Non-Gaussian effects and multifractality in the Bragg glass

Andrei A. Fedorenko¹, Pierre Le Doussal² and Kay Jörg Wiese²

¹CNRS-Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69007 Lyon, France. ²CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond,75005 Paris, France.

PACS 68.35.Rh – Phase transitions and critical phenomena

Abstract. - We study, beyond the Gaussian approximation, the decay of the translational order correlation function for a *d*-dimensional scalar periodic elastic system in a disordered environment. We develop a method based on functional determinants, equivalent to summing an infinite set of diagrams. We obtain, in dimension $d = 4 - \varepsilon$, the even *n*-th cumulant of relative displacements as $\langle [u(r) - u(0)]^n \rangle^c \simeq \mathcal{A}_n \ln r$ with $\mathcal{A}_n = -(\varepsilon/3)^n \Gamma(n - \frac{1}{2})\zeta(2n - 3)/\sqrt{\pi}$, as well as the multifractal dimension x_q of the exponential field $e^{qu(r)}$. As a corollary, we obtain an analytic expression for a class of *n*-loop integrals in d = 4, which appear in the perturbative determination of Konishi amplitudes, also accessible via AdS/CFT using integrability.

Introduction: Periodic elastic systems in quenched disorder model numerous applications, from charge-density waves in solids [1], vortex lattices in superconductors [2,3]Wigner crystals [4], Josephson junction arrays [5], to liquid crystals [6]. The competition between elastic energy, which favors periodicity, and disorder, which favors distortions, produces a complicated energy landscape with many metastable states. While we know since Larkin [7] that weak disorder destroys perfect translational order, it was realized later that topological order (i.e. no dislocations) may survive, leading to the Bragg glass phase (BrG) [3, 8] and validating the elastic description. A key observable, measured from the structure factor in diffraction experiments [9], is the translational correlation function $C_K(\mathbf{r}) = \langle \overline{e^{iK[u(\mathbf{r})-u(0)]}} \rangle$, where $u(\mathbf{r})$ is the (N-component) displacement of a node from its position in the perfect lattice, and K is chosen as a reciprocal lattice vector (RLV). Overlines stand for disorder averages, and brackets for thermal averages. Thermal fluctuations are subdominant, and we focus on T = 0. It was established [8, 10] that at large scale $u(\mathbf{r})$ is a log-correlated field,

$$\overline{\langle [u(\mathbf{r}) - u(0)]^2 \rangle} \simeq \mathcal{A}_2 \ln \frac{r}{a},\tag{1}$$

where a is a microscopic cutoff, and $r := |\mathbf{r}|$. If one further assumes $u(\mathbf{r})$ to be Gaussian, one obtains

$$C_K(\mathbf{r}) \sim r^{-\eta_K},\tag{2}$$

with $\eta_K = \eta_K^{\rm G} := \frac{1}{2} \mathcal{A}_2 K^2$, hence quasi-long range translational order and sharp diffraction peaks, a characteristic

of the BrG [8,9]. This holds for space dimension $d_{\rm lc} < d_{\rm uc}$ (i.e. $\mathbf{r} \in \mathbb{R}^d$) with $d_{\rm lc} = 2$, $d_{\rm uc} = 4$ for standard local elasticity. It was obtained by variational methods and confirmed by the Functional renormalization group (FRG) [8,10], a field-theoretic method developed in recent years [11–16], which allows to treat multiple metastable states. The FRG predicts the universal amplitude \mathcal{A}_2 in a dimensional expansion in $d = d_{\rm uc} - \varepsilon$. In this letter we restrict for simplicity to the scalar case N = 1, i.e. $u(\mathbf{r}) \in \mathbb{R}$, and choose the periodicity of u to be one, hence the RLV to be $K = 2\pi k$ with k integer. Then, within a 2-loop FRG calculation [13], $\mathcal{A}_2 = \frac{\varepsilon}{18} + \frac{\varepsilon^2}{108} + \mathcal{O}(\varepsilon^3)$ in agreement with numerics [17,18] for d = 3.

The rationale for the Gaussian approximation is that around d_{uc} one can decompose $u = \sqrt{\varepsilon}u_1 + \varepsilon u_2 + ...$ into independent fields u_i , where u_1 is Gaussian (see Appendix G of [16]). Hence non-Gaussian corrections to η_K are expected only to $\mathcal{O}(\varepsilon^4)$. However they grow rapidly with Kand surely become important for secondary Bragg peaks. This motivates a calculation of the higher cumulants of $u(\mathbf{r})$. We also want to study $C_K(\mathbf{r})$ for arbitrary $K = 2\pi k$ with k not necessary an integer. This is needed e.g. in the context of the roughening transition [19] to determine whether the BrG is stable to a small periodic perturbation $V_K = \int d^d \mathbf{r} \cos(Ku(\mathbf{r}))$. Finally, for the algebraic decay (2) to hold for all K all cumulants need to grow as $\ln r$, a property which we demonstrate.

Another motivation to study the higher cumulants of $u(\mathbf{r})$ comes from multifractal statistics, with examples ranging from turbulence [20] to localization of quantum

particles [21]. Although $u(\mathbf{r})$ exhibits single-scale fractal statistics, we show here that the *exponential field* $e^{u(\mathbf{r})}$ exhibits multifractal scaling, i.e. its moments behave with system size L as

$$\overline{\langle e^{qu(\mathbf{r})} \rangle} \sim \left(\frac{a}{L}\right)^{x_q},\tag{3}$$

with a scaling dimension x_q . This provides an interesting example beyond the well-studied Gaussian case [22, 23] of the general correspondence between exponentials of logcorrelated fields and statistically self-similar and homogeneous multifractal fields [24].

