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We study minimal surfaces which arise in wetting and cagifilahenomena. Using conformal coordinates,
we reduce the problem to a set of coupled boundary equatioribd contact line of the fluid surface, and then
derive simple diagrammatic rules to calculate the nonalir@rrections to the Joanny-de Gennes energy. We
argue that perturbation theory is quasi-local, i.e. thag@dmetric length scales of the fluid container decouple
from the short-wavelength deformations of the contact liftas is illustrated by a calculation of the linearized
interaction between contact lines on two opposite pareigls. We present a simple algorithm to compute the
minimal surface and its energy based on these ideas. We ailsioqut the intriguing singularities that arise in
the Legendre transformation from the pure Dirichlet to threa Dirichlet-Neumann problem.

I. INTRODUCTION
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AN Minimal surfaces, i.e. surfaces of minimal area with spedifboundary conditions, are found in many areas of physics,
mathematics and biology. Their existence, uniqueness et properties (such as possible singularities or stgpéire still
«—] actively studied by mathematicians [1]. In the laboratamnimal surfaces are most commonly realized as soap filmadwed
= by a given wire-frame, a problem discussed already in 187Blateaul[2]. In some cases their morphology and stabilitxeha
N actually been elucidated experimentally in this contekt [Bther systems where minimal surfaces play a role incligld-|
< water solutions, diblock copolymers, crystallographgtpin structure, or liquid crystals such as smectics [4pyldiso arise as
N world-sheet instantons in string theory, for example indémiclassical, fixed-angle high-energy limit of scattgr@mplitudes
[8].
8 The minimal surfaces that will interest us here arise in tfodlem of partial wetting of a solid by a liquidi[6]. In the st@ard
O experimental situation, a liquid with free surface of asediquid-air interface) wets a flat solid plane over an a#gliquid-
O solid interface). The free surface meets the solid planegaoline, calleccontact ling at an anglé which is defined locally.
== The interfacial energy is the differen€e= v.A — +' A’, wherey is the energy per unit area (or surface tension) of the liquirid
4+ interface, and’ = vs4 — s is the difference in surface tension between the solidS#) @nd the solid-liquid (SL) interfaces.
I The force per unit length pushing a segment of the contaetdiwards the unwetted region is thfis= —v cos # +~’. Requiring
Q) that it vanishes gives Young's! [z, 8] local equilibrium caih, § = arccos(y’/v). The minimal-surface problem at hand is
) thus a problem wittmixed Neumann and Dirichleboundary conditions. In the idealized setting of an infiligieid container
Q and a perfectly homogeneous planar wall, there exists daisatution to this problem: it is a planar liquid-air intace meeting
> the wall along a straight contact line. Strictly-speakiagwe will discuss in sectidd Il, the properties of the cargaat infinity
\_~ must be carefully chosen in order not to destabilize thigtam.

«. Two extraforces play in fact a role in the general formulatbthe wetting problem. The first comes from the drop in press
(O across the liquid-air interface, which adds to the Gibbsgna volume term£ = A — ' A’ — pV. Herep is the pressure
difference and’/ the volume of the fluid. The free surfaces that minimize timisrgy have constant rather than vanishing mean
curvaturel[B]. Itis quite remarkable that the correspogaiquations are (at least formally) integrable, see foamst [9]. Note
that in the special case of an incompressible flpids a Lagrange multiplier determined by the constraint that“droplet”
volumeV be fixed. The second force that plays in general a role is yravhich introduces an additional scale, the capillary
lengths= = (v/pg)/2. Herep is the fluid mass density, andis the gravitational acceleration. In this paper we willdstu
situations where both pressure and gravity can be ignorbi i$ usually valid if one concentrates on length scades:—!,
and considers a fluid connected to an infinite reservoir seetffectivelyp ~ 0. Note that the capillary length is typically of the
order of a few millimeters, but it can be made much larger éeffall (e.g. space-based) experiments, or if one reptheesir
by a second non-mixing fluid of roughly equal mass densitysigettings ~ p ~ 0 is a good approximation in a wide range of
experimentally-feasible situations, and we will do so iis fraper. Technically, one can further justify that gratigyignoredat
all scalesif a condition, identified below, is satisfied.
What is in fact more questionable is the assumption of a pgyfeomogeneous wall. Indeed, in most of the experimental
setups of wetting, roughness and impurities of the solidgsate couple directly to the position of the contact linkjck may as
a result be effectively pinned. Computing the energy déformedcontact line is thus a question of foremost importance. For
small deformations, as Joanny and de Gennes (JdG) have $h@jythe contact line obeyson-local linear elasticity These
linear equations may become unstable at wavelengths cainlpdo some global-geometry scale, as several earlieiesthdve
established [11]. The issue of non-linear elasticity, WwHi@comes relevant for larger deformations, has been adtemly



recently [12]. It could play a role_[13] in resolving the appat disagreement between recent experimental measuteofen
contact-line roughness [14], and renormalization-gralpudations near the depinning transition|[15] or numdisgaulations

[1€] that were based on the JdG linear theory [17]. To be dwsteresis and other dynamical phenomena, which have at-
tracted much of the recent attentioni[18], may also proveoittgmt in interpreting the above experimental data. Néedess,

a systematic analysis should start with a thorough undwetstg of the non-linear and possibly non-local effects i simpler,
equilibrium situation. This is the problem that we will syuldere.

The area of a minimal surface bounded by a given (closededsrsimple when expressed in conformal coordinates. Non-
linearities arise because this choice of coordinates dbgaeon-trivially on the boundary curve, through the confakgauge (or
Virasoro) conditions. In this paper we develop systematthods for solving the ensuing non-local and non-linearnéquos,
either in perturbation theory or numerically. We focus, antjcular, on the case of a planar wall, and derive simplgrdimmatic
rules that calculate the energy of a deformed contact lirenyogiven order in the deformation amplitude. The methodhEan
extended to more complicated container geometries, butetadls become more involved. As a relatively simple illasbn, we
show how to extend the rules, and calculate the JdG linearyhia the case of two contact lines lying on parallel opposialls.
We also describe a novel algorithm which finds the minimaflezigr energy with no need for surface triangulation. Finaig
discuss some general properties of these perturbativenexpes, which bear a fascinating similarity to problemscemtered
in perturbative string theory. We hope to return to some es¢hquestions, as well as to the implications of our resoitthe
wetting problem, in a future publication.

The paper is organized as follows: In secfidn Il we descrilrédbasic model, point out the need for global tadpole caatieti,
and discuss the relation of the mixed Neumann/Dirichleéogure Dirichlet problem. In secti@nllll we give the formaligion
of the latter problem, for an arbitrary boundary curve, imte of conformal coordinates. This is standard materiakctvlis
included here for completeness. In secfiah IV we specidabzihe case of a planar wall, derive the corresponding noeaki
boundary equations, and express the energy in terms ofgbkition. We pay particular attention to the decouplinghs t
large-volume cutoff, which as we will explain is rather dabtn sectioiV we solve the boundary equations perturbbtiand
compute the corrections to the JdG energy, up to quartiorofksctior V] describes an alternative approach, using dragg-
multiplier fields and leading to a simple diagrammatic repreation of the perturbative expansion. The numericarétgn is
presented in Sectidn YII. In sectiGnMIIl we extend this te ttase of two parallel walls, and calculate the quadrataraution
of the contact lines. Finally, in secti@nllX we establish fimiteness of the perturbative expansion order by order paiirt out
some intriguing directions for future work. The Weiersgrgarameterization of our fluid surfaces, a calculation coifig the
decoupling of the large-volume cutoff are described, retsypely, in appendicdsIA arfd B.

Il. THEMODEL

We consider a fluid inside a tubular contaitiex R, whereR corresponds to the height coordinatends? is some (a priori
arbitrary) connected region in tie, y) plane, with boundarg2. Let us for now assume that the fluid surface has no overhangs
— it can then be parameterized by the height function y). We may express the energy functional as the following sum of
two-dimensional bulk and boundary terms:

1
€ = Epuik + Ebnry :/ dz dy <7\/1 +(0:2)* + (9y2)* — pz+ —P922> —/ diy'(l)z 1)
Q 2 a0

whered! is the infinitesimal length along the boundarybfThe first termin[{lL) is the fluid-air interfacial energyl, the second
is due to the difference in pressure between air and fluidthiiné to gravity, while the last comes from the fluid-soliderface.
For convenience, we have slightly generalized the moddiatihe tension of this interface may vary along the contairadis,
as can be done by design. The more general case’afepending on bothandz, due for instance to the presence of impurities,
will be discussed below. For now is only a function of.

