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We obtain an exact solution for the motion of a particle driven by a spring in a Brownian random-
force landscape, the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model. Many experiments on
quasi-static driving of elastic interfaces (Barkhausen noise in magnets, earthquake statistics, shear
dynamics of granular matter) exhibit the same universal behavior as this model. It also appears
as a limit in the field theory of elastic manifolds. Here we discuss predictions of the ABBM model
for monotonous, but otherwise arbitrary, time-dependent driving. Our main result is an explicit
formula for the generating functional of particle velocities and positions. We apply this to derive
the particle-velocity distribution following a quench in the driving velocity. We also obtain the
joint avalanche size and duration distribution and the mean avalanche shape following a jump in
the position of the confining spring. Such non-stationary driving is easy to realize in experiments,
and provides a way to test the ABBM model beyond the stationary, quasi-static regime. We study
extensions to two elastically coupled layers, and to an elastic interface of internal dimension d, in
the Brownian force landscape. The effective action of the field theory is equal to the action, up to
1-loop corrections obtained exactly from a functional determinant. This provides a connection to
renormalization-group methods.

PACS numbers: 75.60.Ej, 64.60.av, 05.10.Cc

I. INTRODUCTION

The motion of domain walls in soft magnets [1–3], fluid
contact lines on a rough surface [4–6], or strike-slip faults
in geophysics [7–9] can all be described on a mesoscopic
level as motion of elastic interfaces driven through a dis-
ordered environment. Their response to external driv-
ing is not smooth, but exhibits discontinuous jumps or
avalanches. Physically, these are seen e.g. as pulses of
Barkhausen noise in magnets [10, 11], or slip instabili-
ties leading to earthquakes on geological faults [12–14].
While the microscopic details of the dynamics are specific
to each system, some large-scale features are universal
[15]. The most prominent example are the exponents of
the power-law distributions of avalanche sizes (for earth-
quakes, the well-known Gutenberg-Richter distribution
[16–18]) and durations.
The Alessandro-Beatrice-Bertotti-Montorsi (ABBM)

model [1] is a mean-field model for the dynamics of an
interface in a disordered medium. It approximates a d-
dimensional interface in a d+ 1-dimensional system, de-
fined by a height function u(x, t), by a single degree of
freedom, its average height u(t) = 1

Ld

∫

ddxu(x, t). It
satisfies the equation of motion

∂tu(t) = F (u(t))−m2 [u(t)− w(t)] . (1)

w(t) is the external driving, and F (u) an effective ran-
dom force, sum of the local pinning forces. In [1], it was
postulated to be a Gaussian with the correlations of a
Brownian motion

[F (u1)− F (u2)]
2
= 2σ|u1 − u2| , (2)

∗alexander.dobrinevski@lpt.ens.fr

where σ > 0 characterizes the disorder strength.
This model has been analyzed in depth for the case of

a constant driving velocity, i.e. w(t) = vt [1, 3, 19–23].
The distribution of avalanche sizes and durations was
obtained by mapping (1) to a Fokker-Planck equation [1,
3]. The mean shape of an avalanche was also computed
using this mapping [22, 24]. These results agree well
with numerous experiments on systems with long-range
elastic interactions, realized e.g. in certain classes of soft
magnets, or in geological faults [3, 7, 21, 25, 26].
However, long-range-correlated disorder as in (2) is a

priori an unphysical assumption for materials where the
true microscopic disorder is, by nature, short ranged.
Hence in realistic systems, it can only arise as a model
for the effective disorder felt by the interface. This guess,
originally made by ABBM based on experiments, turns
out to be very judicious.
In [21], it was shown that the effective disorder for an

interface with infinite-range elastic interactions is indeed
given by (2). This led to the wide belief that the ABBM
model is a universal model for the center-of-mass of an
interface in dimension d at or above a certain upper crit-
ical dimension dc depending on the range of the elastic
interactions in the system [60]. Much of the popularity of
the ABBM model is owed to this presumed universality.
However only recently this assumption was proven for
short-ranged microscopic disorder using the Functional
Renormalization Group (FRG) [22, 23], a method well
suited to study interfaces (see [27] for introduction and
a short review). This proof required quasi-static driv-
ing w(t) = vt with v = 0+. Whether this property also
holds for finite driving velocity v > 0, and in that case up
to which scale, requires further investigation. The same
question for non-stationary driving also remains open.
There are some hints that non-stationary dynam-

ics may require a different treatment. For example,
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avalanche size and duration exponents seem to vary over
the hysteresis loop [28–30].

Related is the question of static avalanches, i.e. jumps
in the order parameter of the ground state upon varia-
tion of an external control parameter, as e.g. the mag-
netic field. This has been studied for elastic manifolds
via Functional RG methods [31–33], and for spin glasses
using Replica Symmetry Breaking [34, 35].

In this paper, we discuss the results given by the
ABBM model when the driving w(t) is a monotonous,
but otherwise arbitrary function of time. While this
misses important and interesting physics of AC driving
and the hysteresis loop [36], it is much more general than
the cases treated so far. We will give an analytic solu-
tion for arbitrary driving, and then specialize to exam-
ples such as the relaxation of the velocity u̇(t) after the
driving is stopped, and the response to finite-size “kicks”
in the driving force, ẇ(t) = w0δ(t). This should allow
to clarify the range of the ABBM universality class by
comparing these predictions to experiments and further
theoretical work. Such non-stationary driving can easily
be realized e.g. in Barkhausen noise experiments, where
w(t) is the external magnetic field, and can be tuned as
desired.

This paper is structured as follows. In section II we
review the approach to the ABBM model through the
Martin-Siggia-Rose (MSR) formalism. The MSR formal-
ism maps disorder averages over solutions of the stochas-
tic differential equation (1) to correlation functions in a
field theory. In [22, 23] this method was used to compute
the Laplace transform of the p-point probability distri-
bution of the velocity in the ABBM model, via the so-
lution of a non linear “instanton” equation. From it,
the avalanche shape and duration distributions were ob-
tained for quasi-static driving, in agreement with the re-
sults of [24, 37]. Here we extend the method of Ref.
[22, 23] and show that it is even more powerful: For any
monotonous (but not necessarily stationary) driving w(t)
the resulting field theory can be solved exactly. We give
an explicit formula for the generating functional of the
particle velocity u̇. In section III we apply this solution to
several examples. In particular, we derive the law for the
decay of the velocity after the driving is stopped, which
may easily be tested in experiments. In section IV we
extend the method to variants of the ABBM model with
additional spatial degrees of freedom. This includes the
generalization of the ABBM model to a d-dimensional
interface submitted to a quenched random force with the
correlations of the Brownian motion, a model whose stat-
ics was studied in [32]. For this more general model, un-
der monotonous driving, we show that the action of the
field theory is not renormalized in any spatial dimension
d. In section V, we compute the generating functional for
the particle position u, which is more subtle than the one
for the velocity u̇. In sections VI and VII, we summarize
the results and mention possible extensions. In particu-
lar, we explain why non-monotonous motion requires a
separate treatment, and does not follow from the present

results.

II. SOLUTION OF THE NON-STATIONARY

ABBM MODEL

For understanding the physics of (1), one would like to
know the joint probability distribution for arbitrary sets
of velocities u̇(t1)...u̇(tn), averaged over all realizations of
the random force F . This is encoded in the generating
functional

G[λ,w] = e
∫

t
λ(t)u̇(t), (3)

where · · · denotes disorder averaging. One then recovers

e.g. the generating function eλu̇(t0) of the distribution of
u̇(t0) by setting λ(t) = λδ(t−t0), and similarly for n-time
correlation functions.
Our main result is an explicit formula for G in the

case of monotonous but non-stationary motion. Given
the distribution of velocities P0(u̇i) at an initial time ti,

we claim that Gti := e
∫∞
ti

dtλ(t)u̇(t)
is

Gti [λ,w] = e
m2

∫

∞
ti

dtũ(t)ẇ(t)
∫ ∞

0

du̇iP0(u̇i)e
ũ(ti)u̇i . (4)

Here ũ(t) is the solution of an instanton equation [22, 23]:

∂tũ(t)−m2ũ(t) + σũ(t)2 = −λ(t). (5)

Boundary conditions are ũ(∞) = 0; λ(t) is assumed to
vanish at infinity. Note that ũ(t) only depends on λ(t),
i.e. the type of observable one is interested in, but not on
the driving w(t). The latter only enters in (4).
In the following, we are mostly interested in the case

when the initial time ti → −∞. Our observables will be
local in time, so that λ(t) decays quickly for t → ±∞.
Then, ũ(ti) → 0 and (4) becomes independent of initial
conditions,

G[λ,w] = em
2
∫

t
ũ(t)ẇ(t). (6)

To prove (6), we first discuss how a closed equation for
the velocity variable can be formulated. We then use
the Martin-Siggia-Rose formalism to transform it to a
field theory, and evaluate the resulting path integral to
obtain (6). Both steps use crucially the assumption of
monotonous motion.