The aim of this letter is thus to go beyond the Gaussian approximation: We calculate the multifractal exponents x_q and obtain the higher cumulants of the log-correlated displacement field u as

$$\overline{\langle [u(\mathbf{r}) - u(0)]^n \rangle^c} \simeq \mathcal{A}_n \ln(r/a)$$
 (4)

for $r \gg a$, *n* even, where each \mathcal{A}_n is calculated to leading order in $\varepsilon = 4 - d$ (odd cumulants vanish by parity $u \to -u$). We use the FRG and develop a method based on the asymptotic evaluation of functional determinants, which allows us to sum up an *infinite subset of diagrams*. Amazingly, it can also be applied to compute integrals appearing in a perturbative calculation on the field-theory side of AdS/CFT, known as Konishi integrals [25].

Let us mention that for the same model in $d = d_{\rm lc} = 2$ (the Cardy-Ostlund model) such a summation was achieved using conformal perturbation theory [26]. While for d > 2 the \mathcal{A}_n are T independent, in d = 2 the glass phase is marginal and exists for $T < T_{\rm c}$. The higher cumulants, as well as $C_K(\mathbf{r})$ for $k \leq 1$, were obtained to leading order in $T_{\rm c} - T$.

The model: The Hamiltonian of an elastic system in a disordered environment can be written as

$$\mathcal{H}[u] = \int_{\mathbf{x}} \frac{1}{2} [\nabla u(\mathbf{x})]^2 + \frac{m^2}{2} u^2(\mathbf{x}) + V(u(\mathbf{x}), \mathbf{x}), \quad (5)$$

with $\int_{\mathbf{x}} := \int d^d \mathbf{x}$. The first term is the elastic energy. The second term is a confining potential with curvature m^2 which effectively divides the system into independent subsystems of size $L_m = 1/m$, hence provides an infrared (IR) cutoff. The random potential $V(u, \mathbf{x})$ is a Gaussian with zero mean and correlator

$$\overline{V(u,\mathbf{x})V(u',\mathbf{x}')} = R_0(u-u')\delta^d(\mathbf{x}-\mathbf{x}'), \qquad (6)$$

where $R_0(u)$ is a function of period unity, reflecting the periodicity of the unperturbed crystal [3]. The partition function in a given disorder realization, at temperature T, is $\mathcal{Z} := \int \mathcal{D}[u] e^{-\mathcal{H}[u]/T}$. To average over the disorder, we introduce replicas $u_{\alpha}(\mathbf{x})$, $\alpha = 1, \ldots, \mathbf{n}$ of the original system. This leads to the bare replicated action

$$\mathcal{S}_{R_0}[u] = \frac{1}{T} \sum_{\alpha} \int_{\mathbf{x}} \frac{1}{2} [\nabla u_{\alpha}(\mathbf{x})]^2 + \frac{m^2}{2} u_{\alpha}^2(\mathbf{x}) - \frac{1}{2T^2} \sum_{\alpha\beta} \int_{\mathbf{x}} R_0 (u_{\alpha}(\mathbf{x}) - u_{\beta}(\mathbf{x})).$$
(7)

The observables of the disordered model can be obtained from those of the replicated theory in the limit $n \rightarrow 0$.

FRG basics: The central object of the FRG is the renormalized disorder correlator, the *m*-dependent function R(u). Appropriately defined from the effective action $\Gamma[u]$ associated to $\mathcal{S}_{R_0}[u]$, the function R(u) is an observable [14], which has been measured in numerics [27] and in experiments [28]. It satisfies a FRG flow equation as *m* is decreased to zero ($R = R_0$ for $m = \infty$). Under rescaling, $R(u) = A_d m^{\varepsilon - 4\zeta} \tilde{R}(m^{\zeta} u)$, with $A_d = \frac{(4\pi)^{d/2}}{\varepsilon \Gamma(\varepsilon/2)}$, $\tilde{R}(u)$ admits a periodic fixed point (FP) with $\zeta = 0$, and $u \in [0, 1]$,

$$\tilde{R}^*(u) - \tilde{R}^*(0) = \tilde{R}^{*\prime\prime}(0) \frac{1}{2} u^2 (1-u)^2.$$
(8)

This form is valid for any d < 4, and $-\tilde{R}^{*\prime\prime}(0) = \frac{\varepsilon}{36} + \frac{\varepsilon^2}{54}$ to two loop accuracy, in agreement with numerics [27]. The salient feature is that the renormalized force correlator $-R^{\prime\prime}(u)$ acquires a cusp at u = 0, which we denote by $\tilde{\sigma} = \tilde{R}^{*\prime\prime\prime}(0^+) = \frac{\varepsilon}{6} + \frac{\varepsilon^2}{9}$. This cusp, seen in experiments [28], is the hallmark of the multiple metastable states and is directly related to the statistics of shocks and avalanches which occur when applying an external force [16].

