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Using the functional renormalization group, we study theideing of elastic objects in presence of
anisotropy. We explicitly demonstrate how the KPZ-termlisag's generated, even in the limit of vanishing
velocity, except where excluded by symmetry. This mechmariias two steps: First a non-analytic disorder-
distribution is generated under renormalization beyordLtarkin-length. This non-analyticity then generates
the KPZ-term. We compute thefunction to one loop taking properly into account the nowdgticity. This
gives rise to additional terms, missed in earlier studiesrucial question is whether the non-renormalization
of the KPZ-coupling found at 1-loop order extends beyondiéaeling one. Using a Cole-Hopf-transformed
theory we argue that it is indeed uncorrected to all ordetse fBsulting flow-equations describe a variety of
physical situations: We study manifolds in periodic disardelevant for charge density waves, as well as in
non-periodic disorder. Further the elasticity of the malditan either be short-range (SR) or long-range (LR).
A careful analysis of the flow yields several non-trivial fixpoints. All these fixed points are transient since
they possess one unstable direction towards a runaway floiehveaves open the question of the upper critical
dimension. The runaway flow is dominated by a Landau-ghasten For LR elasticity, relevant for contact
line depinning, we show that there are two phases dependirtheostrength of the KPZ coupling. For SR
elasticity, using the Cole-Hopf transformed theory we tiifgra non-trivial 3-dimensional subspace which is
invariant to all ordersand contains all above fixed points as well as the Landau-mtdeelongs to a class
of theories which describe branching and reaction-diffngirocesses, of which some have been mapped onto
directed percolation.

. INTRODUCTION vpp = 1) = 1.733 + 0.001. Some higher dimensional exten-
sions of these arguments in terms of blocking surfaces have
The physics of systems driven through a random environmerieen proposed [9-12], but there is, to our knowledge, no sys-
is by construction irreversible. The fluctuation dissipatie-  tematic field theoretical connection between these prafilem
lation does not hold and one expects the coarse grained de- . . :
Recently we have reexamined the functional renormaliza-

scription to exhibit signatures of this irreversibilityr driven : . :
manifolds it has indeed been shown that non-linear Kardari©" 9roUP (FRG) approach, introduced previously [13-7] t

Parisi-Zhang (KPZ) terms are generated in the equation o‘i‘eSCT'be isotropic depinning fo ane loop vylthma 4—dex_-

motion, except when forbidden by symmetry [1, 2]. A ques_pansmn. We construc_te(_j [18, 19] a consistent re_”or'r_“a‘*zab
tion which was debated for long time is whether at zero tem-ﬂeld theoretlc_al _descrlptlon up to two loops, takmg_ Inte ac
perature these terms vanish as the velocity> 0+. This is count the main important physical feature — and difficulty —

the limit which is relevant to describe depinning & f). of the problem, namely that the second cumulau,) of

It was found some time ago that there are two main universalt-he random pinning force becomes non-analytic beyond the

) : P - : Larkin scale. The 2-loop result for the exponérghows de-
ity classes for interface depinning [3-5]. The conclusi@sw viations from the conjecture[17]= (4— d)/3. The reason is

reached main_ly on the basis_ of numerical s!mulations, Whicqhe appearance of “anomalous” corrections caused by the non
measure thz mltepr:ce veI(I)lcnye) as a function of anlavec;- analytic renormalized disorder correlator. The 2-loopeor
age imposed slop# as well as various arguments related to . ) o .
symmetry. In the first universality class, the isotropicidep gi?r?jlgtrig\rﬁ?lg) ?S] crucial to reconcile theory and numerical

ning class (ID), the coefficiemt of the KPZ term vanishes
asv — 01 and the KPZ term is thus not needed in the field The aim of this paper is to extend this FRG analysis to the
theoretic description. In the second class, the anisatrdg@i  universality class of anisotropic depinning. We first shbatt
pinning class (AD)u(6) still depends or¥ asf — fF and  beyond the Larkin length, the KPZ-term is indeed generated
the KPZ term is present even at— 0t. For AD, numer- atv = 0T, as long as it is not forbidden by symmetry. We
ical simulations based on cellular automaton models whiclexplicitly compute the lowest order corrections for a sienpl
are believed to be in the same universality class [6, 7],-indimodel studied in recent simulations [20, 21]. Next we derive
cate a roughness exponehts 0.63ind = 1 and¢ ~ 0.48  the FRG-flow equations for the second cumulait:) in a

in d = 2. On a phenomenological level it has been arguedi—e expansion. In a previous study, Stepanow[22] considered
[6-8] that configurations at depinning can be mapped onto dithe model to one loop, but did not take properly into account
rected percolation il = 1 + 1 dimensions, which yields the non-analyticity of the renormalized disorder. Sinds th
indeed a roughness expon€pp = v, /1) = 0.630£0.001, is physically important, we reexamine the problem here. In-
a dynamical exponent = 1, a velocity exponenfipp = deed, we find several new important “anomalous” corrections
v —v1 ~ 0.636 and a depinning correlation length exponentincluding the one which generates the KPZ term in the first



place, as well as terms correcting thdunction. We then in-
troduce an equivalent description in terms of Cole-Hopfdra

formed fields. This description is not only much simpler to

study in perturbation theory (e.g. to two loops it reduces th

number of diagrams by an order of magnitude), but it allows

us to obtain a number of results &l orders We argue that
the coefficient\ /¢ which measures the strength of the KPZ
non-linearity is uncorrected to all orders. We also detama
non-trivial subspace of the disorder correlators in thefof

(g1 Alu])s can be computed from the dynamical action
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The uniform driving forcef,: = f > 0 (beyond thresh-
old at7" = 0) may produce a velocity = J;(uz) > 0,
a situation which we study by going to the comoving frame

simple exponentials which is an exact invariant of the FRG tg - S
all orders. In the Cole-Hopf variables it is reformulatedtzes (where (u;) = 0) shifting uzy — Uzt + v, resulting in
field theory of a specific branching process, or equivalentl)f — f— . Thisis |/mpl|ed below: Eact 'S.Of the form :
reaction-diffusion process. A(uge — ugp + v(t — 1)), and we always consider the quasi-
: T = 0%. Perturbation theory is performed both in

Our flow-equations allow to study both periodic dlsorder,Statlc I|m|t1_; 0 . yISp :
relevant for charge density waves (CDW), and non-periodigpz and disorder terms, using the free response function
disorder, relevant for lines or interfaces in a random emdr
ment. In both cases we find several non-trivial fixed points.
All these fixed points possess at least one unstable directio
and should thus be associated to transitions. It seems that ll.
perturbatively the large scale behaviour is dominated by a
runaway-flow, as it is in the standard KPZ problem[23, 24].In this section we show how the irreversible (non-potejtial
The difference is that its direction is a non-trivial furti  KPZ term is generated, even in the limit— 0%, starting
A(u) in functional space. Analysis of the above mentionedfrom a purely reversible equation of motion, where all farce
invariant subspace suggests that the flow goes towards a spi€ derivatives of a potential.
cific branching process. The present RG analysis is however Let us first consider the model recently studied numerically
unable to attain the non-perturbative fixed point. Thusisiba by Rosso and Krauth [20, 21], where the elastic energy is
does not allow to strictly decide whethér= 4 is the up- [, E(Vu.), and e.gE(0) = 56% + 5-6*. The relevant con-
per critical dimension of the anisotropic depinning probje tinuum equation of motion is:
which is an open issue. i 9

Finally, sin?:e there are indications that KPZ terms may NOstiat = B(Dy ) O e + 1 (2, e 1)+ f =y (11.1)
be needed in the description of the motion of a contact ling\ote first that whenc, = 0, which corresponds to the
[25], we have studied manifolds with long range elasticitda jsotropic depinning class Wit (9) = <62, the generation
the simplest KPZ term. We determine the critical dimensionof the KPZ term is forbidden by the statistical tilt symmetry
above which this KPZ term is irrelevant, as well as the rough{STS), i.e. the invariance of the equation of motion under a
ness at crossover. shiftug; — uge + fi With f, = ha (or more generally the co-
variance under an arbitrat) [29]. Whenec, # 0 the model
does not obey STS and the KPZ term is not forbidden, and
indeed it is generated at finite velocity> 0. This consider-
ation alone is insufficient to show that it is still generased

<ﬂq7t/u_qyt>0 = Rq,t—t’ = ﬁ_le_(t_tl)(f/ng(t — t/) (”4)

GENERATION OF THE KPZ-TERM

[I. MODEL
We consider @-dimensional interface (id+ 1 embedding di- ) . L ;
mensions) with no overhangs parameterized by a single coni- — 0 since in that limit the symmetry — —u should forbid

ponent height field:(z). The case where the disorder is pe- It. Indeed, if one performs corventional perturbaf[ion t1ye_o
riodic corresponds to a single component CDW/idimen- with an analyticdisorder correlaton\(«), one does immedi-

. i +

sions. The common starting point is the equation of motion ately find that the KP_Z term VaF"SheS as— 07. However
one needs a mechanism by whichpasy 0, the symmetry

(1.1)

u — —u remains broken.
As we now show, this mechanism is provided by the non-
with friction 7, a driving forcef,; = f and in the case of
long-range elasticity we replace (in FourigPu, by |¢|*u,

analytic nature of the disorder. We know from studies of
(with mostly & = 1) in the elastic force. The pinning force

isotropic depinning [14, 16, 18, 19] that & = 0 the
F(z,u) is chosen Gaussian with second cumulant

natuxt = Cﬁiuxt + /\(axuxt)z + F($a uxt) + fxt

coarse grained disorder beconmasn-analytic(NA) beyond

the Larkin length [30]. We show below that this is also the

case for the situation considered here.