In the absence of gravity = 0, the minimum of the energg is a surface of constant mean curvature, with specified conta
angles:
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whereV = (0=, 0,) andn is a unit vector normal to the bounda?§2. These non-linear equations do not always admit a global
solution, see e.g.[19]. A necessary (but not sufficient)dation for a solution to exist is

Q = p x Area(Q) + 729 diy'(1)=0. 3)



FIG. 1: A fluid surface bounded by a (shaded) planar wall, i it at the position of a (pinned) contact line. At distasenuch larger than
the capillary lengthl /, it is flat and perpendicular to the gravitational field (JefEnlargement for distances smaller thigh (right) which

is the range of scales studied here. The unperturbed sugacplane, making an angte with the wall. When perturbed, the conformal
parameters$ci, o2) approach Cartesian coordinates far from the wall, as disclis sectiofTV.

This is a condition ohverage-force cancellatiorindeed, the left-hand side of the above equation coupiesily to the zero
mode ofz(x, y), and would lead to a runaway solution if it did not vanish, éimergy being unbounded in that case. By analogy
with string theory we may refer to this as a global tadpolecetiation condition. Note, in particular, that for a homageus
wall, for which +/ is constant, one must fine tune the ratio of perimeter to aoethat it equaly /4. If the average-force
condition is satisfied, the average height of the fluid serfaecomes a free dynamical parameter of the solution, amasom
the string-theoretimoduli Its role must be examined with care as it threatens a phierstability of any perturbative expansion
at weak disorder, and may thus lead to qualitatively new ieha

The emergence of conditiohl (3) clearly originates from teglect of gravity. Ifg # 0, it is easy to see that the energy is
always bounded from below and that the fluid will tend to risetsthat[ dz dy = ~ Q/pg, the well known capillarity effect.
Hence if@ is non zero, one expects that the theory studied here, @otaiettingg = 0, breaks down for wavevectogs<
(hence especially for the zero mode). However, the intexg@gpoint, discussed below, is that if one impoées- 0 then one can
safely sey = 0 and obtain a theory which is well defined at all scales. Thikéstheory studied here. It is illustrated in Hij. 1.

Let us consider minimizing the energy in two steps: We firdtesthe bulk equations keeping the contact line fixed, i.e. we
find the surface of constant mean curvatusgy, y), such that the restriction af, to 992 is a given functiom.(I). We denote
the corresponding bulk energy (or reduced energy fundtiorthe language ol.[11]) by¥[h] := Epuk(zr). The energy of the
equilibrium configuration is then the minimum over all cartténes of

E[h]—]gg v h. 4)

Thus~’ plays the role of a source, and the minimum energy is justégendre transfornof the reduced energy functional.
If v/ were to depend also ony the source would be field-dependent. We will comment on th#leties of this Legendre
transformation between the Dirichlet and Neumann probl@rtise concluding section.

Let us describe the simplest configuration studied hereglwbdnsists of a semi-infinite fluid bounded by a homogeneous
planar wall atz = 0. We assume from now on that= 0, and that the container at infinity has been adjusted sohajlbbal
tadpole condition is satisfied. The unperturbed fluid sefathen an inclined plane, making a contact arfigle= arccos(~{, /)
with the wall, as illustrated in figure 1. We are choosing thigin of coordinates so that the unperturbed fluid surfatergects
the wall alongz = 0, while the perturbed contact line is given by= h(y). It turns out to be convenient for the following to
define:

Bh] = Elh] - E[0] —ycoseo/h, (5)

Y

If the contact line deformations are concentrated in a firgiggon one expects this energy difference to also be coratedtin a



4

finite region, and the outer boundaries of the container tmdple. More generally, the simple planar model of fidure dusdh
give an adequate description of the physics if all otheadis¢ scales of the system (including the capillary length, and all
geometric scales) are much larger than the typical deféomatavelength. We will come back to this subtle issue lateriote
that we have included in the energy difference the conidbuty,,.,, of the homogeneous wall. This means thab] should
start out as a quadratic functional for sna(l).
Let us briefly mention the case of impurity disorder. In thase translation symmetry of the tube is in general brokeméy t

roughness of the wall. The effect of impurities can then bel@hed by a variable fluid-solid tension, and the boundam tier
@) becomes:

5bnry = _f dl/ d< 7/(l7<) . (6)
o Jo
The two stage minimization can then be summarized as foll@me writes:
Yl z) =) + AY' (1, 2), @)

wherev( (1) = v cosby(l) is some average or reference value, and defines the shifietidoal:

MMEEW—EM—T%dM%%@MD ®)
o0

Because of disorder the impurities generate a potentiahi®izero modey of z(z,y) and the condition[{3) cannot hold in
general. However we can still impose this condition “on ager’ § di (/) = 0 and compute the correspondifgh]. It is

this functional which is studied here: it obeys quasi-lagand is well defined foy = 0. OnceE[h] is known, finding the
(equilibrium) position of the contact line amounts to solyin the second stage of the minimization:

X h(1)
E[h] — 7( dl /0 dgm'(l,g)] . 9)

This can be viewed as a generalized Legendre transformatiaoh we will not study here. The aim of this paper being dimp
to characterizeZ[h] in presence of an average contact angle. We will use expressuch as pinning condition, or pinned
configuration in the following only to denote the fixédzonditions.

min
h(l)

I11. CONFORMAL COORDINATES

Computing the area of a minimal surface bounded by a contisiulmsed curv€(s) is a classical problem of applied mathe-
matics. In this section we will explain how, in conformal gaulit reduces to a (non-linear and non-local) equation fanation
of one variable on the boundary. L&{r;, o2) be an arbitrary parameterization of the surfacei.e. (x,y, z) is the position
of the surface& corresponding to the values of the two (a priori arbitradhosen) paramete(s, 02). We will assume thal
has the topology of a disk, and that the parameterizatiotolsadj i.e. that there is a one-to-one correspondence leetweints
of ¥ and points in some parameter domainc R2. One should of course keep in mind that, for some boundamesithese
assumptions may have to be relaxed. In terms of the inductitrpg, = 9,7 - 0,7, the area ok reads:

A= / /D doydoy \/det g . (10)

This expression is invariant under any reparametrizatiith won-vanishing Jacobian, i.eq; — &1(01,02) andoy —
G2(01,02) with det (0,6,) # 0. For a surface without ‘overhangs’ we may use this freedorsetdo,,02) = (z,y), in
which case[{TI0) reduces to the expression for the area useql ). This is a useful parameterization whgn andd, ~
are small, but more generally the minimization of the arethis gauge leads to non-linear partial differential equragiin two
variables, which are hard to solve.

A more convenient choice is conformal coordinates, whiehdafined implicitly by the two conditions :
07 07 =0 and O17F - O 7 = Oof - OaT . (11)

Put in words, the two vector fields tangent to the surface ategonal everywhere and of equal, not necessarily copstan
length. [As the reader can easily verify, the parametddrdb, 02) = (, y) is conformal only in the special case of constant
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z.] It follows from @) thatg,, = ®2 5,5, Whered? = 9,7 - 8:7 is the so-called “conformal factor”. Thus in this gauge thesa
can be written as

1
A: 5 // dO’ldO'Q (817?817?4- 82F827?> 5 (12)
D
and the variational equations are the Laplace equationgimimensions :
B4 ( det g g™, F) = (B2 +02)7=0. (13)

The embedding coordinatés, y, z) are therefore harmonic functions@f;, o2), and can be written as the real parts of analytic
functions of the complex variable = (o1 + io2)/2:

z(w,0) =2Re X (w) , ylw,w)=2ReY(w) , z(w,w)=2ReZ(w) . (14)

This property of harmonic functions is very special to twmdnsions. Our problem is now to determikie Y and Z for the
given boundary curve(s).