A. Velocity in the ABBM model

The equation of motion for the velocity u̇(t) is obtained
by differentiating (1):

∂tu̇(t) = ∂tF (u(t))−m2 [u̇(t)− ẇ(t)] . (7)

A priori, to determine the probability distribution of u̇(t),
one needs u̇(0) and u(0), since the random force depends
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on the trajectory u(t) and not just on u̇. However, un-
der the assumption that all trajectories are monotonous
(u̇(t) ≥ 0 for all times t), the probability distribution of
u̇(t) is independent of u(0). Indeed, under this assump-
tion, one can replace ∂tF (u(t)) by a multiplicative Gaus-
sian noise which only depends on u̇(t). More precisely,

we can set ∂tF (u(t)) =
√

u̇(t)ξ(t) where ξ(t)ξ(t′) =
2σδ(t− t′). To see this explicitly, consider the generating
functional

H [λ] = e
∫

t
λ(t)∂tF (u(t))

= e−
∫

t,t′
λ(t)λ(t′)σ

2 ∂t∂t′ |u(t)−u(t′)|. (8)

Since u̇(t) ≥ 0 at all times, we know that [61]

∂t∂t′ |u(t)− u(t′)| = u̇(t)∂t′sgn (u(t)− u(t′))

= u̇(t)∂t′sgn(t− t′) = −2u̇(t)δ(t− t′), (9)

and hence

H [λ] = e
∫

t
λ(t)2σu̇(t) = e

∫

t
λ(t)

√
u̇(t)ξ(t). (10)

Note that for monotonous driving, the monotonicity as-
sumption u̇(t) ≥ 0 is enforced automatically if it at t = t0
[62]:

u̇(t0) ≥ 0, ẇ(t) ≥ 0 for all t ≥ t0

⇒ u̇(t) ≥ 0 for all t ≥ t0. (11)

In this way we see that for monotonous motion, (7) is
a closed stochastic differential equation for the velocity
u̇(t). Given an initial velocity distribution P (u̇(0)), it
can be solved without knowledge of the position u(0).

B. MSR field theory for the ABBM velocity

The Martin-Siggia-Rose (MSR) approach allows us to
express (3), averaged over all realizations of F in (7) in a
path integral formalism, following [19, 20, 22, 23, 38, 39].
Introducing the Wick-rotated MSR response field ũ(t)

and averaging over the disorder, one gets:

G[λ,w] =

∫

D[u̇, ũ]e−S[u̇,ũ]+
∫

t
λ(t)u̇(t), (12)

S[u̇, ũ] =

∫

t

ũ(t)
[

∂tu̇(t) +m2 (u̇(t)− ẇ(t))
]

+
σ

2

∫

t,t′
∂t∂t′ |u(t)− u(t′)|ũ(t)ũ(t′).

Since we consider only paths where u̇(t) ≥ 0 at all times,
using (9) we can rewrite the action as

S[u̇, ũ] =

∫

t

{

ũ(t)
[

∂tu̇(t) +m2(u̇(t)− ẇ(t))
]

−σu̇(t)ũ(t)2
}

. (13)

The key observation which allows to evaluate this exactly
was first noted in [22, 23]: The action is linear in u̇(t).

This means that the path integral over u̇ can be evalu-
ated, giving a δ-functional. Instead of using this in the
limit of v → 0 as in [22, 23], one can write more generally:

G[λ,w] =
∫

D[ũ, u̇] em
2
∫

t
ũ(t)ẇ(t) ×

×e
∫

t
u̇(t)[∂tũ(t)−m2ũ(t)+σũ(t)2+λ(t)]

=
∫

D[ũ] em
2
∫

t
ũ(t)ẇ(t) ×

×δ
[

∂tũ(t)−m2ũ(t) + σũ(t)2 + λ(t)
]

,

This then reduces to (6) with ũ(t) given by (5). Note that
the Jacobian from evaluating the δ-functional is indepen-
dent of w(t). We assume in the following that for ẇ(t) =

0 we have u̇ = 0 and hence G[λ, ẇ = 0] = e
∫

λ(t)u̇(t) = 1
for any λ. Thus (6) is correctly normalized.
For the more rigorously minded reader, another deriva-

tion of (4) and (5) is presented in appendix A. It avoids
the use of path integrals with unclear convergence prop-
erties and takes into account the initial condition.

III. EXAMPLES

A. Stationary velocity distribution and propagator

As a first application, let us re-derive the well-known
probability distribution for the velocity in the case of
stationary driving, w(t) = vt.
To obtain the generating function of the velocity distri-

bution at t0, we set λ(t) = λδ(t− t0) in (3). The solution
of (5) is [63]

ũ(t) =
λ

λ+ (1 − λ)e−(t−t0)
θ(t < t0). (14)

As already derived in [22], for ẇ(t) = v one gets
∫

t

ũ(t)ẇ(t) = −v ln(1− λ), (15)

and hence G(λ) = (1 − λ)−v. This generating function
yields the probability distribution

P (u̇) =
e−u̇u̇−1+v

Γ(v)
, (16)

which is the well-known result for the stationary velocity
distribution [1, 3].
Using the same method, we can obtain the 2-time ve-

locity probability distribution. For λ(t) = λ1δ(t − t1) +
λ2δ(t− t2), with t1 < t2, the solution of (5) is

ũ(t) =















0 t > t2
1

1+
1−λ2
λ2

et2−t
t1 < t < t2

1

1−λ1λ2et1−(1−λ1)(1−λ2)et2

(1+λ1)λ2et1+λ1(1−λ2)et2
et1−t

t < t1.
(17)

As already derived in [22], for ẇ(t) = v one gets
∫

t

ũ(t)ẇ(t) =

−v ln
{

1− λ1 − λ2 + λ1λ2

[

1− e−(t2−t1)
]}

,
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and using (6)

G(λ1, λ2) =
{

1− λ1 − λ2 + λ1λ2

[

1− e−(t2−t1)
]}−v

.

(18)
Taking the inverse Laplace transform, we obtain the 2-
time velocity distribution

P (u̇1, u̇2) =

√
u̇1u̇2

−1+v

2Γ(v) sinh τ
2

I−1+v

(√
u̇1u̇2

sinh τ
2

)

e
v
2 τ−

u̇1+u̇2
1−e−τ ,

where u̇1 := u̇(t1), u̇2 := u̇(t2), τ := t2 − t1 > 0 and Iα
is the modified Bessel function. This formula generalizes
the quasi-static result of [22] to arbitrary v. Dividing by
the 1-point distribution P (u̇1) given in (16), one obtains
a closed formula for the ABBM propagator for velocity
v > 0:

P (u̇2|u̇1) =

√

u̇2

u̇1

−1+v

2 sinh τ
2

I−1+v

(√
u̇1u̇2

sinh τ
2

)

e
v
2 τ−

u̇1e−τ+u̇2
1−e−τ .

(19)
Using this result and the Markov property of equation
(7), n-point correlation functions of the velocity can be
expressed in closed form as products of Bessel functions.

B. Velocity distribution after a quench in the

driving speed

Now let us consider a non-stationary situation. As-
sume that the domain wall is driven with a constant ve-
locity v1 > 0 for t < 0, which is changed to v2 ≥ 0 for
t > 0. One expects that the velocity distribution interpo-
lates between the stationary distribution for v1 at t = 0
and the stationary distribution for v2 for t→ ∞. In this
section, we will compute its exact form for all times.
For the one-time velocity distribution, λ(t) = λδ(t−t0)

and the solution of (5) is unchanged, given by (14).
Now, using ẇ(t) = (v1 − v2)θ(−t) + v2, one gets

∫

t

ũ(t)ẇ(t) =

=

∫ 0

−∞

v1λdt

λ+ (1− λ)e−(t−t0)
+

∫ t0

0

v2λdt

λ+ (1− λ)e−(t−t0)

= (v1 − v2) ln

(

1 +
λ

1− λ
e−t0

)

− v2 ln(1− λ).

Thus, with the help of (6)

G(λ) = eλu̇(t0) =
[

1− λ(1 − e−t0)
]v1−v2

(1− λ)−v1 .
(20)

Inverting the Laplace transform, one obtains

P (u̇(t0)) =
e−u̇u̇−1+v2(1− e−t0)v1−v2

Γ(v2)
×

× 1F1

(

v2 − v1, v2,
u̇

1− et0

)

. (21)

5 10 15 20 25
u
 

0.1

0.2

0.3

0.4

PHu
 

L

FIG. 1: Decay of velocity distribution after driving was
stopped. Curves (from right to left): Results for t0 =
0, 0.4, 1, 2 from (22). Bar charts: Corresponding simulation
results, averaged over 104 trajectories. Initial driving velocity
(for t < 0) was v = 10.

An interesting special case is when the driving is turned
off at t = 0, i.e. v1 = v and v2 = 0. According to
(11), the particle will continue to move forward until it
encounters the first zero of u̇ = F (u) − m2 [u− w(0)].
Correspondingly, we expect that the velocity distribution
decays from the stationary probability distribution at t ≤
0 to a δ-distribution at zero at t → ∞. The explicit
calculation for u̇ := u̇(t0) yields:

P (u̇) = (1− e−t0)vδ(u̇) (22)

+e−u̇−t0v(et0 − 1)−1+vv 1F1

(

1− v, 2,
u̇

1− et0

)

.

The δ(u̇) term gives the probability that the motion has
stopped at time t0,

P (u̇(t0) = 0) = (1− e−t0)v. (23)

As expected, this is zero at t0 = 0 and tends to 1 as t0 →
∞. Correspondingly, the distribution for the relaxation
time T , i.e. the time for the particle to stop moving from
the stationary driving state at velocity v, is given by

P (T ) =
∂

∂t0

∣

∣

∣

∣

t0=T

P (u̇(t0) = 0) = ve−T (1− e−T )−1+v.