Determinant formula: The cumulants (4) can be computed from (7) in perturbation theory in R_0 at T = 0, the leading order being $\mathcal{O}(R_0^{\prime\prime\prime}(0^+)^n)$. This perturbation theory involves (complicated) replica combinatorics, see e.g. [13]. It also requires the evaluation of multi-loop integrals represented in fig. 1, a formidable task. We now show how to shortcut these difficulties. We first reduce the problem to the calculation of a functional determinant using the method developed in [29] to evaluate averages of the form $\mathcal{G}[\lambda] := \overline{\langle \exp\left(\int_{\mathbf{x}} \lambda(\mathbf{x}) u(\mathbf{x})\right) \rangle} = \lim_{n \to 0} \left\langle \exp\left(\int_{\mathbf{x}} \lambda(\mathbf{x}) u_1(\mathbf{x})\right) \right\rangle_{\mathcal{S}}$ where $u_1(\mathbf{x})$ stands for one of the n replicas. The function $C_K(\mathbf{r})$ can then be computed using the charge density of a dipole, $\lambda_{\rm D}(\mathbf{x}) := i K[\delta(\mathbf{x} - \mathbf{r}) - \delta(\mathbf{x})]$. For an arbitrary $\lambda(\mathbf{x})$, the average is expressed as $\mathcal{G}[\lambda] = \exp(\int_{\mathbf{x}} \lambda(\mathbf{x}) u^{\lambda}(\mathbf{x}) -$ $\Gamma[u^{\lambda}])$, where $u^{\lambda}(\mathbf{x})$ extremizes the exponential, i.e. is solution of $\partial_{u_a(\mathbf{x})} \Gamma[u]|_{u=u^{\lambda}} = \lambda(\mathbf{x}) \delta_{a1}$. The effective action was calculated in an expansion in R (i.e. in ε) to leading order (one loop) as $\Gamma[u] = S_R[u] + \Gamma_1[u]$ where $S_R[u]$ is the improved action with the bare correlator R_0 replaced by the renormalized one R, and $\Gamma_1[u]$ is displayed e.g. in [29, 30]. Performing the extremization at T = 0, a slight generalization of section IV.A of Ref. [29] leads to

$$\overline{\left\langle e^{\int_{\mathbf{x}} \lambda(\mathbf{x})u(\mathbf{x})} \right\rangle} = \mathcal{G}_{\text{Gauss}}[\lambda] e^{-\Gamma_{\lambda}}.$$
(9)

Here $\mathcal{G}_{\text{Gauss}}[\lambda] = e^{\frac{1}{2} \int_{\mathbf{x}\mathbf{x}'} \lambda(\mathbf{x}) \lambda(\mathbf{x}') \overline{\langle u(\mathbf{x})u(\mathbf{x}') \rangle}}$ is the Gaussian approximation, $\overline{\langle u(\mathbf{x})u(\mathbf{x}') \rangle}$ the exact 2-point correlation function, and the effective action is

$$-\Gamma_{\lambda} = \frac{1}{2} \Big\{ \ln \mathcal{D}_{\text{reg}}[\sigma U(\mathbf{r})] + \ln \mathcal{D}_{\text{reg}}[-\sigma U(\mathbf{r})] \Big\}.$$
(10)

The effective disorder is $\sigma := R'''(0^+)$, and we define

$$\mathcal{D}[\sigma U(\mathbf{r})] := \frac{\det(-\nabla^2 + \sigma U(\mathbf{r}) + m^2)}{\det(-\nabla^2 + m^2)}.$$
 (11)

Fig. 1: Diagrammatic representation of the integrals contributing to the translational correlation function to leading order. The C_n have two external points (big circles, grey) where the external momentum p enters. They are constructed from a polygon with n vertices each attached to one of the two external points. They are finite in d = 4 and $\sim 1/p^4$. \mathcal{D}_n has one external point (big circle, not integrated over) all other points are integrated over. It is log-divergent in d = 4.

Its logarithm, $\ln(\mathcal{D}[\pm \sigma U])$, has a perturbative expansion in σ . The first two terms, of order σ and σ^2 , which contain ultraviolet divergences in d = 4, are included in the Gaussian part. The remaining terms, i.e. all $\mathcal{O}(\sigma^p)$ with $p \geq 3$, define the regularized determinant $\ln(\mathcal{D}_{reg}[\pm \sigma U])$. Thus (10) contains only information about higher cumulants¹. We have introduced the potential

$$U(\mathbf{r}) := \int_{\mathbf{x}} (-\nabla^2 + m^2)_{\mathbf{r},\mathbf{x}}^{-1} \lambda(\mathbf{x}), \qquad (12)$$

which in the limit $m \to 0$ satisfies the d-dimensional Poisson equation $\nabla^2 U(\mathbf{r}) = -\lambda(\mathbf{r})$. Note that two copies of the determinant appear in the present static problem in eq. (9) as $\sqrt{\mathcal{D}[\sigma U]\mathcal{D}[-\sigma U]}$, which can thus be interpreted as originating from an *effective fermionic* field theory with two flavors of real fermions. A related observation was made in a dynamical calculation of the distribution of pinning forces at the depinning transition [31], where only one copy appears, as $\mathcal{D}[\sigma U]$. Note also, from fig. 1, that to this order we have an effective *cubic* field theory with coupling σ . The 2-point correlation function in Fourier² reads $\overline{\langle u_p u_{-p} \rangle} = c_d p^{-d} f(p/m)$, with $f(z) \sim \tilde{c}_d z^d / c_d$ for small z, $f(\infty) = 1$, $\tilde{c}_d = -A_d \tilde{R}^{*\prime\prime}(0)$ and $c_d = \tilde{c}_d (1 - \varepsilon + ...)$. Inserting this with the 1-loop FP value into $\mathcal{G}_{\text{Gauss}}[\lambda]$ leads to the above Gaussian result for η_K^G with $\mathcal{A}_2 = \frac{2S_d c_d}{(2\pi)^d}$, and $S_d = \frac{2\pi^{d/2}}{\Gamma(d/2)}.$