To this end, note first that if the surface is non-singularlamgnded, the functionX¥, Y andZ must be analytic in the interior
of the domainD. They are furthermore related by the two conformal-gaugwelitions [T1), which can be combined in the
following equivalent form :

(01 —i02) 7 (01 —iDa) 7 = (X + (Y2 +(Z')* =0, (15)

where the prime denotes differentiation with respectsto This rewriting makes manifest the residual freedom of il
reparametrizations of). Such complex-analytic changes of coordinates presedeenh the conformal conditiof {[15), and
can be used to map the parameter domain to any convenierlystmmnected region itC. Let us assume, for instance, that
D = {w € C,w| < 1} is the unit disk. We writev = pe’?, and denote by(¢) := #(¢,p = 1) the boundary curve
parameterized by the special conformal coordinateNote thati(¢) has a unique harmonic extension to the interior of the
disk, and thus determines unambiguously the minimal sarf&his follows easily from the fact that the analytic funectiX (w)
admits a Taylor expansion

X(w) = i X,w™, (16)
n=0

so that its restriction to the boundary has no negativedteaqy Fourier modes, when identifying® = ¢**". Thus, to extend
z(¢) to the interior of the disk, we need only split it into posithand negative-frequency parigp) = =4 (¢) + z—(¢). Then
x, can be extended t& (w) by the replacement'® — w, while z_ = Z, extends to the complex-conjugate anti-analytic

function X (w) = X (w). If z(¢) has a zero mode, it must be split equally between the two.pagnple calculation leads in
fact to the following Cauchy relation betwegh(w) and the boundary restriction of

i’ +w
el —w

1

27
X(w) = — /0 a¢/ z(') (17)

- 47
Similar relations hold of course betwe#f{w) andy(¢), and alsaZ(w) andz(¢). Itis, furthermore, easy to check that since
X (e'*) =z, (¢), the conformal-gauge conditio{15) is equivalent to
dry dr
d%*-dL;:o for all ¢ € [0, 27] . (18)
Let us go back now to the expressiénl(12) for the area. If thfase is minimal, integrating by parts and using Laplace’s
equation allows to rewrite its area as a boundary integral:

1 2m 2m
Amin = % / pdp / A (0,7 - 0,7 + p~ 2047 - D7) = % / de 7 0,7 (19)
0 0 0

p=1

The integrand involves the radial derivativerobut with the help of Cauchy’s equatiopd, X = —i04.X, and similarly for the
functionsY andZ) we can convert this to an angular derivative, with the rtesul

. 27 — - jo%s)
i dr_ dr
Amin:—/ d (F-——F_-—+):2w§:nfn2. 20
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Here, is the Fourier transform of the function on the cirélgs) = >, 7,e™?. For later use, we also give two alternative
(equivalent) expressions for the minimal area:

e (50) [ £

The first can be obtained from ef.120) by Fourier transforhilesthe second follows by a double integration by parts ded t
fact that, thanks to th& prescription, only the cross term in the numerator contebuNote that for suitably smooifi¢) these
integrals are manifestly finite in the — ¢’ region (hence thé: can be dropped in the final expression - but not if one expands
the square).

We have thus succeeded to express the minimal area as acitgun-local, but quadratic) functional af¢), so one may
think that our problem is effectively solved. This is, howewot quite the case, because the transformation fromripgmal
parameter of the boundary, to the special conformal coatdify depends itself non-trivially on the boundary curve. To mak
this relation explicit, let us write = f(¢), so that(¢) = V(f(¢4)). A straightforward calculation starting from the integral
expressior[{17) gives

diy —L/d¢’ v(f(9') _ (22)

d¢ 87 sin?( W)

Plugging this in the gauge conditidn{18) leads to a nondlifretegral equation, that can be used (in principle) tordeitee f (¢)

for any given boundary curvé(s). This is still a non-trivial task, but we have at least redlittee minimal-surface problem to
one involving only one unknown function of a single variable some cases, the problem can be simplified further by using
the residual freedom of conformal transformations to maputhit disk to a suitably-chosen domain. Such is the case Wien
contact line lies on a plane, as we will now see.

IV. CASE OF A PLANAR WALL
A. Theboundary equations

In the configuration of fig. 1 the contact line is restricte@dfolanar wall, located at = 0. Assuming that it has no overhangs,
such a contact line is naturally parameterized by the héigtttionz = h(y). We want to adapt our previous general discussion
to this special situation. The story is somewhat simplifigdibing the convenient conformal coordinates (reminiscérlie
proper-time gauge of string theory):

X:—icw:—%(a—i—zﬁ'), sothat z=2ReX =c7. (23)

Herec is a positive constant, and we have traded, o-) for the lighter notatior(o, 7). In imposing [ZB) we have used the
residual freedom of conformal transformations, and thetleet X is an analytic function. Note, however, that this choice of
gauge might be obstructed globally, as we will explain inexggix A. Since the fluid surface extends out to infinity, thevne
parameter domain is the upper-half complex pldpes {w € C,Imw > 0}. Later we will consider a second wallat= L, in
which caseD will be the infinite stripd < 7 < L/c. The points at infinity must actually be treated with care rilght procedure

is to first makeD finite, by bounding the fluid with outer walls, then move thesgéer boundaries to infinity.

We will be here interested in surfaces that approach asytioglly the inclined plane

7o = (sinfy 7, o, —cosby 7) . (24)
It is therefore convenient to choose- sin 6, and to define the difference
AF=7—7y, with AF=(0,7,2). (25)

Note that the gauge conditiof{23) ensures that the first oot of A7 is identically zero. Since the components of bgth
andr are harmonic, so are those of their differedcg We can in fact writgj(w, w) = 2Re Y (w) andz(w, w) = 2Re Z(w),
where the new analytic functions are given by

Y=Y—w, and Z =2 —icosbyw. (26)

Following the same logic as in sectibnl lll, we also define #rictions ofy and? to the real axisjj(c) = g(o,7 = 0) and
Z(0) = zZ(o, 7 = 0). The extension of these functions to the upper-half planmiguely determined by the property that they
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FIG. 2: The domairC' and the inward pointing normal.

should be both bounded and harmonic. Indeed, the analytititn Y must have a Fourier-Laplace expansion involving only
positive-frequency modes:

~ ©dk ~ o *dk -

Y (w) :/0 Py Y, 2k — (o) :/0 o (Ve +ce) , (27)
since it would otherwise diverge when— oo. Thus, to extendj(o) to the upper-half plane, we must first split it into its
positive- and negative-frequency parigy) = g+ (o) + §— ga), then extend), analytically andy_ as its complex-conjugate
anti-analytic function. The Cauchy integral formula relgty’ (w) andg(o) reads

Voo = = [T qe 9@
Y(w)_27T /_Oodo— 50— (28)
The right-hand side is analytic in the upper-half compleangl provided thaf/(o) vanishes at infinity. Of course a similar
formula relates alsé(o) to its analytic counterpaft (w).

Our problem is thus reduced to that of finding the two real fioms on the real axig;(c) andg(c). These are related by the
pinning condition of the contact line:

o) = h(a + g(a)) : (29)

Furthermore, they must obey the conformal constriidt (Afigr inserting the expressiorls{26), and using the obvidesstities
g+(0) =Y (0/2) andz (o) = Z(o/2), this constraint reads:

dgy | . dZy  (dge Y (Y
do +icosto do (da do ' (30)

The pair of coupled, non-local equatiofisl(29) &ind (30) isringiple sufficient to determing(s) andy (o), and hence also the
complete shape of the fluid surface. In the following seciae will discuss how to solve these equations numericallgya
series expansion in powersbfy). First, however, we must express the energy in terms of thétundary functions(s) and

y(o).

B. Expression for the energy

The area of an infinite fluid surface is, clearly, infinite. Hewer, for a localized deformation of the contact line, ia@r. f
h(y) — 0 wheny — +oo, we expect the difference in ared,,in = Amin[h] — Amin[0], to be finite. To calculate this
difference, we will introduce as a physical cutoff a tubuantaineiC’ = Q x R, with 2 a rectangle of siz&,, x L, in the(x, y)
plane. We define the associated characteristic function

L L 1 if FeC
Oc(7) := O(x) @(y + 77!) 9(% - y) O(Ly —x) = {0 i)tlrerwise, 1)

with ©(a) the usual Heaviside step function. The difference of thastieen reads:

duin= 3 [ [octrianr o — oc() i - o4 | 5 (32)
2 RxR



where, after evaluating the right-hand side, we should tiagdimit L,,, L, — oco. Note that cutting off directly the parameter
range could give a wrong answer, because the same valuegfneed not correspond to the same valuéofy) on the planar
and on the deformed surface.

