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Renormalization of Pinned Elastic Systems: How Does It Work Beyond One Loop?
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We study the field theories for pinned elastic systems at equilibrium and at depinning. Their b

functions differ to two loops by novel “anomalous” terms. At equilibrium we find a roughness z �
0.208 298 04e 1 0.006 858e2 (random bond), z � e�3 (random field). At depinning we prove two-loop
renormalizability and that random field attracts shorter range disorder. We find z �

e

3 �1 1 0.143 31e�,
e � 4 2 d, in violation of the conjecture z � e�3, solving the discrepancy with simulations. For long
range elasticity z �

e

3 �1 1 0.397 35e�, e � 2 2 d, much closer to the experimental value (�0.5 both
for liquid helium contact line depinning and slow crack fronts) than the standard prediction 1�3.
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The aim of this Letter is to report progress on a concep-
tual issue and, as a by-product, to resolve a long-standing
discrepancy between theory and numerical simulations or
experiments. The issue is whether it is possible to con-
struct a field theory of disordered elastic systems, at equi-
librium and at depinning, renormalizable beyond one loop
as for standard critical phenomena. A discrepancy exists
at present between the value for the roughness exponent z

predicted by theory (z � e�3 exactly) and simulations as
well as experiments on wetting and on cracks.

Numerous experimental systems can indeed be modeled
as elastic objects pinned by random impurities, with spe-
cific features. Interfaces in magnets [1] experience either
random bond (RB) (i.e., short range) disorder or random
field (RF) (i.e., long range) disorder. Charge density waves
(CDW) or the Bragg glass in superconductors [2] are pe-
riodic objects. The contact line of liquid helium meniscus
on a rough substrate is governed by long range elasticity
and so are slowly propagating cracks [3–6]. They can all
be parametrized by a height (or displacement) field u�x�
(x being the d-dimensional internal coordinate of the elas-
tic object), with in some cases N . 1 components. The
roughness exponent z : ju�x� 2 u�x0�j2 � jx 2 x0j2z is
measured in experiments for systems at equilibrium (zeq)
or driven by a force f. Other exponents describe the veloc-
ity near the depinning threshold fc, y � �f 2 fc�b , the
scaling of the dynamical response, t � xz , and the local
velocity correlation length, j � �f 2 fc�2n .

The study of pinned elastic systems, among a broader
class of disordered models (e.g., random field spin mod-
els), is notably difficult due to dimensional reduction (DR)
which renders naive perturbation theory useless [1,7]. In-
deed, to any order in the disorder at zero temperature
T � 0, any physical observable is found to be identical
to its (trivial) average in a Gaussian random force (Larkin)
model. A bold way out of this puzzle was proposed by
Fisher [8] within a one-loop renormalization group anal-
ysis of the interface problem in d � 4 2 e. He noted
that the coarse grained disorder correlator becomes non-
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analytic beyond the Larkin scale Lc, yielding large scale
results distinct from naive perturbation theory. An infinite
set of operators becomes relevant in d , 4, parametrized
by the second cumulant R�u� of the random potential, i.e.,
V �x,u�V �x0,u0� � dx2x0R�u 2 u0�. The explicit solution
of the one-loop functional renormalization group (FRG)
equation for R�u� gives several nontrivial attractive fixed
points (FP) to O �e� proposed in [8] to describe RB, RF
disorder and, in [2], periodic systems (RP) such as CDW
or vortex lattices. All these FP exhibit a “cusp” singu-
larity as R�00�u� 2 R�00�0� � juj at small juj. Large N
and variational methods [2,9] confirmed the picture and
the cusp was interpreted in terms of shocks in the renor-
malized force [10]. A FRG was also developed to one
loop [11,12] to describe the driven dynamics just above
depinning f � f1

c , the cusp being linked to the threshold
fc � jD0�01�j. Surprisingly, the flow equation for the cor-
relator D�u� of the force F�x, u� is, to one loop, identical
to the one of the statics [with D�u� � 2R00�u�]. Exten-
sion to temperature T . 0 yielded rounding of the cusp in
a layer u � T and the celebrated creep law [13].