Evaluation of the determinant: We now have to evaluate the functional determinant (11). Unfortunately, there is no general method in d > 1 for a non-sphericallysymmetric potential. However, as we show below, it is sufficient to calculate the determinant for a spherically symmetric potential, and then apply a multi-fractal scaling analysis [24, 32, 33]. Thus we start by computing the scaling dimension $x_q = x_{-q}$, as defined from (3). To this aim we calculate $\mathcal{G}[\lambda]$ for a (regularized) point-like charge $\lambda_{\rm p}(\mathbf{r}) := q \delta_a(\mathbf{r})$ in a finite-size system. Since the corresponding potential is spherically symmetric, to obtain the determinant ratio (11) we can employ the Gel'fand-Yaglom method [34], generalized to d dimensions [35]. We separate the radial and angular parts of the eigenfunctions as $\Psi(r, \vec{\theta}) = \frac{1}{r^{(d-1)/2}} \psi_l(r) Y_l(\vec{\theta})$, where the angular part is given by a hyperspherical harmonic $Y_l(\vec{\theta})$, labeled in part by a non-negative integer l. The radial part $\psi_l(r)$ is an eigenfunction of the 1D (radial) Schrödinger-like operator $\mathcal{H}_l + \sigma U(r) + m^2$, where

$$\mathcal{H}_{l} := -\frac{\mathrm{d}^{2}}{\mathrm{d}r^{2}} + \frac{\left(l + \frac{d-3}{2}\right)\left(l + \frac{d-1}{2}\right)}{r^{2}}.$$
 (13)

The logarithm of (11) can be written as a sum of the logarithms of the 1D determinant ratios \mathcal{B}_l for partial waves weighted with the degeneracy of angular momentum l,

$$\ln\left(\mathcal{D}[\sigma U]\right) = \sum_{l=0}^{\infty} \frac{(2l+d-2)(l+d-3)!}{l!(d-2)!} \ln \mathcal{B}_l.$$
 (14)

The Gel'fand-Yaglom method gives the ratio of the 1D functional determinants for each partial wave l as

$$\mathcal{B}_l := \frac{\det\left[\mathcal{H}_l + \sigma U(r) + m^2\right]}{\det\left[\mathcal{H}_l + m^2\right]} = \frac{\psi_l(L)}{\tilde{\psi}_l(L)}.$$
 (15)

Here $\psi_l(r)$ is the solution of the initial-value problem for

$$\left[\mathcal{H}_l + \sigma U(r) + m^2\right]\psi_l(r) = 0, \qquad (16)$$

satisfying $\psi_l(r) \sim r^{l+(d-1)/2}$ for $r \to 0$. Equation (15) holds for the boundary conditions $u(|\mathbf{r}| = L) = 0$, taking the large-*L* limit afterwards³. The function $\tilde{\psi}_l(r)$ solves (16) with the same small-*r* behavior, but for $\sigma = 0$.

We can now calculate $\overline{\langle e^{qu(\mathbf{r})} \rangle}$ to leading order in $d = 4 - \varepsilon$. Since $\sigma = \mathcal{O}(\varepsilon)$ we can perform the calculation in d = 4. A point-like charge distribution leads to a potential $U(r) \sim 1/r^{d-2}$ which is too singular at the origin in d = 4. We introduce an UV cutoff via a uniformly charged ball of radius $a, \lambda_{\rm B}(\mathbf{r}) = \frac{qd}{S_d a^d} \Theta(a - |\mathbf{r}|)$. Since L is finite, we solve Poisson's equation setting $m \to 0$ and obtain

$$U(r) = \begin{cases} \frac{qa^{2-d}}{2S_d} \left(\frac{d}{d-2} - \frac{r^2}{a^2}\right) & \text{for } 0 < r < a, \\ \frac{q}{S_d(d-2)} \frac{1}{r^{d-2}} & \text{for } a < r < L. \end{cases}$$
(17)

We insert this potential in the Gaussian approximation which reads $\ln \mathcal{G}_{\text{Gauss}} = -\frac{1}{2}R''(0)\int_{\mathbf{r}}U(r)^2$, to lowest order $\mathcal{O}(\varepsilon)$. The log-divergence of this integral in d = 4 leads to $x_q^{\text{G}} = -\tilde{c}_4 q^2/(8S_4) = -\varepsilon q^2/72$. More generally, eq. (1) requires by consistency that $\overline{u(\mathbf{r})^2} \simeq \frac{1}{2}\mathcal{A}_2\ln(L/a)$ hence $x_q^{\text{G}} = -\mathcal{A}_2 q^2/4$, fixing the quadratic part $\mathcal{O}(q^2)$ of x_q .

¹A simpler version of (10) was considered in Appendix G of [16] for a uniform source; it yields the cumulants of $\int_{\mathbf{r}} u(\mathbf{r})$.

²It was calculated to $\mathcal{O}(\varepsilon^2)$ in [13] Sec. VI A.

³To work directly in an infinite system, the electric field must vanish fast enough. One can either use m = 0 with a neutral charge configuration (dipole), or m > 0 (screening, exponential decay).

To calculate the leading non-Gaussian corrections to x_q via (11), we find the solution of (16) in d = 4 with the potential (17). It reads, for r < a

$$\psi_l(r) = \frac{r^{l+\frac{3}{2}}}{e^{\frac{ir^2\sqrt{s}}{2a^2}}} {}_1F_1\left(\frac{l+2-i\sqrt{s}}{2}+1; l+2; \frac{ir^2\sqrt{s}}{a^2}\right),$$
(18)

and for a < r < L,

$$\psi_l(r) = c_1 r^{\frac{1}{2} - \sqrt{(l+1)^2 + s}} + c_2 r^{\sqrt{(l+1)^2 + s} + \frac{1}{2}}.$$
 (19)

We introduced $s := \sigma q/(2S_d)$. One can find $c_{1,2}$ by matching at r = a. Using eq. (15) we obtain the partial-wave determinant, which is universal at large L,

$$\ln \mathcal{B}_{l} = \left[\sqrt{(l+1)^{2} + s} - (l+1)\right] \ln(L/a) + \mathcal{O}(L^{0}).$$
(20)

The term $\mathcal{O}(L^0)$ can be calculated from the c_i ; it is not universal. Note that the massive problem also leads to (20) with $\ln(L)$ replaced by $\ln(1/m)$.

