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Crosstalk and transitions between multiple spatial maps in an attractor
neural network model of the hippocampus: Phase diagram
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We study the stable phases of an attractor neural network model, with binary units, for hippocampal place
cells encoding one-dimensional (1D) or 2D spatial maps or environments. Different maps correspond to random
allocations (permutations) of the place fields. Based on replica calculations we show that, below critical levels for
the noise in the neural response and for the number of environments, the network activity is spatially localized
in one environment. For high noise and loads the network activity extends over space, either uniformly or with
spatial heterogeneities due to the crosstalk between the maps, and memory of environments is lost. Remarkably
the spatially localized regime is very robust against the neural noise until it reaches its critical level. Numerical
simulations are in excellent quantitative agreement with our theoretical predictions.
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I. INTRODUCTION

Understanding the representation of space by the brain
is a long-lasting question, which has been addressed using
many varied methods. This includes memory of places,
localization of one’s position, mental exploration, and planning
of forecoming trajectories. During the last decades, the use of
microelectrodes allowing single cell recordings has revolution-
ized our knowledge of neural networks. In 1971, O’Keefe and
Dostrovsky [1] recorded neural activity in the hippocampus of
rats and discovered the existence of place cells, which fire only
when the animal is located in a certain position in space (called
place field). This discovery suggested that the hippocampus
could be the support for space representation or a “cognitive
map.” Since then, many experimental and theoretical studies
have been carried out on the hippocampus, making it one of
the most, if not the most, studied parts of the brain [2].

The properties of place cells, their conditions of formation,
and the sensory and behavioral correlates of place fields
have been investigated experimentally [3–5]. Place fields
have the striking property to appear as randomly distributed,
independently of the neurons’ locations in the neural tis-
sue: two neighboring neurons can have very distant place
fields. Furthermore, several “environments” or “maps” can
be learned, and a given neuron can have place fields in several
environments, which are apparently randomly assigned, a
property called remapping [6]. Place fields are controlled
primarily by visual cues but the activity of place cells persists
in the dark [7] and is also driven by self-motion signals, that
is, “path integration” [8]. More recently, the discovery of grid
cells [9,10] in the entorhinal cortex (that feeds input into
the hippocampus) opened a new way in the comprehension
of a complex system of interacting brain regions [11].
Many theoretical models have been proposed to account for
these experimental results. Beyond the comprehension of the
hippocampus itself, the motivation is to reach more insights
about the functional principles of the brain [2].

Experiments show that the hippocampus is able to learn,
memorize, and retrieve spatial maps. The massive intrinsic
connectivity in hippocampal CA3 led to the hypothesis of an
attractor neural network [12–14] where memorized activity
patterns are the attractors of the dynamics, such as in the

celebrated Hopfield model [15]. In the Hopfield model it
is assumed that the patterns are additively stored in the
synapses, through a Hebbian learning mechanism. A deep
and quantitative understanding of the Hopfield model was
made possible by the use of the statistical physics theory
of mean-field spin glasses [16,17]. In the case of the rodent
hippocampus, the memorized items are space manifolds called
environments [6]. Neural network models for place cells have
been proposed, in particular by Battaglia and Treves, who
carried out a mean-field calculation of the storage performance
of a network with linear thershold units [18]. Recently
Hopfield proposed a similar model for mental exploration
in a network with adaptation [19]. However, the crosstalk
between the different environments encoded in the network,
and the transitions that can occur between them as observed
experimentally [20] remain poorly understood.

Here, we propose a model of interacting binary units and
study the different regimes of activity in the presence of neural
noise. The model is defined in Sec. II. We study the case
where multiple environments are memorized in Sec. III, and
derive the different regimes of activity of the network under
given conditions of neural noise and memory load in Sec. IV.
The phase diagram of the system is computed in Sec. V and
compared to numerical simulations. We show that an activity of
the network that is locally spatialized in one of the stored maps,
as observed experimentally, is the stable state of the network
provided that both the neural noise and the memory load are
small enough. For high noise and/or loads the the activity is
delocalized in all environments, either uniformly over space
or with spatial heterogeneities controlled by the crosstalk
between environments (glassy phase). We finally discuss the
value of the parameters (Sec. V C) and the hypothesis of
the model (Sec. VI) compared to previous works. The study
of the free energy landscape and of the dynamics of the model
will be addressed in a companion publication [21].

II. MODEL

A. Definition

The N place cells are modeled by interacting binary units σi

equal to 0 or 1 corresponding to, respectively, silent and active
states. We suppose that, after learning of the environment and
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random allocation of place fields, each place cell preferentially
fires when the animal is located in an environment-specific
location in the D-dimensional space, defining its place field.
For simplicity, space is assumed to be a segment of length
N for D = 1, and a square of edge length

√
N in D = 2,

with periodic boundary conditions. The N centers of the place
fields are assumed to be perfectly located on a D-dimensional
regular grid: two contiguous centers are at unit distance from
each other. This simplification allows us to concentrate on the
interference between the stored spatial maps as the only source
of structural noise.

Let dc be the extension of a place field, that is, the
maximal distance between locations in space recognized by
the same place cell. Place cells whose place fields overlap,
and, therefore, spike simultaneously as the animal wanders
in the environment, are assumed to strengthen their synaptic
connections. Calling dij the distance between the place field
centers of cells i,j in the environment we assume that the
reinforcement process results in the production of excitatory
synaptic couplings given by

J 0
ij =

{
1
N

if dij � dc,

0 if dij > dc

. (1)

The fact that all environments are equivalent (there is no
privileged permutation) is basic to our theory. We choose the
place extension dc such that each cell i is connected to the same
number of other cells j , independently of the space dimension
D. Let w N be this number: w(�1) is the fraction of the
neural population any neuron is coupled to. Hence, dc = w

2 N

in dimension D = 1, and dc =
√

w N
π

in dimension D = 2. The
1
N

scale factor is such that the total contribution to the local field
received by a place cell is finite when the number of cells N is
sent to infinity. Note that we assume here that the environment
is perfectly explored: couplings depend on the distance dij

only, and not on the particular sequence of positions occupied
by the animal during the time spent in the environment. The
case of partial, nonhomogeneous explorations was studied
in [14]. Couplings defined by prescription (1) are symmetric,
and only reflect the local structure of the environment.

Each time the rodent explores a new environment a
remapping of the place fields takes place. Let L be the number
of explored environments, in addition to the environment above
(hereafter called reference environment). We assume that the
remapping is represented by a random permutation of the N

place-cell indices associated to the place fields in the reference
environment, denoted by � = 0. Let π� be the permutation
corresponding to remapping number �, where � = 1, . . . ,L

is the index of the environment. In environment � cells i,j

interact if the distance dπ�(i)π�(j ) is smaller than dc, and do
not interact at larger distances. An obvious modification of (1)
defines the coupling matrix J � corresponding to environment
�. We finally assume that all environments contribute equally
and additively to the total synaptic matrix,

Jij =
L∑

�=0

J �
ij = J 0

ij +
L∑

�=1

J 0
π�(i)π�(j ). (2)

For the sake of a better understanding, we consider an
example of a matrix J in the very simple case N = 6, w = 2

6 ,

FIG. 1. (Color online) Example of remapping of the place field
centers of N = 6 neurons (denoted by indices 1,...,6) in two different
one-dimensional (1D) environments with periodic boundary condi-
tions and w = 2

6 . Place fields in each environment are represented by
colored dashed lines, place field centers are denoted by letters a,...,f.

