical exponentz = 1, a velocity exponent�DP =�k� �? � 0:636 and a depinning correlation length exponent

�DP = �k = 1:733� 0:001. Some higher dimensional exten-
sions of these arguments in terms of blocking surfaces have
been proposed [9–12], but there is, to our knowledge, no sys-
tematic field theoretical connection between these problems.

Recently we have reexamined the functional renormaliza-
tion group (FRG) approach, introduced previously [13–17] to
describe isotropic depinning to one loop within a� = 4�d ex-
pansion. We constructed [18, 19] a consistent renormalizable
field theoretical description up to two loops, taking into ac-
count the main important physical feature – and difficulty –
of the problem, namely that the second cumulant�(u) of
the random pinning force becomes non-analytic beyond the
Larkin scale. The 2-loop result for the exponent� shows de-
viations from the conjecture[17]� = (4�d)=3. The reason is
the appearance of “anomalous” corrections caused by the non-
analytic renormalized disorder correlator. The 2-loop correc-
tions proved to be crucial to reconcile theory and numerical
simulations[18, 19].

The aim of this paper is to extend this FRG analysis to the
universality class of anisotropic depinning. We first show that
beyond the Larkin length, the KPZ-term is indeed generated
at v = 0+, as long as it is not forbidden by symmetry. We
explicitly compute the lowest order corrections for a simple
model studied in recent simulations [20, 21]. Next we derive
the FRG-flow equations for the second cumulant�(u) in a4�� expansion. In a previous study, Stepanow[22] considered
the model to one loop, but did not take properly into account
the non-analyticity of the renormalized disorder. Since this
is physically important, we reexamine the problem here. In-
deed, we find several new important “anomalous” corrections,
including the one which generates the KPZ term in the first



2

place, as well as terms correcting the�-function. We then in-
troduce an equivalent description in terms of Cole-Hopf trans-
formed fields. This description is not only much simpler to
study in perturbation theory (e.g. to two loops it reduces the
number of diagrams by an order of magnitude), but it allows
us to obtain a number of results toall orders. We argue that
the coefficient�=
 which measures the strength of the KPZ
non-linearity is uncorrected to all orders. We also determine a
non-trivial subspace of the disorder correlators in the form of
simple exponentials which is an exact invariant of the FRG to
all orders. In the Cole-Hopf variables it is reformulated asthe
field theory of a specific branching process, or equivalently
reaction-diffusion process.

Our flow-equations allow to study both periodic disorder,
relevant for charge density waves (CDW), and non-periodic
disorder, relevant for lines or interfaces in a random environ-
ment. In both cases we find several non-trivial fixed points.
All these fixed points possess at least one unstable direction
and should thus be associated to transitions. It seems that
perturbatively the large scale behaviour is dominated by a
runaway-flow, as it is in the standard KPZ problem[23, 24].
The difference is that its direction is a non-trivial function�(u) in functional space. Analysis of the above mentioned
invariant subspace suggests that the flow goes towards a spe-
cific branching process. The present RG analysis is however
unable to attain the non-perturbative fixed point. Thus, it also
does not allow to strictly decide whetherd = 4 is the up-
per critical dimension of the anisotropic depinning problem,
which is an open issue.

Finally, since there are indications that KPZ terms may
be needed in the description of the motion of a contact line
[25], we have studied manifolds with long range elasticity and
the simplest KPZ term. We determine the critical dimension
above which this KPZ term is irrelevant, as well as the rough-
ness at crossover.

II. MODEL

We consider ad-dimensional interface (ind+1 embedding di-
mensions) with no overhangs parameterized by a single com-
ponent height fieldu(x). The case where the disorder is pe-
riodic corresponds to a single component CDW ind dimen-
sions. The common starting point is the equation of motion��tuxt = 
�2xuxt + �(�xuxt)2 + F (x; uxt) + fxt (II.1)

with friction �, a driving forcefxt = f and in the case of
long-range elasticity we replace (in Fourier)q2uq by jqj�uq
(with mostly� = 1) in the elastic force. The pinning forceF (x; u) is chosen Gaussian with second cumulantF (x; u)F (x0; u0) = �(u� u0)Æd(x � x0) : (II.2)

Temperature can be taken into account as an additional white
noise�(x; t) on the r.h.s. of (II.1) withh�(x; t)�(x0; t0)i =2�TÆ(t� t0)Æ(x � x0), but we will focus here onT = 0.

Disorder averaged correlation functionshA[uxt℄i =hA[uxt℄iS and response functionsÆhA[u℄i=Æfxt =

hûxtA[u℄iS can be computed from the dynamical actionS = Zxt ûxt(��t � 
�2x)uxt � �ûxt(�xuxt)2 (II.3)�12 Zxtt0 ûxtûxt0�(uxt � uxt0) � Zxt ûxtfxt
The uniform driving forcefxt = f > 0 (beyond thresh-
old at T = 0) may produce a velocityv = �thuxti > 0,
a situation which we study by going to the comoving frame
(where huxti = 0) shifting uxt ! uxt + vt, resulting inf ! f � �v. This is implied below: Each� is of the form�(uxt� uxt0 + v(t� t0)), and we always consider the quasi-
static limitv = 0+. Perturbation theory is performed both in
KPZ and disorder terms, using the free response functionhûq;t0u�q;ti0 = Rq;t�t0 = ��1e�(t�t0)q2=��(t � t0): (II.4)

III. GENERATION OF THE KPZ-TERM

In this section we show how the irreversible (non-potential)
KPZ term is generated, even in the limitv ! 0+, starting
from a purely reversible equation of motion, where all forces
are derivatives of a potential.

Let us first consider the model recently studied numerically
by Rosso and Krauth [20, 21], where the elastic energy isRxE(rux), and e.g.E(�) = 
2�2 + 
44 �4. The relevant con-
tinuum equation of motion is:��tuxt = E00(�xuxt)�2xuxt+F (x; uxt+vt)+f��v (III.1)

Note first that when
4 = 0, which corresponds to the
isotropic depinning class withE(�) = 
2�2, the generation
of the KPZ term is forbidden by the statistical tilt symmetry
(STS), i.e. the invariance of the equation of motion under a
shiftuxt ! uxt+fx with fx = hx (or more generally the co-
variance under an arbitraryfx) [29]. When
4 6= 0 the model
does not obey STS and the KPZ term is not forbidden, and
indeed it is generated at finite velocityv > 0. This consider-
ation alone is insufficient to show that it is still generatedasv ! 0 since in that limit the symmetryu!�u should forbid
it. Indeed, if one performs conventional perturbation theory
with an analyticdisorder correlator�(u), one does immedi-
ately find that the KPZ term vanishes asv ! 0+. However
one needs a mechanism by which, asv ! 0+, the symmetryu!�u remains broken.

As we now show, this mechanism is provided by the non-
analytic nature of the disorder. We know from studies of
isotropic depinning [14, 16, 18, 19] that atT = 0 the
coarse grained disorder becomesnon-analytic(NA) beyond
the Larkin length [30]. We show below that this is also the
case for the situation considered here.

Using the techniques developed in Ref. [18, 19] the cor-
responding perturbation theory, with a non-analytic�(u) be-
comes (see figure III.1 for notation)Æ� =
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FIG. III.1: The diagram generating the irreversible nonlinear KPZ
term with one disorder vertex (notations are as in Ref. [18, 19]) and
one
4 vertex (the bars denote spatial derivatives).= � 
4p2 Zt>0 Zt0>0 Zk e�(t+t0)k2 �k2p2 + 2(kp)2���0(ux;t+t0 � ux;0 + v(t + t0)) ;

(III.2)

At T = 0, ux;t has vanishing expectation value and the argu-
ment of�0 becomesv(t + t0). Using that�(u) = �(0) + �0(0+)juj+ 12�00(0+)u2 + : : : (III.3)�0(u) = sign(u) + �00(0+)u+ : : : (III.4)

and observing thatt; t0 > 0, (III.2) can be written asÆ� =� 
4p2 Zt Zt0 Zk e�(t+t0)k2 �k2p2 + 2(kp)2�� ��0(0+) + �00(0+)v(t + t0) +O(v2)�
(III.5)

The leading term of this expansion, which is the only UV-
diverging one for4 > d > 2, is obtained by settingv = 0.
Integrating overt; t0 and using the radial symmetry ink givesÆ� = �
4�1 + 2d�Zk �0(0+)k2 +O(v) : (III.6)

Similarly, there is a correction to
, which readsÆ
 = 
4 = Zk �(0)k2 �1 + 2d� (III.7)

leading to Æ
 = 
4�1 + 2d��(0) Zk 1k2 (III.8)

As will become clear below, the natural coupling for the KPZ-
term is not�, but the ratiô� = �=
, which is corrected as [31]:Æ�̂ = �
4�1 + 2d� (�0(0+) + �̂�(0)) Zk 1k2 (III.9)

Thus we have shown that the symmetryu ! �u which for-
bids the KPZ term (e.g. in an analytic perturbation theory
where�0(0) = 0), is broken here atv = 0+ by the non-
analytic term, and that a KPZ term is indeed generated at
depinning. As in our previous study [18, 19] the only as-
sumption is that the interface always advances forward (or

that backward motion can be neglected in the steady state),
supported in this single component model by no passing the-
orems [16, 20, 21]. By providing a physical mechanism, this
explicit calculation confirms the argument given in [4] based
on a Larkin type estimate of the angle� dependence of the
critical force.