(11.2) Using the techniques developed in Ref. [18, 19] the cor-

responding perturbation theory, with a non-analyig:) be-

Temperature can be taken into account as an additional whigomes (see figure 1111 for notation)

noisen(z,t) on the r.h.s. of (11.1) with{n(z, t)n(z’,t'))

yTo(t — t')d(x — '), but we will focus here off" = 0.
Disorder averaged correlation functionsi[u,:])

(Afugt])s and response functionsi{A[u])/d fu

Fx,u)F(2' u') = Alu— )%z — ') .

oA



¢ that backward motion can be neglected in the steady state),
: supported in this single component model by no passing the-
; 9 t orems [16, 20, 21]. By providing a physical mechanism, this
: 6 explicit calculation confirms the argument given in [4] bdse
0»}( on a Larkin type estimate of the angledependence of the
critical force.

FIG. Ill.1: The diagram generating the irreversible noaéin KPZ Note the sign of the generated KPZ term. Sincg0*)
term with one disorder vertex (notations are asin Ref. [B§)and  is negative\ is positive as found in simulations [3, 4]. Itis
onec, vertex (the bars denote spatial derivatives). a bit counter-intuitive that the surface should becomdestif

Also it effectively corresponds to the generation of a pesit
e s average curvature. This is presumably through non-amalyti
= ——2/ / /e_(t‘H K (K2p% + 2(kp)?) coarse grained configurations of the string {in= 1) since
P Je>0Je>0 Jk A fy otherwise [, V2u = [Vu]% would grow asl. which is un-
XA (o pper = o+ 0(t + (Il)l)é) physical, while cusps in() allow for such a result.
' This model is only a particular case, which shows that the
At T = 0, u, , has vanishing expectation value and the argu-anisotropic depinning class is rather broad and not limited
ment of A’ becomes(t + t'). Using that to anisotropic disorder. In general, unless they are excud
. by symmetry, KPZ-terms will appear. One such case, corre-
_ 1+ LAY ,,2 sponding to a flux line il + 1 dimensions which moves per-
Alw) = A(0)+ A7) ul + 2A (07)u 4. (n.3) pendicular to itself was considered in [4]. There disorder i
A'(u) = sign(u) + A"(0F)u + . .. (I.4)  anisotropic with correlatord,. andA,, for the pinning force.
In the case of isotropic disordex, = A,, exact rotational

. , .
and observing that ' > 0, (II1.2) can be written as invariance (which in infinitesimal form reads — « + 6=z,

cs " r — x — fu) should suffice to exclude the KPZ term. We
oA = T2 // / e IR (K7p? + 2(kp)?) have indeed checked this by adding to the above MSR-action
tJt Sk . _ ih
X (A'(0F) + A"(0FYu(t + 1) + O(v?)) with A = 0 the non-linear terms of [4]
(111.5)

58 =— / gt [AV? gt (Vuge)® + Bf(VuZ,)]  (111.10)

The leading term of this expansion, which is the only UV- a

diverging one fod > d > 2, is obtained by setting = 0. o .
Integrating over, ¢ and using the radial symmetry kngives - /Umuxt’ [C(Vuxt) —|—DVumVum/] A(tpr—ugyr) -
rtt!
2 A'(0T)
oA =~ (1 3) /k W Ofv) - W8 The generated KPZ term reads to lowest order
Similarly, there is a correction tq which reads , 1
A =2(—A+ C+ D)A'(0T) - (1.11)
k
| A(0) 2 Since th tion of motion of Ref. [4] fak, = A, cor-
Se=cy - e (11.7) ince the equation of motion of Ref. [4] fax, = A, cor
‘ Kk d responds tod = —1, D = C' = 1/2, one checks to lowest

order that the KPZ term is indeed not generated. Although we
have not checked it further, it is clear that this properiygd
extend to all orders. In the anisotropic clagscan a priori

9 1 be of any sign. The argument given in [4] suggests that for
de=-cy ( ) A(O)/
k

leading to

14 p = (111.8) the flux-line model\ is positive whemA, < Aj and negative
for A, > A;. Note that anisotropy by itself is not enough to
As will become clear below, the natural coupling for the KPz- 9enerate the KPZ term, but that a non-linear and non-analyti
term is not\, but the ratio\ = A/¢, which is corrected as [31]: disorder correlato_r is needed, ano_l that this term will ofrseu
not be generated in a simple Larkin-type random force model,
whereA, andA, are constants.

S\ =—cy <1+ %) (A'(0%) +m(0))/k kiz (111.9)

Thus we have shown that the symmetry— —u which for- IV. DIMENSIONAL FLORY ESTIMATES

bids the KPZ term (e.g. in an analytic perturbation theory

where A’(0) = 0), is broken here at = 0% by the non- Before using analytical methods, let us indicate a simple
analytic term, and that a KPZ term is indeed generated &Flory, or dimensional, argument which indicates how expo-
depinning. As in our previous study [18, 19] the only as-nents for ID and AD can differ. In the absence of a KPZ term
sumption is that the interface always advances forward (oand settingu ~ z¢ the two static terms in the equation of



motion scale as

Viu~ 272 (IV.1)
_d¥¢
Flug,e) ~a~ 2 . (IvV.2)

Using F(u, =) F (v, 2') ~ §(u — u')§4(z — z') for random
field disorder gives the Imry-Ma value

Cp = 43_d (IV.3)
which can be argued to be exact for the statics and is codrecte
by O(¢?) terms at depinning. These types of arguments typi-
cally give the exact result for LR correlated disorder, @&sliR
disorder part is not renormalized. It happens that thiseasg
long enough for the statics but not for depinning; henceether
is a correction at depinning which increasgsNote that it
becomes again exact for depinning if the rangesdf « or « _ _ _
is large enough (see e.g. the end of Section IV B in [26] and!C- V:1: 1-loop-diagrams correcting (top), ¢ (middle), and; and
Appendix B). A(u) (bottom).

In presence of a KPZ term the latter scales as

wherel = [1/4* (integrated over the shell if using Wilson’s

2 2(-2 0
(Vou)” ~ : (IvV.4) scheme) and the coefficients are:

Supposingthat itis relevant, it dominates over the elastro. ag=1, a; =2(d—2)/d, as =4/d

Balancing KPZ-term against disorder gives the modifiedyFlor as =aqs =4/d, as = 2. (V.2)

estimate In the following we will setd = 4 in these coefficients since

4-d they are universal only to this order. This gives
(p = — (IV.5)

00201202203204:1, 0522. (V3)

Ford = 1ityields(r = 0.6 versus( = 0.63 observed in  One then notes that the quantityc remains uncorrected to
simulations[20], which is not bad an estimate for such a simfirst order ind = 4. In the next section we shall argue that this
ple argument. Again it is possible that if one increases theemains true to all orders. The corrections to the lineanter
range ofA the estimate (IV.5) becomes again exact, as is thg||.3) can be interpreted as the correction to the criticaté:
case for standard KPZ (directed polymer) see Appendix B.

— — —2 -1
Note however that it works with an upper critical dimension 0f = =8fc = (AcT2A0) + cA(0F) L (V4)
d = 4, which is an open question, and is thus merely indicayhere s, = J, - It does not require an additional counter-
tive. term if we tunef to be exactly at depinning = f..

In view of the non-renormalization of/ ¢ in (V.1) itis use-

V. FLOW-EQUATIONS IN PRESENCE OF A ful to denote the unrescaled coupling constants as
KPZ-TERM oA g A2 (V.5)

> > 5
2

c c

Let us start by deriving the FRG flow of, ¢, n and A 10 Onpe should also notice that if one performs the change of vari
one loop starting from (I1.3). The KPZ and disorder terms are;p\a in the initial modek: N u/;\ i@ — 4\ then the free

S.Oth m"?‘rg'”la' ind = 4 anorll bec%me rr]elevant bilow. ISlmpIe(zj uadratic) part of the action (proportionaktands) remains
imensional arguments show that these are the only nee ariant while disorder and KPZ terms become:

counter-terms. We have computed the effective action te low .
est order. The corrections as given by the diagrams on figure A—1 .
V.1 are (for details see Appendix A): Alu) = MN2A(u/A) (V.6)

&n a1 o Thus the coefficient can be set to one upon appropriate re-
— = — [agc™P AN (0F) + e ?A(0F)] 1 definitions of disorder and displacements.