L + 1 = 2, and D = 1, illustrated in Fig. 1. For the reference
environment the coupling matrix is

J 0 = 1

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

For another environment obtained through the random permu-
tation π = (3,6,1,5,2,4) we obtain the coupling matrix

J 1 = 1

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1

0 0 1 1 0 0

0 1 0 0 1 0

0 1 0 0 0 1

1 0 1 0 0 0

1 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

The total coupling matrix is therefore

J = J 0 + J 1 = 1

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 2

1 0 2 1 0 0

0 2 0 1 1 0

0 1 1 0 1 1

1 0 1 1 0 1

2 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

In addition to pyramidal cells, the network contains long-
range, inhibitory interneurons whose activity is modeled by a
global inhibition on place cells. We assume that the main effect
of inhibition is to fix the total neural activity. We introduce the
parameter f to denote the fraction of active cells:

N∑
i=1

σi = f N. (6)

Once the coupling matrix Jij (2) and the constraint over the
global activity (6) are defined the probability of a neural
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activity configuration σ = (σ1,σ2, . . . ,σN ) is assumed to be

PJ (σ ) = 1

ZJ (T )
exp(−EJ [σ ]/T ), (7)

where the “energy” of the configuration reads

EJ [σ ] = −
∑
i<j

Jij σi σj , (8)

and the partition function is

ZJ (T ) =
∑

σwith constraint (6)

exp(−EJ [σ ]/T ). (9)

Parameter T , which plays the role of temperature in statistical
mechanics, fixes the amount of noise in the model. Large
values of T corresponds to essentially flat distributions over the
neural configuration space. Low T concentrate the probability
distribution PJ around the configurations with lowest energies
EJ . In all numerical computations hereafter we will take the
parameters values w = 0.05 and f = 0.1, except in Sec. V C
where the effect of those values on the results will be discussed.

B. Case of a single environment

Our model is an extension of the Hopfield model [15]
to the case of space-dependent interactions. Despite this
additional complexity in the model it remains exactly solvable
in the infinite N limit, due to the long-range nature of the
interactions [22].

We start by considering the case of a single environment, for
which the coupling matrix is given by (1). To lighten notations
we consider the D = 1 case. In the large N limit, a continuous
approach can be introduced by defining the locally coarse-
grained activity

ρ(x) ≡ lim
ε→0

lim
N→∞

1

εN

∑
(x−ε/2)N�i<(x+ε/2)N

〈σi〉J , (10)

where 〈.〉J denotes the average over distribution PJ (7). Note
that the order of limits is important for the local average to be
correctly defined. Due to the presence of periodic boundary
conditions we choose x ∈ [− 1

2 ; 1
2 ]. The density of activity ρ(x)

is found upon minimization of the free energy functional

F({ρ(x)}) = −1

2

∫
dx dy ρ(x)Jw(x − y)ρ(y)

+ T

∫
dx{ρ(x)lnρ(x)

+ [1 − ρ(x)]ln[1 − ρ(x)]}, (11)

where Jw(u) = 1 if |u| < w
2 , and 0 otherwise. The minimum

is taken over the activity densities fulfilling∫
dx ρ(x) = f. (12)

All integrals run over the [− 1
2 ; 1

2 ] interval.
The minimization equation for ρ(x) can be written as

ρ(x) = 1

1 + e−μ(x)/T
, (13)

μ(x) =
∫

dy Jw(x − y)ρ(y) + λ, (14)

where μ(x) plays the role of a chemical potential, and the
constant λ is chosen to satisfy (12). We discuss the solutions
of these equations in the following sections. Note that the free
energy per site,

F (T ) = lim
N→∞

− T

N
lnZJ (T ), (15)

is simply given by the value of the free-energy functional F
in its minimum ρ(x), solution of (13) and (14).

C. Relationship with rate models

Neurons are often described by their firing rate, i.e., the
short-term average of the number of spikes they emit. A
straightforward relationship can be drawn with binary models
[23]. The current incoming onto neuron i evolves according to

τ
dIi

dt
= −Ii +

∑
j

Jij g(Ij ). (16)

Here, g(x) is the characteristic function expressing the firing
rate of the neuron as a function of the current. It is a
sigmoidal function, running between 0 and 1 (saturation of
the postsynaptic neuron at high currents), and Jij includes
both the positive coupling J 0 (1) between neighboring cells,
and a constant, global inhibition contribution J I , whose value
is chosen to enforce (6). The dynamical equation admits a
stationary state, implicitly defined through

Ii =
∑

j

Jij g(Ij ). (17)

Identifying

Ii → μi, g(Ii) → ρi, (18)

and choosing

g(I ) = 1

1 + exp(−I/T )
, (19)

we observe that Eq. (17) for the stationary currents is identical
to Eq. (14) for the chemical potential in the single-environment
case. The constant term λ in (14) is related to the constant
inhibitory contribution to J through λ = J I f . The parameter
T fixes the slope of g at the origin.

III. STATISTICAL MECHANICS OF THE MULTIPLE
ENVIRONMENT CASE

A. Average over random remappings

In the presence of multiple environments the partition
function ZJ becomes a stochastic variable, which depends
on the L remappings, or, equivalently, on the L random
permutations π�, with � = 1 . . . L. We assume that, in the
large N limit, the free energy of the system is self-averaging,
i.e., concentrated around the average. To compute the average
free energy we need to average the logarithm of ZJ (T ) over
the random permutations. To do so we use the replica method:
we first compute the nth moment of ZJ (T ), and then send
n → 0. The neural configuration is now a set 
σ = (σ 1, . . . ,σ n)
of n × N spins σa

i , where i = 1 . . . N is the spin index and
a = 1 . . . n is the replica index. The nth moment of the partition
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function reads

ZJ (T )n =
∑


σ
exp

⎡
⎣β

n∑
a=1

∑
i<j

(
J 0

ij +
L∑

�=1

J �
ij

)
σa

i σ a
j

⎤
⎦

=
∑


σ
exp

⎡
⎣β

n∑
a=1

∑
i<j

J 0
ij σ a

i σ a
j

⎤
⎦ 
(
σ )L, (20)

where β = 1/T and the overbar denotes the average over
the random remappings. The sum over 
σ is restricted to
configurations with average activity equal to f (within each
replica), and


(
σ ) = 1

N !

∑
π�

exp

⎡
⎣β

∑
i<j

J 0
ij

n∑
a=1

σa
π�(i)σ

a
π�(j )

⎤
⎦ . (21)

Here the equivalence between permutations is explicitly
exploited. The calculation of the average over the random
permutation π� is not immediate, but can be done exactly in
the large N limit. Details are reported in Appendix B. The
result is

ln 

(
σ ) = N

β

2
nwf 2 −

∑
λ �=0

Tr ln[Idn − βλ(q − f 2 1n)],

(22)

where Idn denotes the n-dimensional identity matrix, q is the
overlap matrix with entries

qab ≡ 1

N

∑
j

σ a
j σ b

j , (23)

and 1n is the n × n matrix whose all entries are equal to 1. The
sum in (22) runs over all the nonzero eigenvalues of the matrix
J 0. Explicit expressions for those eigenvalues will be given in
the next section for the D = 1 case, while the two-dimensional
case is treated in Appendix A.