Note the sign of the generated KPZ term. Since�0(0+)
is negative,� is positive as found in simulations [3, 4]. It is
a bit counter-intuitive that the surface should become stiffer.
Also it effectively corresponds to the generation of a positive
average curvature. This is presumably through non-analytic
coarse grained configurations of the string (ind = 1) since
otherwise

R L0 r2u = [ru℄L0 would grow asL which is un-
physical, while cusps inu(x) allow for such a result.

This model is only a particular case, which shows that the
anisotropic depinning class is rather broad and not limited
to anisotropic disorder. In general, unless they are excluded
by symmetry, KPZ-terms will appear. One such case, corre-
sponding to a flux line in1 + 1 dimensions which moves per-
pendicular to itself was considered in [4]. There disorder is
anisotropic with correlators�x and�u for the pinning force.
In the case of isotropic disorder�x = �u, exact rotational
invariance (which in infinitesimal form readsu ! u + �x,x ! x � �u) should suffice to exclude the KPZ term. We
have indeed checked this by adding to the above MSR-action
with � = 0 the non-linear terms of [4]ÆS = � Zxt ûxt �Ar2uxt(ruxt)2 +Bf(ru2xt)� (III.10)� Zxtt0 ûxtûxt0 �C(ruxt)2+Druxtruxt0��(uxt�uxt0) :
The generated KPZ term reads to lowest orderÆ� = 2(�A+ C +D)�0(0+) Zk 1k2 : (III.11)

Since the equation of motion of Ref. [4] for�x = �h cor-
responds toA = �1, D = C = 1=2, one checks to lowest
order that the KPZ term is indeed not generated. Although we
have not checked it further, it is clear that this property should
extend to all orders. In the anisotropic class�, can a priori
be of any sign. The argument given in [4] suggests that for
the flux-line model� is positive when�x < �h and negative
for �x > �h. Note that anisotropy by itself is not enough to
generate the KPZ term, but that a non-linear and non-analytic
disorder correlator is needed, and that this term will of course
not be generated in a simple Larkin-type random force model,
where�x and�h are constants.

IV. DIMENSIONAL FLORY ESTIMATES

Before using analytical methods, let us indicate a simple
Flory, or dimensional, argument which indicates how expo-
nents for ID and AD can differ. In the absence of a KPZ term
and settingu � x� the two static terms in the equation of
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motion scale as r2xu � x��2 (IV.1)F (ux; x)� x� d+�2 : (IV.2)

UsingF (u; x)F (u0; x0) � Æ(u � u0)Æd(x � x0) for random
field disorder gives the Imry-Ma value�F = 4� d3 (IV.3)

which can be argued to be exact for the statics and is corrected
byO(�2) terms at depinning. These types of arguments typi-
cally give the exact result for LR correlated disorder, as the LR
disorder part is not renormalized. It happens that this range is
long enough for the statics but not for depinning; hence there
is a correction at depinning which increases�. Note that it
becomes again exact for depinning if the range of� in u orx
is large enough (see e.g. the end of Section IV B in [26] and
Appendix B).

In presence of a KPZ term the latter scales as(rxu)2 � x2��2 : (IV.4)

Supposing that it is relevant, it dominates over the elasticterm.
Balancing KPZ-term against disorder gives the modified Flory
estimate �F = 4� d5 : (IV.5)

For d = 1 it yields �F = 0:6 versus� = 0:63 observed in
simulations[20], which is not bad an estimate for such a sim-
ple argument. Again it is possible that if one increases the
range of� the estimate (IV.5) becomes again exact, as is the
case for standard KPZ (directed polymer) see Appendix B.
Note however that it works with an upper critical dimensiond = 4, which is an open question, and is thus merely indica-
tive.

V. FLOW-EQUATIONS IN PRESENCE OF A
KPZ-TERM

Let us start by deriving the FRG flow of�, 
, � and� to
one loop starting from (II.3). The KPZ and disorder terms are
both marginal ind = 4 and become relevant below. Simple
dimensional arguments show that these are the only needed
counter-terms. We have computed the effective action to low-
est order. The corrections as given by the diagrams on figure
V.1 are (for details see Appendix A):Æ�� =� �a0
�3��0(0+) + 
�2�00(0+)� IÆ

 =� �a1�
�3�0(0+) + a2�2
�4�(0)� IÆ�� =� �a3�
�3�0(0+) + a4�2
�4�(0)� IÆ�= �a5�2
�4�2 + 
�2(�00(�(0)��)� (�0)2)� I (V.1)

FIG. V.1: 1-loop-diagrams correcting� (top), 
 (middle), and� and�(u) (bottom).

whereI = R 1=q4 (integrated over the shell if using Wilson’s
scheme) and the coefficients are:a0 = 1 ; a1 = 2(d� 2)=d ; a2 = 4=da3 = a4 = 4=d ; a5 = 2 : (V.2)

In the following we will setd = 4 in these coefficients since
they are universal only to this order. This givesa0 = a1 = a2 = a3 = a4 = 1 ; a5 = 2 : (V.3)

One then notes that the quantity�=
 remains uncorrected to
first order ind = 4. In the next section we shall argue that this
remains true to all orders. The corrections to the linear term in
(II.3) can be interpreted as the correction to the critical force:Æf = �Æf
 = (�
�2�(0) + 
�1�0(0+))I1 (V.4)

whereI1 = Rq 1q2 . It does not require an additional counter-
term if we tunef to be exactly at depinningf = f
.

In view of the non-renormalization of�=
 in (V.1) it is use-
ful to denote the unrescaled coupling constants as�̂ = �
 ; �̂ = �
 ; �̂ = �
2 : (V.5)

One should also notice that if one performs the change of vari-
able in the initial modelu ! u=�̂, û ! û�̂, then the free
(quadratic) part of the action (proportional to
 and�) remains
invariant while disorder and KPZ terms become:�̂! 1�(u)! �̂2�(u=�̂) (V.6)

Thus the coefficient̂� can be set to one upon appropriate re-
definitions of disorder and displacements.

It is natural to start the study of the FRG flow and the search
for fixed points as for� = 0 by defining the followingrescaled
parameters ~�= �̂���` (V.7)~�(u) = �2���` �̂(u���` ) (V.8)
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within a Wilson scheme where�` = �e�` is the running UV
cutoff. This yields two coupled equations for the couplings~�
and ~�(u)�` ln ~� = � (V.9)�` ~�(u) = (� � 2�) ~�(u) + u� ~�0(u)+2~�2 ~�(u)2 + [2~�2 ~�(0) + 2~� ~�0(0+)℄ ~�(u)� ~�0(u)2 � ~�00(u)( ~�(u)� ~�(0)) (V.10)

where here and below we absorb�I = S4=(2�)4 in the cou-
plings. One notes that if there is a fixed point for~�(u), then� is the roughness exponent sincehuqu�qi=�(0)=
2q4= ���2�` ~��(0)=q4 � ~��(0)=qd�2� (V.11)

when evaluated at scale�` = q. A more rigorous calculation
uses the effective action[19] at non-zero momentum. but to
one loop gives the same result. The dynamical exponentz int � xz and the anomalous dimension of the elasticity can be
determined from� = �` ln 
 = �~� ~�0(0+)� ~�2 ~�(0) (V.12)z � 2 = �` ln(�=
) = � ~�00(0+) + ~�2 ~�(0) :
The correlation-length exponent� in � � (f � f
)�� and the
velocity exponent� in v � (f � f
)� are given by the scaling
relations � = 12� � +  (V.13)� = �(z � �) = z � �2� � +  : (V.14)

This can be seen by noting that the action (II.3) is invariant
underx = e`x0, t = ez`t0, u = e�`u0, û = û0e(2�z���d+ )`
provided� = �0 e(2�z+ )`, 
 = 
0 e `, � = �0 e( +�)`,f = f 0 e(2��+ )` and� = �0 e(��2�+2 )` as well asT =T 0 e(2�d�2�+ )`. While in presence of STS one has = 0,
this is not the case here. In a Wilson formulation, the critical
force is obtained by integration over scales of�`f
 = �
`(~�` ~�`(0) + ~�0̀ (0+))�2��` ; (V.15)

a quantity which physically is likely to remain positive.
A salient feature of the AP class is that the critical force

depends on the angle by which the interface is tilted. From the
arguments of [3, 4] the characteristic slope� should scale like
the ratio of the characteristic lengths orthogonal and parallel to
the interface,� � �?=�k � (f�f
)�(1��) and more generally
the velocity should behave asv(f; �) = (f � f
(0))� g� �(f � f
(0))�(1��)� : (V.16)

Defining�e� by[4] v(f; �) = �e��2 + : : :, the small� expan-
sion ofv(f; �) gives he effective�e� as�e� � (f � f
(0))��2�(1��) = (f � f
(0))��(2���z) :

(V.17)

Performing the redefinitionu = ~u + �x, we can compute the
critical force as a function of the angle� to lowest order in
disorderÆf
(�) = ��2��1� 4dI �~�2 ~�(0) + ~� ~�0(0+)��= ��2��1 + Æ�� � (V.18)

and thus we find an angular dependence, which is increased
under renormalization.

The notable feature of the above FRG equation is the ab-
sence of corrections tô� to this order in eqs. (V.1). It is cru-
cial to determine whether this persists beyond one loop. If
there were corrections to higher order this might allow for a
non-trivial fixed point of�̂ and thus to fix�. On the other
hand, absence of corrections would imply that for� > 0, ~�
flows to infinity, which makes the existence of a perturbative
fixed point doubtful. In the next section, we present a different
approach, which allows to clarify this question.