Expanding the integrand of e@.{32) in powersof, and using the fact that
Oc(ro + A7) = O (7o) + dc (7o) - AT+ -+, (33)

whered¢ is the delta function localized on the boundaryfandn is the inward-pointing normal unit vector, leads to the
following expression for the area difference:

Amin = %// (D AT - Dy AT + 20, AT - D7) 6° +/ |- 0 7| A AF - (34)
D oD
HereD = [0,L,/sinfy] x [-L,/2,L,/2] is the parameter domain defined by the condit®n(7) = 1, anddD is its
boundary. The last term in the above equation accounts éoiaitt that the cutoff corresponds to a container in physigate,
rather than in the space of parameters-). The factor# -8, 7| !, with &, := 7-J a derivative in the direction normal tD,
is the Jacobian that arises upon converdip¢ ) to ad-function in parameter space. The neglected terms invagiresh powers
of n - A7, and one or more partial derivatives. They vanish on therduatendary, provide(zﬁr — 0 atinfinity, and on the: = 0
wall wheref, - Ar = 0 for our choice of gauge. Note that in deriving expressiol (84 used the equalit§, 7, - 0,7 6%° = 2,
which follows easily from[(214).
Using Stoke’s theorem and Laplace’s equation we can exptete terms in[[34) as boundary integrals,

Ain = —/ (EAF-aLAF F AR, 7 — |f- Bt ﬁ-AF) . (35)
oD \2

Let us consider first the = +L, /2 boundaries: sincé = F(0, 1, 0) there, the last two terms cancel exactly one another, while
the term quadratic it\7* does not contribute as long &g” — 0 at infinity. This term does not contribute, for the same reaso
at ther = L, /sin 6, boundary. Finally, at both = 0 andr = L,/ sin 6, we haven - A7 = 0, sincenn = £(1,0,0) on these
boundaries and, with our choice of gauge; = (0, 7, 2). Putting all these facts together we obtain:

Apin = / do {—%(g 8,5+ 20, 2) , (36)

— 00

+ cosby 2z —cosbgy z
0

7=0 T=

T7=L,/sin 6y }

where the limitL,, — oo has already been taken on the right-hand-side. 7Fterivatives in the first term can be converted to
o-derivatives with the help of the Cauchy equation. As forlttst two linear terms, they cancel becatss harmonic (both are
proportional to the samie = 0 Fourier mode). Thus the difference of the areas reads:
- 1 [ dy_ dz_
Amin = —/ do [17]+L + i&ri + c.c.} . (37)
oo do do

Although this calculation is correct, the cancellationtw tinear terms is, from the physical point of view, rathesleading.
It involves two opposite walls which are infinitely far apatthe L, — oo limit, and looks therefore highly non-local. A
physically more significant cancellation occurs in the ggdunctional E[h], which (as explained in sectidd Il) receives a
contribution from the fluid-solid interface:

Epnry = _7{ diy'z = —7(3056‘0/ do {2(14—80@)
oD

— 00

-z
7=0

. 38
T7=L,/sin 6y } ( )
The second equality can be understood as follows: the umped planar surface meets the= 0, x = L, andy = £L, /2
walls at angles equal tf, , 7 — 6y andw/2, respectively. Young’s equilibrium condition thus reasrthat, in the absence of
impurities:

~ cos Oy for z=0,
= { 0 for y==+L,/2, (39)
— cos by for x =1, .

Furthermore, along the first and the last wall the invariangth isd! = dy = (1 + 90,7) do. Dropping the quadratic term at
x = L., since bothj andZ must tend there to zero, gives the advertised equdiidn &8Jing this toy.4,.;, leads to our final
expression for the energy:

- °° dg_ dz_ dy

Eln) = 1/ do [i@i 1is S cosh Y 4 c.c.} . (40)
do do do

— 00



Note that the linear terms cancel here separately on eathanelthat all the contributions to the energy are “quasald Thus
the large-volume cutoff decouples, as expected, in theutzlon of the energy (but not of the separate contributipAs,i,,
and&nry). The only restriction on the cutoff is that it should not @éslize the unperturbed planar surface. We confirm these
claims by a calculation in appendix B, which includes as @rascontrol parameter the inclination angle of the outed.wal

For later use, we will also need the expression of the energgrins of the Fourier components o) andz(o). Using
eqg. [2ZT), and doing some straightforward algebra leads to

©dk /s . :
Elh] = 7/ Py k (|Yk + i cos 902k|2 +sin? 6, |Zk|2) . (41)
0 2w

Note that the energy is quadraticgnand z, where the functiony(c) = o + g(o) relates the natural parameterization of the
contact line, to the conformal parameterization in terms.oks was explained in the previous section, the problem islimaar
because this change of coordinate depends explicitly opitiméng profile.

V. PERTURBATIVE EXPANSION

The pair of equation§(29) and{30) cannot be solved, in gdnarclosed form. However, if the contact line is deformedyo
“slightly” (this will be made more precise later), thgrand z should both be small. We may therefore expand the right-hand
side of eq.[[20) in a Taylor series,

n!

o) = Y A I “2
n=0

where bothj and the derivatives df are now evaluated at the argument-urthermore, solving the quadratic equatiad (30) for
dg. /do and integrating gives:

o ~ ~ /2
- - ’ 1 _ dZ+ 2 o dZ+ ! _ 1
(o) = [ do { [4 (da’) 1 cos by o’ 5( - (43)

oo

Note that we have picked the solution of the quadratic eqodtiat vanishes fo¥, — 0, and we have also fixed arbitrarily the
irrelevant (complex) integration constant. Sirtcis small, we may expand the integrand on the right-hand sified

J+(0) = i 2;1 [(=1)-1-3-5---(2n— 3)] x /U do’ [(iif)gﬂcoseoiiﬂ"
n=1 : o
—/;da’ [—icos@o% — sin? 6 (ili?’y + } (4a)

EquationsI{4R) and{#4) can now be solved iteratively ag¥l one starts with the lowest-order solution of the firstatipn,
Z(o) = h(o), and inserts it into the second one to fipd = —i cos 6y h,. Inserting the result in ed_{(¥2) givésat quadratic
order inh, and from eq.[{44) we can obtainto the same order. Iterating the procedure gives, in priacthe solution to any
desired order in the pinning profile

In order to write the answer in a compact form, we introdueeftiiowing notation. Iff1 (o) are the positive- and negative-
frequency parts of any real functigifo), then

F=fe+fo and if=fr—f, (45)

where the second equality defines theal function f(o). Note thatf andeare both real — this follows from the fact that
f— = (f+)*. Now the first few orders in the expansion of the solution read

) dh~  cos?0p A®h~y  dh [ o, [ dhiy? . e .,
z:h+cos90£h+ 5 @h - {sm 0o /,Oo(da’) do’ + i cos® O (@h)Jr_'— c.c.] +O(h*), (46)

dhy
do’

)Qda’ — icos? 6y (jh

o)

§y = —icosfyhy — sin® 6y / ( ?L) + O(h?), (47)
oo +

where we have stopped at one order lower in the expansigrfafa reason that will become apparent in a minute. It will be
useful to have also at hand the Fourier transforms of thgsesgions. Noting that

~ ~ k
foget fog- =50 =F3) and ifi=figs. (49)
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we find after some straightforward manipulations:

2 2
- sin” 6, cos- 6
Vi = hy, cos by +/hk1hk2 ey ke [—O@(k1k2)+ |k—2|0} + Oh?, (49)
- 0
7y = hk+/hklhk2 fey kg 200
k2]
2 2 2
sin” 6 cos®Op k1 cos® by (ko + ks3) 4
hi, b, hi. k1koks | ————— O(kok O(h*) . 50
+/ ki ltko Vg W1R2R3 |:]€2+]€3 ( 2 3)+ 2|k2k3| |k3||]€2+/€3| :|+ ( ) ( )

Here the integrals run over aj;, with normalization/ dk; /(27) and the condition tha}" k; = k. The step function® (k;k;)

force the two momenta to have the same sign, and we have agshatig is positive. Recall thal, enters into the expression
) for the energy through the combination

2
i(Vi, +icos by Z) = Smk o /hklhkz krks ©(k1ks) + O(h®) . (51)