A key feature of (22) is that 
 depends on the spin
configuration 
σ through the overlaps qab only. Those overlaps
thus play the role of order parameters for the activity in
the environment � � 1, as does ρ(x) for the environment
0. Calculation of the nth moment of the partition function
therefore amounts to estimating the entropy of neural activity
configuration 
σ at fixed {qab,ρ(x)}, which can be done exactly
in the N → ∞ limit.

B. Replica-symmetric theory

To perform the n → 0 limit we make use of the replica
symmetric ansatz, which assumes that the overlaps qab take
a single value q for replica indices a �= b. The validity of the
ansatz will be discussed in Sec. IV. The Edwards-Anderson
order parameter q, defined through

q ≡ 1

N

N∑
i=1

〈σi〉2
J , (24)

measures the fluctuations of the local spin magnetizations from
site to site. Values for q range from f 2 to f . We expect q to
be equal to f 2 when the local activity 〈σi〉J (averaged over

the configurations with distribution PJ ) is uniform over space,
and to be larger otherwise.

As in the single environment case we define the order
parameter ρ(x) as the density of activity around point x in
space, see (10),

ρ(x) ≡ lim
ε→0

lim
N→∞

1

εN

∑
(x−ε/2)N�i<(x+ε/2)N

〈σi〉J . (25)

The difference is that, in the multiple environment case,
the density ρ(x) appearing in the replica theory is averaged
over the environments. Local fluctuations of the density from
environment to environment can be calculated [21], but will
not be considered here; only global fluctuations, averaged over
space, are considered through the order parameter q.

As in the single environment case a chemical potential μ(x),
conjugated to ρ(x), is introduced. In addition, a new order
parameter r plays the role of the conjugated force to q, and
controls the fluctuations of the spin magnetizations. All order
parameters are determined through the optimization of the
free energy functional F(q,r,{ρ(x)},{μ(x)}), see Appendix C,
whose expression for the D = 1 case is given by

F = αβ

2
r(f − q) − α

β
ψ(q,β) +

∫
dx μ(x) ρ(x)

− 1

2

∫
dx

∫
dy ρ(x) Jw(x − y) ρ(y)

− 1

β

∫
dx

∫
Dzln(1 + eβz

√
αr+βμ(x)), (26)

where Dz = exp(−z2/2)/
√

2π is the Gaussian measure, and

ψ(q,β) ≡
∑
k�1

[
β(q − f 2) sin(kπw)

kπ − β(f − q) sin(kπw)

− ln

(
1 − β(f − q) sin(kπw)

kπ

)]
. (27)

Parameter α ≡ L/N , hereafter called load, denotes the ratio
of the numbers of environments and of cells.

Extremization of the free energy functional leads to the
saddle-point equations

r = 2(q − f 2)
∑
k�1

[
kπ

sin(kπw)
− β(f − q)

]−2

,

q =
∫

dx

∫
Dz [1 + e−βz

√
αr−βμ(x)]−2,

(28)
ρ(x) =

∫
Dz [1 + e−βz

√
αr−βμ(x)]−1,

μ(x) =
∫

dy Jw(x − y) ρ(y) + λ,

where λ is determined to enforce (12). The expression of F
and of the saddle-point equations for the D = 2 case can be
found in Appendix A.

IV. THE PHASES AND THEIR STABILITY

In both D = 1 and 2 dimensions three qualitatively dif-
ferent solutions are found for the extremization equations
of F , corresponding to three distinct phases of activity: a
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paramagnetic phase in which the activity is uniform over
space, a “clumplike” phase in which the activity is localized
in one of the stored spatial maps, and a glassy phase where
the activity is neither uniform nor coherent with any map.
We now discuss the domains of existence and stability of
each phase. We are chiefly interested in the clump phase
domain, which corresponds to the experimentally observed
regime where memorized maps can be retrieved. As usual all
expressions given below correspond to the D = 1 case, while
the case D = 2 is treated in Appendix A; all numerical results
were obtained for f = 0.1, w = 0.05.

A. High noise: Paramagnetic phase

At high temperature we expect the activity to be dominated
by the noise in the neural dynamics, and to show no spatial
localization. The corresponding order parameters are

ρ(x) = f, q = f 2 (paramagnetic phase: PM).

The activity profile is shown in Fig. 2(a). The paramagnetic
phase (PM) exists for all values of the control parameters, with
corresponding potentials:

μ(x) = T ln

(
f

1 − f

)
, r = 0 (PM).

We now discuss its stability.

1. Case of a single environment (α = 0)

In the single environment case the stability of the paramag-
netic solution is determined by computing the Hessian of the
free-energy functional F (11). We find that

δ2F
δρ(x)δρ(y)

= T

f (1 − f )
δ(x − y) − Jw(x − y). (29)

The solution is stable as long as the Hessian is definite positive.
In the one-dimensional case the most unstable mode

corresponds to a spin wave δρ(x) ∝ sin(2π k x), with wave
number k = 1; note that the k = 0 mode is forbidden according
to condition (12). The instability develops under the spinodal
temperature

TPM = f (1 − f )
sin πw

π
≈ 0.0045. (30)

TPM and, more generally, all thermodynamic quantities are
invariant under the changes f → 1 − f or/and w → 1 − w,

FIG. 2. Average activity ρ(x) in dimension D = 1 in the param-
agnetic phase (a) and in the clump phase ((b): temperature T = 0;
(c): temperature T = 0.0073) for α = 0, computed with M = 2000
bins of discretization.

which simply amount to reverse σi → 1 − σi , i.e., to change
active spins into holes and vice versa.

In dimension D = 2 a similar calculation shows that the
first unstable mode is a one-dimensional spin wave along one
arbitrary direction in the plane. The corresponding spinodal
temperature is

T 2D
PM = f (1 − f )

√
w

sin(π
√

w)

π
. (31)

2. Case of multiple environments (α > 0)

The study of the stability of the PM phase in the multiple
environments case is reported in Appendix E 1. As in the
single environment case the PM solution is unstable at all
temperatures T < TPM against perturbation of the activity of
the type δρ(x) ∝ sin(2π k x). In addition coupled fluctuations
of λ,r,q may lead to instabilities if T is smaller than TPM(α),
implicitly defined through

∑
k�1

[
TPM(α) kπ

f (1 − f ) sin(kπw)
− 1

]−2

= 1

2α
. (32)

The instabilities correspond to the transition to the glassy
phase; see Sec. IV C. Note that TPM defined in (30) corresponds
with TPM(α = 0). As a conclusion, in the (α,T ) plane, the
PM phase is stable in the region T > TPM(α). This region is
sketched in Fig. 3.

B. Moderate noise and load: The clump phase

In experiments place cells exhibit patterns of localized
activity where neurons with neighboring place fields are active
together. Our modeling reproduces such localized-in-space
activity patterns (called “bumps” or “clumps” of activity) at
sufficiently low (α, T ). The corresponding phase, hereafter
referred to as the “clump phase” (CL), is characterized by the
order parameters

ρ(x) �= f, q > f 2 (clump phase: CL).