It is worth noting, that since KPZ-terms are only gener-
ated above the Larkin length, the FRG flow below the Larkin
length (as well as the value of this length) is identical to the
case� = 0. It is however instructive to artificially consider
the above FRG flow for an analytic function and with a given
imposed bare value of̂� (setting� = 0). One gets�` ~�(0) = � ~�(0) + 4�̂2 ~�(0)2 (V.19)�`�00(0) = ��00(0)� 3�00(0)2 + 6�̂2�(0)�00(0) : (V.20)

The bare disorder has�(0) > 0 and�00(0) < 0. Since all
terms on the r.h.s. of (V.20) have the same sign,j�00(0)j di-
verges faster if̂� 6= 0, meaning that the KPZ-term cannot
prevent�(u) from becoming non-analytic. Note that the first
equation exhibits a runaway atL�(0) which can shorten the
Larkin length. Ind = 4+ � at� = 0 there is an unstable fixed
point at�00(0) = ��=3 separating a Gaussian weak-disorder
phase with the bare unrescaled Larkin force producing finite
displacements, and a phase where disorder seems to become
non-analytic, only to become irrelevant at larger scales ascan
be seen by examining the flow in the non-analytic space be-
yond the Larkin length. At� > 0 there is a fixed line at�(0) = ��=(4�̂2) > 0 which separates a phase where�(0)
grows from a phase where it decays to zero. On the transition
line the flow is towards a non-analytic disorder.

VI. COLE-HOPF TRANSFORMED
THEORY

We now introduce the Cole-Hopf transformed theory which
has a lot of interesting properties.

Starting from (II.1) we first divide by
. This gives�̂�tuxt = �2xuxt + �̂(�xuxt)2 + 1
 F (x; uxt) + f
 (VI.1)

We then define the Cole-Hopf transformed fieldsZxt := e�̂uxt , uxt = ln(Zxt)�̂ : (VI.2)
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The equation of motion becomes after multiplying with�̂Zxt�̂�tZxt = �2xZxt+ �̂
 F �x; ln(Zxt)�̂ �Zxt+ �̂f
 Zxt (VI.3)

and the dynamical actionS = Zxt Ẑxt ��̂�t � �2x�Zxt� �̂22 Zxtt0 ẐxtZxt �̂� lnZxt � lnZxt0�̂ � Ẑxt0Zxt0� �̂
 f Zxt ẐxtZxt (VI.4)

It is important to note that the above formal manipulations
are only valid in the mid-point (Stratonovich) discretization.
The strategy therefore is to start from the original equation of
motion, which is interpreted in the Itô discretization, switch to
Stratonovich, make the change of variables, and then switch
back to Itô. Note the identification:ûxt � �̂
 ẐxtZxt (VI.5)

and that in this formalism the force (or the distance to the
critical force) corresponds to a mass:m2 = �̂
 (f � f
) (VI.6)

Let us first illustrate how perturbation theory works in this
new formulation and how one can easily recover the 1-loop
FRG equation obtained in the previous section. Perturba-
tion theory is performed with the standard response-function.
We note a very important property: To contractẐ00 with a

disorder-insertionẐxtZxt�̂2 �̂� ln Zxt�lnZxt0�̂ � Ẑxt0Zxt0 and

focusing onZxt (notZxt0), one can decide to either contractZxt standing outside thê� or inside. In the first place, this
eliminates the factorZxt, but leaveŝ� underived. In the sec-
ond case, deriving the argument of�̂, gives�̂0=�̂, together
with a factor of1=Zxt from the inner derivative. The latter
also cancels theZxt standing outside thê�. So independently
of where one derives, one always looses the factor ofZxt out-
side �̂. Contractingn times towards the vertex atx; t thus
gives a factor ofZ1�nxt . This observation shows that the dia-
grammatics are a very simple generalization of the case with-
out the KPZ-term which was detailed up to two loops in [19].
One easily verifies that the latter case is reproduced upon con-
tracting only the argument of̂�. To see this, one performs the
perturbation theory and finally takes the limit of�̂! 0. Each
time, one has contracted aZxt outside of�̂, one is missing
a factor of1=�̂, and the term vanishes in the limit of�̂ ! 0.
Further remark that for̂�! 0, the argument of̂� becomesZxt � Zxt0�̂ = uxt � uxt0 + O(�̂) (VI.7)

This shows that the perturbation theory for isotropic depin-
ning is reproduced.

Thus the new diagrams, in the presence of the KPZ-term,
can be deduced from those for� = 0 by allowing additional
contractions of aZxt outside thê�. Compared to performing
calculations using (II.3) this yields a much simpler perturba-
tion theory, with far less distinct diagrams. E.g. to two loops,
the number of diagrams is reduced by at least a factor of ten.

Note that now a renormalization of the term̂Z�̂Z is al-
lowed, since it is no longer forbidden by STS. Indeed shiftinguxt ! uxt + �x=�̂ and Ẑxt ! Ẑxte��x, we find that the
action changes byÆS = Zxt Ẑxt ��2 + �r�Zxt : (VI.8)

However, since the action (VI.4) is still translationally invari-
ant, it remains unchanged underZxt! �ZxtẐxt! 1�Ẑxt : (VI.9)

Transforming onlyZxt ! �Zxt without changingẐxt will
allows us later to fix the coefficient of the Laplacian to unity
and transfer all its corrections into corrections to�̂ and�̂.

We now present the calculations at 1-loop order. We start
with the corrections tô�. Contracting one disorder vertex
once with itself, we obtain�̂2Ẑxt0Zxt ��̂� lnZxt0� lnZxt�̂ �+ 1̂��̂0� lnZxt0� lnZxt�̂ ���R0;t0�t (VI.10)

ExpandinglnZxt0 � lnZxt for small times yieldslnZxt0 � lnZxt = (t0 � t)�tZxtZxt + O(t� t0)2 (VI.11)

One also has to expandZxt aroundxt0:Zxt = �(t0 � t)�tZxt0 (VI.12)

Since the manifold only jumps ahead, the arguments of�̂ and�̂0 are always positive. Putting all terms together, we obtain:Ẑxt0�tZxt0(t0 � t)R0;t0�t�h��̂�̂0(0+) + �̂00(0+)�� ��̂2�̂(0) + �̂�̂0(0+)�i(VI.13)

Integrating overt0 � t yieldsẐxt0�tZxt0I� h��̂�̂0(0+) + �̂00(0+)� � ��̂2�̂(0) + �̂�̂0(0+)�i(VI.14)

We have grouped terms such that in the first bracket there ap-
pear the corrections to� Æ�� and in the second those toÆ

 .
Here they appear all together in one diagram. In the absence of
the KPZ-term only the term independent of�̂ survives. Not-
ing the cancellation between the two terms, we finally arrive
at Æ�̂̂� = h�̂00(0+) � �̂2�̂(0)i I (VI.15)
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We now turn to corrections to disorder. Reminding that the
arrows can either enter into the argument of� or into the sin-
gleZ-field, we get the following contributions (plus some odd
terms, which we do not write):Æ�̂(u)a = h��̂00(u)�̂(u) + �̂2�̂(u)2i IÆ�̂(u)b = h��̂0(u)2 + �̂2�̂(u)2i IÆ�̂(u)
 = h�̂00(u)�̂(0)i IÆ�̂(u)d = 2 h�̂�̂(u)�̂0(0+) + �̂2�̂(u)�̂(0)i I (VI.16)

These reproduce the corrections obtained in the previous sec-
tion, but quite differently.

The Cole-Hopf transformed theory suggests thatÆ�̂ = 0 (VI.17)

to all orders. To prove this one has to show that the following
terms are not generated in the effective actionẐxt 1Zxt (rZxt)2 : (VI.18)

It is easy to see that these terms result from a change of�̂
(keepinguxt andûxt fixed):Zxt! Zxt 1 + Æ�̂̂� lnZxt! (VI.19)Ẑxt! Ẑxt 1� Æ�̂̂� lnZxt! (VI.20)

and thus the Laplacian generates (VI.18). One can also again
consider a term like
4 which is known to produce a shift in�̂ (see (III.9)), and does produce (VI.18) above together with
other irrelevant terms with more gradients. In fact (VI.18)is
by power counting the only term marginal ind = 4 which can
appear. This term could in principle come from vertices with
several derivatives acting on̂� at pointx. As previously dis-
cussed, it is always compensated, but the compensating factor
could be on a different vertex at positionx0 and hence produce
(VI.18) via a gradient expansion. We have shown in Fig. VI.2
the 2-loop diagrams correcting terms with a single response
field in the effective action and theZ and1=Z fields which
appear at each vertex. All terms contribute to�̂. Graphsb, 

andd each give a term of the form (VI.18) by expanding theZ2 on the lower disorder, but the sum of them cancels. As
we will discuss below this is graphically achieved by moving
the ends of the arrows around on the upper vertex, suggesting

da b c

FIG. VI.1: 1-loop dynamical diagrams correctinĝ�

a b c d

e f g

Z

1
Z
1

Z
1

Z
1

Z
1

Z

Z

Z

ZZZZ

ZZ

Z

Z
Z

FIG. VI.2: 2-loop dynamical diagrams correcting the singleẐ-
component. Diagrams a – g correct the friction. Only diagrams
e and f have a sufficiently strong divergence in space (after time-
integration) that they can produce spatial gradients. In fact they both
correctẐ�Z. (The diagram is the well-known sun-set diagram from�4-theory.)

1

2

3
1

2

3 1

2

3

FIG. VI.3: Figure explaining the non-renormalization of�̂, see main
text.

a more general cancelation. Another argument is that the di-
vergence in space between the upper and lower vertex is not
strong enough in order to contribute to (VI.18) or

R Ẑ�Z. For
this to happen, one needs three response-functions between
upper and lower disorder, as is the case for diagrams e and
f. They thus both contribute to

R Ẑ�Z, but since they have
only a singleZ on the lower disorder, they do not contribute
to (VI.18).