Substituting this result into eq. (14) yields the result for $\ln(\mathcal{D}[\sigma U])$. However, the sum over l diverges, indicating that this functional determinant requires regularization in $d \geq 2$ [35]. However in (10) we only need the regularized determinant $\mathcal{D}_{\rm reg}[\pm \sigma U] \sim (L/a)^{-F_{\rm reg}(\pm s)}$ where the first two orders in s are subtracted,

$$F_{\text{reg}}(s) = -\sum_{l=0}^{\infty} (l+1)^2 \left(\sqrt{(l+1)^2 + s} - (l+1) - \frac{s}{2(l+1)} + \frac{s^2}{8(l+1)^3}\right) .$$
(21)

Summing over l, it can also be written as a series in s,

$$F_{\rm reg}(s) = \sum_{n=3}^{\infty} f_n s^n, \quad f_n = (-1)^n \frac{\Gamma(n-\frac{1}{2})\zeta(2n-3)}{2\sqrt{\pi}\Gamma(n+1)}.$$
(22)

Putting together the two copies we obtain the multi-fractal formula, taken for $q_1 = -q_2 = q$ immediately yields scaling exponent, an even function of s (and q),

$$x_q = -\frac{1}{4}\mathcal{A}_2 q^2 + F(s), \qquad s = \frac{\varepsilon}{3}q, \tag{23}$$

$$F(s) := \frac{1}{2} \left[F_{\text{reg}}(s) + F_{\text{reg}}(-s) \right] = \sum_{n=2}^{\infty} f_{2n} s^{2n}.$$
 (24)

To leading order we used $\sigma = A_d \tilde{\sigma}, \ \tilde{\sigma} = \frac{\varepsilon}{6} + \mathcal{O}(\varepsilon^2)$ and $S_4 = 2\pi^2$. The final result is finite, as we avoided divergences by (i) using perturbation theory in the renormalized R rather than in the bare R_0 , (ii) by separating the non-Gaussian part F(s) from the Gaussian one. For completeness we also defined the single-copy exponent $F_{reg}(s)$ since it appears in the theory of depinning⁴.

Analysis of the result: Eq. (23) is an even series in s with a radius of convergence of |s| = 1. At $s = \pm 1$, F(s),

Fig. 2: Numerical evaluation (blue dots) of F(s) (left) and $F(2\pi ik)$ (right). The red solid line is the contribution of the mode l = 0.

plotted in fig. 2, has a square-root singularity given by its l = 0 term. On the other hand, the exponent x_q must satisfy⁵ $q \frac{d}{dq} x_q \leq 0$, and convexity $\frac{d^2}{dq^2} x_q \leq 0$, both requirements for multifractal field theories [33]. While the Gaussian part $x_q^G = -\frac{1}{4}\mathcal{A}_2q^2$ does, the correction term F(s) does not, since $F''(s) \ge 0$. Since $F''(s) \sim \frac{1}{8(1-|s|)^{3/2}}$ diverges at $s = \pm 1$ $(q = q_p \simeq \frac{3}{\varepsilon})$ one cannot trust the calculation in that region⁶; it surely fails when $F''(\frac{q\varepsilon}{3}) > \frac{1}{4\varepsilon}$.

Calculation of 2-point correlations: To obtain the cumulants (4) and the translational correlation function (2)we would need a dipole source, for which we cannot solve the Schrödinger problem. One way to proceed is to assume that the exponential field $e^{u(\mathbf{r})}$ obeys the conventional multifractal scaling formula [24, 32, 33]:

$$\overline{\langle e^{q_1 u(\mathbf{r}_1)} e^{q_2 u(\mathbf{r}_2)} \rangle} \sim \left(\frac{r_{12}}{a}\right)^{x_{q_1+q_2}-x_{q_1}-x_{q_2}} \left(\frac{L}{a}\right)^{-x_{q_1+q_2}},\tag{25}$$

(22) with $r_{12} = |\mathbf{r}_1 - \mathbf{r}_2|$. Since we already calculated x_q , this

$$\overline{\langle e^{q[u(\mathbf{r})-u(0)]} \rangle} \sim \left(\frac{r}{a}\right)^{-2x_q},\tag{26}$$

using that $x_q = x_{-q}$ and $x_0 = 0$. Let us define the expansion $x_q = \sum_{n=1}^{\infty} \frac{1}{n!} a_n q^n$. Using the standard formula

$$\ln \overline{\langle e^A \rangle} = \sum_{n=1}^{\infty} \frac{1}{n!} \overline{\langle A^n \rangle}^c, \qquad (27)$$

we obtain one of the main results of this letter, eq. (4), with the amplitudes for even $n \ge 4$,

$$\mathcal{A}_n = -2a_n = -\frac{\Gamma(n-\frac{1}{2})\zeta(2n-3)}{\sqrt{\pi}} \left(\frac{\varepsilon}{3}\right)^n.$$
 (28)

⁵Since $\overline{\langle qu \sinh qu \rangle} \ge 0$ and from Cauchy-Schwarz the inequality $\overline{\langle u^2 e^{qu} \rangle} \ \overline{\langle e^{qu} \rangle} \ge \overline{\langle u e^{qu} \rangle}^2$ must hold.