Correspondingly, the chemical potential μ(x) will vary over
space, and the conjugated force r is strictly positive.

FIG. 3. The paramagnetic (PM) phase is stable in the upper part
of the (α,T ) plane, defined by T > TPM(α). The spin glass (SG) phase
exists below this line; replica symmetry is broken everywhere in the
T < TPM(α) region.
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1. Single environment (α = 0)

When the temperature T is sent to 0+, assuming that f > w,
we find a solution to (13), (14) that is localized in space:

μ(x) =
⎧⎨
⎩

w
2 if |x| < 1

2 (f − w)
f

2 − |x| if 1
2 (f − w) � |x| < 1

2 (f + w)
−w

2 if |x| � 1
2 (f + w)

,

(33)

and

ρ(x) →
{

1 if |x| � f/2,

0 if |x| > f/2.
(34)

Any translation x → x + x0 defines another ground state with
the same free energy. The activity profile is shown in Fig. 2(b).

At small but finite temperature we have solved Eqs. (13)
and (14) numerically by discretizing space with a large number
M of bins of width 1/M , such that Mw and Mf are both much
larger than unity. The activity profile is now rounded off by
the thermal noise; see Fig. 2(c) for a representative example.
Cells far away from the center of the clump are active with
some positive probability < f . This clump is reminiscent of
a liquid phase, surrounded by its vapor. The clump persists
up to some critical temperature TCL, e.g., TCL � 0.008 for
f = 0.1,w = 0.05, at which it disappears. The dependence of
TCL on f and w will be studied in Sec. VI. Notice that TCL

also slightly depends on the number of bins of discretization
M as shown in Fig. 4.

The clump phase is also present for D = 2. An example of
a two-dimensional clump is shown in Fig. 5.

2. Crosstalk between different environments (α > 0)

We now look for a solution with localized activity in
the first environment, and nonlocalized activity in the other
environments. Keeping the temperature T fixed and increasing
the load α has the effect of squeezing and lowering the clump
(Fig. 6). Once the disorder (random remappings) is averaged
out, the clump solution is translationally invariant as in the
single environment case. Here we assume that no external
input (which would be important for retrieval properties of the
network, and would break translation invariance) is present.

FIG. 4. Highest temperature at which the clump exists, TCL, as a
function of the number M of discretization bins for three values of
w. The average activity is f = 0.1 and the load vanishes, α = 0.

FIG. 5. (Color online) Two-dimensional clump of activity ρ(x,y)
for a single environment (α = 0) at temperature T = 0.0055 com-
puted with M = 400.

We have studied the stability of the clump solution
against longitudinal and replicon modes. The longitudinal
stability domain is found by determining the boundary in the
(α,T ) plane along which the clump abruptly collapses. This
boundary, shown in Fig. 7, can be described as follows:

(i) at small α the clump phase is longitudinally stable for
T < TCL(α), a slowly decreasing function of α, which coin-
cides with the temperature TCL found for a single environment
when α → 0;

(ii) at small temperature, the clump phase is longitudinally
stable if α < αCL(T ), an increasing function of T . We denote
αCL its value when T → 0;

(iii) at intermediate temperatures a weak reentrance is
present. The curves TCL(α) and αCL(T ) merge at a point where
the tangent is vertical and the reentrance begins.

Along the boundary of the clump phase the value of
the Edwards-Anderson parameter increases from q = f 2 in
(α = 0,T = TCL) to q = f in (α = αCL,T = 0).

Calculation of the stability against replicon modes is
detailed in Appendix E 3. We find that the replica-symmetric
solution is stable, except in a small region confined to small T

and α close to αCL. This result is shown by the dashed line in
Fig. 7. It is reminiscent of the results for the “retrieval phase”
in the Hopfield model [16].

FIG. 6. Effect of the load α on the clump: average activity ρ(x)
in dimension D = 1 in the clump phase at temperature T = 0.004
for α = 0 (left) and α = 0.02 (right).
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FIG. 7. Domain of stability the clump phase, computed with
M = 200 bins. Longitudinal and replicon instability lines correspond
to, respectively, the full and dashed lines. Due to the computational
effort required for the calculation of the replicon eigenvalues, only a
few points (black dots) were computed.

C. High load: The glassy phase

At large α the disorder in the interactions is strong enough
to magnetize the spins locally, without any coherence with
any spatial map. Again, the average of the activity 〈σi〉J
will depend on the realization of the environments, while the
average over the environment, 〈σi〉J , will be uniform in space
and equal to f . In this glassy (SG) phase the order parameters
will take values

ρ(x) = f, q > f 2 (glassy phase: SG).

Correspondingly the chemical potential μ(x) does not depend
on x, and r > 0.

As reported in Appendix E 2 a glassy solution is found
when T < TPM(α), corresponding to the paramagnetic stability
line calculated above. Within this region, the SG phase is
always stable against clumpiness (localization of the activity).
The spin glass phase is unstable against the replicon mode,
indicating that replica symmetry is broken, similarly to the spin
glass phase in the Hopfield model [16]. Results are summarized
in Fig. 3.

V. PHASE DIAGRAM

A. Transitions between phases

Transition lines between the phases described above are
determined in the (α,T ) plane from the comparison of their
free energies:

(i) The clump-paramagnetic transition at high temperature
is located slightly below the clump instability line. We denote
Tc(α) the corresponding temperature for a given α.

(ii) The clump-glass transition occurs at a load denoted
αg(T ) for a given temperature T . Here again, we find a slight
reentrance at moderate temperature: αg(T ) is maximal for
T ≈ 0.004. As replica symmetry is broken in the SG phase
the true free energy is expected to be higher than the RS value,
and the true transition line should be slightly shifted to higher
values of α.

(iii) At high α, T there is a second-order phase transition
between the PM and the SG phases.

FIG. 8. Phase diagram in the (α,T ) plane in D = 1. Thick lines:
transitions between phases. Thin dashed lines reproduce stability
regions described above. Critical lines were computed with M = 200.

The phase diagram in dimension D = 1 is summarized in
Fig. 8.

It is interesting to emphasize the differences between this
phase diagram and the one of the Hopfield model computed in
[16]. In the Hopfield model, the “retrieval” or “ferromagnetic”
(FM) phase (which corresponds to our clump phase) has a
triangular shape in the (α,T ) plane. The temperature at which
the FM phase becomes unstable at a given α is smaller than
TPM(α). There is no coexistence between the PM and FM
phases, and both are separated by the glassy phase. Moreover,
for the Hopfield model, TFM(α) is monotonously decreasing
so the capacity is maximal at zero temperature [24]. Conse-
quently, it seems that our model of attractor neural network
is much more robust to noise than the standard Hopfield
model. This can be understood considering the structure of
the coupling matrix. In the Hopfield model one pattern defines
a single direction in the configuration space; interference with
other patterns and dynamical noise may push the activity
configuration in the high-dimensional orthogonal subspace,
and the memory of the pattern is easily lost. In the present
case, on the contrary, one map defines a whole collection of
configurations (bumps) centered on different locations, thus
the synaptic matrix will make the network converge to one of
the attractors, even in the presence of a high level of noise.