We now argue that to all orders in perturbation theory no di-
agram proportional to a singlêZ (one connected component)
can be generated, which contains a factor of(rZ)2 1Z . We
believe these arguments to be conclusive; especially we have
not been able to construct any counter-example at 3- or 4-loop
order. However the structure of the theory is sufficiently com-
plicated that some caution is advised.

Look at figure VI.3. The response-functions (arrows) in an
arbitrary diagram correcting a single-time vertex have a tree-
structure (left). This diagram can be completed by adding the
disorder-interactions between arbitrary pairs of points (mid-
dle). A potentially dangerous factor of1Z appears at point 2.
Point 2 has a “brother” 3, to which it is connected by a disor-
der correlator̂� (dashed line).

Then, two cases have to be distinguished: Either there is
no line entering point 3, then point 3 can contribute his factor
of Z to point 2: Since it is at the same point in space, the
difference can be expanded in a series in time, giving time-
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derivatives ofZ which do not spoil the argument.
On the other hand, there may be a line entering point 3.

This is drawn on figure VI.3 (middle). By construction (at
least) two branches (of response-functions) enter at point2.
At least one of them does not contain the brother of 2 (here
point 3). Here it is the left branch, containing point 1. Now
consider the diagram where the response-function from 1 to 2
is replaced by a response-function from 1 to 3 (right). Since
one can always contract last the response-field at point 1, lead-
ing to either the response-function from 1 to 2 or the one
from 1 to 3, these diagrams have the same combinatorial fac-
tor, but differ by a a factor of�1, due to the derivative of�( lnZ�lnZ0�̂ ) on either the first or the second argument. This

comes in both cases with a factor of1Z , at thesameposition in
space but at different positions in time. However, due to the
tree-structure, the time-integration can always be done freely,
and the two vertices finally cancel. This argument is sufficient
before reaching the Larkin-length. However after reaching
the Larking length, the non-analyticity of the disorder may
yield additional sign-functions in time between both ends of
the vertex, as has been observed in [19]. Then the proof gets
more involved. There is another very powerfull constraint on
the generation of terms like (VI.18): One has to construct
a diagram with a strong spatial ultraviolet divergence, such
that after Taylor-expandingZ in space the additional factor
of x2 together with this strong ultraviolet divergence gives a
pole in1=�, i.e. a logarithmic divergence atd = 4. This is
the situation for diagrams e and f in figure VI.2. It arises if
and only if there are2n+ 1 response-functions connectingn
points in space (this may well be a sub-diagram), but where
response-functions that connect the same point in space are
not counted. In all examples which we considered up to 4-
loop order, which had sufficiently many factors of1=Z, and
which had the correct UV-structure, the(2n + 1) response-
functions where enough to enforce an ordering of times, such
that the mounting proof sketched on figure VI.3 went through.
We have to leave it as a challenge to the reader to either find a
counter-example or to make the above arguments rigorous.

Let us now return to the analysis of the RG-equations. We
introduce rescaled variables according to�̂(u) = ���2�` ~�(u��̀) (VI.21)~�= �̂���` (VI.22)

with �` = �e�`. Because we have definedZ = e�̂u, in order
not to generate additional terms, a rescaling ofu demands a
(compensating) rescaling of̂� such that the product remains
unchanged. Even though this may not be the best choice cor-
responding to the existence of a fixed point, it is the only way
to preserve the Cole-Hopf-transformation, leavingZ andlnZ
unchanged. The rescaling of�̂ comes from the rescaling of�̂, which appears as a factor of�̂2 in front of �̂ in the action
and as a factor of1=�̂ in the argument of̂�.

This leads again to the FRG flow equation given in (V.10):�` ~�(u) = (�� 2�) ~�(u) + �u ~�0(u)� ~�00(u)� ~�(u) � ~�(0)�� ~�0(u)2

+2~� ~�(u) ~�0(0+)+2~�2 �~�(u)2 + ~�(u) ~�(0)� (VI.23)

Further remarkable properties of the Cole-Hopf transformed
theory will be shown below. We now turn to the study of the
FRG flow.

VII. PERIODIC CASE

We now consider the case, where�̂(u) is a periodic function
with period1. The starting point is (VI.23) with� = 0, thus~� = �̂ remains constant under renormalization (to all orders).
Since the period is fixed,~� cannot be scaled away using (V.6).
It is thus a continuously varying parameter and we must study
the flow as a function of it.

In eq. (VI.23) there is a tendency for a runaway flow, as
can be seen by analyzing the flow-equation (VI.23) with the
trivial solution ~�(u) = ��`� = ��+ 4�̂2�2 : (VII.1)

This corresponds to the localization - or self attracting chain
- problem studied in [27] and we expect on physical grounds
the full functional form of�(u) to be important, which may
lead to other fixed points.

For �̂ = 0 we already know that there is an unstable fixed
point �`(u) = ��(u) + 
 e�` (VII.2)��(u) = 136 � 16u(1� u) ; (VII.3)

which describes isotropic depinning for CDW. This fixed
point survives for small� as can be seen from a series ex-
pansion in powers of�. Moreover at each order in�, ��(u)
remains polynomial inu(1�u). We do not reproduce this ex-
pansion here, since we have succeeded in obtaining the fixed
point analytically. Equation (VI.23) possesses the following
remarkable property:

A three parameter subspace of exponential functions
forms an exactly invariant subspace.

Even more strikingly, this is trueto all ordersin perturbation
theory. This property, which is quite non-trivial, is understood
in the Cole Hopf theory, as discussed below.

For our purposes, it is more convenient to write�(u) = 1̂�2 �f(u�̂) ; (VII.4)

such thatf satisfies the same FRG equation (VI.23) with� =� = 1, but with period�. This allows to make an ansatz for a
family of exponential functionsf(u) = a+ b e�u + 
 eu : (VII.5)

The FRG-flow (VI.23) closes in this subspace, leading to the
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� = �1 � = 0
� = 2 � =1

FIG. VII.1: Fixed point structure for different values of�. The coordinate system is such thata grows to the right andb to the top. The both
separatrices areb = � 12ae� (blue/dark) andb = �a=(1 + e��) (orange/bright).

simpler 3-dimensional flow:�`a= a+ 4a2 + 4a
+ 4b
 (VII.6)�`b= b(1 + 6a+ b+ 5
) (VII.7)�`
= 
(1 + 6a+ b+ 5
) (VII.8)

This works only for amplitude one in the exponential; other-
wise higher modes are generated. Also note that these equa-
tions are not symmetric under the exchange ofb and
, as one
might expect from the interpretation we will present later.

Requiring periodicity, or equivalentlyf(u) = f(� � u)
imposes 
 = b e�� (VII.9)

and one checks thatb=
 is indeed unrenormalized. Thus one
can study the simpler 2-dimensional flow�`a = a + 4a2 + 4abe�� + 4b2e�� (VII.10)�`b = b(1 + 6a+ b+ 5be��) (VII.11)

as a function of�. A physical requirement is that�(0) = a+ b(1 + e��) > 0 (VII.12)

f
 � �(�0(0) + ��(0))= � 1� (a + 2be��) > 0 : (VII.13)

Fora < 0 this is possible only if� a1 + e�� < b < �a2 e� (VII.14)

On the other hand, fora > 0 the flow fora is alwaysa !1
in a finite time. Indeed the r.h.s. of (VII.10) is always positive
for a > 0. For b > 0 this is trivial; for b < 0 this can be seen
froma+ 4a2 + 4abe�� + 4b2e��= a+ 4 (a+ b)2 e�� � 4abe�� + 4a2(1� e��)> 0 (VII.15)

The flow given in (VII.10) and (VII.11) is shown in figure
VII.1. There are four fixed points ford = 4��. In the original
variables they are

(i) Gaussian fixed pointG (repulsive in all directions) with�(u) = 0.
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(ii) Self-avoiding polymer fixed pointSAP, where the corre-
lator is a negative constant:�(u) = � �4�2 (VII.16)

It is the problem of localization in an imaginary random po-
tential, i.e. the Edwards version of the better known self-
avoiding polymer. It is attractive in all directions, even those
not drawn here. Writingf(u) = �1=4+�(u) and linearizing
(VI.23) gives �`�(0) = ��(0)� 12�0(0+) (VII.17)

�`�0(u) = �12�0(u) (VII.18)

This self-avoiding polymer fixed point will not play a role in
the following since for the disordered problem�(0) > 0.
However it is interesting in other contexts, as discussed below.

(iii) Fixed pointU, with one attractive and one repulsive direction.�(u) = 1�2"� 1 + 54e�� + 5e�2� � (1 + 5e��)p1 + e��(34 + e��)8(1� 5e��(e�� � 8)))+ 2(1 � 7e�� � 3p1 + e��(34 + e��) (e��u + e��(1�u))# (VII.19)

The value at zero �(0) = � 3 + e�(3 +p1 + e�2� + 34e��)2�2(7 + e�(3p1 + e�2� + 34e�� � 1)) (VII.20)

is always negative for� � 0, thus the FP is unphysical for our problem ind = 4 � �. The combination yielding the corrections
to the critical force f
 = �1 + e�(7 +p1 + e�2� + 34e��)2�(7 + e�(3p1 + e�2� + 34e�� � 1)) (VII.21)

is always positive for� � 0.
(iv) The random periodic fixed pointRP has:�(u) = 1�2"� 1 + 54e�� + 5e�2� + (1 + 5e��)p1 + e��(34 + e��)8(1� 5e��(e�� � 8)))+ 2(1 � 7e�� + 3p1 + e��(34 + e��) (e��u + e��(1�u))# (VII.22)�(0) = 3� e�(�3 +p1 + e�2� + 34e��)2�2(�7 + e�(1 + 3p1 + e�2� + 34e��))

(VII.23)f
 � �(�0(0+) + ��(0))= �7 + e�(1 +p1 + e�2� + 34e��)2�(�7 + e�(1 + 3p1 + e�2� + 34e��)) (VII.24)

Both quantities�(0) andf
 are positive for all� � 0, thus
this fixed point is physical.

