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The functional RG for the random field and random anisotropyO(N) sigma-models is studied to two loop.
The ferromagnetic/disordered (F/D) transition fixed pointis found to next order ind = 4 + ǫ for N > Nc

(Nc = 2.8347408 for random field,Nc = 9.44121 for random anisotropy). ForN < Nc the lower critical
dimensiond = dlc plunges belowdlc = 4: we find two fixed points, one describing the quasi-ordered phase,
the other is novel and describes the F/D transition.dlc can be obtained in an(Nc − N)-expansion. The theory
is also analyzed at largeN and a glassy regime is found.

It is important for numerous experiments to understand
how the spontaneous ordering in a pure system is changed by
quenched substrate impurities. One class of systems are mod-
eled by elastic objects in random potentials (so-called ran-
dom manifolds, RM). Another class areO(N) classical spin
models with ferromagnetic (Ferro) couplings in presence of
random fields (RF) or anisotropies (RA). The latter describe
amorphous magnets [1]. Examples of RF are liquid crystals
in porous media [2], He-3 in aerogels [3], nematic elastomers
[4], and ferroelectrics [5]. The XY random field caseN = 2
is common to both classes and describes periodic RM such as
charge density waves, Wigner crystals and vortex lattices [6].
Larkin showed [7] that the well-understood pure fixed points
(FP) of both classes are perturbatively unstable to weak disor-
der ford < duc (duc = 4 in the generic case). For a contin-
uous symmetry (i.e. the RF Heisenberg model) it was proven
[8] that order is destroyed belowd = 4. This does not settle
the difficult question of the lower critical dimensiondlc as a
weak-disorder phase can survive belowduc, if associated to
a non-trivial FP, as predicted ind = 3 for the Bragg-glass
phase with quasi long-range order (QLRO) [9]. For the ran-
dom field Ising modelN = 1 (RFIM) it was argued [10], then
proven [11] that the ferromagnetic phase survives ind = 3.
Developing a field theory to predictdlc, and the exponents of
the weak-disorder phase and the Ferro/Disordered (F/D) tran-
sition, has been a long-standing challenge. Both extensivenu-
merics and experiments have not yet produced an unambigu-
ous picture. Among the debated issues are the critical region
of the 3D RFIM [12] and the possibility of a QLRO phase in
amorphous magnets [5, 13, 14].

A peculiar property shared by both classes is that observ-
ables are identical to all orders to the corresponding ones in a
d − 2 thermal model [15]. This dimensional reduction (DR)
naively predictsdlc = 4 for the weak-disorder phase in a
RF with a continuum symmetry [16] and no Ferro order for
the d = 3 RFIM, which is proven wrong [11]. It also pre-
dictsdt

uc = 6 for the F/DtransitionFP. While there is agree-
ment that multiple local minima are responsible for DR fail-
ure, constructing the field theory beyond DR is a formidable
challenge. Recent attempts include a reexamination of theφ4

theory (i.e. soft spins) for the F/D transition neard = 6 [17].

Previous large-N approaches failed to find a non-trivial FP,
but a self-consistent resummation including the1/N correc-
tions hinted at exponents different from DR (without succeed-
ing in computing them) from a solution breaking replica sym-
metry [18].

As for the pureO(N) model, an alternative to the soft-spin
version (neard = 6) is the sigma model near the lower critical
dimension (here presumed to bed = 4). In 1985 D.S. Fisher
[19] noticed that an infinite set of operators become relevant
neard = 4 in the RFO(N) model. These were encoded
in a single functionR(φ) for which Functional RG equations
(FRG) were derived to one loop, but no new FP was found.
For a RM problem [20] it was found that a cusp develops in
the functionR(φ) (the disorder correlator), a crucial feature
which allows to obtain non-trivial exponents and evade DR.
A fixed point for the RF model was later found [9] ind =
4 − ǫ for N = 2. It was noticed only very recently [21] that
the 1-loop FRG equations of Ref. [19] possess fixed points in
d = 4 + ǫ for N ≥ 3, providing a description of the long-
sought critical exponents of the F/D transition.