The term in (22) not proportional to the δ-function (once
normalized) gives the conditional distribution of veloci-
ties assuming the particle is still moving. Its form com-
pares well to simulations, see figure 1.
Using (20), one also sees that the mean velocity inter-

polates exponentially between the old and the new value
of the driving speed,

u̇t0 = ∂λ
∣

∣

λ=0
G(λ) = v2 + (v1 − v2)e

−t0 . (24)

These results are valuable since they provide a tool to test
the validity of the ABBM model in different experimental
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protocols. In application to Barkhausen noise, one could
perform experiments where the driving by the external
magnetic field is stopped at some time. This would allow
to verify e.g. (22) experimentally, since the velocity in our
model is the induced voltage in a Barkhausen experiment.
This would be one of the first checks on whether the good
agreement between the ABBM theory and experiments
persists in the non-stationary case.

C. Non-stationary avalanches

Using similar techniques, one can treat the case of a
finite jump from 0 to w in the location of the confin-
ing harmonic well in (1), w(t) = wθ(t) equivalent to a
“kick” ẇ(t) = wδ(t). For t < 0 the particle is at rest,
and the quench at t = 0 triggers exactly one avalanche.
Its size is given by S =

∫∞
0
u̇(t)dt and its duration T by

the first time when u̇(T ) = 0. Note that this avalanche
occurs as the non-stationary response to a kick of arbi-
trary size, a problem a priori different from the station-
ary avalanches studied previously [3, 22, 23] for small
constant drive ẇ(t) = v = 0+. In this section, we will
derive the distribution of avalanche sizes and durations
for arbitrary kick sizes w.

1. Preparation of the initial condition

The assumption G[λ, ẇ = 0] = 1 which we made in
section II B implies that the initial condition at ti, which
is the lower limit of all time integrals in the action and in
(6), is u̇(ti) = 0. This means that the particle is exactly
at rest for t ≥ ti if ẇ(t) = 0 for t ≥ ti. Furthermore
to assure that the particle will not revisit part of the
trajectory, we demand u(t) ≤ u(ti) for all t < ti. One
protocol with which this can be enforced is: Start at
some time t1 ≪ ti at an arbitrary position u(t1) ≪ 0,
and take w(t) = 0 for all t ∈ [t1, ti]. Then u̇(0) will
be almost surely positive. Thus, between t1 and ti, the
particle will move forward until it reaches the smallest u
where F (u) −m2u = 0. Since t1 ≪ ti, almost surely it
will reach this point before ti and thus be at rest at ti.
This choice of initial condition is equivalent to choosing
a random configuration from the steady state for quasi-
static driving at v = 0+.

2. Duration distribution

First, let us derive the exact distribution of avalanche
durations following a kick. The generating function for
P (u̇(t0)) at time t0 > 0 is obtained as in the previous
section as

G(λ) = eλu̇(t0) = exp

(

wλ

λ+ (1− λ)et0

)

. (25)

Laplace inversion gives, denoting u̇ := u̇(t0),

P (u̇) = e
−w+et0 u̇

et0−1

[

δ(u̇) +
1

2 sinh t0
2

√

w

u̇
I1

( √
u̇w

sinh t0
2

)]

.

(26)
The mean velocity

u̇(t0) = ∂λ
∣

∣

λ=0
G(λ) = we−t0 (27)

decays in the same way as in (24) for stopped driving.
However the probability distributions of u̇(t0) are differ-
ent, as can be seen by comparing (26) and (22). The
probability that u̇(t0) = 0, i.e. that the avalanche has
terminated at time T < t0, is obtained by taking the
limit λ → −∞ in (25), which gives the δ-function piece
in (26),

P (u̇(t0) = 0) = P (T ≤ t0) = exp

(

− w

et0 − 1

)

. (28)

Note that this procedure requires P (u̇ < 0) = 0 which is
the case here.
Correspondingly, the probability density for the

avalanche duration T is given by

P (T ) =
∂

∂t0

∣

∣

∣

∣

t0=T

P (u̇(t0) = 0) =
w exp

(

− w
eT−1

)

(

2 sinh T
2

)2 . (29)

We observe that for infinitesimally small quenches w, one
recovers – up to a normalization factor – the distribution
obtained in [22, 23] for avalanches at stationary, quasi-
static driving, with the universal power law T−2 for small
times [3]:

ρ(T ) := ∂w
∣

∣

w=0
P (T ) =

1
(

2 sinh T
2

)2 . (30)

Hence, the non-stationary character is not important in
that limit.
For finite w > 0, the mean avalanche duration is ob-

tained from (28),

T (w) = γE − ewEi(−w) + log(w)
w→∞∼ logw.

It behaves as T (w) ∼ w ln(1/w) at small w and diverges
logarithmically for large w. In the latter limit, the distri-
bution of T̃ := T−lnw approaches a Gumbel distribution

P (T̃ ) ≈ e−T̃ e−e−T̃

on the interval T̃ ∈ [−∞,∞], as if the duration were given
by the maximum of w independent random variables.

3. Joint size and duration distribution

One can now proceed to a more general case, and com-
pute the joint distribution of avalanche durations and
sizes. We again calculate the generating function

G(λ1, λ2) = eλ1S+λ2u̇(t0).
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where S :=
∫∞
0 u̇(t)dt is the avalanche size. The solution

of (5) for λ(t) = λ1 + λ2δ(t− t0) is given by

ũ(t) =
1

2
(1−

√

1− 4λ1) +

+
e
√
1−4λ1(t−t0)

√
1− 4λ1λ2θ(t0 − t)√

1− 4λ1 − λ2[1− e
√
1−4λ1(t−t0)]

.

Since the driving is ẇ(t) = wδ(t), we obtain from (6):

G(λ1, λ2) = ewZ(λ1,λ2), (31)

Z(λ1, λ2) =
1

2
(1 −

√

1− 4λ1)

+
e−

√
1−4λ1t0

√
1− 4λ1λ2√

1− 4λ1 − λ2(1− e−
√
1−4λ1t0)

. (32)

For λ2 = 0 this gives the distribution of avalanche sizes
S for arbitrary kick size w,

P (S) =
w

2
√
πS

3
2

exp

(

−w
2

4S
− S

4
+
w

2

)

. (33)

As it should, this coincides with the distribution obtained
for quasi-static driving, v = 0+ [64].
In the case of a non-stationary kick, we can obtain

more information on the avalanche dynamics by consid-
ering the joint distribution of avalanche sizes S and du-
rations T . As above, the probability that u̇(t0) = 0 and
hence the duration T of the avalanche be 0 < T ≤ t0, is
given by the limit λ2 → −∞. Thus, the joint probability
density P (S, T ) of sizes S and durations T satisfies
∫ ∞

0

dS

∫ t0

0

dT eλ1SP (S, T )

= exp

(

w

2
(1 −

√

1− 4λ1)− w

√
1− 4λ1e

−
√
1−4λ1t0

1− e−
√
1−4λ1t0

)

.

Deriving with respect to t0, we obtain
∫ ∞

0

dS eλSP (S, T ) =

=
w(1 − 4λ)e

w
2 (1−

√
1−4λ coth T

2

√
1−4λ)

(

2 sinh T
2

√
1− 4λ

)2 , (34)

which for λ = 0 reproduces (29). This implies the scaling
form [65]:

P (S, T ) = e−
S
4 f(S/T 2) (35)

f(x) = LT−1
s→x

we
w
2 se−

w
T2

√
s coth

√
s

T 4 (sinh
√
s)

2 (36)

Although no formula to invert the Laplace transform in
a closed form is evident, one can, for example, calculate
the mean avalanche size for a fixed value of the avalanche
duration,

S(T ) =

∫∞
0

dS S P (S, T )
∫∞
0

dS P (S, T )
=

=
4− wT − 4 coshT + (2T + w) sinhT

coshT − 1
. (37)

As w → 0, this has a well-defined limit

S(T ) = 2T coth
T

2
− 4. (38)

Eq. (38) reproduces the expected scaling behaviour [3,
21], S(T ) ∼ T 2 for small avalanches. This is apparent

in (35), since the e−
S
4 factor can be neglected for small

S. The new result in Eq. (38) predicts the deviations of
large avalanches from this scaling, and shows that they
obey S ∼ T instead. This is in qualitative agreement
with experimental observations on Barkhausen noise in
polycristalline FeSi materials [3, 11, 24]. It would be
interesting to test quantitative agreement of (38) with
experiments, as well.
We can also obtain the large-T behaviour at fixed S

(fixed λ) since in that limit
∫ ∞

0

dS eλSP (S, T ) ≈ w(1 − 4λ)ew/2e−
1
2 (w+2T )

√
1−4λ.

(39)

This implies

P (S, T ) ≈ w(2T + w)
[

(2T + w)2 − 6S
]

e
w
2 − (2T+w)2

4S −S
4

2
√
πS7/2

.

(40)
Note that (39) is also valid at fixed T and large negative
λ, hence (40) also gives the behaviour for S ≪ T 2at fixed
T . One notes some resemblance with (33).
We now consider the limit of a small kick w → 0.

Eq. (34) gives

P (S, T ) = wρ(S, T ) +O(w2), (41)

where ρ(S, T ) can be interpreted as an avalanche size and
duration “density”, satisfying

∫ ∞

0

dS eλSρ(S, T ) =
(1− 4λ)

(

2 sinh T
2

√
1− 4λ

)2 . (42)

This Laplace transform can be inverted:

ρ(S, T ) = e−S/4 1

T 4
g(S/T 2) (43)

g(x) = LT−1
s→x

s

(sinh
√
s)

2 =
d

dx
h(x) (44)

h(x) =

+∞
∑

n=−∞
(1− 2π2n2x)e−n2π2x =

∞
∑

m=−∞

2m2e−
m2

x

√
πx3/2

.