(;76 Itis natural to start the study of the FRG flow and the search
— = — [a1AcT3A(0F) + A2 T2A(0)] 1 for fixed points as foA = 0 by defining the following rescaled
6?\ (V.1) parameters

oA —3Al(n+ 2 —4 o

= [agx\c A(0T) 4+ agr“e A(O)] I 5 AAZC (V.7)

SA = [asA2c A% + ¢ 2(A(A(0) — A) — (A)H)] T Afu) = AT A(uA]®) (V.8)



within a Wilson scheme whetg, = Ae~* is the running uv

cutoff. This yields two coupled equations for the couplings

andA (u)

Flnd=¢ (V.9)

0cA(u) = (e = 20)A(u) + uCA'(w) N
2/\2A() + [2X2A(0) + 2AA(07)]A(w)

—A(u)? = A" (u)(A(u) — A(0)) (V.10)

where here and below we absarb= S,/(2x)* in the cou-
plings. One notes that if there is a fixed point fdfu), then
¢ is the roughness exponent since

<U<1U—q> = A(O)/ngf R
= ATHAT(0) /g ~ AT(0) /g2 (V1)

when evaluated at scaley = ¢. A more rigorous calculation

uses the effective action[19] at non-zero momentum. but t

one loop gives the same result. The dynamical exponémt

t ~ x* and the anomalous dimension of the elasticity can b

determined from

—p =0 Ine = —AA'(0F) — X2A(0)
z—2=20;In(n/c) = —A"(0F) + AZA(0) .

(V.12)

The correlation-length exponentin £ ~ (f — f.)~" and the

velocity exponeng in v ~ (f — f.)? are given by the scaling

relations

pm (V.13)

2-C+9
ﬁ:y(z—():

z —

m . (V. 14)

Performing the redefinition = @ + 6, we can compute the
critical force as a function of the angleto lowest order in
disorder

5f.(0) = —6°X (1 - 31 (X A(0) + XA'(0+)))

A
_ 2
= 9/\<1+—/\)

and thus we find an angular dependence, which is increased
under renormalization.

The notable feature of the above FRG equation is the ab-
sence of corrections tb to this order in egs. (V.1). It is cru-
cial to determine whether this persists beyond one loop. If
there were corrections to higher order this might allow for a
non-trivial fixed point ofA and thus to fix(. On the other
hand, absence of corrections would imply thatfor- 0, A
lows to infinity, which makes the existence of a perturbative
ixed point doubtful. In the next section, we present a déffer

(V.18)

é\pproach which allows to clarify this question.

It is worth noting, that since KPZ-terms are only gener-
ated above the Larkin length, the FRG flow below the Larkin
length (as well as the value of this length) is identical te th
caseX = 0. Itis however instructive to artificially consider
the above FRG flow for an analytic function and with a given

imposed bare value of (setting¢ = 0). One gets

0:A(0) = €A(0) + 4A*A(0)> (V.19)

O A”(0) = eA”(0) — 3A”(0)* + 6AZA(0)A”(0) . (V.20)
The bare disorder ha&(0) > 0 andA”(0) < 0. Since all
terms on the r.h.s. of (V.20) have the same sigki/(0)| di-

verges faster if\ # 0, meaning that the KPZ-term cannot
preventA («) from becoming non-analytic. Note that the first

This can be seen by noting that the action (I1.3) is |nvar|anrequat|on exhibits a runaway &t (o) which can shorten the

underz = ez’ t = *', u = S’ 4 = @' e(2—7—C—d+¥)t
providedn = 7' e(?~ Y. e o= devt N = NeWtOr
J =[Gttt andA = A/ ele=20+20)0 a5 well asT =
T’ e(2=d=2¢+¥)t While in presence of STS one has= 0

this is not the case here. In a Wilson formulation, the ailtic

force is obtained by integration over scales of
Oefe = —co(AeAg(0) + AL(0T))AZTS (V.15)

a quantity which physically is likely to remain positive.

A salient feature of the AP class is that the critical force

Larkinlength. Ind =4+ eatA = 0 there is an unstable fixed
point atA”(0) = —¢/3 separating a Gaussian weak-disorder
phase with the bare unrescaled Larkin force producing finite
displacements, and a phase where disorder seems to become
non-analytic, only to become irrelevant at larger scalesaas

be seen by examining the flow in the non-analytic space be-
yond the Larkin length. At > 0 there is a fixed line at
A(0) = —¢/(4A?) > 0 which separates a phase whexg))

grows from a phase where it decays to zero. On the transition
line the flow is towards a non-analytic disorder.

depends on the angle by which the interface is tilted. Fram th

arguments of [3, 4] the characteristic sldpshould scale like
the ratio of the characteristic lengths orthogonal andl|zta

the interfaced ~ £, /¢ ~
the velocity should behave as

( 0
(f = fe(0)r

Defining e by[4] v(f, 0) = Aer0? +
sion of u(f, @) gives he effective\.s as

Aet ~ (F = Fe(0)772079 = (f = £.(0)™

v(f,0) = (f = £.(0))° g C)). (V.16)

., the small expan-

v(2—(-z)
(V.17)

(f—f.)*'=%) and more generally

VI. COLE-HOPF TRANSFORMED
THEORY

We now introduce the Cole-Hopf transformed theory which
has a lot of interesting properties.
Starting from (11.1) we first divide by. This gives

. 1
N0iter = Oottor + A(Opttgr)” + S P (w, ua) + { (VI.1)
We then define the Cole-Hopf transformed fields
Zpp 1= Mot o In(Zet) (V1.2)

Upt — =
A



The equation of motion becomes after multiplying WA,

A In(Z, A
ﬁﬁtht = 6§th + —F (l‘, n(;\ t)) th + _fot (V|3)
C C

and the dynamical action

S= th (ﬁﬁt - 6%) -

zt
A2 N (0 Zp —InZpe \ 4

_~ ZmZmA<#) Dovr Dot
? wtt! A
A o

—_f/ Lot Lot (V1.4)
¢ zt

Thus the new diagrams, in the presence of the KPZ-term,
can be deduced from those for= 0 by allowing additional
contractions of &,,; outside the\. Compared to performing
calculations using (11.3) this yields a much simpler pdoay
tion theory, with far less distinct diagrams. E.g. to twopep
the number of diagrams is reduced by at least a factor of ten.

Note that now a renormalization of the terf\ 7 is al-
lowed, since it is no longer forbidden by STS. Indeed shiftin
Ut — Ups + ax/X ANd Zyy — Zpe= %, we find that the
action changes by

3S = / Zor (0% + V) Zyy . (V1.8)
xt

It is important to note that the above formal manipulationsHowever, since the action (V1.4) is still translationaliyari-

are only valid in the mid-point (Stratonovich) discretipat

The strategy therefore is to start from the original equatb

motion, which is interpreted in the It discretization j& to

Stratonovich, make the change of variables, and then switch

back to I1td. Note the identification:

| >

Lot Dot (VI.5)

Upt =
C

ant, it remains unchanged under

th — ﬂth
. 1

Tt = —Zps (V1.9)
i)

Transforming onlyZ,; — 2., without changinme will

allows us later to fix the coefficient of the Laplacian to unity

and transfer all its corrections into correctiongt@nds.

and that in this formalism the force (Or the distance to the We now present the calculations at _‘]_-|00p order. We start

critical force) corresponds to a mass:

m =2 1) (V1.6)

Let us first illustrate how perturbation theory works in this

with the corrections to). Contracting one disorder vertex
once with itself, we obtain

N2 Z i Zi [A(M) N Q(M)}
A b A

. . Ro i VI1.10
new formulation and how one can easily recover the 1-loop Aot ( )
FRG equation obtained in the previous section. Perturbagxpandingn 7, — In Z,, for small times yields
tion theory is performed with the standard response-foncti .

We note a very important property: To contragt, with a In Zppr —In Zpp = =0 Zet +O0@—t)?  (VI.11)
disorder-insertionZ ., 7. \2 A (%) Do Zop and Zat

focusing onZ,; (not Z,:), one can decide to either contract One also has to exparig.; aroundzt':

Z 4+ standing outside th& or inside. In the first place, this Tor = —(t' — )0, Zons (V1.12)

eliminates the factof,;, but Ieaves@ underived. In the sec-
ond case, deriving the argumentaf givesA’/}, together  gjnce the manifold only jumps ahead, the arguments ahd

with a factor of1/Z, from the inner o!erivative. The latter A’ are always positive. Putting all terms together, we obtain:
also cancels thg,; standing outside thA. So independently

of where one derives, one always looses the factdf,pout-
side A. Contractingr times towards the vertex at ¢ thus
gives a factor o7} ". This observation shows that the dia-
grammatics are a very simple gen_eralization of the case Withntegrating over’ — t yields

out the KPZ-term which was detailed up to two loops in [19].