When a first-order transition line is crossed the order
parameter q is discontinuous. We have computed numerically
the value of the Edwards-Anderson parameter at different
points and plotted its evolution at the clump-paramagnetic
transition at fixed α (Fig. 9) and at the clump-glass transition
at fixed T (Fig. 10).

B. Numerical simulations

We have performed Monte Carlo simulations to check
our theoretical predictions. The system is initialized with
two types of conditions (respectively, uniform and clump
configurations). At each time step, two neuron indices i,j

are chosen such that σi = 1 − σj . We then calculate the change
in the energy when the two spins are flipped, and accept the
flip or not according to Metropolis’ rule. As a consequence
the activity is kept constant (and equal to f N over the neural
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FIG. 9. q as a function of T for fixed α: α = 0 (solid line),
α = 0.01 (dashed line), and α = 0.015 (dots), computed with
M = 1000. A discontinuity is observed at the clump-paramagnetic
transition.

population), and the system is guaranteed to reach equilibrium
for sufficiently long simulation times.

1. Single environment case

Figure 11 shows the average energy E(T ) vs the tem-
perature T , for various sizes N . At high temperature,
E(T ) = − 1

2f 2w as expected in the paramagnetic phase. At
low temperature, the shape of the activity clump varies with
T , and so does E(T ). We find a clear signature of the first order
transition as N grows. The critical temperature is in excellent
agreement with the theoretical value for Tc.

We plot in Fig. 12 the spin-spin correlation 〈σiσj 〉 as a
function of the normalized distance, d = |i−j |

N
:

C(d) = 〈σiσi+d N 〉. (35)

At low temperature, finite size effects are negligible and C(d)
is a nontrivial decreasing function of d in the large N limit.
At small d, C(d) is of the order of f , and then decreases to
a much smaller value over a distance of the order of f . As
the location of the clump is arbitrary, we expect its center
x0 to be uniformly distributed over the [− 1

2 ; 1
2 ] interval. The

FIG. 10. q as a function of α for fixed temperature: T = 0.002
(solid line) and T = 0.004 (dashed line), computed with M = 1000.
A discontinuity is observed at the clump-glass transition.

FIG. 11. Average energy for the unidimensional model with
a single environment and for increasing sizes N . For each size,
we plot the average energy obtained after thermalization for 10 N

Monte Carlo steps starting from the uniform and from the clump
configurations. Each point is averaged over 1000 simulations.

correlation is therefore given, in the thermodynamic limit, by

C(d) =
∫

dx0 ρ(x0) ρ(x0 + d). (36)

At zero temperature, this formula gives C(d) = f − d for d <

f , C(d) = 0 for d � f . At finite temperature, we compute ρ

from the extremization equation (13), and plug the value into
the right-hand side of (36). The agreement with the correlation
C(d) obtained from MC simulations is perfect (Fig. 12).

At high temperature and for finite N , C(d) decreases over a
distance d � w

2 to the paramagnetic value f 2. When N → ∞,
C(d) is uniformly equal to f 2 at all distances d > 0. As an
additional check of the value of Tc we find that the spin-spin
correlation decays quickly with increasing N for T = 0.0074,
and saturates to a d-dependent value larger than f 2 for T =
0.0072 (not shown).

2. Multiple environments

We now report the outcome of Monte Carlo simulations
with L + 1 environments (L > 0), obtained through random
permutations of the sites. We have verified numerically the
theoretical predictions for μ(x) (Fig. 13) and r (Fig. 14).
This latter quantity can be accessed by measuring the local
fields at different positions, μ(x) + λ + z

√
αr . The quenched

FIG. 12. Correlation C(d) between spins at distance d (35) at
low (left) and high (right) temperatures, and for various sizes N . (a)
T = 0.004, (b) T = 0.01. Note the difference of logarithmic scale on
the y axis between the two panels.
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FIG. 13. Chemical potential 1
N

∑
j J 0

ij σj as a function of x for
α = 0.01 and T = 0.004: theoretical prediction μ(x) (solid line) and
result of simulation for one set of environments (dashed line) with
N = 10 000, averaged over 100 rounds of 10N steps each.

noise on the field comes from the contribution of environments
� � 1: z

√
αr is a Gaussian random variable of mean 0 and

standard deviation
√

αr independent of x. In our simulations
we have measured the contributions hi ≡ 1

N

∑L
�=1

∑
j J �

ij σj

of the environments � � 1 to the local fields at different
locations. The distribution of the hi’s perfectly agrees with
the theoretically predicted Gaussian (inset in Fig. 14).

We have also investigated the behavior of the system for
varying levels of noise and load, and compared it to the
phase diagram found theoretically. In simulations we have
considered the environment � of lowest energy (in which the
activity acquires a clumplike shape) and measured its contri-
bution to the energy density, E�[{σi}] = − 1

N

∑
i<j J �

ij σi σj .

This quantity is compared with the theoretical value
− 1

2

∫
dx dy ρ(x)Jw(x − y)ρ(y).

We have run simulations for different temperatures and
numbers of environments, with N = 2000 and N = 5000
units. After thermalization, the energy of the coherent envi-
ronment is recorded after 100 rounds of 10N Monte Carlo
steps each. Results are shown in Figs. 15 and 16.

FIG. 14. Contribution hi of environments � � 1 to the local fields
as a function of x = i/N − 0.5 for the same model as in Fig. 13. Inset:
histogram of hi (rectangles) compared to the Gaussian distribution
of mean f Lw and standard deviation

√
αr (solid line). The value√

αr � 6.98 × 10−3 was obtained from the resolution of (28).

FIG. 15. Density of energy in the environment coherent with the
clump for constant α = 0.01 (same realization of the disorder): results
of Monte Carlo simulations for N = 2000 (circles) and N = 5000
(triangles) with error bars, compared to theoretical result computed
with M = 1000 (line).

The agreement with theoretical predictions is very good
in the case of the clump-paramagnetic transition (Fig. 15).
Concerning the clump-glass transition (Fig. 16), as we men-
tioned above we expect the transition to occur at larger load,
αg(T ) < αobserved

g < αCL(T ), due to the replica-symmetry bro-
ken nature of the glass phase. This expectation is corroborated
by Fig. 17, which represents the fraction of simulations ending
in the glassy phase as a function of α for T = 0.004. We
have checked that this fraction does not depend on the initial
conditions of the simulation. The transition occurs around
α � 0.018 ± 0.001 (uncertainty due to long thermalization
times in the simulations), while αg � 0.0173 for T = 0.004
used in the simulation.

C. Dependence on parameter values

All the numerical computations above were performed
with parameter values w = 0.05 and f = 0.1. To gain insight
on the influence of the parameter values on the behavior of
the clump phase, we focus on two quantities representing
its stability domain, namely αCL and TCL, respectively the

FIG. 16. Density of energy in the environment coherent with the
clump for constant T = 0.004: results of Monte Carlo simulations
for N = 2000 (circles) and N = 5000 (triangles) with error bars,
compared to theoretical result computed with M = 1000 (line).
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FIG. 17. Monte Carlo simulations around the clump-glass transi-
tion for T = 0.004: fraction of simulations found in the glassy phase
after 100 rounds of 10N steps, as a function of α and for different N ,
with error bars. For each point the fraction was calculated from 50
simulations, half of which were started in a clump configuration and
the other half in a uniform configuration.

load at which the clump phase becomes unstable at T = 0
and the temperature at which the clump phase is unstable
when α = 0. We also study the influence of w and f on
first-order transitions, through αg and Tc, respectively the load
of transition to the glassy phase at T = 0 and the temperature
of transition to the PM phase at α = 0.