In spite of these advances, many questions remain. Con-
structing FRG beyond one loop (and checking its internal con-
sistency) is highly non-trivial. Progress was made for RM
[22, 23], and one hopes for extension to RF. Some questions
necessitate a 2-loop treatment, e.g. for the depinning transi-
tion, as shown in [24]. In RF and RA models the 1-loop anal-
ysis predicted some repulsive FP ind = 4 + ǫ (for larger val-
ues ofN ), and some attractive ones [9, 25] ind = 4 − ǫ. The
overall picture thus suggests a lowering of the critical dimen-
sion, but how it occurs remains unclear. Finally the situation
at largeN is also puzzling. Recently, via a truncation of exact
RG [26] it was claimed that DR is recovered forN large.

Our aim in this Letter is twofold. We reexamine the overall
scenario for the fixed points and phases of theO(N) model
using FRG. This requires the FRG to two loop. Here we
present selected results, details are presented elsewhere[27].
We find a novel mechanism for how the lower critical dimen-
sion is decreased belowd = 4 for N < Nc at some critical
valueNc. We obtain a description of the bifurcation which
occurs atNc, and belowNc we find two perturbative FPs.
Thanks to 2-loop termsdlc can be computed in an expansion
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in Nc − N , and the Ferro/Para FPbelowd = 4 is found. A
study at largeN indicates that some glassy behavior survives
there.

Let us considerO(N) classical spins~n(x) of unit norm
~n2 = 1. To describe disorder-averaged correlations one in-
troduces replicas~na(x), a = 1, . . . , k, the limit k = 0 being
implicit everywhere. The starting model is a non-linear sigma
model, of partition functionZ =

∫

D[π] e−S[π] and action:

S[π] =

∫

ddx
[ 1

2T0

∑

a

[(∇~πa)2 + (∇σa)2] − 1

T0

∑

a

M0σa

− 1

2T 2
0

∑

ab

R̂0(~na~nb)
]

, (1)

where~na = (σa, ~πa) with σa(x) =
√

1 − ~πa(x)2. A small
uniform external field∼ M0(1,~0) acts as an infrared cutoff.
Fluctuations around its direction are parameterized by(N−1)
π-modes. The ferromagnetic exchange produces the 1-replica
part, while the random field yields the 2-replica term̂R0(z) =
z for a bare Gaussian RF. RA corresponds toR̂0(z) = z2. As
shown in [19] one must include a full function̂R0(z), as it is
generated under RG. It is marginal ind = 4.

To obtain physics at large scales, one computes perturba-
tively the effective actionΓ[na(x)]. It can be expanded in gra-

dients near a uniform background configurationn0
a, and split-

ted in 1-, 2- and higher-replica terms. From rotational invari-
ance it is natural to look forΓ in the form (1) with~na → ~nR

a =
(σR

a , ~πR
a ), σa → σR

a =
√

1 − (πR
a )2, πa → πR

a = Z−1/2πa,
T0 → TR = T0/ZT , M0 → MR = M0

√
Z/ZT , m =

√
MR

the renormalized mass of the~πa modes, andR̂0(~na~nb) →
mǫR̂(~nR

a ~nR
b ). Higher vertices generated under RG are irrele-

vant by power-counting, hence discarded. Renormalizationof
T contributes to the flow of̂R, and one setsT = 0 at the end.

One computesZ, ZT and R̂ perturbatively inR̂0 and
extractsβ and γ functionsβ[R̂](z) = −m∂mR̂(z), γ =
−m∂m lnZ and γT = −m∂m lnZT , derivatives taken at
fixed R̂0, T0, M0. Although calculation of theZ-factors is
simplified due to DR, anomalous contributions appear from
the non-analyticity ofR̂(z). To computeR̂(z), one chooses
a pair of uniform background fields(n0

a, n0
b) for each(a, b).