One easily verifies that the latter case is reproduced up®n co 7,9, 7.,/ T

tracting only the argument af. To see this, one performs the K;\A/(O+) n A//(0+)) _ (;\ZA(O) n ;\A’(OJ’))} (V1.14)
perturbation theory and finally takes the limitof— 0. Each

time, one has contracted/4.; outside ofA, one is missing

th’ﬁtzxt’(t/ —t)Ro—¢
x {(XA’(0+) + A“(o+)) - (;\ZA(O) + XA'(0+))} (VI.13)

We have grouped terms such that in the first bracket there ap-

a factor of1/), and the term vanishes in the limit af— 0.
Further remark that fok — 0, the argument oA becomes

Zot — Zpur .
# = Ugt — Uyt —|— O(A)

5 (VL.7)

This shows that the perturbation theory for isotropic depin

ning is reproduced.

pear the corrections teé—n?l and in the second those ?cé
Here they appear all together in one diagram. Inthe absdnce o
the KPZ-term only the term independentoburvives. Not-

ing the cancellation between the two terms, we finally arrive
at

= [A"(0T) = A2A(0)| 1 (VI1.15)

:>|§j



We now turn to corrections to disorder. Reminding that th
arrows can either enter into the argumentobr into the sin-
gle Z-field, we get the following contributions (plus some odd
terms, which we do not write):

(VI.16)

e}
|
—
7
—
<
=
>>
—_
=)
=
.,
~

These reproduce the corrections obtained in the previaus se
tion, but quite differently.
The Cole-Hopf transformed theory suggests that

FIG. VI.2: 2-loop dynamical diagrams correcting the singﬁe
component. Diagrams a — g correct the friction. Only diagram
R e and f have a sufficiently strong divergence in space (aiftes-t

oA=0 (V1.17) integration) that they can produce spatial gradients. ¢htfeey both
correctZ AZ. (The diagram is the well-known sun-set diagram from

to all orders. To prove this one has to show that the following,_theory.)
terms are not generated in the effective action

L1
ZmZ—(VZm)z : (V1.18) 2
xt

It is easy to see that these terms result from a change of 1
(keepingu,; andu, fixed):

A
Jot = Lt (1 + 3\ n Z“) (V1.19) FIG. V1.3: Figure explaining the non-renormalizationofsee main

(5;\ text.
Tt = Doy (1 -3 In Zm) (V1.20)

a more general cancelation. Another argument is that the di-

and thus the Laplacian generates (VI.18). One can also agairergence in space between the upper and lower vertex is not
consider a term like, which is known to produce a shift in - strong enough in order to contribute to (VI.18) o A Z. For
A (see (111.9)), and does produce (VI1.18) above together withthis to happen, one needs three response-functions between
other irrelevant terms with more gradients. In fact (VI.i8) upper and lower disorder, as is the case for diagrams e and
by power counting the only term marginaldn= 4 which can  f. They thus both contribute t§ ZA Z, but since they have
appear. This term could in principle come from vertices withonly a singleZ on the lower disorder, they do not contribute
several derivatives acting al at pointz. As previously dis-  to (VI.18).
cussed, it is always compensated, but the compensatiray fact We now argue that to all orders in perturbation theory no di-
could be on a different vertex at pOSitiﬂhand hence prOdUCG agram proportiona| to a Sing@ (one connected Component)
(V1.18) via a gradient expansion. We have shown in Fig. VI.2can be generated, which contains a factofo)> L. We
the 2-loop diagrams correcting terms with a single responsgelieve these arguments to be conclusive; especially we hav
field in the effective action and th& and1/Z fields which  not been able to construct any counter-example at 3- or g-loo
appear at each vertex. All terms contributejtoGraphsh, ¢ order. However the structure of the theory is sufficientlyneo
andd each give a term of the form (V1.18) by expanding the pjicated that some caution is advised.
Z? on the lower disorder, but the sum of them cancels. As | g0k at figure VI.3. The response-functions (arrows) in an
we will discuss below this is graphically achieved by moving arpitrary diagram correcting a single-time vertex haveea-tr
the ends of the arrows around on the upper vertex, suggestiRgructure (left). This diagram can be completed by addieg th
disorder-interactions between arbitrary pairs of poimgf
dle). A potentially dangerous factor (%f appears at point 2.
Point 2 has a “brother” 3, to which it is connected by a disor-
der correlatorA (dashed line).

Then, two cases have to be distinguished: Either there is
no line entering point 3, then point 3 can contribute hisdact
of Z to point 2: Since it is at the same point in space, the
difference can be expanded in a series in time, giving time-

FIG. VI.1: 1-loop dynamical diagrams correctidg



derivatives ofZ which do not spoil the argument. +2XA (u)A'(0F)

On the other hand, there may be a line entering point 3. 1922 (A(u)z n A(u)A(O)) (V1.23)
This is drawn on figure V1.3 (middle). By construction (at
least) two branches (of response-functions) enter at int
At least one of them does not contain the brother of 2 (her ;
point 3). Here it is the left branch, containing point 1. Now?hsgr}/k\)wl be shown below. We now turn to the study of the
consider the diagram where the response-function from 1 to E '
is replaced by a response-function from 1 to 3 (right). Since
one can always contract last the response-field at poinad; le VIl. PERIODIC CASE
ing to either the response-function from 1 to 2 or the one

from 1 to 3, these diagrams have the same combinatorial fagye now consider the case, whekgu) is a periodic function
tor, but diffler by a a factor of-1, due to the derivative of ,iih period1. The starting point is (V1.23) witl§f = 0, thus
A(®Z=Z) on either the first or the second argument. This} — \ remains constant under renormalization (to all orders).
comes in both cases with a factor$f at thesamepositionin  Since the period is fixedy cannot be scaled away using (V.6).
space but at different positions in time. However, due to thdt is thus a continuously varying parameter and we must study
tree-structure, the time-integration can always be dosslyfr  the flow as a function of it.

and the two vertices finally cancel. This argument is sufficie  In eq. (VI.23) there is a tendency for a runaway flow, as
before reaching the Larkin-length. However after reachingcan be seen by analyzing the flow-equation (VI1.23) with the
the Larking length, the non-analyticity of the disorder maytrivial solutionA(u) = A

yield additional sign-functions in time between both enfls o

the vertex, as has been observed in [19]. Then the proof gets OrA = €A+ 4X2A2 (VII.1)
more involved. There is another very powerfull constraimt o

the generation of terms like (VI.18): One has to constructThis corresponds to the localization - or self attractingich

a diagram with a strong spatial ultraviolet divergence,hsuc - problem studied in [27] and we expect on physical grounds
that after Taylor-expanding in space the additional factor the full functional form ofA(u) to be important, which may

of z? together with this strong ultraviolet divergence gives alead to other fixed points.

poleinl/e, i.e. a logarithmic divergence at= 4. Thisis  For \ = 0 we already know that there is an unstable fixed
the situation for diagrams e and f in figure VI.2. It arises if pojint

and only if there ar@n + 1 response-functions connecting

Further remarkable properties of the Cole-Hopf transfarme

points in space (this may well be a sub-diagram), but where Ag(u) = A*(u) + ceft (VII.2)
response-functions that connect the same point in space are . 1 1
not counted. In all examples which we considered up to 4- AM(u) = 36 g“(l —u), (VII.3)

loop order, which had sufficiently many factors ofZ, and

which had the correct UV-structure, tfign + 1) response- Which describes isotropic depinning for CDW. This fixed
functions where enough to enforce an ordering of times, sucRoint survives for smalk as can be seen from a series ex-
that the mounting proof sketched on figure V1.3 went throughpansion in powers ok. Moreover at each order ik, A*(u)

We have to leave it as a challenge to the reader to either findrgmains polynomial in(1 — «). We do not reproduce this ex-
counter-example or to make the above arguments rigorous. pansion here, since we have succeeded in obtaining the fixed
ointanalytically. Equation (VI1.23) possesses the following

Let us now return to the analysis of the RG-equations. Wi emarkable property:

introduce rescaled variables according to
< c—ar < A three parameter subspace of exponential functions
A(u) - {\Z 2CA(UA§) (V1.21) forms anpexactly invarianr?subspacel.O
A=AA[¢ (V1.22)
R Even more strikingly, this is trut all ordersin perturbation
with A, = Ae~‘. Because we have defingd= e, in order  theory. This property, which is quite non-trivial, is unsierod
not to generate additional terms, a rescaling:afemands a in the Cole Hopf theory, as discussed below.
(compensating) rescaling éfsuch that the product remains ~ For our purposes, it is more convenient to write
unchanged. Even though this may not be the best choice cor-
responding to the existence of a fixed point, it is the only way A(u) = Aief(u;\) ’ (VI1.4)
to preserve the Cole-Hopf-transformation, leavihgndin 7 A2
unchanged. The rescaling &f comes from the rescaling of
A, which appears as a factor &t in front of A in the action
and as a factor of /\ in the argument of\.
This leads again to the FRG flow equation given in (V.10):

(u) + CUNA'(U) fluy=a+be™ fce" . (VIL5)

such thatf satisfies the same FRG equation (VI1.23) with-
¢ = 1, but with period\. This allows to make an ansatz for a
family of exponential functions

DeA(u) = (e — 20)A
—A"(u) (A(U) - A(O)) — A'(u)? The FRG-flow (VI1.23) closes in this subspace, leading to the
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FIG. VII.1: Fixed point structure for different values &f The coordinate system is such thagrows to the right and to the top. The both
separatrices ate= —Lae* (blue/dark) and = —a/(1 +e~*) (orange/bright).

simpler 3-dimensional flow: Je ~ —(A(0) + AA(0))
1
Ova = a + 4a” + dac + 4be (VIL.6) :—X(a—l—Qbe_)‘) >0. (VI1.13)
0eb=b(1 4 6a + b+ be) (VIL7) o ) )
dre = c(1+ 6a+ b+ 5c) (VI1.8) Fora < 0 this is possible only if
This works only for amplitude one in the exponential; other- _% <b< _d (VI11.14)
wise higher modes are generated. Also note that these equa- 1+ 2

tions are not symmetric under the exchangé afidc, as one  On the other hand, far > 0 the flow fora is alwaysa — oo
might expect from the interpretation we will present later.  in a finite time. Indeed the r.h.s. of (VII.10) is always posit

Requiring periodicity, or equivalently(u) = f(A —u)  fora > 0. Forb > 0 this is trivial; forb < 0 this can be seen
imposes from

c=be? (VI1.9) a+4a”® + dabe™ + 4b%e™?