We have used
∑∞

n=−∞
s−n2π2

(s+n2π2)2 = 1/(sinh
√
s)2. Note

that ρ(S, T ), as a size density, is normalized to
∫∞
0

dS ρ(S, T ) = ρ(T ), given in (30), since a fixed du-
ration T acts as small avalanche-size cutoff. The total
size density ρ(S) =

∫

dT ρ(S, T ) = 1
2
√
πS3/2 exp(−S

4 ) is

not normalized, since w, which acts as a small-scale cut-
off in (33), has been set to 0.
Finally, note that (34) allows one to go further and

compute any moment as well as, by numerical Laplace in-
version, the full joint distribution P (S, T ). This is shown
in figure 2.
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FIG. 2: Joint density ρ(S,T ) of avalanche sizes S and dura-
tions T in the ABBM model, obtained by numerical Laplace
inversion of (42,43,44). The red line is the mean size S̄(T ) for
a fixed duration T given in (38).

4. Avalanche shape following a pulse

We consider now the joint probability of velocities at
two times 0 < t1 < t2 following a pulse at time t = 0. By
(6), its generating function is

eλ1u̇(t1)+λ2u̇(t2) = ewũ(0),

where ũ(0) is the 2-time solution (17). We are interested
in P (u̇(t1), u̇(t2) = 0) obtained by taking λ2 → −∞:

∫

du̇1e
λ1u̇1P (u̇1, 0) = exp





w

1− λ1et1+(1−λ1)et2

(1+λ1)et1−λ1et2
et1





We use that LT−1
s→ue

d+ a
b+s = ed[

√

a
uI1(2

√
au)e−bu+δ(u)]

with d = − w
et1−1 , a = wet1/(et1 − 1)2 and b = 1

et2−t1−1
+

1
1−e−t1

. Taking ∂t2 and setting t2 = T we find the joint
probability distribution of the avalanche duration T and
the velocity u̇(t1) = u̇1,

P (u̇1, T ) = −∂t2bed
√

au̇1I1(2
√

au̇1)e
−bu̇1 |t2=T

=
1

[

2 sinh(T−t1
2 )

]2

√
wu̇1

2 sinh t1
2

I1

( √
wu̇1

sinh t1
2

)

×e−
w

et1−1
−
(

1

eT−t1−1
+ 1

1−e−t1

)

u̇1
. (45)

Dividing by P (T ) given in (29), we find the conditional
probability for the velocity distribution at t1 for an
avalanche of duration T . In particular, we get the av-
erage avalanche shape,

u̇(t1)T =
4 sinh( t12 ) sinh(

T−t1
2 )

sinh(T2 )
+w

[

sinh(T−t1
2 )

sinh(T2 )

]2

(46)

For w → 0 one recovers the stationary avalanche shape
obtained in [22]. On the other hand, avalanches following
a pulse of size w > 0 have an asymmetric shape, since
u̇(t = 0+) = w. This should provide an elegant way to
discriminate between the two situations experimentally.

D. Power spectral density and distribution of

Fourier modes

In signal analysis, an important observable used to
characterize a time series is the power spectral density

P (ω) defined as

P (ω) := lim
T→∞

1

T

∣

∣

∣

∣

∣

∫ T/2

−T/2

eiωt
[

u̇(t)− u̇(t)
]

dt

∣

∣

∣

∣

∣

2

. (47)

This gives a measure for the abundance of the frequency
component ω in the time series u̇(t). For a stationary
signal where the 2-time velocity correlation function only
depends on the time difference, (47) is equal to its Fourier
transform:

P (ω) =

∫ ∞

−∞
eiωt u̇(0)u̇(t)

c
dt. (48)

For driving with constant velocity w(t) = vt, one knows

[3, 40] u̇(0)u̇(t)
c
= ve−|t| and hence the power spectrum

for the velocity in the ABBM model is

P (ω) =
2v

1 + ω2
. (49)

We can now proceed further and obtain the probability
density of each Fourier component. We consider (6) with
λ(t) = λ cosωt θ(T−t)θ(t) where T is a large-time cutoff.
To solve (5) with this choice of λ, we substitute ũ(t) =
1
2 + φ′(t)

φ(t) giving Mathieu’s equation,

φ′′(t)−
(

1

4
− λ cosωt

)

φ(t) = 0.

This is to be solved with the boundary condition ũ(T ) =
0, i.e. φ′(T ) = − 1

2φ(T ).
The general solution is a linear combination of two

Floquet solutions

φ(t) = eµtP1(t) + e−µtP2(t), (50)

where P1,2(t) are periodic functions. µ = µ(λ, ω) is re-
lated to the conventionally definedMathieu characteristic

exponent ν(a, q) (in the notation of [41]) by

µ =
ω

2i
ν

(

− 1

ω2
,
2λ

ω2

)

.

When λ is real and close to 0, µ is real, has the same sign
as λ, and is odd in λ. Thus, for 0 < t ≪ T , the solu-
tion φ(t) given in (50) is dominated by the exponentially
decaying term

φ(t) ≈ e−µ(|λ|,ω)tP (t),



8

with P (t) = P1,2(t), depending on the sign of λ. Thus,
for 0 < t≪ T we have

ũ(t) =
1

2
− µ(|λ|, ω) + P ′(t)

P (t)
. (51)

In order to evaluate (6), one needs to integrate ũ(t) over
t from 0 to T . Since P (t) is periodic, its contribution
vanishes for each period

∫ s+ 2π
ω

s

ũ(t) dt =
2π

ω

[

1

2
− µ(|λ|, ω)

]

, 0 < s≪ T.

(52)
For constant driving, w(t) = vt and T ≫ 2π

ω , one thus
obtains using (6)

eλ
∫

T
0

u̇(t) cosωt = ev
∫

T
0

ũ(t) = evT [
1
2+iω2 ν(− 1

ω2 , 2|λ|

ω2 )]+o(T ).
(53)

As expected by symmetry, this is an even function in
λ. It remains real as long as the Mathieu exponent ν
is purely imaginary, which is the case for |λ| < λc(ω).
One can interpret the corresponding Mathieu functions
as Schrödinger wavefunctions in the periodic potential

V (x) =
1

4
− λ cos(ωx)

The region |λ| < λc(ω) is the region where the energy
E = 0 is outside the energy band(s) of this potential,
and all wave-functions are evanescent. At λ = ±λc,
one has ν = 0 and for |λ| > λc, i.e. outside the “band
gap”, the expectation value on the left-hand side of (53)
does not exist. This indicates that the distribution of
∫ T

0 u̇(t) cosωt has exponential tails for any ω > 0. The
exponent of this tail can be computed in terms of the
so-called Mathieu characteristic values ar and br [41].
Furthermore, from (53) one observes the scaling be-

haviour of the cumulants

(

∫ T

0

u̇(t) cosωt

)nc

∼ T, (54)

which reminds of the central limit theorem.
Taking two derivatives of (53) with respect to λ, and

using ∂2q
∣

∣

q=0+
ν(−b2, q) = −i

2b(b2+1) , one verifies once more

(49). However, (53) goes beyond that and gives the full
probability distribution of each frequency component of
the time series u̇(t).
With this, we conclude our examples on the “classical”

ABBM model and move to generalizations which can be
treated by our method, as well.

IV. ABBM MODEL WITH SPATIAL DEGREES

OF FREEDOM

An interesting generalization of the ABBM model (1)
is a model with spatial degrees of freedom, (e.g. an ex-
tended elastic interface in dimension d > 0), but subject

to the same kind of disorder as in the ABBMmodel, i.e. a
pinning force correlated as a random walk.
An interface was studied in [22] for quasi-static driving

and it was found that the global motion (i.e. the motion
of the center-of-mass of the interface) is unchanged by the
elastic interaction. An instanton equation for the other
Fourier modes was derived, but solving it remained a
challenge.
Here we extend these results to arbitrary driving veloc-

ity. We first study the simpler case of only two elastically
coupled particles, and present a direct argument to show
that the center of mass is not affected by the elastic inter-
action and is the same as for a single particle, i.e. model
(1) in a rescaled disorder. For two particles the instan-
ton equation is simpler and more amenable to analytic
studies, which allows us to see how local properties (such
as the velocity distribution of a single particle) are mod-
ified. In the last part we come back to the interface and
show a non-renormalization property of the theory valid
for any driving velocity.

A. Two elastically coupled particles in an

ABBM-like pinning-force field

The model we analyze in this section is a 2-particle
version of (1):

∂tu1(t) = F1(u1(t)) −m2 [u1(t)− w(t)]

+k [u2(t)− u1(t)] ,

∂tu2(t) = F2(u2(t)) −m2 [u2(t)− w(t)]

+k [u1(t)− u2(t)] . (55)

We assume F1(u1), F2(u2) to be independent Gaussian
processes with correlations as in (2), i.e.

[F1(u)− F1(u′)]
2 = [F2(u)− F2(u′)]

2 = 2σ|u− u′|.

1. Center-of-mass motion

From (55), we obtain the equation of motion for the
center-of-mass velocity ṡ(t) = 1

2 [u̇1(t) + u̇2(t)]:

∂tṡ(t) =
1

2
∂t [F1(u1(t)) + F2(u2(t))]−m2 [ṡ(t)− ẇ(t)] .