We use a basis for the fluctuating fields (to be integrated over)
such that~na = (σa, ηa, ~ρa), ~nb = (σb, ηb, ~ρb), whereη lies in
the plane common to(~n0

a, ~n0
b), and~ρa along the perpendicular

N − 2 directions; both have diagonal propagators. Denoting
~n0

a~n
0
b = cosφab, one has~na~nb = cosφab (σaσb + ηaηb) +

sin φab (σaηb − σbηa) + ~ρa~ρb. One gets factors of(N − 2)
from the contraction of~ρ. Our calculation to 2 loops results in
the flow-equation for the functionR(φ) = R̂(z = cosφ), and
ǫ = 4 − d:

∂ℓR(φ) = ǫR(φ) +
1

2
R′′(φ)2 − R′′(0)R′′(φ) + (N−2)

[

1

2

R′(φ)2

sin2 φ
− cotφR′(φ)R′′(0)

]

+
1

2
(R′′(φ) − R′′(0))R′′′(φ)2 + (N−2)

[

cotφ

sin4 φ
R′(φ)3 − 5 + cos 2φ

4 sin4 φ
R′(φ)2R′′(φ) +

1

2 sin2 φ
R′′(φ)3

− 1

4 sin4 φ
R′′(0)

(

2(2 + cos 2φ)R′(φ)2 − 6 sin 2φR′(φ)R′′(φ) + (5 + cos 2φ) sin2 φR′′(φ)2
)

]

−N+2

8
R′′′(0+)2R′′(φ) − N−2

4
cotφR′′′(0+)2R′(φ) − 2(N−2)

[

R′′(0) − R′′(0)2 + γaR′′′(0+)2
]

R(φ) (2)

with ∂l := −m∂m, and the last factor proportional toR(φ) is
−2γT and takes into account the renormalization of temper-
ature. Thanks to the anomalous terms, arising from a non-
analytic R(φ), this β-function preserves a (at most) linear
cusp (i.e. finiteR′′′(0+)), and reproduces forN = 2 the pre-
vious 2-loop results for the periodic RM [22]. ForN > 2,
anomalous contributions are determined following [28].γ is
found as

γ = (N − 1)R′′(0) + 3N−2
8 R′′′(0+)2 , (3)

either via a calculation of〈σa〉 [30], or of the mass corrections,
a result consistent with theβ function (2) [31]. The determi-
nation ofγT is more delicate [32], and we have allowed for an
amalous contributionγa, whose effect is minor, and discussed
below. The correlation exponents (standard definition [21])
are obtained as̄η = ǫ − γ, η = γT − γ at the FP. (2) has the
form:

∂ℓR = ǫR + B(R, R) + C(R, R, R) + O(R4) (4)

We now discuss its solution, first in the RF case, and setting
γa = 0. The 1-loop flow-equation (settingC = 0) admits,
in dimensions larger than 4, a fixed pointR∗

F/D with a single
repulsive direction, argued by Feldman to describe the F/D
zero temperature transition. This is true only forN > Nc. For
N < Nc this fixed pointdisappearsand instead anattractive

dd dd 444 d lc

F F F

D
D

D

D D D

N = N

QLRO

cN > Nc N < Nc

FIG. 1: (Color online) Phase diagram. D= disordered, F= ferro-
magnetic, QLRO= quasi long-range order.
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FIG. 2: (Color online) Parametric plot for solutions of (5) for N <
Nc (dots) for RF, equivalent to (6) (solid line, parabola) and flow
(arrows).f parameterizes disorder and onlyf ≥ 0 is physical. Cmp.
with fig. 1, right.

fixed pointR∗
QLRO appears which describes the Bragg glass

for N = 2. We have determinedNc = 2.8347408 and the
solutionRc(u) which satisfiesB(Rc, Rc)|N=Nc

= 0. It is
formally the solution atǫ = 0. Since the FRG flow vanishes
to one loop along the direction ofRc, examination of the 2-
loop terms is needed to understand what happens atN = Nc.
In particular the F/D transition should still exist forN < Nc,
though it cannot be found at one loop. It is not even clear a
priori whether it remains perturbative.