- 2 - - 2 =X
and one checks thafc is indeed unrenormalized. Thus one =a+4(a+b) e —dabe™ +4a”(1—e™")

can study the simpler 2-dimensional flow >0 (VI1.15)
Ora = a + 4a® + dabe=> + 4b%e=> (VI1.10) The flow given in (\_/II.10) f_md (VI1.11) is shown in_ ﬁgure
Oeb = b(1 + 6a + b + 5be™>) (VII.11) VII.1. There are four fixed points fat = 4 —¢. In the original

variables they are

as a function oh. A physical requirement is that (i) Gaussian fixed poinG (repulsive in all directions) with

A0)=a+b(14+e*)>0 (VIL12)  A(u) =0.
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(i) S_elf-avoiding polymer fixed poir8AP, where the corre- Ded’ (1) = —lqﬁ’(u) (VI1.18)
lator is a negative constant: 2

(VI1.16)

It is the problem of localization in an imaginary random po-
tential, i.e. the Edwards version of the better known self-
avoiding polymer. It is attractive in all directions, evdrose
not drawn here. Writing(«) = —1/4+ ¢(u) and linearizing

(V1.23) gives This self-avoiding polymer fixed point will not play a role in

1 the following since for the disordered proble0) > 0.
D9 (0) = —(0) — §¢>’(0+) (VI.17)  However itis interesting in other contexts, as discusséalbe

(iii) Fixed pointU, with one attractive and one repulsive direction.

1 14 5de™ + 5072 — (14 5e™ ) /T+e (34 +e?)
A2 8(1—be—re=* —8)))
2

+ ™M 4 emALTY) VIIL19
(1—7e—>‘—3\/1—|—e—>‘(34—|—e—>‘)( ) ( )

The value at zero

343+ VI+e A 4 34e7H)
2X2(7 + M (3V1 + e~ 2> + 34e=* — 1))

A(0) = (VI1.20)

is always negative fok > 0, thus the FP is unphysical for our problemdrn= 4 — ¢. The combination yielding the corrections
to the critical force

—1+eMT+V1+e 2 +34e?)

= VIl.21
J 2A(7T +eA(3V1+ e 22 4 34e=> — 1)) ( )
is always positive foi > 0.
(iv) The random periodic fixed poifRP has:
1 14 5de™ + 5072 4 (1 4+ 5e™ ) /T+e (34 +e )
Alu)y=—= |-
A2 8(1 — He=*(e™* — 8)))
2 Y A(1—u)
+ e te “ VIl.22
(1—-Te"*+3y/1+e 34 +e?) ) ( )
[
A0 — 3—eM=3+V1+e 2 +34e ) wards the fixed poinBAP) and repulsive in another (towards
(0)= IAN2(=T + X (14 3V1 + e~ 2* + 34e—7)) large A(w)). It is thus a critical fixed point. One can argue
(VI1.23) that any perturbation which leads $8\P is unphysical, since
at some scale\ (0) becomes negative. Since we did not find
fo~—(A(0F) + AA(0)) any strong reason why the system would be exactly on this
—T+eMl+V1+e 2>+ 3de?) critical surface, it is more likely that this FP representsit-

(VI1.24)

cal regime which lies on the boundary of the physical domain.
Itis however interesting that its analytic form can be ol
Both quantitiesA(0) and f. are positive for all\ > 0, thus  In particular one can compute correlation functions eyaat|
this fixed point is physical. RP.

The fixed pointRP is the continuation of the fixed point
(VI.3) at A = 0: Note that apart from a constant only the  An important question is whether there are fixed points out-
termu(1 — u) survives from the exponential functions. Like side of the exponential subspace considered above. Leteis gi
the fixed point at\ = 0, it is attractive in one direction (to- a few general properties. First the flow equations and fixed

TONT 143Vt 1 340 )
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point conditions neas = 0 There is again the fixed point
0eA(0) = €A(0) +4X°A(0)° — A(0)° + 22A(0)A'(0%) fa) = -2 4 Lo (VIIL8)
DA (0F) = A'(0F) (e + 2AA’(0F) + 6AZA(0) — 3A7(0H)) 42
(VIL25)  \ihich is the infinite) limit of the fixed pointRP of the pre-
and the flow equation fof A vious section. Sincg () does not go to zero at infinity as
is expected for random field disorder, and since it is unstabl
o 25 along the linea = —1/4 it is unlikely to have any physical
Do / du A(u) = 6 +2AA(0F) + 20%A / du A (u relevance for the anisotropic depinning class. The othedfix
0 point is
+2§2/ du A VI1.26
0 W AW* ( ) flz) = —e77 (VI11.9)

shows that starting fror]ﬁA = 0, a positive value fo[fA is  which has the wrong sign. One clearly has runaway-flows
generated in the early stage of the RG. If there is a fixed pointvithin the exponential subspace.

value for [ A it must be equal to We have examined the flow of the FRG numerically. For
R all initial conditions considered, which were not exactly a
Lo 2X7 [ du A% (u)? one of the fixed points mentioned above, we found the so-
/ du A™(u) = _6 I 2;\5*’(0+) I 2;\25*(0) - (VIL.27) lution to explode at some finite scale, a phenomenon which
is known as thd_andau pole One issue is to identify the
For small) at least this appears to be negative and(k?). corresponding direction in functional space. This issueis
From the flow-equation fan’ (u) lated to fixed points il = 4 4 ¢ dimensions which we now
briefly address. The diagram fér- ¢ is obtained by changing
Iy A X X A — —A andd; — —J,. This means to replace— —a and
O (u) = —AT(u) (A(u) A(O)) b — —b on figure VII.1 as well as inverting the direction of

+ A (u) {e + 2AA/(0F) + 2AZA(0) + 4AZA(u) — 3A”(u)|  all arrows. U then controls the boundary between the strong
coupling regime of KPZ and the Gaussian fixed p&GnSAP
one sees that the behaviour at large\ must be exponential. between localization (attractive polymers); the GausBiaul
It seems that there are no non-exponential fixed points. point is multi-critical ancRP between branched polymers and
The runaway flow will be discussed in the next section. ~ Gaussian. For the random field case we now have

VIll. RANDOM FIELD DISORDER Alu) = Ff(w) (VI11.10)

Let us now consider non-periodic functions. The main prob-The fixed poinRP gives
lem with the natural rescaling ef= «’e¢' as in (V1.22) is that

| . ; 1
A grows exponentially, and no fixed point can be found. Let flx) = 1 3° ¢ (Vi.11)
us therefore study (VII.6)—(VI1.8) setting the rescaliragtor
¢ = 0. Again we consider the invariant subspace of exponenand the fixed pointJis
tial functions, parameterized by
. flx) =e77, (VI1.12)
Alu) = ﬁgf(“/\) (VIIL1) " \yhich has the correct sign. It has a vanishing critical force
f=a+be (VII1.2) but is a good candidate for the critical behaviour between th
Gaussian phase and the strong coupling KPZ phase.
for « > 0. Note that we have put the coefficiant= 0, since Let us now study the runaway flow fdr= 4 — ¢. Suppose
we are not interested in solutions growing exponentially.in  that A, (u) is the solution of thg4 + ¢)-dimensional flow
The flow is equation at = 1. Then
da = a + 4a* (VI1.3) Ay(u) = geA(u) (VI1.13)
0b=">b(1+6a+0b) . (VIL.4)

leads to the flow-equation for the amplitugie
The physical requirements now read
dge = €ge + g7 . (VIII.14)
A0)~a+b>0 (VI1.5) _
fom —a>0. (VII1.6) For the RF-case one has one such point at the boundary of the
physical domain, as can be seen from the flow-equations

So itis natural to look in the regime
a=0 (VI1.15)

b>—a>0 (VIIL.7) O =b+ b (VII1.16)
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Also not that since this mode explodes after a finite renormal
ization time, it is difficult to avoid. However, we have notye ime
completely ruled out another scenario, where at least some
trajectories have exponential growth. Making the ansatz

Cy G
Ar(u) = (€ flu) 4+ g(u)) , VIII.17
t(u) (e (W) +9(w)) ( ) FIG. IX.2: Diagrams correcting the disorder in the branghin

this requires to find a solution to thefunction ate = 0,  representation.
which we write symbolically