(56)
To better understand the effective noise term
∂t [F1(u1(t)) + F2(u2(t))], let us compute its gener-
ating functional,

G[λ] = e
∫

t
λ(t) 1

2 ∂t[F1(u1)+F2(u2)]

= e−
∫

t,t′
λ(t)λ(t′)σ

8 ∂t∂t′ (|u1(t)−u1(t
′)|+|u2(t)−u2(t

′)|).

Using monotonicity [42, 43] of the trajectories (9), we
obtain

G[λ] = e
∫

t
λ(t)2 σ

4 [u̇1(t)+u̇2(t)] = e
∫

t
λ(t)2 σ

2 ṡ(t).
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Note that this is the same generating function as for a
random pinning force F (s(t)) with correlations

[F (s)− F (s′)]2 = σ|s− s′|. (57)

Thus, we can re-write (56) as

∂tṡ(t) = ∂tF (s)−m2 [ṡ(t)− ẇ(t)] , (58)

with a rescaled disorder amplitude σ′ = σ
2 , reducing it to

the same form as (7).
This argument extends straightforwardly to any num-

ber of elastically coupled particles, and to the continuum
limit. Thus, we observe that the dynamics of the center
of mass of an extended interface in a pinning-force field,
which is correlated as a random walk, is equivalent to the
1-particle ABBM model (1).

2. Single-particle velocity distribution

On the other hand, observables that can not be de-
scribed solely in terms of the center of mass are more
complicated. In order to obtain the joint distribution
of the particle velocities u̇1(t), u̇2(t) one may follow the
same route as in section II B. We start from

G[λ1, λ2, w] = e
∫

t
λ1(t)u̇1(t)+λ2(t)u̇2(t)

= em
2
∫

t
[ũ1(t)+ũ2(t)]ẇ(t), (59)

where ũ1, ũ2 are solutions of the coupled nonlinear dif-
ferential equations

− ∂tũ1(t) +m2ũ1(t) + k [ũ1(t)− ũ2(t)]

−σũ1(t)2 = λ1(t),

−∂tũ2(t) +m2ũ2(t) + k [ũ2(t)− ũ1(t)]

−σũ2(t)2 = λ2(t).

In contrast to (5), these can not be solved in a closed
form even for simple choices of λ1,2. However, one can
obtain a perturbative solution for small k around k = 0.
To give a simple example, one obtains for monotonous
driving w(t) = vt and one-time velocity measurements
λ1,2(t) = λ1,2δ(t):

G(λ1, λ2) = [(1− λ1)(1− λ2)]
−v

×
{

1 + vk(λ1 − λ2)

[

− ln(1− λ1)

λ1(1− λ2)
+

ln(1− λ2)

λ2(1 − λ1)

]

+O(k2)

}

. (60)

where we use rescaled units where k denotes k/m2 in
the original units. As one expects from the previous sec-
tion, the correction of order k vanishes if one considers
the center-of-mass motion, λ1 = λ2. If, on the other
hand, one considers the 1-particle velocity distribution,
i.e. takes λ2 = 0, one gets

G(λ1, 0) = (1− λ1)
−v(1+k)

[

1− vk
λ1

1− λ1
+O(k2)

]

.

(61)

5 10 15 20 25
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FIG. 3: Single-particle velocity distribution P (u̇) in the 2-
particle toy model for weak elasticity. Histogram: Numerical
results from simulations for k = 0.2. Dashed line: Stationary
distribution in absence of elastic coupling (k = 0). Solid (red)
line: O(k) result from (62).

The Laplace transform can be inverted, giving

P (u̇1) =
e−u̇1 u̇−1+v

1

Γ(v)
× (62)

×
{

1 + k [v − u̇1 + v ln u̇1 − vψ(v)] +O(k2)
}

,

where ψ(x) = Γ′(x)
Γ(x) is the digamma function. Simulations

for small k confirm this result (see figure 3). The next or-
der in k can likewise be calculated, however the resulting
expressions are complicated and not very enlightening.
A non-trivial consequence of (62) is that the power-law

exponent of the distribution P (u̇1) for small velocities
changes from u̇−1+v to u̇−1+v(1+k).

B. Continuum limit and non-renormalization

property

Let us now consider a d-dimensional interface in a d+1-
dimensional medium with a generic elastic kernel gxy,

such that in Fourier g−1
q=0 = m2. Local elasticity corre-

sponds to g−1
q = q2 +m2. The corresponding generaliza-

tion of (1) is

∂tuxt = F (uxt, x)−
∫

y

g−1
xy uyt + λ̃xt. (63)

For the remainder of this section, we write function
arguments as subscripts in order to simplify notations
(i.e. uxt := u(x, t)). The source λ̃xt ≥ 0 for the field ũ
is a positive driving, and is related to the velocity of the
center of the quadratic well ẇ by λ̃xt = g−1

xx′ẇx′t.
The pinning force is chosen gaussian and uncorrelated

in x,

F (u, x)F (u′, x′) = δd(x− x′)∆(u, u′). (64)
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In the u direction, analogously to (2), we assume
Brownian correlations, i.e. uncorrelated increments:
∂u∂u′∆(u, u′) = δ(u − u′). This does not fix F uniquely,
with e.g. two possible explicit choices in (74) and (75)
below. However, differences only arise for the position u
but not for the velocity u̇, as will be discussed below.
Let us write the MSR partition sum in presence of

sources,

G[λ, λ̃] =

∫

D[u̇]D[ũ]e−S[u̇,ũ]+
∫

xt
λxtu̇xt+

∫

xt
λ̃xtũxt .

The generalization of the MSR action (13) to this situa-
tion is

S[u̇, ũ] =

∫

xt

ũxt

(

∂tu̇xt +

∫

y

g−1
xy u̇yt − σu̇xtũxt

)

.

(65)

To arrive at (65) we have again assumed forward-only

trajectories u̇xt ≥ 0, guaranteed if λ̃xt ≥ 0 and u̇xti ≥ 0
at some large negative initial time ti.
The solution in section II B generalizes straightfor-

wardly to

G[λ,w] = e
∫

xt
λxtu̇xt = e

∫

xt
ũ
(s)
xt [λ]λ̃xt , (66)

where ũ(s)[λ] is defined as the solution of

∂tũ
(s)
xt −

∫

y

g−1
xy ũ

(s)
yt + σ(ũ

(s)
xt )

2 = −λxt. (67)

In principle, this can be used to compute any observable
of the d-dimensional theory. In practice, the equation
(67) for ũ is hard to solve analytically for most cases.
In the remainder of this section, instead of discussing

specific examples, we show a conceptual consequence of
(66): The action (65) does not renormalize. The effec-
tive action Γ is equal to the microscopic action S in any
dimension d.
According to (66), the generating functional for con-

nected graphs W [λ, λ̃] evaluates to

W [λ, λ̃] = lnG[λ, λ̃] =

∫

xt

ũ
(s)
xt [λ]λ̃xt.

To perform the Legendre transform from W to the effec-
tive action Γ [44], we introduce new fields u̇xt[λ, λ̃], and

ũxt[λ, λ̃], defined by

ũxt =
δW [λ, λ̃]

δλ̃xt
= ũ

(s)
xt [λ], (68)

u̇xt =
δW [λ, λ̃]

δλxt
=

∫

x′t′

δũ
(s)
x′t′ [λ]

δλxt
λ̃x′t′ . (69)

Here and below we drop the functional dependence on
the sources when no ambiguity arises. Eq. (68) shows

that ũ
(s)
xt [λ] is really the field ũxt appearing in the effec-

tive action, hence (67) allows to express the field λxt (on
whichW depends) in terms of ũxt (on which Γ depends).

We can now write down the effective action Γ[u, ũ]:

Γ[u̇, ũ] =

∫

xt

u̇xtλxt +

∫

xt

ũxtλ̃xt −W

=

∫

xt

u̇xtλxt since W =

∫

xt

ũxtλ̃xt

= −
∫

xt

u̇xt

(

∂tũxt −
∫

y

g−1
xy ũyt + σũ2xt

)

=

∫

xt

ũxt

(

∂tu̇xt +

∫

y

g−1
xy u̇yt − σu̇xtũxt

)

= S[u̇, ũ]. (70)

This is exactly the same as the bare action S in (65). This
non-renormalization of the action for the particle veloc-
ity in ABBM-like disorder is also consistent with a 1-loop
calculation using functional RG methods (see appendix
B). It is a very non-trivial statement, and shows that, in
some sense, the MSR field theory for monotonous mo-
tion in ABBM-like disorder is exactly solvable in any di-
mension. The monotonicity assumption implies that the
derivatives arising in the formulae above must be per-
formed in the neighborhood of a strictly positive driving
source λ̃xt > 0. Using the relationship

u̇xt[λ, λ̃] =
u̇xt exp

[∫

x′t′
λx′t′ u̇x′t′

]

exp
[∫

x′t′
λx′t′ u̇x′t′

]

, (71)

(where the average is performed in presence of ẇ = λ̃)

one sees that (69) maps positive λ̃ onto positive u̇. On

the other hand, the condition λ̃ ≥ 0 can be expressed
using λ̃xt =

δΓ
δũxt

as

ũxt ≤
∂tu̇xt +

∫

y
g−1
xy u̇yt

2σu̇xt
. (72)

We conclude that the effective action Γ[u̇, ũ] is given by
the bare action S in the sector of the theory where u̇ ≥ 0
and (72) holds as a necessary condition. In no way this
implies that Γ = S for values of the fields where this
monotonicity assumption does not hold. The case of non-
monotonous motion and/or non-monotonous driving is
highly non-trivial and will be studied elsewhere.
In the following section, we shall see how this result

generalizes to the field theory of the position u(t), where
the relationship between S and Γ is slightly more com-
plicated.