⁶Our result is a summation of a convergent series in $q\varepsilon$, but there is no guarantee that there are no non-perturbative corrections.

 $^{^4\}mathrm{At}$ depinning, there is an additional tadpole diagram associated to the non-zero average $\overline{u(\mathbf{r})} = -F_c/m^2$, where F_c is the threshold force. Similarly separating the non-Gaussian parts leads to $F_{reg}(s)$.

There is actually more information in eq. (25): Using (27) and expanding in powers of $q_1^j q_2^{n-j}$ we obtain

$$\overline{\langle u(\mathbf{r}_1)^j u(\mathbf{r}_2)^{n-j} \rangle}^c \simeq a_n \ln(r_{12}/L), \qquad (29)$$

$$\overline{\langle u(\mathbf{r}_1)^n \rangle}^c \simeq -a_n \ln(L/a). \tag{30}$$

While we already know (30) from (3) and (27), eq. (29), valid for any $1 \le j \le n-1$ represents strong constraints.

Formula (25) is, at this stage, an *educated guess*, since we do not know the exact solution to the corresponding 2-charge (dipole) Schrödinger problem. We now close this gap via a careful examination of the integrals appearing in the expansion of the determinant in powers of σ , represented by the diagrams in fig. 1. We show two properties:

(i) All terms of the form eq. (29) are equal, and independent of j: This *proves* that both eqs. (25) and (26) hold.

(ii) The topologically distinct integrals with the same j are also all equal. This remarkable property goes beyond what is needed for eq. (29), and provides simple expressions for such integrals; as announced in the introduction, they are of interest in the AdS/CFT context.

For clarity, let us detail the term n = 4 (setting m = 0). The calculation of $\langle u(\mathbf{r}_1)^2 u(\mathbf{r}_2)^2 \rangle$ involves two 3-loop integrals, $I_{\{2,2\}_1}(p)$ and $I_{\{2,2\}_2}(p)$, which are represented by the first two (topologically distinct) diagrams in fig. 1. The first is equal to the integral, with entering momentum p, $I_{\{2,2\}_1}(p) := \int_{\mathbf{q}} \frac{I(\mathbf{p},\mathbf{q})^2}{q^2(\mathbf{p}-\mathbf{q})^2}$ with $I(\mathbf{p},\mathbf{q}) := \int_{\mathbf{k}} \frac{1}{k^2(\mathbf{k}+\mathbf{p})^2(\mathbf{k}+\mathbf{q})^2}$, $\int_{\mathbf{q}} := \int \frac{d^d \mathbf{q}}{(2\pi)^d}$. The third diagram (i.e integral) is the only one entering in the calculation of $\langle u(\mathbf{r}_1)^3 u(\mathbf{r}_2) \rangle$. By power counting, these integrals are both UV and IR finite in d = 4, and scale as p^{-4} ; we now determine their amplitude.

First we show that, for given n, the diagrams with two external points depicted in fig. 1 are *independent on how* these points are attached to the polygon vertices. In a nutshell this is because they all scale as p^{-4} , and if we identify the two external points, we obtain the same integral \mathcal{D}_n in fig. 1. Explicitly, for m = 0 and d = 4, any of these diagrams has n - 1 loops and 2n propagators, and reads

$$\underbrace{\mathcal{C}_n}_{i} = \frac{\mathcal{C}_n}{p^4}, \qquad (31)$$

where a priori C_n depends on how we attach the *n* points of the polygon to the two external points. In a massive scheme, and $d = 4 - \varepsilon$, by power counting this changes to

$$= \frac{\mathcal{C}_n}{p^{4+(n-1)\varepsilon}} g_n\left(\frac{p}{\alpha_n m}\right), \qquad (32)$$

where $g_n(x) \to 1$ for $x \to \infty$, $g_n(0) = 0$ and α_n parameterizes the crossover point with $g_n(1) = \frac{1}{2}$. Now \mathcal{D}_n is obtained from \mathcal{C}_n by integrating over the external momen-

tum:

$$\mathcal{D}_n = \int_{\mathbf{p}} \frac{\mathcal{C}_n}{p^{4+(n-1)\varepsilon}} g_n\left(\frac{p}{\alpha_n m}\right) \simeq \mathcal{C}_n \frac{S_d}{(2\pi)^d} \int_{\alpha_n m}^{\infty} \frac{\mathrm{d}p}{p^{1+n\varepsilon}} \\ = \frac{\mathcal{C}_n(\alpha_n m)^{-n\varepsilon}}{8\pi^2 n\varepsilon} + \mathcal{O}\left(\varepsilon^0\right) = \frac{\mathcal{C}_n m^{-n\varepsilon}}{8\pi^2 n\varepsilon} + \mathcal{O}\left(\varepsilon^0\right).$$
(33)

The leading pole in ε does not depend on α_n , and is universal. Since all these diagrams lead to the same value of \mathcal{D}_n , all integrals of the type (31) are *equal*, and in d = 4 equal to \mathcal{C}_n/p^4 .