_ is (IX.1) with « replaced byu| (if (IX.1 holded as an analytic
Al D=0 (VIil.18) function there would be no distinction betweeande, “thus

One can check that near zero such a solution is in principl8C &TOW of time”). _ _
possible. There is a solution, which vanishesiat u* = The vertices presented on figure 1X.1 can be interpreted as

1.39895 (for A = 1) and becomes negative beyond. One Car.pranching processes, and we shall thus call this floramch-
argue that one needs it only up #0= u, < u*, since the N9 representationLet us show how one reproduces the flow-

linear term can no longer be neglected wifén) approaches equations (VII.6)- (VI1.8). In the time-ordered repressidn,

zero. Noting: = (1++/5)/4 one has” (0) = —1/r, f(0) = dlagrams_a to_d of flggre VI.1 have the form given on figure
(14+2r2)/(31%). I(n this s<):enaria§’ is det(er)mined togetfge)rwith IX.2. To simplify notations, we set = 1. Then

g. Itis unclear how this carries to higher orders, since itsee A(u) =a+ be™" + cet (IX.3)

to require thayf (u) is also solution of thg-function ate = 0. A(u) = —be™" + ce® (I1X.4)
This is however exactly what happens in the case 0 with A(u) = be™" 4 ce¥ (IX.5)

the constant shift\ (0). Although numerics does not seem to A(0)=a+b+c (IX.6)
confirm it, itis hard to disprove. A question which remains to ANy =c—b (IX.7)

be answered is what the basin of attraction of runaway growth A(0Y)=b+c (1X.8)

and eventually of exponential growth are. ) _ o
The diagrams have the following contributions

IX. GENERAL ARGUMENTS FROM THE . Sa=aal
COLE-HOPF REPRESENTATION AND IA*(u) — gbf ab§ (1X.9)
BRANCHING PROCESSES ¢=ac
da = (aa + 4be)]
In the Cole-Hopf representation, it is easy to see why the ex-0A" (u) — { ob = 2bal (1X.10)
ponential manifold is preserved to all orders. Let us insert ((;C = 2acl
a=10
Afu) = - (a+be ™ 4 et (X.1) A% (u) — { Jb=2b(a+b+c)f  (fromes) (1X.11)
A de=2cla+b+ c)% (fromcy)
in (VI1.4). The complicated functional disorder takes a very da = 2a(a + 2b) (fromd, andd,)
simple polynomial form SA“(u) —{ db=2b(a+b+c)] (fromd,) (IX.12)
de=2cla+b+c)] (fromd;)

ZZ,. The non-trivial factor of is due to the fact that the two
/ Tt Zppr (0 Zgt Zopr + 072, + ¢Z2,)) .(1X.2)  right-most points ir; andc, are time-ordered. To relate the
T Jt<t! integral to/, one can first symmetrize (yielding the factor of
r%) and then freely integrate over time. Also note that only the
last diagram¢; + d5 contributes to the asymmetry between
ande.
In the same way, one can reproduce the corrections to
The only vertex in (1X.2) which contributes at leading order

S= / Zoe (70r — 02) Z Note that the factors of come in general from contracting
xt

Note that we have ordered the vertices in time to distinguis
betweerb andc taking correctly into account that the full cor-
relator for the present non-analytic e.g. random field, [@ob

. — e - is the one proportionql t@: b does not allow for a contraction
; ; ‘ and ¢ will have bothZ and Z at the same point, thus only
time corrects the critical forcez leads to
- < < Zot Ztr R o0 (1X.13)
a b

and after a gradient-expansion following the procedure de-
FIG. IX.1: The three vertices proportional te, b and ¢ in  Scribed after (VI.10) we have

IZE Zm’ ZmZm/ bZi Z2/ . A .
f.r,t<t Dot (@t Zow + 023+ cZ2y) Dot D (' — O Ry . (IX.14)
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FIG. IX.3: The three phases of the flow-diagrams on figurelVII.

Integration ovet’ leads to the correction

&
U

—al (1X.15)

bl

which is the same one obtained from (VI.15) using (IX.6) and
(1X.8).

Let us now exploit this representation further: It is immedi
ately clear, that one cannot generaté** which corresponds

to
/ / thth’
zJt<t!

3
V5
th

(1X.16)

13

time

FIG. IX.5: Self-avoidance plus branching.

By first integrating over the momenta, one recovers the pertu
bation expansion of self-avoiding polymers. It is well kmgw
that this fixed point is stable. In terms of particles, it can b
interpreted as the world-lines of diffusing particles, ethare
not allowed to visit twice the same pointin space. Let us now
add some termés andc. In interesting limit isA\ = oo, since
therec can be set to zero. Adding a term propotional tthe
diffusing particle is allowed to branch. More preciselyotw
particles can meet at a tintie Then one of the particles be-
comes inactive, before reappearing at some later timet.
One can interprete this as

A+A — A+B
B — A.

(1X.17)
(1X.18)

Particle B is completely inert, and does not diffuse awaynfro
its position of creation, before it decays into A again. How-
ever note that any point in the future is equally likely to see
B change back to A. This is very different from e.g. a spon-
taneous decay. This process is depicted on figure IXcan

or any other such fractions. This shows that the space dfjther come with a positive sign, or with a negative sign. If

functions spanned by (1X.1) is indeed closedatborders in
perturbation theory Also there is no renormalization th,

whereas a correction to the elasticjty’ 927 is allowed, and
indeed shows up at 2-loop order.

Finally, note that the domain of variation ef in the peri-
odic case yields an action with multiplicative periodidity”,
but this does not seem to be important here.

Let us now discuss the relation of our findings with self-
avoiding polymers, branching processes and directed fgerco
tion.

First, on figure 1X.4 we have drawn a diagram correspond
ing to the perturbation expansion of fixpoiBAP, which is
the only fully attractive fixed point in the phase-diagram3X
One easily checks that by integrating over times, one resove
a standare*-perturbation theory, as depicted on figure 1X.4.

FIG. IX.4: A self-avoiding polymer.

the sign is positive, this can be interpreted as the twogesti
attracting to make the branching-process. It is clear thet a
some critical threshold, the process and such the pBaBe
becomes unstable, since the induced attraction betwetn par
cles tends to make them collapse at the same point in space
and then annihilate. This leads to the runaway-flow in phase
B- 1 on figure 1X.3. On the other hand, for negatijeeven

a large|b| does not lead to a collapse. This is why on fig-
ure VII.1 in the case ok = oo the SAP-phase withe < 0
extends tob — —oo. This remains valid for finite\ if in

the full flow-equations (VI1.6) to (VII.8)c = 0 is set from

the beginning. However the situation for finikediscussed

in (VI1.10)—(VI1.11) maps in the language of branching pro-
cesses to a finite initial ratio betweerandb, parameterized
by ¢ = be~*, which remains uncorrected under renormaliza-
tion. The second branching-procesbeing present, it can
render the phas8AP unstable tdB- 2. The vertex is inter-
preted as

A —C
A+C — A

(1X.19)
(1X.20)

This means that a particle A becomes spontaneously inactive
at some time. It remains at positior until at some time’ >

t another particle A comes by to free it. The reduced flow-
equations for the combined situation are given in (VI.18) a
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(VI1.11), and lead to the instability of the phaS&P induced d
by the branching process

X. LONG-RANGE ELASTICITY weak /

Let us now study anisotropic depinning in the case of a man3 t disorder /

ifold with long range (LR) elasticity, the elastic force i.{) irrelevant /
being, in Fourier: weak’

cqzuqyt = (calq|®* + cqz)uqyt (X.1) 21 KPZ /! KPZ
There are now two elastic constants, the LR epeand the |rre|evant' |
short range (SR) one;, and we thus define the two dimen- 1 1 ° /I always
sional regularization-parameters, K relevant
two phases
e=2a—d (X.2) /

k=2—a. (X.3) —

1 2

The case of most interest corresponds to the parameters for
the contact line depinning,= 1, « = 1,i.e.c = k = 1. FIG. X.1: Phase-diagram in the (d)-plane. The solid line is =

Power counting shows that disorder is perturbatively rele9. The dashed line corresponding to (X.11) separates the idoma
vant below the critical dimensioh < d. = 2«. Disorder is where an infinitesimal KPZ-term is relevant from those whieis
thus relevant for the contact line case but the crucial doest irrelevant. At ordek? this line will bend to the left, but should not
we investigate here is whether the KPZ terms are importarft'©ss the poin = 1 anda = 1.
there. Study of the contact line depinning is usually peniea
withinad = 2« — ¢ expansion (see Ref. [19]) at fixed This S )
is the solid line in figure X.1. However as soon as elastigity i Of course the SR part of the elasticity is corrected:
longrange £ > 0) simple power counting shows that the KPZ