V. FIELD THEORY FOR THE POSITION

VARIABLE

So far, we have considered observables that can be ex-
pressed in terms of the ABBM velocity u̇(t), or in case of
a manifold u̇(x, t). Here we consider the position u(x, t)
itself. One can then formulate the MSR path integral in
terms of u and û, analogous to (12). This was done for a
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d-dimensional interface in short-ranged disorder in [23],
as a starting point for a dc − d-expansion. Here we focus
on the simpler and solvable case of the ABBM model,
where the MSR path integral reads

G[λ,w] = e
∫

t
λ(t)u(t) =

∫

D[u, û]e−S[u,û]+
∫

t
λ(t)u(t),

S[u, û] =

∫

t

û(t)
[

∂tu(t) +m2(u(t)− w(t))
]

−1

2

∫

t,t′
∆(u(t), u(t′)) û(t)û(t′). (73)

Here, ∆(u, u′) = F (u)F (u′) is the disorder correlation
function. One mathematically simple choice is to assume
the random force F (u) to be a one-sided Brownian mo-
tion and restrict to u > 0:

∆(u, u′) = 2σmin(u, u′) = σ(u + u′ − |u− u′|). (74)

Another common choice is the two-sided version, i.e. a
Brownian motion on the full real u axis pinned at F (u =
0) = 0. With either choice, however, the random force
is non-stationary and one loses statistical translation in-
variance. This is unnatural for certain applications, for
example approximating extended elastic interfaces above
the critical dimension. In this context, one chooses a
stationary variant of (74),

∆(u, u′) = ∆(u− u′) = ∆(0)− σ|u− u′|. (75)

Since a stochastic process F (u) can only satisfy (75) for
all u in some limit, we always assume (75) to be regular-
ized at large |u− u′|.
For observables that can be expressed in terms of the

velocity u̇, only ∂t∂t′∆(u(t), u(t′)) enters the MSR action
(cf. section II B). Hence, choosing (74) or (75) yields the
same result (13). However, the choice does matter if one
is interested in observables depending on the position,
like the mean pinning force fp := m2[u(t)− w(t)].
In contrast to the velocity theory discussed in previ-

ous sections, fixing a distribution of positions u(ti) as
the initial condition is problematic. Indeed, in general
one cannot exclude that this initial condition leads to
backward motion u̇(ti) < 0 for some realizations of the
disorder. Hence for the stationary Brownian landscape
(75) we will choose ti = −∞ and assume that the driving
ẇ(t) ≥ 0 is such that at fixed times the initial condition is
forgotten, as discussed in section III C1. We claim that
then

G[λ,w] = e
∫

t
λ(t)u(t) (76)

= em
2
∫

t
û(t)w(t)+∆(0)

2m4 [
∫

t
λ(t)]2

[

1− σ

m4

∫

t

λ(t)

]

,

where all time integrals are over ]−∞,∞[. The function
û(t) = −∂tũ(t) where ũ(t) is solution of

∂tũ(t) −m2ũ(t) + σũ(t)2 − σũ(t)ũ(−∞) = −
∫

t′>t

λ(t′).

(77)

In the particular case of the one-sided Brownian land-
scape (74) we only consider the initial condition u(ti) =
0. Since F (0) = 0 in that case, for w(ti) ≥ 0 and ẇ(t) ≥ 0
the motion will be forward. Then the generating function
G[λ,w] in (73) takes a form analogous to (6)

G[λ,w] = e
∫

t>ti
λ(t)u(t)

= e
m2

∫

t>ti
û(t)w(t)

, (78)

where û(t) = −∂tũ(t) and ũ(t) is solution of (5). In
the remainder of this section, we shall prove the above
statements and then apply these formulae to determine
the distribution of the single-time particle position u(t).

A. Generating functional for stationary Brownian

potential

Using the assumption of monotonous motion, the dis-
order term in the action (73) can be rewritten as

1

2

∫

t,t′
∆(u(t), u(t′))û(t)û(t′) =

=
∆(0)

2

[∫

t

û(t)

]2

− σ

∫

t,t′
u(t)û(t)û(t′)sgn(t− t′).

Following the same approach as in section II B, evaluating
the path integral over u(t) in (73) yields

∫

D[û]em
2
∫

t
û(t)w(t)+∆(0)

2 [
∫

t
û(t)]2

× δ

(

∂tû(t)−m2û(t) + σû(t)

∫

t′
û(t′)sgn(t′−t) + λ(t)

)

.

(79)

Thus

G[λ,w] = N em
2
∫

t
û(t)w(t)+∆(0)

2 [
∫

t
û(t)]2 , (80)

where û(t) is solution to the equation

∂tû(t)−m2û(t)+σû(t)

∫

t′
û(t′)sgn(t′− t) = −λ(t). (81)

Substituting ũ(t) :=
∫∞
t
û(t)dt, one recovers (77).

ũ(−∞) is obtained from

−m2

∫ ∞

−∞
û(t) = −m2ũ(−∞) = −

∫ ∞

−∞
λ(t′) dt′. (82)

Note that ũ(−∞) vanishes for λ such that
∫

t′
λ(t′) = 0.

These are exactly those observables which can be ex-
pressed in terms of the velocity (or, equivalently, position
differences).
As in section II, N in (80) is the normalization of the

path integral and the Jacobian of the operator inside the
δ-functional in (79). It is independent of w(t), but we
cannot fix its value at w(t) = const as we did for the
velocity theory in section II: Even if one keeps w = const
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for a long time, the distribution of u will remain non-
trivial (unlike the distribution of u̇, which will become
δ(u̇)). Here, to fix N we compare to the disorder-free
solution (σ = 0) for which the trajectory u(t) is deter-
ministic and satisfies (80) with N = 1. Hence, we can
writeN as a ratio of functional determinants arising from
the δ-functional,

N−1 =
det(∂t −m2 − ΣT )

det(∂t −m2)
= det(1 +RΣ). (83)

Here, R is the disorder-free propagator

R :=
(

∂t +m2
)−1 ⇒ Rt1,t2 = θ(t1 − t2)e

−m2(t1−t2),
(84)

and Σ is the disorder “interaction” term, or ”self-energy”

ΣT
t2,t1 = Σt1,t2 = σδ(t1 − t2)

∫

t′
û(t′)sgn(t1 − t′)

+σû(t2)sgn(t2 − t1). (85)

By explicit computation (see appendix B), one verifies
that

tr (RΣ)
n
= −

[

− σ

m2

∫

t

û(t)

]n

,

and hence

det(1 +RΣ) = exp tr ln(1 +RΣ) =

(

1− σ

m2

∫

t

û(t)

)−1

.

From (81), one further knows that
∫

t û(t) =
1
m2

∫

t λ(t).
In total, this proves the expression (76) for the station-

ary case,

G[λ,w] = em
2
∫

t
û(t)w(t)+∆(0)

2m4 [
∫

t
λ(t)]2

[

1− σ

m4

∫

t

λ(t)

]

(86)
One sees again that for observables expressed in terms
of the velocity, where

∫

t
λ(t) = 0, the simpler expression

(6) is recovered.
In the language of perturbative field theory, the non-

trivial functional determinant signifies non-vanishing 1-
loop diagrams [66]. This is in contrast to the theory
for the velocity (section II B), where all observables were
given by tree-level diagrams. These loop corrections
mean that the non-renormalization property discussed
in section IVB has to be amended when considering the
particle position in a stationary potential. After renam-

ing the driving w to λ̂ = m2w, the source for the field û,
the generating functional for connected correlation func-
tions becomes

W [λ, λ̂] =

∫

t

ût[λ]λ̂t+
∆(0)

2m4

(∫

t

λt

)2

+ln

(

1− σ

m4

∫

t

λt

)

,

where ût[λ] is solution of (81). Following the same pro-

cedure as in section IVB, one obtains the effective action

Γ[u, û] =

=

∫

t

ut

[

−∂tû(t) +m2û(t)− σû(t)

∫

t′
û(t′)sgn(t′ − t)

]

−∆(0)

2

[∫

t

û(t)

]2

− ln

[

1− σ

m2

∫

t

û(t)

]

= S[u, û]− ln

[

1− σ

m2

∫

t

û(t)

]

. (87)

We thus see that the property Γ = S seen for the velocity
theory is only changed by a simple contribution from the
1-loop corrections. The equal-time part of the ûn term
of these loop corrections coincides with a previous result
in [45].
In fact, this calculation can be extended to the d-

dimensional interface with elastic kernel gq of section
IVB. There too it ensures that for the position theory,
and monotonous driving, Γ differs from S only via the
logarithm of a (one-loop) functional determinant. Thus,
2- and higher-loop corrections to correlation functions
and the effective action vanish. Its expression is partic-
ularly simple in the case of a uniform λxt = λ(t) leading
to a uniform saddle point ûxt = û(t):

W1-loop = Ld

∫

ddq

(2π)d
ln

[

1− σgq
m2

∫

t

λ(t)

]

(88)

Γ− S|uniform û = Ld

∫

ddq

(2π)d
ln

[

1− σgq

∫

t

û(t)

]

Ld is the volume of the system. Details and a more gen-
eral discussion are given in appendix B, appendix C and
[23].