We already know the integral \mathcal{D}_n in d = 4 from eqs. (21) and (22), by matching powers of q in the expansion of the determinant with a point source, $\ln \mathcal{D}[\sigma U] = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \mathcal{D}_n(q\sigma)^n$ which yields $\mathcal{D}_n \simeq$ $(-1)^n n f_n/(2\pi)^{2n} \ln(\frac{L}{a})$ for any $n \geq 3$. Interestingly, the Yaglom-Gelfand method allows us to calculate \mathcal{D}_n directly in $d = 4 - \varepsilon$. For d < 4 we can set a = 0 in the potential (17). The corresponding radial Schrödinger problem can be solved *exactly* as

$$\psi_l(r) = r^{l + \frac{d-1}{2}} z_l(r), \quad z_l(r) = {}_0F_1\left(\frac{2(l+1)}{\varepsilon}; \frac{2sr^{\varepsilon}}{(2-\varepsilon)\varepsilon^2}\right).$$

Using the identity $\lim_{\varepsilon \to 0} \varepsilon \ln_0 F_1(\frac{2(l+1)}{\varepsilon}, \frac{\tilde{s}}{\varepsilon^2}) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \Gamma(n-\frac{1}{2}) \tilde{s}^n}{2n \sqrt{\pi} \Gamma(n+1)(l+1)^{2n-1}}$ we calculate to leading order in ε , $\ln \mathcal{D}[\sigma U] \simeq \sum_{l=0}^{\infty} (l+1)^2 \ln z_l(L)$. This yields the polygon integrals for $n \geq 3$ in the massive scheme,

$$\mathcal{D}_n = \underbrace{\prod_{n=1}^{\infty} \prod_{n=1}^{\infty} \frac{\Gamma(n-1/2)\zeta(2n-3)}{2\sqrt{\pi}(2\pi)^{2n}\Gamma(n)}} + \mathcal{O}(\varepsilon^0).$$
(34)

Note that $\frac{L^{n\varepsilon}}{n\varepsilon}$ changed to $\frac{m^{-n\varepsilon}}{n\varepsilon}$. Further substituting this factor by $\ln(L/a)$ reproduces the above estimate for d = 4. Using eqs. (33) and (34) we now obtain \mathcal{C}_n in d = 4,

$$C_n = p^4 \underbrace{\Gamma(n-\frac{1}{2})\zeta(2n-3)}_{\sqrt{\pi}\Gamma(n)(2\pi)^{2n-2}}.$$
 (35)

This allows to expand the determinant in presence of two charges q_1 , q_2 , in terms of 2-point diagrams, and obtain, using (27) and (10) in d = 4 with m = 0:

$$\sum_{n\geq 4} \frac{1}{n!} \overline{\langle [q_1 u(\mathbf{r}) + q_2 u(0)]^n \rangle}^c = \sum_{n \text{ even}\geq 4} \frac{(-1)^{n+1}}{n} \sigma^n$$
$$\times \left[(q_1^n + q_2^n) \mathcal{D}_n + \int_{\mathbf{p}} e^{i\mathbf{p}\cdot\mathbf{r}} \sum_{j=1}^{n-1} \binom{n}{j} q_1^j q_2^{n-j} \frac{\mathcal{C}_n}{p^4} \right]. \quad (36)$$

Here we used that all C_n integrals are the same. Since $\binom{n}{j}$ appears on both sides it implies (29) with $a_n = -\frac{S_4}{(2\pi)^4}C_n(n-1)!\sigma^n$ in agreement with (28). Choosing $q_2 = -q_1$ rederives our main result for the cumulants (4) and (28) since $\sum_{j=1}^{n-1} \binom{n}{j} (-1)^j = -2$. We thus proved that the multifractal scaling relations (25) and (26) hold.

Performing the analytical continuation q = iK we obtain the decay exponent⁷ of the translational correlations,

$$\eta_K = \left[\frac{\varepsilon}{36} + \frac{\varepsilon^2}{216} + \mathcal{O}(\varepsilon^3)\right] K^2 + 2F\left(iK\frac{\varepsilon}{3}\right).$$
(37)

The wave vector K is arbitrary, not necessarily a RLV⁸. Although non-Gaussian corrections start at $\mathcal{O}(\varepsilon^4)$, setting directly $\varepsilon = 1$ and $K = K_0 = 2\pi$ yields⁹ $\eta_{K_0}^{\rm G}|_{1-\text{loop}} =$ $1.097, \eta_{K_0}^{\rm G}|_{2-\text{loop}} = 1.279$ while $\eta_{K_0} - \eta_{K_0}^{\rm G} = 0.569$. Even if these corrections may be an overestimate, and higher-loop corrections are needed, non-Gaussian effects¹⁰ appear to be non-negligible for d = 3 [18]. Comparison with the elastic term [19] then shows that a small periodic perturbation V_K becomes relevant for $K < K_c$ with $2 - \eta_{K_c} = 0$.

Conclusion: Using functional determinants we obtained the scaling exponents of the (real and imaginary) exponential correlations of the displacement field in a disordered elastic system. We leave calculating the spectrum of fractal dimensions¹¹, and the extension to a more general elastic kernels for the future. As a surprising corollary, our method yields, in an elegant way and for arbitrary n, exact expressions for the integrals \mathcal{C}_n ; (we numerically checked formula (35) for n = 3, 4, 5). Similar integrals appear in N = 4 SYM, on the field-theory side of two theories related via AdS/CFT: E.g., C_5 contributes to the Konishi anomalous dimension in N = 4 SYM at five-loop order, and an elaborate formalism was put in place to calculate it [25]. We hope that our method, and possible generalizations, will also allow for a further-reaching check of the AdS/CFT duality¹².

* * *

We thank V. Kazakov and Y. Fyodorov for stimulating discussions. This work was supported by ANR Grant 09-BLAN-0097-01/2.