The fixed pointRP is the continuation of the fixed point
(VII.3) at � = 0: Note that apart from a constant only the
termu(1 � u) survives from the exponential functions. Like
the fixed point at� = 0, it is attractive in one direction (to-

wards the fixed pointSAP) and repulsive in another (towards
large�(u)). It is thus a critical fixed point. One can argue
that any perturbation which leads toSAP is unphysical, since
at some scale�(0) becomes negative. Since we did not find
any strong reason why the system would be exactly on this
critical surface, it is more likely that this FP represents acriti-
cal regime which lies on the boundary of the physical domain.
It is however interesting that its analytic form can be obtained.
In particular one can compute correlation functions exactly at
RP.

An important question is whether there are fixed points out-
side of the exponential subspace considered above. Let us give
a few general properties. First the flow equations and fixed



11

point conditions nearu = 0�` ~�(0) = � ~�(0) + 4�̂2 ~�(0)2 � ~�0(0)2 + 2�̂ ~�(0) ~�0(0+)�` ~�0(0+) = ~�0(0+)(�+ 2�̂~�0(0+) + 6�̂2 ~�(0) � 3�00(0+))
(VII.25)

and the flow equation for
R ~��` Z 10 du ~�(u) = ��+ 2�̂ ~�0(0+) + 2�̂2 ~�(0)�Z 10 du ~�(u)+2�̂2 Z 10 du ~�(u)2 (VII.26)

shows that starting from
R ~� = 0, a positive value for

R ~� is
generated in the early stage of the RG. If there is a fixed point
value for

R ~� it must be equal toZ 10 du ~��(u) = � 2�̂2 R 10 du ~��(u)2�+ 2�̂ ~��0(0+) + 2�̂2 ~��(0) : (VII.27)

For small� at least this appears to be negative and ofO(�2).
From the flow-equation for�0(u)�` ~�0(u) = � ~�000(u)� ~�(u)� ~�(0)�+~�0(u)h�+ 2�̂ ~�0(0+) + 2�̂2 ~�(0) + 4�̂2 ~�(u) � 3�00(u)i
one sees that the behaviour at largeu=� must be exponential.
It seems that there are no non-exponential fixed points.

The runaway flow will be discussed in the next section.

VIII. RANDOM FIELD DISORDER

Let us now consider non-periodic functions. The main prob-
lem with the natural rescaling ofu = u0e�l as in (VI.22) is that~� grows exponentially, and no fixed point can be found. Let
us therefore study (VII.6)–(VII.8) setting the rescaling factor� = 0. Again we consider the invariant subspace of exponen-
tial functions, parameterized by~�(u) = 1̂�2 �f(u�̂) (VIII.1)f = a+ be�u (VIII.2)

for u > 0. Note that we have put the coefficient
 = 0, since
we are not interested in solutions growing exponentially inu.
The flow is �a = a+ 4a2 (VIII.3)�b= b(1 + 6a+ b) : (VIII.4)

The physical requirements now read�(0)� a+ b > 0 (VIII.5)f
 � �a > 0 : (VIII.6)

So it is natural to look in the regimeb > �a � 0 (VIII.7)

There is again the fixed pointf(x) = �14 + 12e�x (VIII.8)

which is the infinitê� limit of the fixed pointRP of the pre-
vious section. Sincef(x) does not go to zero at infinity as
is expected for random field disorder, and since it is unstable
along the linea = �1=4 it is unlikely to have any physical
relevance for the anisotropic depinning class. The other fixed
point is f(x) = �e�x (VIII.9)

which has the wrong sign. One clearly has runaway-flows
within the exponential subspace.

We have examined the flow of the FRG numerically. For
all initial conditions considered, which were not exactly at
one of the fixed points mentioned above, we found the so-
lution to explode at some finite scale, a phenomenon which
is known as theLandau pole. One issue is to identify the
corresponding direction in functional space. This issue isre-
lated to fixed points ind = 4 + � dimensions which we now
briefly address. The diagram for4+� is obtained by changing�!�� and�` ! ��`. This means to replacea!�a andb ! �b on figure VII.1 as well as inverting the direction of
all arrows. U then controls the boundary between the strong
coupling regime of KPZ and the Gaussian fixed pointG; SAP
between localization (attractive polymers); the Gaussianfixed
point is multi-critical andRP between branched polymers and
Gaussian. For the random field case we now have�(u) = 1̂�2 �f(u�̂) (VIII.10)

The fixed pointRP givesf(x) = 14 � 12e�x (VIII.11)

and the fixed pointU is f(x) = e�x ; (VIII.12)

which has the correct sign. It has a vanishing critical force,
but is a good candidate for the critical behaviour between the
Gaussian phase and the strong coupling KPZ phase.

Let us now study the runaway flow ford = 4� �. Suppose
that �1(u) is the solution of the(4 + �)-dimensional flow
equation at� = 1. Then�`(u) := g`�1(u) (VIII.13)

leads to the flow-equation for the amplitudeg`�g` = �g` + g2̀ : (VIII.14)

For the RF-case one has one such point at the boundary of the
physical domain, as can be seen from the flow-equationsa= 0 (VIII.15)�b = b+ b2 (VIII.16)
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Also not that since this mode explodes after a finite renormal-
ization time, it is difficult to avoid. However, we have not yet
completely ruled out another scenario, where at least some
trajectories have exponential growth. Making the ansatz�l(u) = �(e2�lf(u) + g(u)) ; (VIII.17)

this requires to find a solution to the�-function at� = 0,
which we write symbolically�(f; f) = 0 : (VIII.18)

One can check that near zero such a solution is in principle
possible. There is a solution, which vanishes atu = u� =1:39895 (for � = 1) and becomes negative beyond. One can
argue that one needs it only up tou = u0 < u�, since the
linear term can no longer be neglected whenf(u) approaches
zero. Notingr = (1+p5)=4 one hasf 0(0) = �1=r, f 00(0) =(1+2r2)=(3r2). In this scenario� is determined together withg. It is unclear how this carries to higher orders, since it seems
to require thatf(u) is also solution of the�-function at� = 0.
This is however exactly what happens in the case� = 0 with
the constant shift�(0). Although numerics does not seem to
confirm it, it is hard to disprove. A question which remains to
be answered is what the basin of attraction of runaway growth
and eventually of exponential growth are.

IX. GENERAL ARGUMENTS FROM THE
COLE-HOPF REPRESENTATION AND

BRANCHING PROCESSES

In the Cole-Hopf representation, it is easy to see why the ex-
ponential manifold is preserved to all orders. Let us insert�(u) = 1̂�2 �a+ b e��u + 
 e�u� (IX.1)

in (VI.4). The complicated functional disorder takes a very
simple polynomial formS = Zxt Ẑxt ��̂�t � �2x�Zxt� Zx Zt<t0 ẐxtẐxt0 �aZxtZxt0 + bZ2xt + 
Z2xt0� :(IX.2)

Note that we have ordered the vertices in time to distinguish
betweenb and
 taking correctly into account that the full cor-
relator for the present non-analytic e.g. random field, problem

time

a b c

FIG. IX.1: The three vertices proportional toa, b and 
 inRx;t<t0 ẐxtẐxt0 �aZxtZxt0 + bZ2xt + 
Z2xt0�.

2a b c1 c2 d1 d

time

FIG. IX.2: Diagrams correcting the disorder in the branching-
representation.

is (IX.1) with u replaced byjuj (if (IX.1 holded as an analytic
function there would be no distinction betweenb and
, “thus
no arrow of time”).

The vertices presented on figure IX.1 can be interpreted as
branching processes, and we shall thus call this formbranch-
ing representation. Let us show how one reproduces the flow-
equations (VII.6)- (VII.8). In the time-ordered representation,
diagrams a to d of figure VI.1 have the form given on figure
IX.2. To simplify notations, we set� = 1. Then�(u) = a+ be�u + 
eu (IX.3)�0(u) = �be�u + 
eu (IX.4)�00(u) = be�u + 
eu (IX.5)�(0) = a+ b+ 
 (IX.6)�0(0+) = 
� b (IX.7)�00(0+) = b+ 
 (IX.8)

The diagrams have the following contributionsÆ�a(u) �!8<:Æa= aaIÆb= abIÆ
= a
I (IX.9)Æ�b(u) �!8<:Æa= (aa+ 4b
)IÆb= 2baIÆ
= 2a
I (IX.10)Æ�
(u) �!8<:Æa= 0Æb= 2b(a+ b+ 
) I2 (from 
2)Æ
= 2
(a+ b+ 
) I2 (from 
1)
(IX.11)Æ�
(u) �!8<:Æa= 2a(a+ 2b) (from d1 andd2)Æb= 2b(a+ b+ 
)I (from d2)Æ
= 2
(a+ b+ 
)I (from d1)
(IX.12)

Note that the factors of2 come in general from contractingZ2xt. The non-trivial factor of12 is due to the fact that the two
right-most points in
1 and
2 are time-ordered. To relate the
integral toI, one can first symmetrize (yielding the factor of12) and then freely integrate over time. Also note that only the
last diagram,d1+d2 contributes to the asymmetry betweenb
and
.