B. One-sided Brownian potential

It is instructive to give for comparison the solution
for the simpler case of the correlator (74). Using the
assumption of monotonous motion, the disorder term in
the action (73) can be rewritten as

σ

∫

t,t′
min (u(t), u(t′)) û(t)û(t′) = 2σ

∫

t

u(t)û(t)

∫

t′>t

û(t′)

(89)
Following the same approach as in section II B, evaluating
the path integral over u(t) with initial condition u(ti) = 0
in (73) yields equation (78), where û(t) is solution to the
equation

∂tû(t)−m2û(t) + 2σû(t)

∫

t′>t

û(t′) = −λ(t). (90)

Note that as in section II B, the initial condition u(ti) =
0 ensures that G[λ,w = 0] = 1. Hence the functional
determinant analogous to (83) is equal to 1 in this case.
This is also checked by a direct calculation in Appendix
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B. For λ(t) non-vanishing only around t≫ ti and w(t) ≫
w(ti), we expect that the influence of the initial condition
is negligible. In this particular limit, (78) should hold
independently of the initial condition.
Introducing ũ(t) :=

∫

t′>t
û(t′), (90) gives the following

equation for ũ(t):

∂tũ(t)−m2ũ(t) + σũ(t)2 = −
∫

t′>t

λ(t′), (91)

where we used that ũ(t) → 0 for t→ +∞ (we recall that
û(t) must vanish at both ±∞).

C. Example: Single-time position distribution

To give a simple application of (76), we compute the
distribution of the position u(t) at a single time. To do
this, set λ(t) = λδ(t− t0) in (73). For the Brownian case,
one obtains

û(t) =

λ(1 − 4λ)θ(t0 − t)
{

sinh
[√

1−4λ(t−t0)
2

]

−
√
1− 4λ cosh

[√
1−4λ(t−t0)

2

]}2 .

For the stationary case (77), û(t) reads

û(t) =
λ (1− λ)

2
e−(t−t0)(1−λ)θ(t0 − t)

[

e−(t−t0)(1−λ) − λ
]2 .

In both cases, the θ functions come from causality, since
the driving w(t) for t > t0 cannot influence the measured
position u(t0). Hence both ũ(t) and û(t) = −∂tũ(t) must
both be identically zero for t > t0.
Let us assume a constant driving velocity, and write

w(t) = v(t− ti) + wi. Then, for the one-sided Brownian
with u(ti) = 0 and wi ≥ 0 we have

G(λ) = eλut0 = e
∫ t0
ti

dt′û(t′)vt′ .

This leads to a complicated formula which simplifies in
the limit ti → −∞ at fixed w(t0),

G(λ) =

( −2λ

1− 4λ−
√
1− 4λ

)−v

e
w(t0)

2 (1−
√
1−4λ). (92)

For the stationary case (restoring units), this is

G(λ) = em
2
∫

t′
û(t′)vt′ dt′+∆(0)

2m4 λ2
(

1− σ

m4
λ
)

=
(

1− σ

m4
λ
)

m2v
σ +1

eλvt0+
∆(0)

2m4 λ2

.

Inverting gives a valid distribution only for |ut0 − vt0| ≪
σ/∆(0) which coincides with the cut-off which should
be used to regularize the stationary Brownian landscape
(75).

VI. GENERALIZATIONS

In light of the interesting results obtained for (1), it
is natural to ask whether our approach can be extended.
In particular, one might want to replace the response
function in (1) by a more general response kernel. For
example, in order to model eddy currents which change
the avalanche shape in real magnets [3, 46], one may want
to include second-order derivatives in time.
For this, it is useful to view the calculation in section

II B from another perspective. The equation (5) for ũ is
identical to the saddle-point equation obtained from the
action (13) in presence of the source λ by taking a func-
tional derivative with respect to u̇(t). The result (6) is
then the value of Z at the saddle point obtained by solv-
ing (5) for the given choice of λ. The other “coordinate”
of the saddle point (which happens not to influence the
value of Z in this case, however) is the field u̇(t), fixed by
the equation obtained by a functional derivative of (13)
with respect to ũ(t),

∂tu̇(t) +m2 [u̇(t)− ẇ(t)] − 2σu̇(t)ũ(t) = 0. (93)

This is the trajectory giving the dominant contribution
to Z for a given choice of λ. E.g. for λ(t) = λδ(t − t0),
ũ(t) is given by (14); for w(t) = vt the solution of (93)
converging to v at infinity then reads

u̇(t) = v

(

1 +
λ

1− λ
e−|t−t0|

)

.

Note that it can also be obtained from the 2-time
generating function (18), e.g. for t > t0 as u̇(t) =
∂λ2 lnG(λ1 = λ, λ2)|λ2=0,t2=t,t1=t0 . Indeed, since S = Γ
for monotonous motion, the solution of (93) identifies
with (71), i.e. the saddle-point approximation is exact.
We thus see, as expected, that if we concentrate on small
velocities (λ → −∞), the velocity on the dominant tra-
jectory u̇(t) gets closer and closer to 0 at t0, but never
becomes negative.
Now, the action S generalizing (13) with an arbitrary

response kernel Rtt′ is

S[u̇, ũ] = (94)

=

∫

t

{

ũ(t)

[∫

t′
R−1

tt′ u̇(t
′)−m2ẇ(t)

]

− σu̇(t)ũ(t)2
}

.

The saddle-point equations read

∫

t′
R−1,T

tt′ ũ(t′)− σũ(t)2 − λ(t) = 0,

∫

t′
R−1

tt′ u̇(t
′)− 2σu̇(t)ũ(t)−m2ẇ(t) = 0. (95)

For a general (bare) response function R, the last term
in the action (94) is not exact, since we cannot assume
monotonicity of each individual trajectory. However, as
long as the saddle-point trajectory defined by (95) for
some choice of λ is monotonous (i.e. satisfies u̇(t) ≥ 0 for
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all t), it gives a well-defined approximation to the value
of Z for this particular λ. Investigating the quality of
this approximation is an interesting avenue for further
research.

VII. SUMMARY AND OUTLOOK

In this paper, we have considered the ABBM model
with a monotonous, but non-stationary driving force. Us-
ing the Martin-Siggia-Rose formalism, we obtained the
generating functional for the velocity from a field theory
that can be solved exactly. This was illustrated on sev-
eral paradigmatic examples (e.g. a quench in the driving
velocity). Using our formalism, we also succinctly recov-
ered previous results on the stationary case.

An interesting direction for further research is trying
to generalize these results to non-stationary dynamics
of models which are not mean-field in nature, like d-
dimensional elastic interfaces. Although some work has
been done in that direction [47–50], many questions re-
main open. Another complication arises when adding
non-linear terms to the equation of motion (1) or (63).
The effects of the KPZ term [∇u(x)]2 have been dis-
cussed in [51–53]. An anologous term but with a time-
instead of a space derivative, i.e. a term u̇2, is related
to dissipation of energy [67] and yields a toy model with
velocity-dependent friction. This is important as a step
towards realistic earthquake models, where it is known
that instead of a constant friction coefficient one has a
complicated rate-and-state friction law [12–14]. For the
hysteresis loop in the ABBM model, it would be interest-
ing to extend our results to the case of non-monotonous
driving. Unfortunately, this is not an easy task: We cru-
cially used both the monotonicity of the particle velocity,
u̇(t) ≥ 0, and the one of the driving, ẇ(t) ≥ 0 for sim-
plifying the action and computing the path integral in
section II B. Without this assumption, neither the result
(6) nor the non-renormalization property in section IVB
hold. Assuming the non-renormalization property, the
mean velocity u̇(t) would be equal to its value in the
system without disorder at all times. This can be seen,
e.g. by taking ∂λ at λ = 0 in formula (3) and using (6)
and (14). However, in numerical simulations one observes
that this property breaks down as soon as the driving is
non-monotonous, hence at least the term proportional to
ũ in the effective action is renormalized. We thus leave
questions in this direction for future studies.
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Appendix A: Derivation of the non-stationary

solution in discretized time

The path integral derivation of (6) in section II is, to
some extent, formal and neglects subtleties like conver-
gence issues and boundary conditions. To complement
it, we provide here a rigorous first-principle derivation of
(6) by discretizing the time axis. For a small time step
δt, we write (7) as follows:

u̇j+1 − u̇j
δt

=
F (uj + δtu̇j+1)− F (uj)

δt

+m2 (ẇj+1 − u̇j+1)

⇒ u̇j+1 = X(u̇j+1) + km2δtẇj+1 + ku̇j , (A1)

with k−1 := 1 +m2δt.
X(u̇j+1) := k [F (uj + δtu̇j+1)− F (uj)] is, by the
Markov property of Brownian motion, a new Brown-
ian motion with X(0) = 0 and variance X(u̇)X(u̇′) =
2σk2δtmin(u̇, u̇′). Eq. (A1) is an implicit equation for
u̇j+1, which has, in general, several solutions u̇j+1 > 0.
In fact, its solutions are the intersections of the Brownian
motion X(u̇j+1) with the line km2δtẇj+1 + ku̇j − u̇j+1.
The true u̇j+1 describing the motion of the particle is the
smallest of these solutions.
Hence, the conditional probability distribution for u̇j+1

given u̇j is the first-passage distribution of Brownian mo-
tion, given by

P (u̇j+1|u̇j) =
km2δtẇj+1 + ku̇j√

4πσk2δtu̇
3
2
j+1

e
−(u̇j+1−km2δtẇj+1−ku̇j)

2

4σk2δtu̇j+1 .