The scenario found is perturbative, accessible within a dou-
ble expansion in

√

|ǫ| andN − Nc. To this aim, we write the
leading terms inN − Nc andǫ of (4), namely

∂ℓR = ǫR + Bc(R, R) + Cc(R, R, R) + (N−Nc) BN (R, R)

Bc(. . .) = B(. . .)|N=Nc
, Cc(. . .) = C(. . .)|N=Nc

(5)

One looks for a fixed-point solution of the formR(u) =
gRc(u) + g2δR(u), with g > 0, R′′

c (0) = −1, and its flow.
This analysis is done numerically and leads to the flow shown
schematically on Fig. 1. The RG-flow projected onto the di-
rection ofg is equivalent to

∂lg = ǫg + 1.092(N − Nc)g
2 + 2.352g3 . (6)

As a solution of the functional flow nearNc, its simplicity is
surprising. Settingg = (Nc − N)f , there are three FP:

ǫ

(N − Nc)2
− 1.092f + 2.352f2 = 0 , or f = 0 . (7)

ForN > Nc the physical branch isf < 0. As seen in Fig. 1,
for d > 4 there is a ferro phase (i.e.f = 0 is attractive) and an
unstable FP describing the F/D transition, given by the nega-
tive branch of (7). AtN = Nc one sees from (6) that the F/D
fixed point is still perturbative, but in a

√
ǫ expansion forg

(and for the critical exponents). ForN < Nc the physical side
is f > 0 and there are two branches on Fig. 2 corresponding
to two non-trivial fixed points. One is the infrared attractive
FP for weak disorder which describes the Quasi-Ordered fer-
romagnetic phase; the second one is unstable and describes

the transition to the disordered phase with a flow to strong
coupling. These two fixed points exist only forǫ < ǫc and an-
nihilate atǫc. The lower critical dimension of the RF-model
for N < Nc is lowered fromd = 4 to

dRF
lc = 4−ǫc ≈ 4−0.1268(N−Nc)

2+O((N −Nc)
3) . (8)

Note that the mechanism is different from the more conven-
tional criteriond − 4 + η(d) = 0 atd = dlc.

The same analysis for the random anisotropy class yields
Nc = 9.44121. The equivalent of (6) becomes∂lg =
ǫg + 0.549(N − Nc)g

2 + 47.6g3, leading todRA
lc ≈ 4 −

0.00158(N − Nc)
2. Although it yieldsdlc(N = 3) ≈ 3.93

and no QLRO phase ind = 3, naive extrapolation should be
taken with caution given the high value ofNc. Numerical val-
ues fordlc are changed for aγa 6= 0, but the scenario is robust
for γa < γc [33].

We now discuss the FRG flow-equations forN large. From
a truncated exact RG Tarjus and Tissier (TT) [26] found: that
the linear cusp of the F/D fixed point ford > 4 vanishes for
N > N∗(d), i.e. R′′′(0+) = 0; and that the non-analyticity
becomes weaker asN increases (as|φ|n with n ∼ N ). An-
alytical study of the derivatives of (2) confirms the existence
of this peculiar FP to two loop and predictsN∗(d, 2p) beyond
which the set of{R(2k)(0)} for k ≤ p admits a stable FP, with
R(2k−1)(0+) = 0 for k ≤ p andR(2k−1)(0+) 6= 0 for k > p.
We find:

N∗(d) = N∗(d, 4) = 18 + 49ǫ/5 + . . . (9)

which yields a slope roughly twice the one of Fig. 1 of [26].
This remarkable FP raises some puzzles. Although weaker
than a cusp its non-analyticity should imply some (weaker)
metastability in the system. It is thus unclear whether DR is
fully restored: to prove it one should rule out feedback from
anomalous higher-loop terms in exponents or theβ-function.
Finally, one also wonders about its basin of attraction. As
shown in Fig. 3, the FRG flow forR′′′′(0) is still to large val-
ues if its bare value is large enough, indicating some tendency
to glassy behaviour.