Since this starts out quadratically in the cubic corrections contribute to the energyJdh®). This explains why we have
truncated the expansion ¢fat one order lower than the expansioreof

Inserting [5D) and(31) il {41), and doing some straightodhmanipulations, leads to the following expression ferehergy
of the deformed contact line at quartic order:

Elh| = Ey+ Es+ E4 + O(h°)

where

° dk
E2:781n290/ — k|hgl?* (52)

0 27T

e — . ) |k1|k2k3 _ . )
3 = 7y COS 90 S111 90 hklhk2hk3 |k | = —7yCOS 90 S111 90 hklhkghkg kle @(kle) (53)
3
Yy . 4 @(klkg)@(k3k4) 2/€1 @(k3k4)
Ey == [ hi hi,hi,hi, k1kaksk Opy ——————— + ————=—
4 2/ Ky ko kg MUk y 1234[8110 o{ ey + Ko +|k1|(k3+k4)}
. kiky ko2 — k2

+ sin® 6y cos? 6 + . 54
0 0{|k2k3k4| |k1||k4||k1+k2|} %)

The integrals in[[33) and{54) run over &l with the condition tha}_ k; = 0. As a check, note that @k = /2 the energy is
invariant under reflectioth — —h, of the contact line. Note also that the expressions myitigl] | /., inside the integrals are
invariant under the combination of complex conjugation ehange of sign of all the momenta, consistently with the flaat
E[R] should be real. The expression 05 agrees with the one derived In_[12] by a different method.

The Joanny-de Gennes linear theary [10] corresponds teetdirig term of the above expansion. Compadfgwith the
energy of an elastic rody ~ [ k%|h,|?, one notes a softening of short-distance modes, and comdsmy hardening of long-
distance modes, due to the interactions mediated by thacurin real space, the JdG energy can be written as (seethession
in sectior[1):

By = % sin2 / / dodo’%. (55)

This quadratic, non-local functional has appeared in aetaof other contexts, e.g. in simple models of quantum-raeidal
dissipationi[20, 21]. Note thdf, is invariant under SL(R) transformations, i.e. under conformal transformatidvas preserve
the upper-half complex plane,— ggjdb, h — h, with a, b, ¢, d real andud — bc = 1. The full energy is not only translationally-
invariant, but it also transforms covariantly under reisg of the physical space:

ERN] = X E[h]  if  hM(y) = AR\ ly) . (56)

This implies that the perturbative expansion is really apamsion in derivatives, as should be expected from the fiattthe
classical problem has no intrinsic length scale. We willineto this point later on.
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It will be useful, for comparison with the following sectipto rewrite the quartic contributions to the energy diffehg
First, we note that the two terms multiplyisin® 6, are equal up to a factor 6f2. This follows from the following chain of
replacements, which are allowed upon symmetrization ofrttegrand:

2k1 O (ksky)
—— — —(S1ts
k1| (ks + ks) (514 52)

O (kskyq)
(k1 + ko)

O(k3kys)

—(1+ —\wre)
( 5182) Iy + Fo

Heres; = k;/|k;| is the sign of the momentu#y, and in the second step we have used the fact that the sign ef k) is the
same as the sign of eith&r or k5, since the expression is multiplied by + s1s2) = 20(k1k2). Likewise, one can justify the
following replacement:

k1 O(ksks) kiky and k? — k2 (k2 + k) — (k2 + k)

, [P S S
k1| (ks + ka) |ki[|kallky + Kol |k1l|kallky + K2l 2|k |[kal[k1 + ko2l

Putting all these facts together, using t@; k; = 0 and doing some straightforward rearrangements leads tioHioging
alternative expression for the quartic energy:

4
Ey= %sinQ 0 / I kinw,)
Jj=1

This somewhat more economical expression will be easieoitapare with the diagrammatic expansion, to which we will now
turn our attention. Note that the expressionHyrin the particular casé, = 7/2 was also found in_[13] using the perturbative
solution of the non-linear equation (not using conformalrciinates). It is possible, though cumbersome, to exteadnbthod

to arbitraryd, [22].

_ O(k1k2)O(ksks)

57
|k1 + kol &7

+ cos? 6 { Fiks kaks } 1 .

|koksks|  |k1||kal[k1 + Kol

VIl. DIAGRAMMATIC METHOD

The perturbative expansion of the energy can be organifaxieetly by using a Lagrange-multiplier field to impose the
pinning constraint of the contact line. One starts with thléofving variational principle for the area:

Apin = extr Ao, 7), with A(a,7) = //D d%o+/detg — /aD ds a(s) [z(s) - h(y(s))} . (58)

Here s parameterizes the boundary of the donfBiranda is a Lagrange-multiplier field that transforms under repeartiiza-
tions such thatv(s) ds remains unchanged. Sincg«, 7) is reparametrization-invariant, we are free to choose gméazmal
gauge and to set = sinfy 7 as before. Thu® is the upper-half plane > 0, and we may choose = ¢ for the boundary
parameter. We also define= o + y andz = —costly 7 + z , and we subtract frond the area of the flat fluid surface. This
gives Ay = extr A, where

Al §.7) = % //T>O(aagaag+aazaa5) _ /T_O [ (5~ hio +9) — cosbo2] . (59)

The last term in the above expression comes from the crassdgr, 0“2 = — cosfy 9,2 in the area difference. This is a
total derivative, which is why it only contributes a boungéerm. Note that, in the light of our discussion in seciial) 84
contributions from the boundaries at infinity have been geap This is legitimate since we are ultimately interestethe
energy [4D) rather than in the area of the fluid surface. Adtvely, one can viewd(«, ) as an action and consider the path
integral over the field§ and« [28]. Since we are doing only a tree level calculation therea need to worry about Fadeev-
Popov ghosts, which would be important for the study of theron quantum fluctuations. Fluctuating surfaces [23] ay@hd
the scope of the present study.

It looks, at first sight, rather odd that in the above formolathe conformal-gauge conditions are not explicitly irapd. The
extrema ofA(«, ¢, Z) should therefore obey these conditions automatically.€Eovghy, note that the variation ¢f{59) leads to
the boundary equations:

O,9=a(o)h' (c+7) and 0.Z= —a(o)+cosby at 7=0. (60)
From the above boundary equations, and from the pinningi@ns: = h(y), we deduce:

0.7 = (sinby, a(o) k' (y), —a(o)) and 8,7 = (0, 9oy, K (y) Ooy) . (61)
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Thus, on the boundary, the conditiogn- 9,7 = 0 holds. This implies that the functia®, - 9,,7, which is analytic in the upper
half plane and vanishes at infinity, has zero imaginary pathe real axis. From the Cauchy-Poisson integral formud\|2
conclude that it vanishes everywhere, so that the confoganage condition§{15) are indeed satisfied.

In order to develop simple diagrammatic rules, we first stieeharmonic equation for the “bulk” fields keeping theirtries
tions to the boundaryj(c) := §(c,0) andz(c) := 2(c,0), fixed. As has been already discussed, this leads to theceepént

L 0% [ die o dgs 1/ o
2 0 " 2 v ) = 5 | klikd-k 62

and likewise for the field. Next, we solve the linear equations fgw), thus eliminating it entirely from the expressidnk(59).
The new variational functional, expressed in terms of FeEmodomponents, reads

~ N 1 o 1 1
Ala,g) = §/k|k|yky,k — §/km5ak5a,k + /koz,ka, (63)

whereqy, = cos 0y 276 (k) + i, , andHy, is the Fourier transform o (o) = h(o + (o). This result also follows if one uses
the path integral formulation and integrates over the figldadz in the bulk. More explicitly

, N 1 , L
H; = hy, + /zkl iy Uk, + B /(Zkl)Qhkl ko Uks + 7 5 (64)

where the integrals run ove@r, k; = k. The extremum of the functiond[{63) can be computed by sumgrinee-level diagrams
of a 1-dimensional field theory. The 1-point function andgagators read:

—C = (ag) = cosby2mi(k)
— = (bapda_y) = |k| (65)

N = (Gkl-k) =~

while the first few vertices, deriving from the last term[gB)pare as follows:

) - ky1)? .
—— = hpo_yg, 5 = ik Ay Gky Ok —ks g = ! ;) Ny Uk Uk Q—ky—ky—ks - (66)

Note that all of these vertices are proportional to the atughdi of the pinning profile. Furthermore wiggly lines, capending
to the fieldg, can only terminate on another vertex in a vacuum tree diagidus only a finite number of vertices contributes
to a given order in the expansion in Solid lines corresponding to the Lagrange-multiplierdfiel may end at the tadpole
(ag) = cos by 2w (k), which carries no extra power &f Note also that at the vertices momentum is injected hywhich has
to be taken into account for momentum conservation.