1. Reduced-distance parameter w

Parameter w controls the maximal distance dc between
the place field centers of interacting place cells; see (1) and
Sec. II A. It fixes the width of the clump in the phase of
localized activity. Experiments on rats have shown that the
size of place fields depends on the size and complexity of the
environment and on the behavioral context. A value w = 0.05,
i.e., place fields occupying a few percent of the total space, is
reasonable [25]. We have varied w for different values of f , and
have found that TCL is a monotonously increasing function of
w (Fig. 18). This result agrees with the intuition that increasing
w makes the clump phase more favorable energetically. It also
appears that αCL(w) has a maximum around w ∼ f . In terms of
storage capacity, this result suggests that there exists an optimal
choice for the parameters: for a given level of inhibition hence
a given number f N of active neurons, choosing w ∼ f max-
imizes the proportion of these active neurons that are located
in the place field. Given that the quenched noise coming from
other environments is statistically uniform over space (Fig. 14),
w ∼ f represents a tradeoff between limiting the crosstalk and
using the active neurons in the area covered by the place field.

As far as thermodynamic transitions to the PM and glassy
phases are concerned we find that Tc and αg behave similarly
to, respectively, TCL and αCL when w varies, as shown in
Fig. 19. Consequently, the qualitative aspect of the phase
diagram remains the same when w varies.

2. Total activity f

Parameter f is the activity level of the network fixed
by global inhibition. As expected, TCL is a monotonously

FIG. 18. Influence of w on the clump phase: TCL (top) and αCL

(bottom) as a function of w, for different fixed values of f . Note
the maximum around w ∼ f in the latter graph. Computations were
done with M = 1000. The numerical error is δαCL ∼ 0.005.

increasing function of f (Fig. 20). We find again a maximum
of αCL when f is of the order of w, consistently with the
previous results. We also find that the boundary of the
transition lines in phase diagram, αg and Tc, behave similarly
to αCL and TCL (Fig. 21).

VI. EXTENSIONS AND DISCUSSION

A. Taking silent cells into account

Thompson and Best [3] report that not all pyramidal cells
have place fields in a given environment, a significative fraction
of them (63% in their recording in CA1) being silent, i.e., with
no place field, in this particular environment. To take this effect
into account, our model can be further refined to incorporate
partial activity of the cell ensemble. We assume that a fraction
c < 1 of cells are active in any environment:

(i) In the reference environment (environment 0), cN given
spins σi among the N are assigned regularly spaced place field
centers p(i).

(ii) For each one of the other environments, say, � � 1, each
spin σi (among all N spins) is selected with probability c, and
the place field centers are reshuffled by a random permutation
π�. The set of chosen spins is encoded in the dilution
variables

τ �
i =

{
1 with probability c,

0 with probability 1 − c.
(37)
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FIG. 19. Influence of w on the first-order transitions: Tc (top)
and αg (bottom) as a function of w, for different fixed values of f .
Computations were done with M = 1000.

The resulting expression for the coupling matrix is

Jij = J 0
p(i)p(j ) +

L∑
�=1

J 0
π�(i)π�(j ) τ

�
i τ �

j . (38)

We incorporate this new hypothesis in the calculation of the
average over disorder of the replicated partition function. The
average is now over two types of disorder: the permutations π�

and the selection of involved cells τ �
i . Neural configurations

σ still satisfy (6). Moreover, we expect that the global
inhibition is homogeneously distributed over the different
subpopulations of neurons, and, for each realization of the
τ �
i , we restrict the sum to configurations such that

1

cN

N∑
i=1

τ �
i σi = f. (39)

A detailed calculation, reported in Appendix D, shows that (6)
implies (39) up to corrections of the order of 1√

N
. In addition

we give in Appendix D the expression for the free energy in
dimension D = 1. The corresponding extremization equations
are

r = 2c2(q − f 2)
∑
k�1

[
kπ

sin(kπw)
− βc(f − q)

]−2

,

q = c

∫
dx

∫
Dz[1 + e−βz

√
αr−βμ(x)]−2

+ (1 − c)
∫

Dz[1 + e−βz
√

αr−βμ2 ]−2,

ρ(x) =
∫

Dz[1 + e−βz
√

αr−βμ(x)]−1,

μ(x) = c

∫
dy Jw(x − y)ρ(y) + λ,

f =
∫

dxρ(x),

f =
∫

Dz[1 + e−βz
√

αr−βμ2 ]−1. (40)

In the partial activity model, the active spins (with activity
ρ(x)) obey equations that are very similar to the previous
case, with a dilution factor coming from the silent spins
which are in a paramagnetic phase. From a qualitative point of
view the behavior of the system does not differ significantly
from the system with all spins active (c = 1). We have
computed the effect of varying c on the value of Tc and αg: Tc is
found to be a linear function of c, while αg is a monotonously
increasing function of c. Results are shown in Fig. 22.

B. Relationship with linear threshold models
and previous studies

Several attractor neural network models for the hip-
pocampus have been proposed in previous works. Tsodyks
and Sejnowski [14] proposed a rate model with semilinear
threshold neurons, uniform inhibition, and excitatory synapses
between neurons with neighboring place fields, with a strength
decaying exponentially with distance. Their study was limited

FIG. 20. Influence of f on the clump phase: TCL (top) and αCL

(bottom) as a function of f , for different fixed values of w. Note
the maximum around f ∼ w in the latter graph. Computations were
done with M = 1000. The numerical error is δαCL ∼ 0.005.
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FIG. 21. Influence of f on the first-order transitions: Tc (top)
and αg (bottom) as a function of f , for different fixed values of w.
Computations were done with M = 1000.

to the single environment, one-dimensional case. They showed
the formation of localized activity. Moreover, they studied
the effect of inhomogeneities in the synaptic matrix due to
irregularities in the learning process, an interesting effect that
we do not address here.

Battaglia and Treves [18] introduced the multiple envi-
ronment storage in additive synapses. They studied the case
of linear threshold neurons with generic form of kernel of
connection weights. The free energy is calculated implement-
ing the threshold linear transfer function and averaging over
disorder in the replica-symmetric approximation, along the
lines developed in [26]. The clump phase is studied at zero
temperature, and the storage capacity is found as the maximal
value of α for which localized solutions exist. Different forms
of couplings and varying sparsity of the representation are
considered, and an enlightening parallel with episodic memory
is proposed. The issue of information storage is addressed.

Our method is in the same spirit as [18], but the model
differs as we consider binary units instead of threshold linear
units (i.e., without saturation) for a simple coupling matrix
and an explicit form of inhibition. Nevertheless, a parallel can
be drawn between the range of interaction w in our model
and the “map sparsity” 1

|M| in [18]. In spite of the differences
between the models, the order of magnitude of the maximal
storage capacity is the same in both models: ∼3.10−2 in one
dimension, ∼8.10−3 in two dimensions (see Figs. 1 and 2
in [18]). The “chart sparsity” αc in [18] corresponds to our
parameter c.