In the same way, one can reproduce the corrections to�.
The only vertex in (IX.2) which contributes at leading order
is the one proportional toa: b does not allow for a contraction
and 
 will have bothẐ andZ at the same point, thus only
corrects the critical force.a leads toẐxtZxt0Rx;t�t0 (IX.13)

and after a gradient-expansion following the procedure de-
scribed after (VI.10) we haveẐxt _Zxt(t0 � t)Rx;t0�t : (IX.14)
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FIG. IX.3: The three phases of the flow-diagrams on figure VII.1.

Integration overt0 leads to the correction tô�Æ�̂̂� = �aI ; (IX.15)

which is the same one obtained from (VI.15) using (IX.6) and
(IX.8).

Let us now exploit this representation further: It is immedi-
ately clear, that one cannot generatee�2�u which corresponds
to Zx Zt<t0 ~Zxt ~Zxt0 Z3xt0Zxt (IX.16)

or any other such fractions. This shows that the space of
functions spanned by (IX.1) is indeed closed toall orders in
perturbation theory. Also there is no renormalization tô�,
whereas a correction to the elasticity

R Ẑ�2xZ is allowed, and
indeed shows up at 2-loop order.

Finally, note that the domain of variation ofu, in the peri-
odic case yields an action with multiplicative periodicityinZ,
but this does not seem to be important here.

Let us now discuss the relation of our findings with self-
avoiding polymers, branching processes and directed percola-
tion.

First, on figure IX.4 we have drawn a diagram correspond-
ing to the perturbation expansion of fixpointSAP, which is
the only fully attractive fixed point in the phase-diagram IX.3.
One easily checks that by integrating over times, one recovers
a standard�4-perturbation theory, as depicted on figure IX.4.

FIG. IX.4: A self-avoiding polymer.

time 
a

b a

FIG. IX.5: Self-avoidance plus branching.

By first integrating over the momenta, one recovers the pertur-
bation expansion of self-avoiding polymers. It is well known,
that this fixed point is stable. In terms of particles, it can be
interpreted as the world-lines of diffusing particles, which are
not allowed to visit twice the same point in space. Let us now
add some termsb and
. In interesting limit is� = 1, since
there
 can be set to zero. Adding a term propotional tob, the
diffusing particle is allowed to branch. More precisely, two
particles can meet at a timet. Then one of the particles be-
comes inactive, before reappearing at some later timet0 > t.
One can interprete this asA+ A �! A+B (IX.17)B �! A : (IX.18)

Particle B is completely inert, and does not diffuse away from
its position of creation, before it decays into A again. How-
ever note that any point in the future is equally likely to see
B change back to A. This is very different from e.g. a spon-
taneous decay. This process is depicted on figure IX.5.b can
either come with a positive sign, or with a negative sign. If
the sign is positive, this can be interpreted as the two particles
attracting to make the branching-process. It is clear that after
some critical threshold, the process and such the phaseSAP
becomes unstable, since the induced attraction between parti-
cles tends to make them collapse at the same point in space
and then annihilate. This leads to the runaway-flow in phase
B-1 on figure IX.3. On the other hand, for negativeb, even
a largejbj does not lead to a collapse. This is why on fig-
ure VII.1 in the case of� = 1 theSAP-phase witha < 0
extends tob ! �1. This remains valid for finite� if in
the full flow-equations (VII.6) to (VII.8)
 = 0 is set from
the beginning. However the situation for finite� discussed
in (VII.10)–(VII.11) maps in the language of branching pro-
cesses to a finite initial ratio betweena andb, parameterized
by 
 = be��, which remains uncorrected under renormaliza-
tion. The second branching-process
 being present, it can
render the phaseSAP unstable toB-2. The vertex
 is inter-
preted as A �! C (IX.19)A+ C �! A : (IX.20)

This means that a particle A becomes spontaneously inactive
at some timet. It remains at positionx until at some timet0 >t another particle A comes by to free it. The reduced flow-
equations for the combined situation are given in (VII.10) and
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(VII.11), and lead to the instability of the phaseSAP induced
by the branching process
.

X. LONG-RANGE ELASTICITY

Let us now study anisotropic depinning in the case of a man-
ifold with long range (LR) elasticity, the elastic force in (II.1)
being, in Fourier:
q2uq;t ! (
�jqj� + 
q2)uq;t (X.1)

There are now two elastic constants, the LR one
� and the
short range (SR) one
2, and we thus define the two dimen-
sional regularization-parameters,�= 2�� d (X.2)�= 2� � : (X.3)

The case of most interest corresponds to the parameters for
the contact line depinning,d = 1, � = 1, i.e.� = � = 1.

Power counting shows that disorder is perturbatively rele-
vant below the critical dimensiond < d
 = 2�. Disorder is
thus relevant for the contact line case but the crucial question
we investigate here is whether the KPZ terms are important
there. Study of the contact line depinning is usually performed
within ad = 2�� � expansion (see Ref. [19]) at fixed�. This
is the solid line in figure X.1. However as soon as elasticity is
long range (� > 0) simple power counting shows that the KPZ
terms are perturbatively irrelevant ford neard
. Working at
fixed� as e.g.� = 1 is thus not the best method. One alter-
native is to study the vicinity of the pointd = 4, � = 2 and
perform adouble expansionboth for� and� small. The idea is
to determine a linedKPZ(�) in the(�; d)-plane below which
the KPZ terms are important and must be included. One can
determine this line near the pointd = 4, � = 2 and, by ex-
trapolation, find on which side of the line lies the interesting
case� = � = 1 (see figure X.1.).

Through the replacementq2 ! q� in the propagators of the
1-loop diagrams of section V, it is easy to derive the 1-loop
FRG equations for a general�, in presence of a KPZ term as
in (II.1). First one obtains as usual that
� is uncorrected to
all orders, and thus we set
� = 1 in the following. Defining
the dimensionless couplings~�= �����` (X.4)~�(u) = �2���` �(u���` ) (X.5)

within a Wilson scheme where�` = �e�` is the running UV
cutoff, we find the flow equations:�` ln ~� = � � � � ~�2 ~�(0) � ~� ~�0(0+) (X.6)�` ~�(u) = (� � 2�) ~�(u) + u� ~�0(u) + 2~�2 ~�(u)2� ~�0(u)2 � ~�00(u)( ~�(u)� ~�(0)) : (X.7)

We work to lowest order in both� and� (and thus neglect the
small changes in the coefficients of order�) and define the
ratios �̂ = �� ; �1 = �� : (X.8)

irrelevant

α

d
4

3

2

1

1 2

disorder

KPZ
always
relevant

weak
KPZ

irrelevant

two phases

weak

FIG. X.1: Phase-diagram in the (�; d)-plane. The solid line is� =0. The dashed line corresponding to (X.11) separates the domain
where an infinitesimal KPZ-term is relevant from those whereit is
irrelevant. At order�2 this line will bend to the left, but should not
cross the pointd = 1 and� = 1.

Of course the SR part of the elasticity is corrected:�` ln� 
2
�� = ��� ~� ~�0(0+)� ~�2 ~�(0) (X.9)

and we will focus on situations where it is irrelevant (a condi-
tion which must be checked a posteriori).

Note that since the LR-elasticity is uncorrected, the dimen-
sionless variables, contrary to (V.5), are not divided by
2 but
by 
� = 1 and their RG-equations thus do not contain addi-
tional contributions from the corrections to
2. As a result~�
has now non-trivial corrections and the Cole-Hopf mapping
no longer works, or has to be defined with a flowing~�.

Before embarking on a more detailed analysis let us indi-
cate the main behaviour we expect from Eqs. (X.6) and (X.7).
For ~� = 0 one has the usual anisotropic depinning fixed point
studied in Ref. [19]. One can perform a linear stability anal-
ysis of this FP for small~�. From (X.6) one finds that linear
stability holds provided� > �iso = �3 +O(�2) (X.10)

for the non-periodic problem, and�iso = 0 for the periodic
case. This is the dashed linedKPZ(�) = 5�� 6 (X.11)

represented in Fig. X.1. Ford > dKPZ(�) the isotropic FP is
stable. This is the case for the contact line depinning. On the
other hand, one expects from Eqs. (X.6) and (X.7) that even
then, if the value of~� is large enough, the RG may flow again
to KPZ strong coupling. This is the same run-away flow as
for SR elasticity. Both fixed points should be separated by an
instable fixed point, of which we will show that it is attainable
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FIG. X.2: �1 = �=� as a function of~� for LR elasticity. Note that�1(�~�) = �1(~�).
perturbatively. Thus ford > dKPZ(�) we expect, and find
below, two phases: one where~� flows to zero (denoted the
ID phase) and one where the KPZ terms are important (the
AD phase). The question is thus to determine the basin of
attraction of each phase and the critical (i.e. repulsive) fixed
point which separates the two phases. Quite generally one
expects a critical value~�� below which~� flows to zero and
above which it runs away.

A simple argument, confirmed by the more detailed analy-
sis presented below, allows to estimate~�� for small values of�, i.e. neard � dKPZ(�). Since~�(u) changes by order~�2 for
small~�, the Eq (X.6) gives the critical value:~��̂� = �� �isoj ~�0(0+)j (X.12)

for small�̂� (�iso=�), where~�0(0+) = O(�) takes its (nega-
tive) value for the isotropic depinning fixed point.

Although analysis of the full FRG-flow requires numerics,
one can obtain some analytical information on the transition
between the isotropic phase and the anisotropic strong-KPZ-
coupling phase.

A. Non-periodic systems

Let us start with non-periodic systems and search for a pertur-
bative fixed point of the system (X.6), (X.7). Interestinglyin
that case, there is one, whose properties depend continuously
on �̂ = �=�.