Using the above diagrammatic rules, one can compute anyedesider in the expansion dg[h]. This is obtained by
multiplying the extremum of{83) with, and then subtracting the linear contribution of the w&ll,., =+’ [ h = v cos b ho
(see sectiof V). This contribution cancels precisely gupble diagram

e—( = cosfyhg (67)

in agreement with the fact that the unperturbed, planar #uifice should be stable. Denoting By thenth-order term in the
perturbative expansion df[h] one finds:

-— o 1/|k|h h L os? g /th h (68)
= —= — Y > 15| -
2 J, M 2 SR
B 7<._. " I\I\/\I) B %szoo/'k'hkh*k ’ ©)
k

which is precisely the Joanny-de Gennes quadratic energy.

Order 2

so that
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o |k
I\/\rj _ coseo/| kaks e (70)
|k
1 o [ kik2ks
Y h, hiyh 71
I\I\/\I\/\I\I 2 % 0/|’€1||7<?3| Tk ks (1)

These two contributions are of the same form. To see why, arst aymmetrize the integrands over all permutations of][123
and then use the identities that follow from momentum coragem:

Order 3

1
3 8183 k22 + perms = $1S3 (k:12 + k1ks) + perms = —s153 k1ka + perms ,

wheres; = k;/|k;| is the sign of;. Thus, the sum of the two diagrams gives

Jey ek
B ( I\/\/\I i I\J\I\I\I\/\I) T et Sin29°/| 1||/~c32| sy 72

which agrees with the calculation{53) of the previous secti

Order 4

I\/\/\I :% %hklhkzhmm (73)
I\/\/\I\/\J\I %Cosz 90/ %hklhkzhks% 7
I\I\/\I\/\I\I = costlh %hklhkzh“% 79

I\I\AIV\I\I - %COSQHO/ k1k2k|i?|1||l]:il+k2|hklhkghkghm (76)

ey koksked
40 hi hi, hi. h 77
COS 0/|k1||k2||k3 ey Py Py Py (77)

= 40 hi hi hi.h 78
IU\/\LW\IU\/\I °/|k1||k1+kz||k4| 1 Pk ko (78)

Note that the power ofos 6, corresponds to the number of “hooks” of a given diagram. desf, = 0 only the first of these
diagrams contributes. Using the replacements

5184 . (81 + 82)(83 + 84) _ _@(klkg)@(k3/€4)
|k1 + kol 4 k1 + ko |k1 + kol ’

one can check that this diagram agrees with our previoust€sl). To show that the expressidnl57) also agrees With=
v [(@J + @@ + (@) + [0 + (D) + [8)] for arbitary contact anglé, we proceed as follows: first diagranisX74) ahd (77)
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can be combined to reproduce the second ternith (57). To sgeame must replace%kf = —%k4(k1 + ko +k3) —
—k1k4 in the integrand of the diagrarfi{]77). Secondly, one can shatvforcosfy = 1 the sum of the remaining diagrams,
(3 + (@ + [B + ([3), is exactly zero. Indeed, writing the integrands of thesgdims in the order of their appearance we
find:

kikoksky 9 kikoksky
— = \kk 2kok k k koks| = ————— kL 2kokys — (k ko) (k k kok
il [y L1190 2ok o) okl = pp P = ok 2ok = (k1 ) ks ) k]
k1kaksky k1koksky
= ————— (koky — k1k3) = ———————— (kokqg — k1k3) , 79
el el [er + o] (2ka = Raka) = oy g (ke = Faks) (79)

where in the first and the third equality we have used the cwaen of momentum. Since the last two expressions arelequa
they can be replaced by their average. The result is antigtniorunder the exchange of 1 with 4 and 2 with 3, so after
multiplication with hy, hi, hi, b, it gives zero as claimed. We are thus free to subtract thiskarg expression time§cos2 0o

from the sum of all diagrams. This removes the contributi@® and [Zb), and changes the coefficientdaf (73) (78) to
those of the corresponding terms[inl(57). This completeptbef that equatior{37) agrees with the diagrammatic ¢aficun

of the energy.

The diagrammatic expansion can be extended to higher ordsran illustration, let us consider the case of a perpetalicu
contact angle, in which case the tadpole vanishes. The syiywmederh, — —h guarantees that only even powers appear in the
expansion off[h]. The sixth and eighth order terms are given by:

k1| kok3 [kal ks K|
E, = = 80
“log=rs2 = 7 I’\I\/\I’\/\I\l ") T+ Rallhs + kol JlJl o

Bolgprya™? ( I\/\/\l\/\/\l\/\/\l " )

k1| kok? || k2 k| k7 ks
h = . 81
e I\I\/\I\/\I\I’\I\/\I /|k1+k2||k1+k2+k3+k4llk7+kg| H & (81)

K| ko |kes ko [ks| ko [r| K8 T2
— hi. 82
L\@J /|k1+k2||k3+k4||k5+k6| 71;[1 K, (82)

We will comment further on these results in the final section.

VIl. NUMERICAL ALGORITHM

As was shown in sectidn]V, the problem of determining theodekd fluid surface with a pinned contact line on a planar
wall reduces to that of solving the pair of equations for el functiongj(c) andz(o):

dy+ dzy dg+ ? dzy 2
- ~
Z(o) = h(a + y(o)) and +icosby ( ) ( ) . (83)

We recall thatf.. are the projections onto positive (negative) momentumioaomponents of the functiof Continuingf
as an analytic function#’, in the upper-haliv = (o + i7)/2 plane, determines the unique harmonic extension of thetiimc
f = 2ReF'. The conformally-parameterized minimal surface is

(x,y,2) = (sinfp 7,0 + §,—cosbo7+ %), (84)
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FIG. 3: Convergence of the energy, for a Gaussian with almost maximal amplitude, as functioriterfationn. Also plotted are the
perturbative result€. = 0.00951444, and B2 + E4 = 0.00837429. The second plot shows convergence dogy, scale. Convergence
improves considerably for smaller amplitudefof

0.1 h
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FIG. 4: A periodically repeated Gaussian fafy), with no O-mode:fo1 dy h(y) = 0. The corresponding functiongc) andz(o) on the
boundary are also given. One remarks thatimost has a cusp-like singularity @t= 1/2. Further increasing the amplitude bf z will
develop this cusp, which signals the breakdown of our patenization.

and it has a total energy given by edsl(40)at (41).
The equationd(83) can be solved by iteration, starting thighinitial configuration
§P) =0, 290)=hn(0). (85)

Let (™ andz("™ be the solution of the equations aftesteps. We extradﬁr") by doing a double Fourier transform. Plugging
the result in eqs[{83) then gives the improved values of tik@own functions:

o 5(n) 2 d~(n) 1/2
S(nt1) DL (dz+ ) i “+ 1 s(n+1) _ ( ~(n+1))
Uy Lm do [4 To7 icos By To’ 5( 0 # hlo+7g . (86)

Using [41) yields an approximatiafl,, to the true energ¥... We have used this iterative algorithm fofy) = ¢ f(y) with
f(y) various trial pinning profiles. We found that it convergegiddy to the perturbative result for smal] and that it breaks
down at some criticat where the functiony(o) stops being monotonic. We believe this signals a coordimatieer than a real
geometric singularity, as is observed in seclidn A. If ssyauld be very interesting to develop alternative algoristthmat could
circumvent this problem.

On figure[B we show the convergence of the algorithmi at =/2 for a profile h(y) given on figurd ¥, together with the
corresponding functiong(7) andz(7). One sees on figufd 4 already the emergence of a linear cuse &p ofz(r = 1/2),
which signals for larger the break-down of the algorithm.