Despite these successes, serious difficulties remain.
First, in the last fifteen years since [8], no study has
addressed whether the FRG yields, beyond one loop, a
renormalizable field theory able to predict universal results
[14]. Doubts were even raised [15] about the validity
of the e expansion beyond the order O �e�. Second,
numerous simulations near depinning [11,16–18] seem to
exclude z � e�3 argued in [12] to be exact. In the case
of long range elasticity, the prediction z � �2 2 d��3 [4]
disagrees with the systematically larger value z � 0.55
(d � 1) measured for liquid helium contact line depinning
[3] and for the in plane roughness of slow crack fronts [6]
(see also simulations [19]).

In this Letter, we address these issues both for dynamics
and statics. The main difficulty is the nonanalytic nature
of the theory (i.e., the fixed point action) at T � 0, which
makes it a priori quite different from conventional critical
phenomena. For depinning, we overcome the problem and
2001 The American Physical Society 1785
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show renormalizability at two-loop order. As a result we
resolve several questions left unclear in previous works.
We find that (i) quasistatic driven dynamics differs from
statics at two loops, (ii) shorter range disorder is within
the RF universality class, and (iii) the conjecture z � e�3
is violated. This last result resolves the long-standing dis-
crepancy with simulations. In the case of long range elas-
ticity it yields z � 0.5 for d � 1 and may thus explain
the high value of z found in experiments on cracks and
wetting. For the statics we find apparent ambiguities at
T � 0, which can be lifted, e.g., by a simple renormaliza-
bility condition, yielding fixed points and zeq to O �e2�.
This result is confirmed by further studies [20] and also
obtained within an independent exact FRG study in [21].
The FRG equation for the disorder contains new anoma-
lous terms both for statics and dynamics, which are absent
in an analytic theory. Our predictions for all exponents are
shown in Tables I and II.

The starting point is the equation of motion:

h≠tuxt � ≠2
xuxt 1 F�x, uxt� (1)

with friction h and, in the case of long range elastic-
ity, we replace (in Fourier) q2uq by jqjuq in the elastic
force. Disorder averaged correlations �A�uxt�	 � �A�uxt�	S
and responses d�A�u�	�dhxt � �ûxtA�u�	S can be com-
puted from the standard averaged dynamical action: S �R
xt ûxt�h≠t 2 ≠2

x�uxt 2
1
2

R
xtt0 ûxt ûxt0D�uxt 2 uxt0�. Fi-

nite temperature is studied adding 2hT
R
xt û

2
xt , driven dy-

namics adding 2f
R
xt ûxt , and shifting u ! u 1 yt in S.

We study the quasistatic limit y � 01, as well as equilib-
rium dynamics f � 0, where, via fluctuation dissipation
relations, static quantities can be equivalently computed
using S or the replicated Hamiltonian [22].

It is useful to first study naive perturbation theory, in an
analytic D�u�, i.e., in its derivatives D�n��0�, using the dia-
grammatic rules of Fig. 1. Since at each vertex there is one
conservation rule for momentum and two for frequency we

TABLE I. Exponents for depinning and statics (zeq) as ob-
tained, respectively, from setting e � 4 2 d in the one-loop and
the two-loop results, from Padé estimates together with scaling
relations, and from numerical works. For zeq we have improved
the estimate using the exact result zeq�d � 1� � 2�3.

d e e2 Estimate Simulation

3 0.33 0.38 0.38 6 0.02 0.34 6 0.01 [11]
z 2 0.67 0.86 0.82 6 0.1 0.75 6 0.02 [16]

1 1.00 1.43 1.2 6 0.2 1.25 6 0.05 [16]

3 0.89 0.85 0.84 6 0.01 0.84 6 0.02 [11]
b 2 0.78 0.62 0.53 6 0.15 0.64 6 0.02 [11]

1 0.67 0.31 0.2 6 0.2 �0.3 [16,18]

3 0.58 0.61 0.62 6 0.01
n 2 0.67 0.77 0.85 6 0.1 0.77 6 0.04 [17]

1 0.75 0.98 1.25 6 0.3 1 6 0.05 [18]

3 0.208 0.215 0.215 6 0.003 0.22 6 0.01 [30]
zeq 2 0.417 0.444 0.438 6 0.007 0.41 6 0.01 [30]

1 0.625 0.687 2�3 2�3
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consider both unsplitted (local x) and splitted (bilocal t, t0)
vertices (and splitted a, b vertices in the statics). T � 0
power counting yields