FIG. 22. Effect of partial activity: Influence of the fraction c of
active cells on the clump domain: Tc (top) and αg (bottom) as a
function of c, for different fixed values of f and w. Computations
were done with M = 200.

The main difference between both models lies in the way
noise is taken into account. In [18], the level of noise is
embedded in the rate model, in the gain g of the units,
and is not taken into account in the thermodynamics since
the study is carried out at zero temperature. Our model
considers binary units with a level of noise T corresponding to
the thermodynamic temperature. On average, binary neurons
behave as rate neurons with sigmoidal transfer function of gain
1
T

(see Sec. II C). From this point of view our model is more
microscopic than the one in [18], as we have a description of
noise at the neuron level. Furthermore, we have looked at the
stability of the clump phase against replicon modes. Our study
also includes the other regimes of activity of the model (i.e., the
PM and SG phases) and their thermodynamic stability com-
pared to the clump phase, summarized in the phase diagram.

C. Conclusion

In this paper we have introduced an attractor neural
network model for the storage of multiple spatial maps in the
hippocampus. Although very simplified, the model accounts
for experimentally observed properties of place cells, such as
the remapping of place fields from one environment to the
other. We showed that multiple maps can be simultaneously
learned in the same network, i.e., with the same synaptic
coupling coefficients, even in the presence of noise in the
neural response. Remarkably, moderate levels of noise can

062813-12



CROSSTALK AND TRANSITIONS BETWEEN MULTIPLE . . . PHYSICAL REVIEW E 87, 062813 (2013)

even slightly increase the capacity storage with respect to
the noiseless case. Notice that the qualitative behavior of the
model is robust to changes in the value of the parameters; for
instance we do not expect that changing the couplings from a
square-box function into an exponentially decreasing function
over the distance wN in D = 1 or

√
wN in D = 2 would have

much effect on the phase diagram.
The storage of a map manifests itself through the fact that

the neural activity is localized, and acquires a clumplike shape
in the corresponding environment. When the load (number
of environments) or the noise are too high the neural activity
cannot be localized any longer in any one of the environments.
For high noise, the activity, averaged over time, simply
becomes uniform over the space. For high loads the activity
is not uniform, but is delocalized with spatial heterogeneities
controlled by the crosstalks between the (too many) maps.
The prevalence of the glassy phase at high load and of the
uniform (paramagnetic in the physics language) phase at high
noise moderately limits the extension of the clump phase.
Moreover, we have found that in the glassy phase the replica
symmetric assumption is not correct, and we may expect from
general consideration about replica symmetry breaking that
the first-order transition from the clump phase to the glassy
phase occurs at higher loads α. Remarkably the clump phase
is therefore the thermodynamically dominant phase in nearly
all of its stability domain.

The present work is a direct offspring of spin-glass models
of attractor neural networks [16], with the difference that here
one pattern corresponds to one map, i.e., a whole set of coher-
ent neural configurations, instead of a single configuration of
activity. This explains the robustness of the patterns against
neural noise in our case compared to the Hopfield model
case, as discussed in Sec. V. This generalization of the notion
of “stored pattern” is interesting and would deserve further
consideration. It appears that the concept of attractor neural
network can embed memory items with much richer structure
than the ones originally considered; it is quite encouraging
that the theoretical framework built for the original Hopfield
model can be extended to deal with those structured items.
In the case of the hippocampus, it is widely believed that
CA3 is the support of episodic memory, that is, the memory
of autobiographical events and contextual experiences. Ac-
cording to this view, the hippocampus could learn not only
spatial relations between locations but also associate them
to events, times, and emotions. In our model the coupling
matrix associates nearby places together. We could imagine a
generalization of it to a network which makes associations be-
tween units coding for other, more abstract nonspatial features,
although characterizing the “metric” properties of general
feature space is much harder than for the usual Euclidean
space.

Our work would deserve to be extended along other direc-
tions. First the assumption that synaptic couplings additively
sum up the contributions coming from all the environments
could be lifted. We could replace the synapses Jij with a
nonlinear function G(Jij ). The additive case corresponds to
G(x) = x, while a strongly nonadditive synapse is obtained
with the choice G(x) = min(x, 1

N
): synapses can be written

only once, and contributions from different environments do
not add up but saturate the synaptic coupling. It would be

worth extending the study of nonlinear synapses done for the
Hopfield model [27,28] to the present model.

Second, we have considered that the only source of
quenched noise was the interference between the multiple
environments. In other words, in the single-environment case,
our synaptic matrix is translationally invariant and the center
of the activity clump can be moved at no energy cost in space.
This idealizing assumption was done to study the effect of
multiple-environment crosstalk only. However, even in the
single environment case, place fields do not define a perfectly
regular covering of space. We expect that such heterogeneities
in the couplings will further destabilize the clump phase, and
decrease the storage capacity [27]. Quantifying those effects
would be interesting.

However, the most important extension seems to us to
be the study of the dynamics. The richness of the phase
diagram we have unveiled here and the multiplicity of phases
for the system raise the question of if and how the network
activity makes transitions between those phases. Multiple
environments stored in the same network not only influence the
shape of the clump and lead to transitions to a glassy phase, but
they can as well provoke transitions between attractors. The
study of these transitions and of the corresponding reaction
paths will be reported in a companion paper [21]. It could prove
useful to interpret recent experiments, where changes of the
hippocampal activity resulting from the “teleportation” of the
rat have been recorded [20]. In addition it would be interesting
to understand in a more quantitative way the activated diffusion
process of the clump in an environment. In the presence of
other maps, the invariance by translation is lost and the clump
does not freely diffuse. Quantifying the barriers opposing
motion, as well as understanding the qualitative difference
between motions in 1D and 2D spaces, would be very useful.
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APPENDIX A: FORMULAS FOR TWO-DIMENSIONAL
MAPS

The only difference in the replica computation lies in the
eigenvalues of the coupling matrix. Thus, in dimension 2, the
free energy functional writes

F2D = αβ

2
r(f − q) − α

β
ψ2D(q,β)

− 1

2

∫
d 
x d 
y ρ(
x)Jw(
x − 
y)ρ(
y) +

∫
d 
x μ(
x)ρ(
x)

− 1

β

∫
d 
x

∫
Dzln(1 + eβz

√
αr+βμ(
x)), (A1)
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where

ψ2D(q,β) ≡ 2
∑

(k1,k2)
�=(0,0)

(
β(q − f 2)

φ(k1,k2) − β(f − q)

− ln

(
1 − β(f − q)

φ(k1,k2)

))
, (A2)

with

φ(k1,k2) ≡ k1k2π
2

sin(k1π
√

w) sin(k2π
√

w)
. (A3)

Hence the saddle point equations write

r = 4(q − f 2)
∑

(k1,k2)�=(0,0)

[φ(k1,k2) − β(f − q)]−2 ,

q =
∫

d 
x
∫

Dz[1 + e−βz
√

αr−βμ(
x)]−2,

(A4)
ρ(
x) =

∫
Dz[1 + e−βz

√
αr−βμ(
x)]−1,

μ(
x) =
∫

d 
y Jw(
x − 
y)ρ(
y) + λ,

where λ is determined to enforce constraint (12).
In the D = 2 case Eqs. (A4) can be simplified by exploiting

the invariance by rotation: in polar coordinates

μ(r) = 2
∫

r+r ′�
√

w/π
|r−r′ |�√

w/π

dr ′ρ(r)r ′ arccos

(
r2 + r ′2 − w

π

2rr ′

)

+ 2π

∫
r+r ′<

√
w/π

dr ′ρ(r)r ′ + λ. (A5)

We thus computed ρ(r) in the clump phase and found
the region in the (α,T ) plane where this solution is stable
against longitudinal modes. We find that this region is reduced
compared to the D = 1 case, but its shape is qualitatively
similar. The result is shown in Fig. 23.