REFERENCES

- [1] GRÜNER G., Rev. Mod. Phys., 60 (1988) 1129.
- [2] BLATTER G. et al, Rev. Mod. Phys., 66 (1994) 1125.
- [3] GIAMARCHI T. and LE DOUSSAL P., in Spin glasses and random fields, edited by YOUNG A., (World Scientific, Singapore) 1997; LE DOUSSAL P., Int. J. Mod. Phys. B, 24 (2010) 3855.

- ⁸In d = 2, $C_K(r)$ was argued [36] to exhibit cusps for integer $K/(2\pi)$ due to screening of the 2-point function by the interaction. ⁹We used eq. (21) which can be considered as the analytic con-
- tinuation of eq. (22), whose radius of convergence is K = 3.
- $^{10}\mathrm{In}~d=4$ the second cumulant grows as $\ln(\ln(r)),$ while higher ones reach a (non-universal) finite limit.

¹¹The Gibbs measure of a particle diffusing on top of the elastic object with potential energy ~ $u(\mathbf{r})$ provides a normalized multi-fractal measure $\mu(\mathbf{r}) = \frac{e^{\gamma u(\mathbf{r})}}{\int_{\mathbf{x}} e^{\gamma u(\mathbf{x})}}$ from which one can calculate a spectrum of dimensions.

 $^{12}\mbox{Reciprocally, the results in [37] yield the full 4-point function for the Bragg glass.$

- [4] ANDREI E. Y. et al, Phys. Rev. Lett., 60 (1988) 2765.
- [5] GRANATO E. and KOSTERLITZ J. M., Phys. Rev. Lett., 62 (1989) 823.
- [6] RADZIHOVSKY L. and TONER J., Phys. Rev. B, 60 (1999) 206.
- [7] LARKIN A., Sov. Phys. JETP, **31** (1970) 784.
- [8] GIAMARCHI T. and LE DOUSSAL P., Phys. Rev. Lett., 72 (1994) 1530; Phys. Rev. B, 52 (1995) 1242.
- [9] KLEIN T. et al, Nature, **413** (2001) 404.
- [10] NATTERMANN T., Phys. Rev. Lett., 64 (1990) 2454.
- [11] FISHER D., Phys. Rev. Lett., 56 (1986) 1964; NATTER-MANN T. et al, J. Phys. II (France), 2 (1992) 1483.
- [12] CHAUVE P., LE DOUSSAL P. and WIESE K., Phys. Rev. Lett., 86 (2001) 1785.
- [13] LE DOUSSAL P., WIESE K. and CHAUVE P., *Phys. Rev.* E, 69 (2004) 026112.
- [14] LE DOUSSAL P., Europhys. Lett., 76 (2006) 457; Annals of Physics, 325 (2009) 49.
- [15] WIESE K. and LE DOUSSAL P., Markov Processes Relat. Fields, 13 (2007) 777.
- [16] LE DOUSSAL P. and WIESE K., Phys. Rev. E, 79 (2009) 051106.
- [17] MCNAMARA D., MIDDLETON A. and CHEN Z., *Phys. Rev.* B, **60** (1999) 10062.
- [18] JAE N. D. and RIEGER H., Phys. Rev. Lett., 87 (2001) 176102/1.
- [19] EMIG T. and NATTERMANN T., Phys. Rev. Lett., 79 (1997) 5090.
- [20] PALADIN G. and VULPIANI A., Phys. Rep., 156 (1987) 147.
- [21] EVERS F. and MIRLIN A., Rev. Mod. Phys., 80 (2008) 1355.
- [22] CASTILLO H. E. et al, Phys. Rev. B, 56 (1997) 10668.
- [23] CARPENTIER D. and LE DOUSSAL P., Phys. Rev. E, 63 (2001) 026110.
- [24] FYODOROV Y., Physica A, **389** (2010) 4229.
- [25] EDEN B. et al, Nucl. Phys. B, 862 (2012) 123.
- [26] LE DOUSSAL P., RISTIVOJEVIC Z. and WIESE K., Phys. Rev. B, 87 (2013) 214201.
- [27] MIDDLETON A., LE DOUSSAL P. and WIESE K., Phys. Rev. Lett., 98 (2007) 155701; ROSSO A., LE DOUSSAL P. and WIESE K., Phys. Rev. B, 75 (2007) 220201.
- [28] LE DOUSSAL P., WIESE K., MOULINET S. and ROLLEY E., EPL, 87 (2009) 56001.
- [29] LE DOUSSAL P. and WIESE K., Phys. Rev. E, 85 (2011) 061102.
- [30] CHAUVE P. and LE DOUSSAL P., Phys. Rev. E, 64 (2001) 051102.
- [31] FEDORENKO A., LE DOUSSAL P. and WIESE K., *Phys. Rev. E*, **74** (2006) 041110; LE DOUSSAL P. and WIESE K., *Phys. Rev. E*, **68** (2003) 046118.
- [32] CATES M. and DEUTSCH J. M., Phys. Rev. A, 35 (1987) 4907.
- [33] DUPLANTIER B. and LUDWIG A., Phys. Rev. Lett., 66 (1991) 247.
- [34] GEL'FAND I. M. and YAGLOM A. M., J. Phys. A, 1 (1960) 48.
- [35] DUNNE G. and KIRSTEN K., J. Phys. A, **39** (2006) 11915.
- [36] TONER J. and DIVINCENZO D., Phys. Rev. B, 41 (1990) 632.
- [37] USSYUKINA N. and DAVYDYCHEV A., Phys. Atom. Nucl., 56 (1993) 1553.

⁷Note that $e^{iKu(r)}$ obeys ordinary field-theory scaling, while $e^{qu(r)}$ obeys multifractal scaling [33].