R
t ûu � xd22 and u � xz , where

z � O �e � 4 2 d� has to be determined. For an analytic
D�u� the perturbation expansion of any (analytic) observ-
able yields identical results [23] as setting D�u� 
 D�0�
and one obtains the incorrect DR roughness z � e�2.
Temperature is formally irrelevant and must be scaled [24]
as T � T̃L221e22z with the UV cutoff L (and fixed di-
mensionless T̃ ). By power counting the only superficially
UV divergent irreducible vertex functions (IVF) are found
to involve only one or two response fields û (at T . 0
each T̃ comes with a required L22d factor to compensate
the divergence [24]). The statistical tilt symmetry uxt !
uxt 1 const (see, e.g., [11,12]) further restricts the needed
counterterms at f � fc to only one for h and one for
the full function D�u�. The one-loop (D) and two-loop
(A,B,C) diagrams which correct the disorder at T � 0
are shown in Fig. 1 (unsplitted). The splitted graphs cor-
responding to A in the statics (and which do not vanish or
cancel in what follows) are shown in Fig. 2. The dynami-
cal diagrams are obtained from the static ones by adding
one external û on each connected component (e.g., b gen-
erates b1, . . . , b6). To escape triviality at T � 0 we must
now develop perturbation theory in a nonanalytic interac-
tion D�u� [or R�u�], a nontrivial extension of conventional
field theory. Let us illustrate the new rules. Derivation
by extracting a leg from a vertex can be done as usual
only for a vertex evaluated at a generic u (e.g., graphs
bi in Fig. 2). If it is evaluated at u � 0 (e.g., graph
e1), one must expand D�u� in powers of juj, i.e., D�u� �
D�0� 1 D0�01� juj 1 D00�01�u2�2 1 · · · and carefully ap-
ply Wick’s rules. The result is that the above diagrammatic
rules (Figs. 1 and 2) can still be used except that the values
of the diagrams are different. The graphs of Fig. 2 corre-
spond to performing four Wick contractions and some end
up in evaluating nontrivial averages of, e.g., sgn or delta
functions. For instance, e1, which vanishes in the analytic
theory since D0�0� � 0, now reads

e1 � D0�01�2D00�u�
Z
ti.0,ri

Rr1,t1Rr1,t2Rr32r1,t3Rr3,t4Fri ,ti ,

where Fri ,ti � �sgn�X� sgn�Y �	, X � ur1,2t3 2 ur1,2t42t1 ,
Y � u0,2t4 2 u0,2t32t2 , computed with Gaussian aver-
ages. The limit T ! 0 at y � 0 yields �sgn�X� sgn�Y �	 �
2
p arcsin��XY 	�

p
�X2	 �Y2	 �, and a complicated T � 0

expression for e1 in the statics [20]. The opposite limit
y ! 0 at T � 0 corresponds to depinning, with
�sgn�X� sgn�Y �	 ! sgn�t4 1 t1 2 t3� sgn�t3 1 t2 2 t4�,

TABLE II. Depinning exponents for long range elasticity in
d � 1: z is consistent with experiments on contact line depin-
ning (z � 0.5 [3]) and cracks (z � 0.55 6 0.05 [6]).

e e2 Estimate e e2 Estimate

z 0.33 0.47 0.5 6 0.1 b 0.78 0.59 0.4 6 0.2
z 0.78 0.66 0.7 6 0.1 n 1.33 1.58 2.0 6 0.4
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FIG. 1. (i) Diagrammatic rules for the statics: replica propa-
gator �uaub	0 
 Tdab�q2, unsplitted vertex, and equivalent
splitted vertex 2

P
ab

1
2T2R�ua 2 ub�. (ii) Dynamics: response

propagator �ûu	0 
 Rq,t2t0 , unsplitted vertex, splitted vertex
2

1
2 ûxt ûxt0D�uxt 2 uxt0 �, and temperature vertex. Arrows are

along increasing time. An arbitrary number of lines can enter
these functional vertices. (iii) Unsplitted diagrams to one loop
D, with inserted counterterm G, and two loop A, B, C, E,
and F.

and more generally to D�n��ut 2 ut0� ! D�n����y�t 2 t0����
in any vertex evaluated at u � 0.

