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In this note, we clarify the stability of the large-N functional RG fixed points of the order/disorder transition
in the random-field (RF) and random-anisotropy (RA)O(N) models. We carefully distinguish between infiniteN , and large but finiteN . For infiniteN , the Schwarz-Soffer inequality does not give a useful bound, and
all fixed points found in Phys. Rev. Lett. 96, 197202 (2006) (cond-mat/0510344) correspond to physical
disorder. For large but finiteN (i.e. to first order in1=N ) the non-analytic RF fixed point becomes unstable,
and the disorder flows to an analytic fixed point characterized by dimensional reduction. However, for random
anisotropy the fixed point remains non-analytic (i.e. exhibits a cusp) and is stable in the1=N expansion, while
the corresponding dimensional-reduction fixed point is unstable. In this case the Schwarz-Soffer inequality does
not constrain the 2-point spin correlation. We compute the critical exponents of this new fixed point in a series
in 1=N and to 2-loop order.

The random field (RF) and random anisotropy (RA)N -vector model is studied by expanding around the 4-
dimensional non-linear�-model [1]. To this aim considerO(N) classical spins~n(x) with N components and of unit
norm~n2 = 1. To describe disorder-averaged correlations one
introduces replicas~na(x), a = 1; : : : ; k, the limitk = 0 being
implicit everywhere. This gives a non-linear sigma model, of
partition functionZ = R D[�℄ e�S[�℄ and action:S[�℄ = Z ddx h 12T0 Xa [(r~�a)2 + (r�a)2℄� 1T0 Xa M0�a� 12T 20 Xab R̂0(~na~nb)i ; (1)

where~na = (�a; ~�a) with �a(x) = p1� ~�a(x)2. A small
uniform external field� M0(1;~0) acts as an infrared cut-
off. The ferromagnetic exchange produces the 1-replica part,
while the random field yields the 2-replica term̂R0(z) = z
for a bare Gaussian RF. Random anisotropy corresponds toR̂0(z) = z2. As shown in [1] one must include a full functionR̂0(z), as it is generated under RG. It is marginal ind = 4.

Recently, we have obtained results at 2-loop order [3], and
largeN for the ferromagnetic to disorder transition. In Ref.
[2] the authors argue that the large-N fixed points obtained by
us (given after Eq. (10) in [3]) are unstable. Here we reply to
their argument.

The authors of Ref. [2] correctly point out that the
Schwartz-Soffer (SS) inequalities [4] put useful constraints on
the phase diagram of therandom-fieldO(N) model and its
(subtle) dependence inN . In our Letter [3] we have studied
the Functional RG at largeN and obtained a series of fixed
points indexed byn = 2; 3 : : : where the disorder correla-
tor R̂(z) (notations of [3]) has a non-analyticity atz = 1.
Then = 2 fixed point (FP) has random field symmetry (RF)
and n = 3 has random anisotropy (RA) symmetry (R̂(z)
even in z). In addition we found two infinite-N analytic
fixed points which obey dimensional reduction. One of them
(R̂(z) = z � 1=2) is the large-N limit of the Tarjus-Tissier
(TT) FP [5] which exists forN > N� (at two loop we found

N� = 18� 495 ��, �� = d� 4 � 0) and has a weaker and weaker
“subcusp” non-analyticity asN increases. The question is
which of these FPs describes the ferromagnetic/disordered
(FD) transition at largeN for d � 4.

First one should carefully distinguish:(i) strictly infiniteN =1 from large but finiteN , (ii) RF symmetry vs. RA. We
have shown [3, 6] that for RF atN = 1 physical initial con-
ditions on the critical FD manifold converge to then = 2 FP
if the bare disorder is strong enough (r4 > 4 in [3]). Hence forN = 1 all these non-analytic (NA) FPs are consistent. One
can indeed check that they correspond to a positive probability
distribution of the disorder since all̂R(n)(0), the variances of
the corresponding random fields and anisotropies, are positive
– a condition hereby referred to as physical. Furthermore the
SS inequality does not yield any useful constraint atN = 1
because it contains an amplitude itself proportional to

pN .

Next, each of the above FPs can be followed down to fi-
niteN , within an1=N expansion performed to a high order
in Ref. [6, 7]. It yields (to first order in�� = d � 4) the crit-
ical exponents��(n;N) and�(n;N) to high orders in1=N .
One finds that then = 2 FP acquires anegativeR̂0(0) at
order1=N , R̂0(0) = � 34 ��N2 + O( 1N3 ); hence it becomes un-
physical at finiteN , a fact consistent with the violation of the
SS inequality�� � 2� correctly pointed out in [2]. A natural
scenario for RF symmetry, as we indicated in our Letter [3],
is that the FRG flows to the TT FP for anyfinite N > N�.
However, as we discussed there, if bare disorder is strong
enough, it may approach the TT FP along a NA direction,
since these arguments relied only on blowing up ofR0000(0)
(R(�) = R̂(z = os(�))).

A very interesting point, missed in Ref. [2], is that the
SS inequalities do not constrain the 2-point function of the
spinSi(x) for random anisotropydisorder (it only constrains
the 2-point function of�ij(x) = Si(x)Sj(x) as disorder
couples to the latter). Furthermore we find [6, 7] that then = 3 random anisotropy FP (which readsNR(�)=j�j =98�2 os(�) os(�+�3 ) + os(��2�3 )� 1� in theN =1 limit)

remains physicalfor finite N . DenotingR̂(z) = ��� ~R(z)
with � = 1N�2 and y0 = ~R0(1), we obtain the follow-
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ing expansion toO(��) for the exponents� = y0��=(N � 2),�� = (N�1N�2y0 � 1)��, wherey0 = 32 + 23�� 1750�23 + 2129692�327 � 13386562376�41215+ 2004388412086052�51148175 � 107423933633514594598�6361675125+ 66496428379374257425781597�71253204308125 +O ��9� (2)

and all coefficients in the expansion of̂R(n)(0) nearz = 0
remain indeed positive, e.g.:~R0(z) = h70�9 +1iz + h1192�243 + 427iz3 + h4384�2187 + 16243iz5+h68608�59049 + 2566561iz7 + h3735040�4782969 + 14080531441iz9 +O(z11)
Finally, for the1=N expansion of theanalytic(DR) FP corre-
sponding to RA we obtain (withy0 = 1):~R(z) = z22 +��32 + 4z2 � 2z4��+ : : : ; (3)

hence it becomesunphysicalat finite N [8]. The scenario
is thus the opposite of the RF case: The NA FPn = 3 is
the only one physical at largeN (it exists forN > N =9:44121) and has precisely one unstable eigenvector (within

the RA symmetry) as expected for the FD transition. Using
our 2-loop result [3] we further obtained, up toO��2�: y0 =32 + 23� + �9a � 974 ����, � = �( 32�� + ��2(3a � 278 )) and�� = �2 + �( 492 �� + ��2(9a � 2038 )), wherea was defined in
[3].

Our conclusion is thus that the random anisotropy FP
smoothly matches to our solutionn = 3 atN = 1 and re-
mains non-analytic for allN , breaking dimensional reduction.
It does not exhibit the TT phenomenon which seems a pecu-
liarity of the RF class. It is further studied in [6, 7].
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