To explore these effects we now study the F/D phase tran-
sition at largeN andd > 4. We obtain, both at largeN and
fixedd (extending Ref. [23]), and to one loop, the flow equa-
tion for the rescaled̃R(z = cosφ) = NR(φ)/|ǫ|:

∂lR̃ = −R̃ + 2R̃′
1R̃ − R̃′

1R̃
′z + 1

2 R̃′2 = 0 . (10)

We denotey(z) = R̃′(z), y0 = R̃′(1) = −NR′′(0)/|ǫ| and
r4 = NR′′′′(0)/|ǫ|. There are two analytic FPs̃R(z) =
z − 1/2 and R̃(z) = z2/2, corresponding both toy0 = 1
and tor4 = 1 andr4 = 4 respectively. This agrees with the
flow of thed erivatives for analyticR(φ): ∂ly0 = y0(y0 − 1),
and aty0 = 1: ∂lr4 = 1

3 (r4 − 1)(r4 − 4). The first FP is the
large-N limit of the TT fixed point, the second is repulsive
and divides the region wherer4 → ∞ (non-analyticR(φ)) in
a finite RG timelc (Larkin scale). Fory0 > 1, we find a fam-
ily of NA fixed points with a linear cusp, parameterized by an
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FIG. 3: Flow forR′′′′(0)/|ǫ| for d = 4 − ǫ > 4 as a function ofN .
The two branches behave as1/N and4/N at largeN .

integern ≥ 2, s.t.y0 = n/(n− 1), z = y − (y0 − 1)(y/y0)
n.

The solutions withn (i.e. z(y)) odd correspond to random
anisotropy (R′(φ) = R′(φ + π)). Then = 2 RF fixed point
is R(φ) = 2 cos(φ) + 8

√
2

3 sin3(φ/2) − 4
3 . To elucidate their

role, we obtained the exact solution for the flow both below
lc, i.e.z = y

y0

+ (y0 − 1)Φ( y
y0

) (Φ(x) parameterizes the bare
disorder,Φ(1) = 0), and abovelc, with an anomalous flow for
y0. Matching atlc yields the critical manifold for RF disorder,
defined from the conditions thatΦ′(w) = Φ(w)/w = 1 has a
root 0 ≤ w ≤ 1. It is different from the naive DR condition
y0 = 1, valid for smallr4. Then = 2 FP corresponds to bare
disorder such that the rootw = 0. Hence it is multicritical
[34]. Generic initial conditions within the critical F/P mani-
fold flow back to the TT FP i.e. the linear cusp decreases to
zero [35]. This however occurs only at an infinite scale, hence
we expect a long crossover within a glassy region, character-
ized by a cusp, and metastability on finite scales [36]. The
large-N limit here is subtle. TakingN → ∞ at fixed volume
on a bare model witĥR0(z) = z yields only the analytic FP,
equivalent to a replica-symmetric saddle point. Higher mono-
mialszp are generated in perturbation theory, at higher order
in 1/N . Thus, forN large but fixed and infinite size, one must
first coarse grain to generate a non-trivial functionR̂0(z), be-
fore taking the limit ofN → ∞.

In conclusion we obtained the 2-loop FRG functions for
the random field and anisotropyσ-models. We found a new
fixed point and a scenario for the decrease of the lower critical
dimension. This rules out the scenario left open at one loop
that the bifurcation close tod = 4 simply occurs within the
(quasi-) ordered phase.
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