We now focus on depinning at T � 0. Using these rules
we compute in perturbation of D 
 D�u� the contributions
to the disorder IVF to one and two loops:

d1D � 2�D02 1 ���D 2 D�0����D00�I , (2)

d2D � ����D 2 D�0����D02�00IA (3)

1
1
2

����D 2 D�0����2D00�00I2 (4)

1 D0�01�2D0�IA 2 I2� , (5)

with I �
R
q 1�q4 and IA �

R
q1,q2

1�q2
1q

4
2�q1 1 q2�2

[25], whose divergent parts d
1
divD, d

2
divD yield the

one-loop and two-loop counterterms, respectively. These
are computed here adding a mass q2 ! q2 1 m2,
using dimensional regularization Ime � Nd� 1

e 1 O �e��,
IAm2e � Nd� 1

2e2 1
1

4e �, and absorbing Nd � �d 2 2��
�4p�d�2G�d2 � in D. Equation (3) comes from a1 1

a2 1
P
i bi , (4) from all graphs C (not detailed) except

graph i1 (shown) which contributes to (5), together with
e1, f1, and c1 (the B contribution vanishes). Inverting
the relation between bare and renormalized disorders

a

b31b

cb d e f

4b 6b
5b

a1 1c f1
i1

b2

a2
1e

FIG. 2. (a)–(f) The six splitted (static) diagrams correspond-
ing to the two-loop A diagram. Below: the corresponding non-
vanishing diagrams in the dynamics. The last one is the only
nontrivial C diagram (see text).
yields the b function bD � ≠D � eD 1 ed
1
divD 1

e�2d
2
divD 2 d1,1D� where the 1�e terms cancel nicely,

the hallmark of a renormalizable theory (d1,1D is the
counterterm to graph G in Fig 1 and ≠ 
 2m≠m). We
obtain the two-loop FRG equation

≠D�u� � �e 2 2z �D�u� 1 zuD0�u�

2
1
2 ����D�u� 2 D�0����2�00

1
1
2 ����D�u� 2 D�0����D0�u�2 1 D0�01�2D�u��00 .

(6)

Computing the other needed counterterm, i.e., the
renormalized friction hR � Z21h0, we obtain the
dynamical exponent z � 2 2 ≠ lnZ. The 1�e diver-
gences again cancel yielding the finite result z � 2 2

D00�01� 1 D00�01�2 1 D000�01�D0�01� � 3
2 2 ln2�. We stress

that (6) cannot be read at u � 0 [26]. Indeed, it (and
the cancellation of divergent parts) was established only
for u fi 0. To complete two-loop renormalizability we
checked that IVF, which are u � 0 quantities, are also
rendered finite by the above counterterms. We found that
the time dependence in diagrams cancels by subsets as
in [23], i.e., correlations (already rendered finite by the
above procedure) are thus static for y � 01 at variance
with previous works [11].

For periodic D�u� (CDW depinning [12,27]) we find
a fixed point of (6) with z � 0 reading (for a period 1)

D��u� �
e

36 1
e2

108 2 �e

6 1
e2

9 �u�1 2 u� (0 , u , 1).
This yields the correlations �ux 2 u0�2 � Ad lnjxj with
Ad � e�18 1 5e2�108, the RP dynamical exponent z �
2 2

1
3e 2

1
9e2, and b � z�2 from the scaling relation

[11,12] b � �z 2 z ���2 2 z �.
R1

0 D� becomes nonzero
to two loops, a signature of nonequilibrium effects.

Another single FP is found to describe both random
field and all shorter range disorder, including RB,
demonstrating the instability of the apparent one-loop
short range fixed points. It is determined numerically [20]
but z is obtained analytically. Integrating (6) over u . 0
yields ≠D � �e 2 3z �D 2 D0�01�3 where D �

R1`
0 D

[assuming only D�1`� � 0]. The FP condition then
implies [26] (both for RB and RF)

z �
e

3

µ
1 1

e

9g
p

2

∂
�

e

3
�1 1 0.143 31e� , (7)

where we used that at one loop D� �
p

6 egD��0�3�2 with
g �

R1
0 dy

p
y 2 1 2 lny � 0.548 22 [13]. This demon-

strates a violation of the conjecture of [12]. It reconciles
theory and numerical results as shown in Table I where the
dynamical exponent z � 2 2