OpIn (

terms are perturbatively irrelevant fdrneard.. Working at
fixed o as e.ga = 1 is thus not the best method. One alter-
native is to study the vicinity of the poimt = 4, o = 2and  and we will focus on situations where it is irrelevant (a dend
perform adouble expansiohoth fore andx small. The ideais tjon which must be checked a posteriori).
to determine a linélkpz () in the (a, d)-plane below which  Note that since the LR-elasticity is uncorrected, the dimen
the KPZ terms are important and must be included. One cagjpnless variables, contrary to (V.5), are not divided-pjput
determine this line near the poidt= 4, « = 2 and, by ex-  py ¢, = 1 and their RG-equations thus do not contain addi-
trapolation, find on which side of the line lies the interegti  tional contributions from the corrections te. As a result\
casec = x = 1 (see figure X.1.). has now non-trivial corrections and the Cole-Hopf mapping
Through the replacement — ¢* inthe propagators of the ng jonger works, or has to be defined with a flowing

1-loop diagrams of section V, it is easy to derive the 1-loop Before embarking on a more detailed analysis let us indi-
FRG equations for a general in presence of a KPZ term as cate the main behaviour we expect from Egs. (X.6) and (X.7).
in (I.1). First one obtains as usual thaf is uncorrected 0 For \ = ( one has the usual anisotropic depinning fixed point
all orders, and thus we set = 1 in the following. Defining  studied in Ref. [19]. One can perform a linear stability anal
the dimensionless couplings ysis of this FP for smalk. From (X.6) one finds that linear

- e stability holds provided

A= AAS (X.4)

Alu) = AF T A (AT (X.5) R > oo = 5 +0(E) (X.10)

_) C e AN - AD) (x9)

(a4

within a Wilson scheme whetg, = Ae~* is the running UV

cutoff, we find the flow equations: for the non-periodic problem, anfl, = 0 for the periodic

case. Thisis the dashed line
deInd=¢ —r — XA2ZA(0) — AA/(0Y) (X.6)
3@A(u) =(e— QC)A(U) + uCA’(u) + QZ\ZA(U)Z
—A'(u)* = A"(u)(A(u) — A0)) . (X.7)  represented in Fig. X.1. Fa > dxpyz(«) the isotropic FP is
_ stable. This is the case for the contact line depinning. @n th
We work to lowest order in bothand« (and thus neglect the iher hand, one expects from Egs. (X.6) and (X.7) that even
sm_all changes in the coefficients of ordérand define the then, if the value oft is large enough, the RG may flow again
ratios to KPZ strong coupling. This is the same run-away flow as
¢ for SR elasticity. Both fixed points should be separated by an
;o a== (X.8) instable fixed point, of which we will show that it is attairiab

dez (a) =ba—6 (Xll)
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1.75 2 if one tunes(¢ to a value noted:()\). The resulting curve

15 Gi(A) == ((A)/e is plotted in Fig. X.2. It starts af(A =

' 0) = 1/3 (the isotropic value) and increases)ascreases.
1.25 Considering the fixed point equation of (X.7)at= 0 using
1 o (X.13) shows that the value df’(0") is a simple expression:

0.75 ° AY(0F) = \/1 —2G(N) 207 (X.14)

0.5 ° Thus, reporting this value, as well a850) = ¢ in Eq. (X.6)
0. 25% g we see that for each value sfwe can determine the value of

) A by solving the equation

0.5 1 1.5 2

=) =G0 - 224+ /- 26 (0) + 202 (X.15)

FIG. X.2: {1 = ¢/e as a function of\ for LR elasticity. Note that Denoting:\}; this solution, we obtain the FP functiokf;\* (u)

(=) = (N .
= =at and the value of the roughness exponérit:) := (1 (A%).

Comparing (X.6) and (X.9) we note that the SR elastic part is
perturbatively. Thus forl > dxpz () we expect, and find indeed irrelevant as soonés- 0, and thus the above analysis

below, two phases one where) flows to zero (denoted the 'S consistent. ” _ X
ID phase) and one where the KPZ terms are important (the 1he curvesf(/\) f~H(r) and the resulting (x) =
AD phase). The question is thus to determine the basin of(Az) = ¢(f~'(#)) are plotted in Fig. X.3 and X.4 respec-
attraction of each phase and the critical (i.e. repulsiveXfi t|vely
point which separates the two phases. Quite generally one One sees that there is a solution with a posifigeonly if
expects a critical valud* below which\ flows to zero and ~ > k. = 3 consistent with the linear stability analysis given
above which it runs away. above. The roughness exponent associated to this FP then
A simple argument, confirmed by the more detailed analyincreases continuously, as shown on figure X.4, fiame= 5
sis presented below, allows to estimatefor small values of ~ to larger values as increases beyongk.. In particular, since
¢,i.e. neard ~ dgpy (). SinceA(u) changes by ordex? for ~ We are interested in the poiRt= 1, ¢ = 1 of the (, d)-plane
small}, the Eq (X.6) gives the critical value: (see figure X.1) it is worthwile to give the extrapolation:

R K — Ciao C(k=1)=0.7, (X.16)
A= — (X.12) -
|A(01)] andX;—; = 1.037, values which give the simplest extrapola-
~ tion for the contact-line depinning. One should however not
for smallk — ({iso /), WhereA’(01) = O(c) takes its (nega-  expect too high a precision from this crude estimate.
tive) value for the isotropic depinning fixed point. Thus we have found a non-trivial FP for this problem. It
Although analysis of the full FRG-flow requires numerics, continuously depends or/c and exists only fok /¢ > 1/3.
one can obtain some analytical information on the transitio
between the isotropic phase and the anisotropic strong-KPZ

coupling phase. 21 ¢ f
1.5 l z
A. Non-periodic systems 1t
Let us start with non-periodic systems and search for a pertu 0.5
bative fixed point of the system (X.6), (X.7). Interestingty
that case, there is one, whose properties depend contiyuous _'5 -1 1 2
onk = k/e. -0.5!
For each value of: we can determine the FP through the
following construction. Given the reparametrization iriva -1
ance (V.6) of (X.7), we can always set _1.5}
A(0) = ¢, (X.13) -2!

and for each fixed value of search numerically for a fixed FIG. X.3: The functionf(x) (green/light) and (=) (red/dark) de-
point function of Eq (X.7) which decreases at infinity (short fined in the text. One can read aff as a function ok as follows:
range pinning force correlations of the random field type).The curvey = f(z) yields; (x axis) from# (y axis) and in turn,
Interestingly we find, through explicit numerical integoa, ~ One reads. (&) (y axis) from\x (x axis) using the curvg = ¢ ().
that there is always one such solution, denoted&;ju), This is indicated by the arrows. The result is plotted in gt
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The simplest scenario is that this FP is associated with thas well as two othergn = —1,6 = 0) and(a = 0,6 = 0).
critical behaviour at the transition between the phase @&herthe corresponding FP condition fargives

KPZ is irrelevant (isotropic depinning) and the phase where

KPZ grows (anisotropic depinning). To confirm it and check 0= —f — a— 2be=> . (X.23)

that this FP has only one unstable direction one needs a more

detailed numerical analysis. Note that this is also indidat The FP with a positivé is the one of interest. It is again
by an adiabatic approximation considering (X.6) alone andoresumably the boundary between the zero and strong KPZ
assuming that the disorder does not vary, which yields tieatt phases. The value of; is given by the positive root of

FP is repulsive iff' (x) > 0 and attractive iff’ (z) < 0.

A_
Ak =1+ 7

B. Periodic systems V14 34er e

In the periodic case, singg= 0 is requested at any FP, we \yhich reproduces (X.12)}: ~ 64, to lowest order ini.

see that we cannot enforce the SR-elasticity coefficierid e fings thad, increases monotonically withand diverges
scale to 0 under renormalization, since the FP conditioh on :\,a s too ask — L. This suggests that for > L only the
2° - 2

implies that (X.9) vanishes. However if we start with a small|p phase exist.
ratio of ¢s /¢, or if the flow is such that this ratio gets small
before we reach the fixed point, then it is legitimate to neigle

(X.24)

the effect ofc,. We restrict our analysis to that case, and study Xl. CONCLUSION
equations (X.6), (X.7) searching for a FP. A more detailed ) ) _
numerical analysis of the flow equation is feasable. In this paper we have reexamined the functional renormal-
It can easily be seen that the form ization group approach to anisotropic depinning. This was
‘ 5 5 mandatory since non-analytic renormalized disorder tare
Au) = ~—2(a + be™UA 4 cet?) (X.17)  tors were found to be crucial already for isotropic depignin
A and were neglected in previous approaches of AD.
is not exactly preserved by the flow anymore (e@A (u) Indeed we have shown that the non-analyticity of disorder

yields a term proportional tae~“ 9\, through variations —arising beyond the Larkin length is crucial to generate the
of \; which here flows). One can still however search forKPZ-term, a first explicit field theoretic demonstration ofh
exponential fixed points since then does not flow. (X.7) these terms appear at depinning. The resulting anomalous
yields the conditions terms in thed-function modify the flow compared to previous
approaches in interesting ways. We found several noratrivi

a+ 2a22+ 4be =0 (X.18)  fixed points and for SR elasticity a Cole Hopf transformed the
b+ dab + b2 +be=0 (X.19) ory which allows to simplify considerably perturbation ting
¢+dac+ e +be=0 (X-20)  and indicates that the KPZ couplingc is uncorrected to all
and we can set= be~* to ensure periodicit (u) = A(1—  Orders. n _
u). We obtain the following fixed points: For LR-elasticity we have found the domains of parame-
) ters belonging to ID and AD respectively. We found that for
+et the experimentally interesting case of contact-line deipig,
b= V11 34er 1 o2h (X21) o ph_ases exist, ID and AD, and that the KPZ-coupling (i.e.
1 14 o the amsotropy) should be large enpugh for the AD class to
a=—-7F _ _ (X.22)  apply (otherwise the ID exponents is expected [18, 26]). At
47 4/1 4 34> + &2 the transition a larger value gf &~ 0.7¢ (with ¢ = 1 for the

contact line) is obtained. This scenario could be checked in
a numerical simulation. To make the comparison with exper-
iments more accurate one should consider the more involved
structure for the KPZ terms unveiled in [25] but this can be
done by methods similar to the one introduced here.