VIIl. INTERACTION BETWEEN CONTACT LINES

As another application of the general approach, we will nalgwdate the interaction between the two contact lines mfad
surface bounded by parallel walls. For an analogous cdlonla open string theory see reference [25]. Suppose thitinws
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located at: = 0, wall 2 atz = L, and lety; = —+} = v cosf,. In the absence of impurities the equilibrium configurai®n
thus an inclined planar surface making a contact afglgespectivelyr — 6,) with the first (second) wall. We use conformal
coordinates and set= sin 6, 7, so that the parameter domain is the infinite sfrig 7 < L/sinfy, = 79. Repeating the same
steps as in the previous section leads to the following tiarial functional for the minimal area:

. 1
Alak,9,2) = 3 // (0u7 0% + 0,20°Z) — / [al (2= hi(c+ 7)) — cosby 2}
<7r<79 7=0

_ /T:T [az (2= ha(oc + 7)) + cosby 2} . (87)

Hereh;(y) (for J = 1,2) are the deformations of the two contact lines away fronrtequilibrium configuration, and.; are
the corresponding Lagrange-multiplier fields. The minimaa difference isl,,;, = extr.A , where one must extremizé
over the bulk fieldgj(o, 7) andz (o, 7) and the boundary fields; (o).

First we solve the harmonic equations fpand z, keeping their values on the boundary fixed. Let, for example, 0) =
71 (o) andy (o, 79) = g2(0). Eliminating the field in the interior gives

1 dygs dg.
2 /~/OSTST() aya v 477 Z // GJJ, U U) do’ ’ (88)

J,J’

where

—logsmh2[ (o—0o)] i J=J",
Gry(o—0o') = (89)
—logcoshQ[Q’TTo(a —o)] fJ£T.

One way of establishing this formula, is to start from thelagaus expression for the unit disk, eg1(21), and then apiy
conformal transformation that maps the unit disk onto tHigiite strip:

1 —
V=0 +IT = ?l (1+Z> = w= pel¢tanh<%—;—;>. (90)

Notice that the two unit-radius semi-circlgs= 1 and¢ € [0, 7] or ¢ € [, 2x], are indeed mapped onto the two boundaries of
the strip,Imv = 0 or Imv = 7. On these boundaries

— & /
log sin® (¢ 5 ¢ ) = logsinh? [%(U — U/):| — log cosh (f_—:) — log cosh (%) , (91)

up to an irrelevant constant. The terms depending only,ar only onv’, will drop out when inserted in the double integral
@1). Setting finallyy — v = 0 — ¢’ (orv — v’ = o — o’ — i) for points on the same (or opposite) boundaries of the isfini
strip, leads to the expressiofisl(88) dnd (89), as claimedhltémative derivation of this result using the masslespagator on
the strip is

zka dk eiko T0 1 27‘0
G v 99 ~ —nx|o|/To — _ 20 —7r|o’|/‘ro) 92
u Z_ / 21 k2 + (nm/10)? / o B2 = n’ el - ( —¢ (92)
n 1ko’ dk eika To (_1)71 27,0
G _ v 29 \7+) _—n=wlo|/T0 — _ _1 (1 77r|a|/‘ro) 93
12 Z /27T k2 + mT/TO) 2 k2 + TS on ¢ ~le] nitte (93)

These formulae agree with{89) up to an irrelevant constant.
It will be useful to write these expressions in Fourier spddes can be done by using the identities

_ =H"_ 7
Z b2—|— il coth(wb) and nz i bemb(nl) (94)

To lighten the notation, we will suppress the label of thermaries, and use boldface letters for the correspondintyreand
matrices. Thug will stand for the two-component vect6i, §2), andG for the2 x 2 matrix-valued kerne7 ;;,. With the
help of the above formulae one finds:

1 gt &5 1 [ A
e /U/U/ EG( )da Q/kYkG(k)Y—k , (95)
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wheret indicates the transpose of a vector, and

R oo ) kCOth(Tok) —k/sinh(mk)
G(k) == k? / doe*? G(o) = ( ) : (96)
—k/sinh(7ok) k coth(rok)

— 00
Sincedet @(k:) = k2, the inverse matrix takes also a simple form:

1 coth(mpk) 1/sinh(mpk)
B = L ( ) . (97)

k \1/sinh(rok)  coth(rpk)

As a check note that in the limit of an infinitely-wide strip (~ 79 — o) one finds@(k) ~ |k| - 12x2. Thisis indeed the
kernel for two separate, half-infinite planes.
Returning to the variational function&l{87), it can be ezyad by

Ala, 3,2) = %/k (yljé(k)yfk‘Fikté(k)ka) +/k(ak'ka—5ak'ifk) ; (98)

wherea = (a1, az) is the vector of Lagrange-multiplier field$sa = a — (a) = (a1 —cos 6y, a2 +cos by), andHj, is the Fourier
transform of the (vector of) composite fieltls(o + §;(o)). Solving the linear equations far and inserting the solution in the
above functional gives

~ 1 Y A~ 1 A r—
As) = 5 [ 9605 - [0 G Mo+ [ Ho (99)

We can now read off the Feynman rules that generalize theafrihe previous section. The propagators and 1-point fonsti
for the vector fields are:

—C = (ag) = (cosby,—cosby) (k)
(bay 6al,) = G(k) (100)
AU = (kv = —GR) L.

The vertices do not mix fields on opposite boundaries, anthaietwo copies of the vertices 0 {66).

Using these rules we may calculate the energy to any desidEt i theh-expansion. The leading, quadratic energy that
generalizes the JdG result reads:

EStrip:W( " I\/\/\I)

. > dk cosh(kL/sin6y) — 1
= ~sin? 6, / Py k <(|h17;€|2 + |h27k|2) (kL/ 0)
0

sinh(kL/ sin )

+ |h1k — hox|?/sinh(kL/ sin 90)> . (101)

Since both terms inside the integral are positive-defiitiis,energetically favorable fak; ;, andhs j, to have the same phase.
Thus the interaction between the two contact lines is ditacNote that if we fixh; and allowh, to freely adjust, we find that
the minimum of the energy is obtained for

_ hi(k)
ha(k) = cosh(kL/sin6p) (102)
The energy for givelh; and freeh, thus reads
- *° dk kL
strip _ a2 il 2
E; oo ~ sin 90/0 5 Ek|h1 k] tanh<sin 90> . (103)

In the limit of L — oo, we recover our previous expressibnl(52) as expected.

Taking the same limit in[{I01) shows that the interactionayscexponentially, as- exp(—2kL/ sinfy). This exponential
decay also applies for fixefl and very small contact angle, since the actual separatidheofunperturbed) contact lines is
L/sin#y. In the opposite limit of a thin strip, or equivalently of ydong-wavelength deformations, we find:

stri . < dk sin?fp k2 k2
B o ’ysm90L/0 = [|h1,k — hogl? ( T g) + 5 (sl +heal?) + O(kﬂ . (104)
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The leading term has a simple geometric interpretatiors proportional to the increase in area of a planar strip, wihasind-
aries undergo a relative displacemént— hs along the walls, with which it made initially an anglg. Forh; = ho, the next
term in the above quadratic energy corresponds to an efastiwith effective tension.g = L siny. This has also a simple
geometric interpretation: The rod is in fact a thin stripwadith L/ sin 6y, which is deformed by an amouht (y) sin 6, in the
transverse direction.

IX. DISCUSSION

In the previous sections we have shown how to calculate teeggrof a deformed, almost rectilinear, contact line to any
desired order in perturbation theory. We would now like tscdiss some general properties of this expansion. One iardort
point is that perturbation theory guasi-local i.e. the total energy is concentrated in a region of sizeabtjuthe typical
wavelength of the deformation. We indeed saw that, as lorigeakarge-volume cutoff has been fine-tuned so as to caneel th
global tadpole, it decouples from any localized pertudratOne would expect the same to be true for all other geoarietrgth
scales of the system, such as the wall's inverse curvatuttgslis true, at sufficiently short distances perturbatteeory should
be scale-covariant, as was pointed out in seflbn V. In monmespace, the scaling symmetiyl(56) reads:

EBWN] = N E[R]  for A =M hyy (105)

Inspection of eqs[{B8)E(B2) shows that this indeed holdsah order of the expansion, and even for each individugtara.
Note, in passing, that the scaling symmetry does not imphfaronal invariance, as would have been the case if the one-
dimensional theory were truly local.