2
9e 1 e2� 1

81g
p

2
2

ln2
54 2

5
108 � � 2 2

2
9e 2 0.043 21e2 as well as b obtained via

the scaling relation, b � 1 2
1
9e 2 0.040 123e2, are

also given.
The case of long range elasticity is obtained chang-

ing q2 1 m2 !
p
q2 1 m2 in all propagators, shifting
1787
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the upper critical dimension to duc � 2. It yields a
renormalizable theory, with e � 2 2 d and a two-loop
b function [20] obtained by multiplying all O �D3�
terms in (6) by 4 ln2. This yields z �

e

3 �1 1
4 ln2
9g

p
2
e� �

e

3 �1 1 0.397 35e�, i.e., a strong deviation from e�3 (see
Table II), and z � 1 2

2
9e 1 e2� 4 ln2

81g
p

2
2

p120 ln2
108 � �

1 2
2
9e 2 0.1133e2.

We now turn to the statics, using replicas. In the T � 0
limit, the FRG b function at which we arrive [20]

≠R � �e 2 4zeq�R 1 zequR
0 1

1
2 R

002 2 R00�0�R00

1
1
2 ���R00 2 R00�0����R0002 2 lR000�01�2R00, (8)

with l � 1�2, has a new “anomalous” term ~ l. The
other part, i.e., (8) with l � 0 (from graphs a, b and
repeated one-loop counterterm-B graphs cancel in the
sum) could as well be obtained for an analytic R�u�, as in
[14], which by itself would be inconsistent since the FP is
nonanalytic. Apparent ambiguities arise only at two loops
[not at one loop since R00�0� � R00�01�], in the graphs
e, f in Fig. 2 which correct R�u� determining l, since
some vertices are evaluated at u � 0. However, using a
prescription which sets closed replica loops to 0 (as being
higher order in T ), we have been able to fix l � 1�2
[20]. In fact, it is easy to see that this is the only value of
l for which the theory can be renormalizable in the usual
sense. Indeed, the form of the repeated one-loop counter-
term (i.e., to G in Fig 1) d1,1R � ����R00 2 R00�0����R0002 1

���R00 2 R00�0����2R0000 2 R000�01�2R00�I2, which is nonam-
biguous because d1R�u� is twice differentiable at u � 0,
imposes the coefficient of the ambiguous term e 1 f of
d2R implying l � 1�2. Furthermore, this value of l is
also the only one which prevents the occurrence of a further
problem in the two-loop FRG, the supercusp [28]. Indeed,
e.g., in the periodic case, the FP of (8) is R��u� � const 2

� e

72 1
e2

108 �u2�1 2 u�2 1
e2

432 �2l 2 1�u�1 2 u� and pos-
sesses a stronger singularity than at one loop, since R�0 is
discontinuous. Unless l � 1�2 one has

R1
0 R

00 �
2R0�01� fi 0, i.e., a violation of potentiality (as naturally
occurs above in the driven dynamics). The correct l �
1�2 theory yields Ad �

e

18 1
7e2

108 for one component
Bragg glass (and

R1
0 D� � 0 as natural), zeq � e�3 for

RF disorder, and, via numerics, zeq � 0.208 298 04e 1

0.006 858e2 for RB disorder. The corresponding extrapo-
lations (Table I) improve the predictions compared to the
one-loop result.

An alternative exact FRG method [21], based on mul-
tilocal expansion, also circumvents the apparent u � 0
vertex ambiguities and also yields (8) with universal co-
efficients. l � 1�2 is also recovered at T . 0 [21] where
it is easy to see how, at large scale where the running
temperature T̃l flows to 0, anomalous terms as in (8) are
generated, e.g., from a graph E of Fig. 1 [proportional to
T̃lR0000�0�R00�u�] since the thermal boundary layer analysis
at one loop [13] yields T̃lR0000�0� ! R000�01�2.
1788
In summary, by coping with the difficulties due to the
nonanalyticity at T � 0 in the FRG, we obtained the de-
pinning and static exponents of pinned elastic systems to
next order in e � 4 2 d. It may help in further investi-
gations of open issues related to avalanches and compari-
son with sandpile models [29]. We also predict anomalous
terms in the b function of other models, as, e.g., random
field spin models, where dimensional reduction fails.
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