(A2)
The Laplace transform of this expression, which is the
conditional expectation value for eũu̇j+1 , is given by

E(eũu̇j+1 |u̇j) :=
∫ ∞

0

eũu̇j+1P (u̇j+1|u̇j)du̇j+1

= e
ẇj+1m2δt+u̇j

2σkδt (1−
√
1−4ũσk2δt). (A3)

This can be rewritten as

E(eũu̇j+1 |u̇j) = em
2ũ′ẇj+1δteũ

′u̇j , (A4)

with ũ′ = 1
2σkδt

(

1−
√
1− 4ũσk2δt

)

. Hence, iterating
(A4) one obtains

e
∑N

j=1 λj u̇jδt = em
2 ∑N

j=1 ũj ẇjδt × eũ1u̇0 , (A5)

where ũj is defined via the (backward) recursion

ũN+1 = 0 (A6)

ũj =
1−

√

1− 4(ũj+1δt+ λjδt2)σk2

2σkδt
, 0 < j ≤ N.

This is the exact solution for the discrete problem with
δt > 0. In the continuum limit, we can take the leading
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order as δt→ 0. (A5) then reduces to the form (4). The
recursion for ũ becomes

ũj − ũj+1

δt
= −m2ũj+1 + λj + σũ2j+1 +O(δt), (A7)

which is the discrete version of (5).
Let us now show the connection with the MSR path

integral discussed in section II B. We discretize the action
(13) with time step δt using the Itô prescription. Keeping
u̇j fixed, the path integral formula (12) for the generating
function (3) gives us the generating function for u̇j+1 as

E(eλu̇j+1 |u̇j) =
∫ ∞

−∞
du̇j+1

∫ i∞

−i∞

dũj+1

2π
(A8)

e
−ũj+1

[

u̇j+1−u̇j
δt +m2(u̇j−ẇj)

]

δt+ũ2
j+1σu̇jδt+λu̇j+1 .

The integrals over ũj+1 and u̇j+1 can be performed ex-
plicitly, and yield (taking into account δt > 0, σ > 0,

ẇ ≥ 0, and u̇j > 0)

E(eλu̇j+1 |u̇j) = exp
[(

λ−m2δt+ σλ2δt
)

u̇j + λm2δtẇj

]

.
(A9)

To leading order for δt → 0 and substituting λ → ũ this
becomes identical to the generating function (A3). Note
that while the first-passage prescription used to obtain
(A3) assumed u̇j+1 ≥ 0, in (A8) we formally allow the
velocity u̇j+1 to take any value between −∞ and ∞. Sur-
prisingly, this yields the same result to leading order in
δt. It would be interesting to understand how a more
rigorous MSR approach could be developed directly on
the discrete version for finite δt using first passage times.

Analogously, one can derive a discretized path integral
for the position variable u for the one-sided Brownian
potential discussed in section VB.

Appendix B: Functional determinants and 1-loop diagrams

Here we compute tr(RΣ)n where R is given in (84) and Σ in (85). For simplicity we set σ = m = 1. Let us recall
that in Ito discretization θ(0) = 0. First, note that

(RTΣT )t1,t2 =

∫

t′
û(t′)sgn(t′ − t2)

[

θ(t′ − t1)e
−(t′−t1) − θ(t2 − t1)e

−(t2−t1)
]

.

Applying this to tr(RΣ)n = tr(RTΣT )n, one gets

tr(RΣ)n =

∫

t′1...t
′
n

û(t′1)...û(t
′
n)

∫

t1...tn

n
∏

j=1

sgn(t′j − tj)
[

θ(t′j+1 − tj)e
−(t′j+1−tj) − θ(tj+1 − tj)e

−(tj+1−tj)
]

.

The convention is that tn+1 = t1 and t′n+1 = t′1. Now, we conjecture that for any t′1...t
′
n,

∫

t1...tn

n
∏

j=1

sgn(t′j − tj)
[

θ(t′j+1 − tj)e
−(t′j+1−tj) − θ(tj+1 − tj)e

−(tj+1−tj)
]

= (−1)n+1. (B1)

We were unable to find an analytic proof, but verified this conjucture for n ≤ 5. Assuming it for any n, one obtains
as claimed

tr(RΣ)n = −
[

−
∫

t

û(t)

]n

.

For the one-sided Brownian correlator (74) we find the self-energy analogous to (85) as

Σt1,t2 = −2δ(t1 − t2)

∫

t′
û(t′)θ(t′ − t2)− 2û(t2)θ(t1 − t2). (B2)

This implies

(RTΣT )t1,t2 = −2

∫

t′
û(t′)

[

θ(t2 − t′)θ(t′ − t1)e
−(t′−t1) + θ(t′ − t2)θ(t2 − t1)e

−(t2−t1)
]

.

One then finds tr(RΣ)n = 0 for n ≥ 1 hence a unit functional determinant as claimed in the text.
This can be generalized to the d-dimensional interface. We need to compute the functional determinant det(1+RΣ)

with

R−1
x1t1,x2t2 = δt1t2(∂t2δx1x2 + gx1x2) (B3)

Σx1t1,x2t2 = δx1x2 [σδt1t2

∫

t′
ûxt′sgn(t1 − t′) + σûxt2sgn(t2 − t1)]. (B4)
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We conjecture that this yields

ln det(1 +RΣ) = tr ln

(

δxx′ − σgxx′

∫

t

ûx′t

)

= tr ln

[

δxx′ − σgxx′

∫

y

gx′y

∫

t

λyt

]

. (B5)

For the last equality, we used
∫

t ûxt = gxx′

∫

t λx′t. For a uniform source one recovers the expression in the text of
section VA.

Appendix C: 1-loop functional RG at finite velocity

In [54], the 1-loop functional RG equations for a d-
dimensional elastic interface at non-zero driving velocity
v > 0 were derived in the Wilson RG scheme. These
equations have resisted analytical (or numerical) solution
since then. Here, instead of using Wilson RG with a
hard cutoff in momentum space, we regularize our model
by a parabolic well with curvature m2. We point out
that the stationary ABBM disorder correlator (64), (75)
yields a simple solution of the corresponding functional

RG equations. This also provides an independent check
of the non-renormalization property for ABBM disorder
discussed in section IVB using a different method.

For a d-dimensional interface driven by a parabolic well
of curvature m2 centered at w = vt, one can derive the
functional RG flow equation by computing −m∂mΓ and
reexpressing it as a function of Γ. This is done order by
order in ∆, which in this Appendix denotes the renor-

malized second cumulant of the disorder (the local part
of the term ûû in Γ). The resulting functional RG flow
of ∆ at finite driving velocity v is [55]

−m∂m∆̃(u) = (ǫ − 2ζ)∆̃(u) + ζu∆̃′(u)

+

∫ ∞

0

ds1

∫ ∞

0

ds2
e−(s1+s2)

s1 + s2

{

∆̃′′(u)
[

∆̃(ṽ(s2 − s1))− ∆̃(u + ṽ(s2 − s1))
]

−∆̃′(u+ ṽs1)∆̃
′(u− ṽs2) + ∆̃′(ṽ(s1 + s2))

[

∆̃′(u− ṽs1)− ∆̃′(u+ ṽs2)
]}

. (C1)

Here ǫ = 4 − d, the rescaled correlator is defined via

∆(u) = Adm
ǫ−2ζ∆̃(umζ) with A−1

d = ǫ
∫

ddk
(2π)d

(1+k2)−2,

and ṽ = ηmv/m
2−ζ flows as

−m∂m ln ṽ = z − ζ = 2− ζ −
∫

s>0

e−s∆̃′′(sṽ). (C2)

The flow of ṽ arises because the friction is corrected by
disorder. In general, this leads to a non-trivial dynamical
exponent z defined by the relation above. For v → 0 one
recovers the flow at the depinning threshold obtained in
[39]. These equations are sufficient [68] for an expansion

in ǫ with ∆̃ = O(ǫ).
Plugging in the correlator for ABBM-type disorder,

∆̃(u) = ∆̃(0)− σ̃|u|, and ζ = ǫ into (C1), one finds

−m∂m∆(u) = −σ̃2 (C3)

−m∂mṽ = z − ζ = 2− ǫ. (C4)

We see that the dynamical exponent z for ABBM-type
disorder takes the value z = 2 in any dimension d. The
ABBM form of the disorder is preserved with −m∂mσ̃ =
0 and only ∆̃(0) flowing as −m∂m∆̃(0) = −σ̃2. This is
consistent (for d = 0) with equation (76). In addition,
as discussed in section V and appendix B, 2- and higher-
loop corrections vanish in any d for monotonous motion
in ABBM-type disorder. More precisely, Γ − S is the
logarithm of a functional determinant computed in sec-
tion V. This shows that for ABBM-type disorder, (C1)
is exact to all orders in ǫ = 4− d.

We note that for ABBM disorder the correlator re-
mains non-analytic for any v [69]. This is, presumably, a
peculiarity of ABBM disorder. For short-ranged disorder
this may only hold until some scale, the non-analyticity
being rounded at larger scales (small m). However fur-
ther studies are needed to clarify the validity of this hy-
pothesis.
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