Finiteness of the JdG quadratic energy requires that

khy — 0 , forboth k—oco and k—0. (106)

In other wordsh(y) must be continuous everywhere and finite, and it must varsigh-a +oo. A more stringent condition is,
in fact, required to prove ultraviolet finiteness at all reglorders. It reads

Khy —0 for k—oo <« M50 for A—oo. (107)

Stated differently, the profile functiok(y) must also have a continuous first derivative. That this ieé@wtinecessary follows
by considering for instance the “comb” diagrams, the first feing [Z8), [BD) and(81). As the reader can check, a power
fall-off slower than [I07) would make the comb diagrams wétlarge enough number of vertices diverge. To show that this
condition is also sufficient, it is convenient to assign thelisg dimensionsk] = 1 and[h;] = —2 to the factors entering

in a diagram. Becausk’h;, — 0 at high momentum, the degree of divergence of any partiabation is bounded from
above by the corresponding scaling dimension, in which eg @ounts elements that depend on the integrated momehéa. T
scaling symmetn[{105) implies that the overall scaling @ision of any tree diagram is2, so there is no divergence from the
integration region where all the momenta go to infinity. Kiegmne (or more) of the momenta fixed amounts to removing from
the counting a factatk k™ hy, and at most one solid amd curly propagators that emanate from the correspondingxemhis

can only lower the scaling dimension, so all the partialgrdgions are also ultraviolet finite.e.d

Infrared finiteness is trickier to establish diagrammadiic€ondition (I0®) suffices to ensure that there is no djesice when
the momenta flowing into individual vertices go to zero. Tl@gerous diagrams are, however, those for which such mament
add upto zero along some curly line. Inspection of the expres$@) éhows, nevertheless, that the result is finite up to guart
order, thanks to the Heaviside functions that multiply sdahgerous terms. To prove finiteness at all higher ordeissnibre
convenientto go back to the pair of classical equatibds4R€)3D). Letj™) (o) andz(™) (o) be the solutions of these equations
atnth order. It is then straightforward to check that, if thesedtions vanish ay — +oo for all n < N, they will continue to
do so forn = N + 1. This is in turn sufficient to guarantee the infrared finitenef the energy at all orders.

What about non-perturbative effects? To fix ideashlet) = ¢ f(y) with f(y) a given profile function, and the parameter
controlling the perturbative expansion. One expects thatradius of convergence of this expansion is finite, sindarge
enougte the solution to eqs[129) and{30) should stop being analytiis could signal either one of the following two things:
(i) that our parameterization is singular, or (ii) that theface develops real geometric singularities or that tieee change
in topology. It would be very interesting to find some generékria which could distinguish between these two poltds.
Note that a topological transition may occur if it is eneiggdty favorable to drill two holes in the fluid surface, ardreplace
the corresponding disks by a cylinder. In any case, thevatig simple (though rather crude) linear bound

o /U h ‘ (108)

B <y [ 1hl +
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shows that the energy of a pinned contact line stays finitethEtmore, localized microscopic perturbations alwayseha
vanishingly-small energy, and should decouple from thespisyat longer scales.

This brings us to our final remark [26]: as was explained irtisedl the purely-Dirichlet minimal surface problem is
related to the mixed Dirichlet-Neumann problem, relevantchpillary phenomena, by a Legendre transformation. Aehelge
transformation looks at first sight rather benign, but istically modifies the nature of perturbation theory. Thisastiillustrated
by the following spectacular phenomenon [27]: A wedge inttimilar contou®? of sectior{dl, with opening angle less than
|m — 26|, is a local geometric obstruction which forces the capjllaurface to develop a second sheet. This has been observed
in micro-gravity experiments. Notice that the wedge canfmioroscopic transverse size, but it should extend to dllesof
the height coordinate. It is the latter assumption which is responsible for theaappt non-decoupling of short-distance scales.
The story is reminiscent of the role played by wormholes gotlies of quantum gravity. This analogy, as well as the ptessi
impact of wedge defects on the problem of wetting, desemtbduinvestigation.
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APPENDIX A: WEIERSTRASSPARAMETERIZATION

In sectior I¥ we have parameterized the minimal surfacesrims of two functiond” (w) andZ (w), which are related by the
conformal-gauge conditiofL{BO). The parameterizationdba provided the two functions are analytic everywherhaupper-
half complex plane. This is indeed the case in perturbatieorty, but more generally, for a given analyfi¢ the solution of
@0) will not give an analytic functioi”. A constructive solution of the conformal-gauge conditithrat guarantees analyticity,
is given by the Weierstrass representation

X w 2g
v | (w) = / dofx | —i(i4g?) | | (A1)
A 0 1-— 92

where f(v) andg(v) are holomorphic functions in the upper-half plane. To gch®special gauge ed{23) of section 1V, one
sets2f = ic/g. The surfaces are then parameterized by a single function:

X ic [ 2
YV | (w) = 3 / dv | i(g+1/9) | - (A2)
Z ’ 9-1/g

Clearly, this special parameterization is non-singulanfl only if g has no zeroes in the upper-half complex plane. Since in
the expressior{A1) botfi andg are allowed to have any number of zeroes, this shows thatthditton [2ZB) need not always
define a good global gauge.

1 2 3 4 5 6

FIG. 5: Parametric plot of{A4) for = 0.1, 0.5, 0.9, 0.999. Increasing: increases the amplitude bfy), and leads to a singularity at= 1.
The functionZ (w) has been shifted sA(0) = 0.
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To describe the deformed surfaces of sedfidn IV we write

costy — 1

g=go+g, with go= (A3)

sin 6
The unperturbed planar surface correspondg te 0. Other choices ofj, which are holomorphic in the upper-half plane
(including the point at infinity) and for whiclky + § has no zeroes, describe globally-parameterized deformieldsilirfaces. As
a simple example, |ty = 7/2 and take

. Y (w) = - [—re*™ +log (1 + ke
g(v) = =1 — ke = 4 [ ( )} (A4)
Z(w) = 1 [ke*™ +log (14 Kke*™)]

wherer is a real parameter between 0 and 1, and in the expressiolisgnd Z we have dropped an irrelevant constant [which
can be absorbed in a redefinition of the origin of coordirjatésr smallx, this function describes a periodic minimal surface
with period Ay = 2, and with a deformed contact-line given byy) =  cosy + O(x?). For finite, the contact-line profile
is a complicated function given implicitly by eqE_{A4), aplbtted on figur€ls. Inserting the aboveandZ in the expression
@Q) for the energy gives:

E /period = %7 [IiQ —log(1 — I€2)] . (A5)

This reduces to the JdG energy at smaland can also be verified numerically. Note that when- 1 the surface becomes
singular, and the energy per period diverges.

APPENDIX B: MORE GENERAL LARGE-VOLUME CUTOFF

In this appendix we will repeat the calculation of the enasfigectiofIV, using a more general container with an outdr wa
at an arbitrary inclination angle. The characteristic tioO - (7) now reads

L L
Oc(7) = O(x) @(y + 71}) 9(% — y) O(Ly —xcose+ zsing) . (B1)
The inclination angley of the outer wall is a control parameter, which should dropiodhe L, L, — oo limit. The contact
angle of the planar surface with this outer wall is equakte- ¢ — 6y, so Young's equilibrium condition requires that the
corresponding solid-fluid tension bg’ = — cos(¢ + 6p). Repeating the same steps as in sediidn IV leads to the genera
expression for the energy

E[h] = 7 A7 -0 AF — A7 01T +7j£ |- 0170t - AT+ Ebnry (B2)
2 Jop oD oD
whereD = [0, 79] x [-L,/2, L, /2] is the parameter domain defined®y:(,) = 1, 9, is the derivative in the inward normal
direction to9D, andr is the three-dimensional vector normal to the containendauy.

We can now verify that the inclined wall does not contributéhtte above expression. This follows from a fine cancellation
between the three last terms in dq.J(B2):

- ~sin ¢ _ ~" sin 6y /~
ycoso /UZ + sin(¢+90)LZ sin(¢ + o) UZ 0 (B3)

T=T0

We here used the normal vectior= (— cos ¢, 0, sin ¢), which implies that |7 - 9, 7| = sin(¢ + 6y), as well as some three-
dimensional geometry which is required to extract the ¢bation of &,,,,,. Doing some straightforward trigonometry, and
using the fact that”” = cos(¢ + ), one can check that the three terfnsl(B3) indeed cancel. Bhffrms the decoupling of the
large-volume cutoff, as was announced in sedfidn IV.
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