For each value of̂� we can determine the FP through the
following construction. Given the reparametrization invari-
ance (V.6) of (X.7), we can always set�(0) = � ; (X.13)

and for each fixed value of~� search numerically for a fixed
point function of Eq (X.7) which decreases at infinity (short
range pinning force correlations of the random field type).
Interestingly we find, through explicit numerical integration,
that there is always one such solution, denoted by��~�(u),

if one tunes� to a value noted�(~�). The resulting curve�1(~�) := �(~�)=� is plotted in Fig. X.2. It starts at�(~� =0) = 1=3 (the isotropic value) and increases as~� increases.
Considering the fixed point equation of (X.7) atu = 0 using

(X.13) shows that the value of�0(0+) is a simple expression:��0~� (0+) = ��q1� 2�1(~�) + 2~�2 : (X.14)

Thus, reporting this value, as well as�(0) = � in Eq. (X.6)
we see that for each value of�̂ we can determine the value of~� by solving the equation�̂ = f(~�) � �1(~�) � ~�2 + ~�q1� 2�1(~�) + 2~�2 : (X.15)

Denoting~��̂� this solution, we obtain the FP function��~��̂�(u)
and the value of the roughness exponent�1(�̂) := �1(~��̂�).
Comparing (X.6) and (X.9) we note that the SR elastic part is
indeed irrelevant as soon as� > 0, and thus the above analysis
is consistent.

The curvesf(~�), f�1(�̂) and the resulting�1(�̂) =�(~��̂�) = �(f�1(�̂)) are plotted in Fig. X.3 and X.4 respec-
tively.

One sees that there is a solution with a positive~��̂� only if�̂ > �
 = 13 consistent with the linear stability analysis given
above. The roughness exponent associated to this FP then
increases continuously, as shown on figure X.4, from�1 = 13
to larger values aŝ� increases beyond̂�
. In particular, since
we are interested in the point� = 1; � = 1 of the (�; d)-plane
(see figure X.1) it is worthwile to give the extrapolation:�(�̂ = 1) = 0:7 ; (X.16)

and~��̂=1 = 1:037, values which give the simplest extrapola-
tion for the contact-line depinning. One should however not
expect too high a precision from this crude estimate.

Thus we have found a non-trivial FP for this problem. It
continuously depends on�=� and exists only for�=� > 1=3.
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FIG. X.3: The functionf(x) (green/light) and�1(x) (red/dark) de-
fined in the text. One can read off�1 as a function of̂� as follows:
The curvey = f(x) yields ~��̂ (x axis) from �̂ (y axis) and in turn,
one reads�1(�̂) (y axis) from~��̂ (x axis) using the curvey = �1(x).
This is indicated by the arrows. The result is plotted in Fig.X.4
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The simplest scenario is that this FP is associated with the
critical behaviour at the transition between the phase where
KPZ is irrelevant (isotropic depinning) and the phase where
KPZ grows (anisotropic depinning). To confirm it and check
that this FP has only one unstable direction one needs a more
detailed numerical analysis. Note that this is also indicated
by an adiabatic approximation considering (X.6) alone and
assuming that the disorder does not vary, which yields that the
FP is repulsive iff 0(x) > 0 and attractive iff 0(x) < 0.

B. Periodic systems

In the periodic case, since� = 0 is requested at any FP, we
see that we cannot enforce the SR-elasticity coefficient
2 to
scale to 0 under renormalization, since the FP condition on~�
implies that (X.9) vanishes. However if we start with a small
ratio of 
2=
� or if the flow is such that this ratio gets small
before we reach the fixed point, then it is legitimate to neglect
the effect of
2. We restrict our analysis to that case, and study
equations (X.6), (X.7) searching for a FP. A more detailed
numerical analysis of the flow equation is feasable.

It can easily be seen that the form�(u) = �~�2 (a+ be�u~� + 
eu~�) (X.17)

is not exactly preserved by the flow anymore (e.g.�l�(u)
yields a term proportional toue�u~��l~�l through variations
of ~�l which here flows). One can still however search for
exponential fixed points since then~�l does not flow. (X.7)
yields the conditions a+ 2a2 + 4b
= 0 (X.18)b + 4ab+ b2 + b
 = 0 (X.19)
+ 4a
+ 
2 + b
 = 0 (X.20)

and we can set
 = be�~� to ensure periodicity�(u) = �(1�u). We obtain the following fixed points:b= �e~�p1 + 34e~� + e2~� (X.21)a= �14 � 1 + e~�4p1 + 34e~� + e2~� (X.22)
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FIG. X.4: �1(�̂), using�(~�) and~� = f�1(�̂)

as well as two others(a = �12 ; b = 0) and(a = 0; b = 0).
The corresponding FP condition for~� gives0 = ��̂� a� 2be�~� : (X.23)

The FP with a positiveb is the one of interest. It is again
presumably the boundary between the zero and strong KPZ
phases. The value of~��̂ is given by the positive root of4�̂ = 1 + e~� � 7p1 + 34e~� + e2~� : (X.24)

which reproduces (X.12),~��̂ � 6�̂, to lowest order in̂�.
One finds that~��̂ increases monotonically witĥ� and diverges~��̂ ! +1 as�̂ ! 12 . This suggests that for̂� � 12 only the
ID phase exist.

XI. CONCLUSION

In this paper we have reexamined the functional renormal-
ization group approach to anisotropic depinning. This was
mandatory since non-analytic renormalized disorder correla-
tors were found to be crucial already for isotropic depinning
and were neglected in previous approaches of AD.

Indeed we have shown that the non-analyticity of disorder
arising beyond the Larkin length is crucial to generate the
KPZ-term, a first explicit field theoretic demonstration of how
these terms appear at depinning. The resulting anomalous
terms in the�-function modify the flow compared to previous
approaches in interesting ways. We found several non-trivial
fixed points and for SR elasticity a Cole Hopf transformed the-
ory which allows to simplify considerably perturbation theory
and indicates that the KPZ coupling�=
 is uncorrected to all
orders.

For LR-elasticity we have found the domains of parame-
ters belonging to ID and AD respectively. We found that for
the experimentally interesting case of contact-line depinning,
two phases exist, ID and AD, and that the KPZ-coupling (i.e.
the anisotropy) should be large enough for the AD class to
apply (otherwise the ID exponents is expected [18, 26]). At
the transition a larger value of� � 0:7� (with � = 1 for the
contact line) is obtained. This scenario could be checked in
a numerical simulation. To make the comparison with exper-
iments more accurate one should consider the more involved
structure for the KPZ terms unveiled in [25] but this can be
done by methods similar to the one introduced here.

For SR-elasticity we have found interesting new fixed
points. A bit disappointingly, they possess one unstable direc-
tion and thus correspond to transient or critical behaviour, and
not to the asymptotic behaviour which instead is controlled
by a runaway flow to a regime not perturbatively accessible
by the present method. On the other hand, an encouraging
result is that we found a class of disorder correlators (in the
form of exponentials) which should be invariant to all orders.
These correspond to a set of branching processes which look
tantalizingly close to the ones introduced to describe reaction
diffusion and directed percolation. More work is necessaryto
understand this simpler equivalent class of theories at strong
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coupling, as they may contain the key to this conjectured con-
nection between anisotropic depinning and directed percola-
tion (ind = 1+1) and its generalizations in terms of blocking
surfaces (in higherd) and ultimately an understanding of the
upper critical dimension for this problem.

A posteriori, it is not suprising that the present approach
yields again a flow to strong coupling KPZ, as it does in the
thermal version of the problem [23, 24]. It is possible that
as in the thermal problem another representation, as e.g. the
directed polymer, better exposes the physics and in particular
what is missed in the present approach. The corresponding
formulation would beZ(x; t) = Zy(t)=xD[y(� )℄exp "� Z tt0 d� 14T �dyd��2 + 1T V (y(� ); � )#(XI.1)

i.e. a directed polymer in a random potential but with the
choiceT = 1̂� and the additional self consistency condition:V (y; � ) = �̂
�̂2F �y; 1̂� lnZ(y; � )� ; (XI.2)

which relates the random potential to the pinning force and to
the free energy of the directed polymer and makes the problem
analytically far more complex. It may possess similar physics
and thus be amenable to some extended FRG approach which
would better account (as it does for the thermal problem) for
the coarse grained correlations in they direction a property
clearly not taken into account by the present method, which
treats correctly only correlations in thelnZ space.
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APPENDIX A: DIAGRAMS

We use the following model setting
 = � = 1 to simplify
notations S = Zx;t �û _u� 
û�u� �û(ru)2 (A.1)�12 Zx;t;t0 ûxtûxt0�(uxt � uxt0) (A.2)

One also has to specify a cut-off procedure. For convenience,
we chose to put a mass-term. This is justified at 1-loop order
since the results are universal, i.e. cut-off independent.At
second order, one would have to be more careful and use, e.g.
an external momentum IR cutoff.