For SR-elasticity we have found interesting new fixed
points. A bit disappointingly, they possess one unstalskeli
tion and thus correspond to transient or critical behayiad
not to the asymptotic behaviour which instead is controlled
by a runaway flow to a regime not perturbatively accessible
by the present method. On the other hand, an encouraging
0.2} result is that we found a class of disorder correlators (& th
form of exponentials) which should be invariant to all ogler
These correspond to a set of branching processes which look
tantalizingly close to the ones introduced to describetieac
diffusion and directed percolation. More work is necesgary
understand this simpler equivalent class of theories angtr

-1 -0.5 0.5 1 1.5 2

FIG. X.4: (1 (&), using¢(A) andA = f~1(&)
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coupling, as they may contain the key to this conjectured contailed in [19]. Thenewdiagrams are
nection between anisotropic depinning and directed pa¥col
tion (ind = 1+ 1) and its generalizations in terms of blocking
surfaces (in highet) and ultimately an understanding of the = 2/ /e‘t(’“2+m2)e‘t'(’“2+m2)|t —t'|k?
upper critical dimension for this problem. o<t<t! Jk
A posteriori, it is not suprising that the present approach ¢

yields again a flow to strong coupling KPZ, as it does in the x A(0T 5
thermal version of the problem [23, 24]. It is possible that = 2/\A’(0+)au// ot m?y KT
as in the thermal problem another representation, as eg. th kJt (k* +m?)?
directed polymer, better exposes the physics and in péaticu x (e—t'(k2+m2) —1— (K + mZ)t’)
what is missed in the present approach. The corresponding — 20N (0M)adl

formulation would be

/ k? k? k?
x - +
2k2 23)3 kZ 23)3 kZ 23)3
sen=[  obe T R A T
k
y(t)=x
P

" ) — AN (0F )it / g
ex [— /; dT% (;l—i/_) _1_%‘/(3/(7_)’7_) k m

k,Z
— Ve
i.e. a directed polymer in a random potential but with the
choiceTl = % and the additional self consistency condition:

(XI1.1)

k

Viy,7) = %F (y, %hl Z(y, 7')) , (X1.2)

which relates the random potential to the pinning force and t (A.4)
the free energy of the directed polymer and makes the problem

analytically far more complex. It may possess similar ptysi

and thus be amenable to some extended FRG approach which

: koc + pa)pa
' : =2A'(0% /\/ (
would better account (as it does for the thermal problem) for j (07) v (k+p)? +m2)(k2 + m?)

the coarse grained correlations in thelirection a property

clearly not taken into account by the present method, which

treats correctly only correlations in the ~ space. 2 2(kp)?
k

(k2_|_m2)2 (k2_|_m2)3

2(2 - d) 1 )
=" NN | ————uA
Acknowledgments 7 (07) /k (7 3 mzyz A
(A.5)
Itis a pleasure to thank M. Kardar, W. Krauth, A. Ludwig and o ) )
A. Rosso for stimulating discussions. (Note thatA « —p?.) Dots indicate omitted subleading
terms.
APPENDIX A: DIAGRAMS %
8 3 k4 . 9
We use the following model setting= 7 = 1 to simplify ; - _EA(O)/\ /k [(k2 + m?) + - ] u(Vu)
notations |
S = / nii — citAu — Ni(Vu)? Ay (A.6)
Tt

One also has to specify a cut-off procedure. For convenjence
we chose to put a mass-term. This is justified at 1-loop order ¢~

_1/ Uttt A (Upe — Ugp) (A.2) b
2 Jot wttat t ot : _ 2 k(k +p) (kp)
} = —4A(0)A /k(k2+m2)2((k’ +p)? 4+ m?)

since the results are universal, i.e. cut-off independekit. _ —4A(0)/\2/ (kp)? _9 k? (kp)?

second order, one would have to be more careful and use, e.g. x (k2 +m2)3 (k% +m?)4

an external momentum IR cutoff. B 4A A2 1 A
Many of the diagrams which we need are identical to the T d (0) /k (k2 4+ m?2)2 +.. ) (ahy)

driven manifold problem ah = 0. These diagrams are de- (A.7)



_ %A(O)/\?’/k Ty T (A8

B (]{72)2 o

= Aug — um/)zx\z/k mumum/
(A.9)
(A.10)

Therefore, we have the following correctionsda;, A andd
(settingl := fk m dropping finite terms i, but for
the moment keeping the explicitdependence)

Sefe= [@A’(OJ’)/\ - %A(O)/\z] I (A11)
§n/n=—-AA(0M)I (A.12)
4 / 8 2 4 2
SA/A= [_E/\A (0t) — EA(O)/\ + EA(O)/\ ] I
(A.13)
SA(u) = 2A(u)* AT (A.14)

The coupling-constant is := A/e. Note that its flow vanishes
at leading order il /e. We now check cancellations beyond
the leading order. We use

/ = Ay / dkkd1 (A.15)
k 0
The two diagrams proportional th/(0 ") are:
4 2
- /k AR mI)p
9244 dm
_ g 2D T eelF) )
4me
j | _)/ —4k? n 2
j kd(k2+m?)® (k24 m?)°
2—d dr
_ 4 2o mese(f) (A17)
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The sum (which gives the renormalization.gfexactly van-
ishes.
The corrections proportional th(0) are

/ —8k*
ﬁ (k% + m2
—4 4 dz) T csc(dT”) (A18)
12 mée
/ 4 k4
H 74
g d(k?4+m?)
4— d en
oo, ) mese(S) (A19)
24 me
J \ / 8 k4 452
— . 3
' g d (k24 m?2) d(k? +m?)
.9/:
(d=2)(d-1) = csc(dTW)
= Ad
12 mée
(A.20)
The sum of the above three terms is
4—d)(d—2 dr
g m D= mesedE)
24 me
Note that
dr 2 2(d—4)  Trt(d—4)°
FCSC(T) d—4+ G 2830 + ...
(A.22)

So, working in a massive scheme, there are corrections at or-
der¢, compared to the leading term which would be. We

see that the fixed point of Stepanow [22] is —even if one would
accept his scheme— incorrect. However, as we have already
stated above, one should do the calculations in a massless
scheme.

APPENDIX B: LONG RANGE DISORDER

In this Appendix we give a quick study of the case with long
range disorder in internal space We show that one recovers
the Flory estimate of Section IV in the case of isotropic depi
ning. For anisotropic depinning we find a runaway flow and
cannot conclude.

We study
1 L
Sbo =1 / et 2o N2 At — ) [ — 2') (B.1)
cte't!
flx) ~a™“ (B.2)



We find the FRG equation for the LR disorder:
OA = eA+A(0)A"+(2— ) (AA'(0T)+A2A(0))A (B.3)

with ¢ = 4 — «, d large enoughd > « or more). We have
absorbed A in A with:

A:/C(Q)zf(Q)

q

(B.4)

This is because the graphs leading to tg:)? functions or
more do not contribute. This remains true to all orders,éasp
tion for A = 0 shows that to two or three loops no corrections

arise, except anomalous terms (which, as we will see are not

needed as we find analytic fixed points). Sofct 0 the one
loop result is probably exact to all orders.

The coefficienj: comes from the corrections to the gradient
term:

(AA'(0T) + A2A(0))B (B.5)
1 2

B= ﬁ/xx f(2)C(x) (B.6)

u=2B/A= # (B.7)

with « = 4, d > 4 (note that it goes to 2 whet goes to
infinity).

One easily finds the fixed points for = 0. For periodic
disorder one has:

A(u) = g cos(2mu) (B.8)
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dg = eg — (27)%¢? (B.9)
The correlations are:
(uuy = A(O)—f(z) g~ (420 (B.10)
q
with ¢ = ¢/2 as if A(0) was uncorrected.
For non-periodic disorder, rescaliny gives:

A(u) = A(0)eme"/(6A(0) (B.11)
C=¢/3 (B.12)

Thus the Flory estimate is exact. Note that the fact that e L

correlatorA(u) is analytic is not puzzling, since it generates

in turn a SR part which should be nonanalytic in order to e.g.
successfully generate a depinning threshold force.

On the other hand fox > 0 we find that:

A(u) = gcos(2mu)
g =eg— (2m)%g* +y\%g*

(B.13)
(B.14)

and there is thus a critical beyond which there is no fixed
point. This seems also to be the case for RF. Because of this
runaway flow we cannot conclude.
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