Many of the diagrams which we need are identical to the
driven manifold problem at� = 0. These diagrams are de-

tailed in [19]. Thenewdiagrams are= 2 Z0<t<t0 Zk e�t(k2+m2)e�t0(k2+m2)jt� t0jk2��0(0+)û _u= 2��0(0+)û _u Zk Zt0 e�t0(k2+m2 ) k2(k2 +m2)2��e�t0(k2+m2) � 1� (k2 +m2)t0�= 2��0(0+)û _u� Zk k22(k2 +m2)3 � k2(k2 +m2)3 + k2(k2 +m2)3= ��0(0+)û _u Zk k2(k2 +m2)3= ��0(0+)û _u Zk k2(k2 +m2)3 (A.3)= �4d�0(0+)�2 Z k2(k2 +m2)3 û(ru)2
(A.4)= 2�0(0+)� Zk (k� + p�)p�((k + p)2 +m2)(k2 +m2)� 2�0(0+)� Zk p2(k2 +m2)2 � 2(kp)2(k2 +m2)3= 2(2� d)d �0(0+)� Zk 1(k2 +m2)2 û�u
(A.5)

(Note that� $ �p2.) Dots indicate omitted subleading
terms. = �8d�(0)�3 Zk � k4(k2 +m2)4 + : : :� û(ru)2

(A.6)=�4�(0)�2 Zk k(k + p) (kp)(k2 +m2)2((k + p)2 +m2)=�4�(0)�2 Zk (kp)2(k2 +m2)3 � 2 k2(kp)2(k2 +m2)4=�4d�(0)�2�Zk 1(k2 +m2)2 + : : :� (û�u)
(A.7)



18= 4d�(0)�3 Zk k4(k2 +m2)4 û(ru)2 (A.8)= �(uxt � uxt0)2�2 Zk (k2)2(k2 +m2)4 ûxtûxt0
(A.9)+ = 0 (A.10)

Therefore, we have the following corrections to
, �, � andÆ
(settingI := Rk 1(k2+m2 )2 , dropping finite terms in�, but for
the moment keeping the explicitd-dependence)Æ
=
= �2(2� d)d �0(0+)�� 4d�(0)�2� I (A.11)Æ�=� = ���0(0+)I (A.12)Æ�=�= ��4d��0(0+)� 8d�(0)�2 + 4d�(0)�2� I

(A.13)Æ�(u) = 2�(u)2�2I (A.14)

The coupling-constant iŝ� := �=
. Note that its flow vanishes
at leading order in1=�. We now check cancellations beyond
the leading order. We useZk = Ad Z 10 dkkd�1 (A.15)

The two diagrams proportional to�0(0+) are:�!� Zk 4d k2(k2 +m2)3= Ad (�2 + d) � 
s
(d �2 )4m� (A.16)�! Zk �4 k2d (k2 +m2)3 + 2(k2 +m2)2= Ad (2� d) � 
s
(d �2 )4m� (A.17)

The sum (which gives the renormalization of�̂) exactly van-
ishes.

The corrections proportional to�(0) are�! Zk �8 k4d (k2 +m2)4= Ad ��4 + d2� � 
s
(d �2 )12m� (A.18)�! Zk 4 k4d (k2 +m2)4= Ad �4� d2� � 
s
(d �2 )24m� (A.19)�! Zk 8 k4d (k2 +m2)4 � 4 k2d (k2 +m2)3= Ad (d� 2) (d� 1) � 
s
(d �2 )12m�
(A.20)

The sum of the above three terms isAd (4� d) (d� 2) � 
s
(d �2 )24m� (A.21)

Note that� 
s
(d �2 ) = 2d� 4 + �2 (d� 4)12 + 7�4 (d� 4)32880 + : : :
(A.22)

So, working in a massive scheme, there are corrections at or-
der�, compared to the leading term which would be1=�. We
see that the fixed point of Stepanow [22] is –even if one would
accept his scheme– incorrect. However, as we have already
stated above, one should do the calculations in a massless
scheme.

APPENDIX B: LONG RANGE DISORDER

In this Appendix we give a quick study of the case with long
range disorder in internal spacex. We show that one recovers
the Flory estimate of Section IV in the case of isotropic depin-
ning. For anisotropic depinning we find a runaway flow and
cannot conclude.

We studySDO = 12 Zxtx0t0 ẐxtẐx0t0 �̂2�(uxt � ux0t0)f(x � x0) (B.1)f(x) � x�� (B.2)
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We find the FRG equation for the LR disorder:�� = ��+�(0)�00+(2��)(��0(0+)+�2�(0))� (B.3)

with � = 4 � �, d large enough (d > � or more). We have
absorbed�A in � with:A = Zq C(q)2f(q) (B.4)

This is because the graphs leading to two�(u)2 functions or
more do not contribute. This remains true to all orders, inspec-
tion for � = 0 shows that to two or three loops no corrections
arise, except anomalous terms (which, as we will see are not
needed as we find analytic fixed points). So for� = 0 the one
loop result is probably exact to all orders.

The coefficient� comes from the corrections to the gradient
term: (��0(0+) + �2�(0))B (B.5)B = 12d Zx x2f(x)C(x) (B.6)� = 2B=A = 2(d� 4)d (B.7)

with � = 4, d > 4 (note that it goes to 2 whend goes to
infinity).

One easily finds the fixed points for� = 0. For periodic
disorder one has: �(u) = g 
os(2�u) (B.8)

�g = �g � (2�)2g2 (B.9)

The correlations are:huui = �̂(0)f(q)q4 � q�(d+2�) (B.10)

with � = �=2 as if�(0) was uncorrected.

For non-periodic disorder, rescaling� gives:~�(u) = ~�(0)e��u2=(6~�(0)) (B.11)� = �=3 (B.12)

Thus the Flory estimate is exact. Note that the fact that the LR
correlator~�(u) is analytic is not puzzling, since it generates
in turn a SR part which should be nonanalytic in order to e.g.
successfully generate a depinning threshold force.

On the other hand for� > 0 we find that:�(u) = g 
os(2�u) (B.13)�g = �g � (2�)2g2 + 
�2g2 (B.14)

and there is thus a critical� beyond which there is no fixed
point. This seems also to be the case for RF. Because of this
runaway flow we cannot conclude.

[1] M. Kardar, Nonequilibrium dynamics of interfaces and lines,
Phys. Rep.301 (1998) 85–112.

[2] P. Le Doussal and T. Giamarchi,Moving glass theory of driven
lattices with disorder, Phys. Rev.B 57 (1998) 11356–11403.

[3] L.A.N. Amaral, A. L. Barabasi and H.E. Stanley,Critical dy-
namics of contact line depinning, Phys. Rev. Lett.73 (1994).

[4] L.-H. Tang, M. Kardar and D. Dhar, Driven depinning in
anisotropic media, Phys. Rev. Lett.74 (1995) 920–3.

[5] R. Albert, A.-L. Barabasi, N. Carle and A. Dougherty,Driven
interfaces in disordered media: determination of universality
classes from experimental data, Phys. Rev. Lett.81 (1998)
2926–9.

[6] L.-H. Tang and H. Leschhorn,Pinning by directed percolation,
Phys. Rev. A45 (1992) R8309–12.

[7] S.V. Buldyrev, A.-L. Barabasi, F. Caserta, S. Havlin, H.E. Stan-
ley and T. Vicsek,Anomalous interface roughening in porous
media: experiment and model, Phys. Rev. A45 (1992) R8313–
16.

[8] S.C. Glotzer, M.F. Gyure, F. Sciortino, A. Coniglio and H.E.
Stanley,Pinning in phase-separating systems, Phys. Rev. E49
(1994) 247–58.

[9] H.E. Stanley, S.V. Buldyrev, A.L. Goldberger, A.L. Haussdorf,
J. Mietus, C.-K. Peng, F. Sciortino and M. Simons,Fractal
landscapes in biological systems: long-range correlations in
dna and interbeat heart intervals, PhysicaA 191 (1992).

[10] S.V. Buldyrev, S. Havlin and H.E. Stanley,Anisotropic percola-
tion and thed-dimensional surface roughening problem, Phys-

ica A 200 (1993).
[11] S. Havlin, L.A.N. Amaral, S.V. Buldyrev, S.T. Harrington and

H.E. Stanley,Dynamics of surface roughening with quenched
disorder, Phys. Rev. Lett.74 (1995) 4205–8.

[12] A.-L. Barabasi, G. Grinstein and M.A. Munoz,Directed sur-
faces in disordered media, Phys. Rev. Lett.76 (1996) 1481–4.

[13] D.S. Fisher,Interface fluctuations in disordered systems:5� �
expansion, Phys. Rev. Lett.56 (1986) 1964–97.

[14] T. Nattermann, S. Stepanow, L.H. Tang and H. Leschhorn,Dy-
namics of interface depinning in a disordered medium, J. Phys.
II France2 (1992) 1483–1488.

[15] H. Leschhorn, T. Nattermann, S. Stepanow and L.H. Tang,
Driven interface depinning in a disordered medium, Ann.
Physik6 (1997) 1–34.

[16] O. Narayan and D.S. Fisher,Dynamics of sliding charge-
density waves in 4- epsilon dimensions, Phys. Rev. Lett.68
(1992) 3615–18.

[17] O. Narayan and D.S. Fisher,Threshold critical dynamics of
driven interfaces in random media, Phys. Rev. B48 (1993)
7030–42.

[18] P. Chauve, P. Le Doussal and K.J. Wiese,Renormalization of
pinned elastic systems: How does it work beyond one loop ?,
Phys. Rev. Lett.86 (2001) 1785–1788.

[19] P. Le Doussal, K.J. Wiese and P. Chauve,2-loop functional
renormalization group analysis of the depinning transition,
cond-mat/0205108 (2002).

[20] A. Rosso and W. Krauth,Origin of the roughness exponent in



20

elastic strings at the depinning threshold, Phys. Rev. Lett.87
(2001) 187002.

[21] A. Rosso and W. Krauth,Roughness at the depinning thresh-
old for a long-range elastic string, Phys. Rev. E65 (2002)
025101/1–4.

[22] S. Stepanow,Dynamics of growing interfaces in a disordered
medium: the effect of lateral growth, J. Phys. II (France)5
(1995) 11–17.
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