FIG. 23. Solid line: longitudinal stability region of the clump
phase for D = 2. The D = 1 case is shown in thin dashed line for
comparison.

APPENDIX B: AVERAGE OF THE BOLTZMANN FACTOR
OVER A RANDOM ENVIRONMENT

The purpose of this appendix is to calculate


(
σ ) = 1

N !

∑
π

exp

⎡
⎣β

∑
i<j

J 0
ij

n∑
a=1

σa
π(i)σ

a
π(j )

⎤
⎦

= Cξ (
σ ) (B1)

with

C ≡ exp

(
N

β

2
nwf 2

)

ξ (
σ ) ≡ 1

N !

∑
π

exp

⎡
⎣β

2

∑
i,j

J 0
ij

n∑
a=1

(
σa

π(i) − f
)(

σa
π(j ) − f

)⎤⎦ ,

(B2)

where the sum is carried out over all permutations of N

elements.
The eigenvectors of the matrix J 0 are plane waves. Let vq,j

denote the j th (real-valued) component of the qth normalized
eigenvector, and λq the associated eigenvalue. Then,∑

i,j

J 0
ij

(
σa

π(i) − f
)(

σa
π(j ) − f

)

=
N−1∑
q=1

λq

⎛
⎝∑

j

vq,j

(
σa

π(j ) − f
)⎞
⎠

2

. (B3)

Due to condition (6) we have discarded the homogeneous mode
q = 0 from the sum in (B3). Introducing a set of n(N − 1)
independent Gaussian variables with zero mean and variance
unity, denoted by �a

q , we can write (all odd powers of
√

β

vanish after integration over the Gaussian measure)

ξ (
σ ) =
〈

exp

[√
β

∑
q,a,j

√
λq vq,j �a

q (σa
π(j ) − f )

]〉
π,�

= 1 +
∑
k�1

βk

(2k)!

∑
qi ,ai ,ji
i=1···2k

(
vq1,j1 vq2,j2 . . . vq2k ,j2k

× √
λq1λq2 . . . λq2k

T
a1,a2...a2k

j1,j2...j2k

〈
�a1

q1
�a2

q2
. . . �a2k

q2k

〉
�

)
,

(B4)

where

T
a1,a2,...,a2k

j1,j2,...,j2k
≡ 〈(

σ
a1
π(j1) − f

)(
σ

a2
π(j2) − f

)
. . .

(
σ

a2k

π(j2k ) − f
)〉

π
.

(B5)

Using Wick’s theorem the 2k-point correlation function of the
� variables is easy to calculate. The outcome is a multiplicative
factor (2k − 1)!!, and the replacement of the 2k sums over the
indices qm,am by only k independent sums over qm,am. The
value of T (B5) depends only on the number of distinct indices,
im, and of their associated multiplicities. Power counting
shows that T

a1,a2,...,a2k

i1,i2,...,i2k
vanishes in the infinite N limit unless

the set {i1,i2, . . . ,i2k} includes exactly k distinct indices, each
one with multiplicity 2. When this condition holds we write
(am,a′

m), the replica indices attached to the mth distinct index
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i, with m = 1,2, . . . ,k. Then, in the large N limit,

T
a1,a

′
1,a2,a

′
2,...,ak,a

′
k

i1,i1,i2,i2...,ik ,ik
=

k∏
m=1

(qama′
m − f 2). (B6)

We assume that the quantities
√

βλq

∑
j vq,j (σa

π(j ) − f ) do not
diverge when the limit N → ∞ is taken for each one of the
terms in the series over k in (B4). This hypothesis breaks down
if the permutation π is “close” to the identity permutation, or,
equivalently, if the configuration 
σπ = {σπ(i)} is coherent with
the environment 0. As π is randomly chosen the probability
that this is the case vanishes for large N .

We are left with the summation over the jm indices. Using
the identities ∑

j

vq,j vq ′,j = δq,q ′ , (B7)

we obtain from (B4) the following expression:

ξ (
σ ) = 1 +
∑
k�1

(β/2)k

k!

∑
P

w(P), (B8)

where the last sum runs over all weighted pairings among 2k

points, described as follows:
(i) We define 2k points. The first k points carry the pair

indices (qm,am), with m running from 1 to k. The second k

points carry the same pair indices. Hence, each pair index
(qm,am) is shared by two points.

(ii) A pairing P is a set of k bonds b� ≡
{(qm�

,am�
),(qm′

�
,am′

�
)}, � = 1,2, . . . ,k, each joining one pair

of points (dimer coverage).
(iii) The weight of the pairing is

w(P) ≡
∑

a1,...,ak
q1 ,...,qk

k∏
m=1

λqm

k∏
�=1

δqm�
,qm′

�

(
q

am�
am′

� − f 2
)
. (B9)

We denote q the overlap matrix with entries qab and 1n the
n × n matrix whose all entries are equal to 1. Let us introduce
a notation for the moments of the eigenvalues:

�h ≡
∑
q�1

λh
q = 2

∑
q�1

(
sin(qπw)

qπ

)h

. (B10)

Two examples of pairings are shown in Fig. 24. The weight
associated to the pairing PA is simply

w(PA) =
k∏

m=1

[∑
qm

λqm

∑
am

(
qamam − f 2

)]

= (�1 Tr[q − f 2])k = [�1 n f (1 − f )]k, (B11)

as all Kronecker δ in (B9) are equal to 1 by construction. The
weight associated to the second pairing in Fig. 24 is

w(PB) = {�3 Tr[(q − f 2)3]} (�1 Tr[q − f 2])k−3. (B12)

For a given pairing,
(i) the horizontal bonds represent independent replicas:

point number m leads to a factor
∑

qm
λqm

∑
am

(qamam − f 2) in
the weight of the pairing;

(ii) the vertical and diagonal bonds couple replicas together.

FIG. 24. Two examples of pairings between 2k points: PA (left)
and PB (right).

We then have to calculate the combinatorial multiplicity
of the weights, i.e., how many pairings have the same weight
in the sum (B8). For a given k, a pairing associates points
by groups of j coupled replicas indices (i.e., 2j points). Let
mj be the number of such groups in a given pairing. We have∑

j jmj = k. Pairings P with the same (j,mj ) have equal
weights

w(P) = w[{(j,mj )}] =
∏
j

(�jTj )mj , (B13)

where we set Tj ≡ Tr[(q − f 21)j ].
Combinatorial study shows that the number of such pairings

is

N [{(j,mj )}] = k!
∏
j

1

mj !

(
2j−1

j

)mj

. (B14)

Finally, using
∑

j jmj = k and (B10), we can rewrite

ξ (
σ ) = 1 +
∑
k�1

(
β

2

)k ∏
j

∑
mj �0

1

mj !

(
2j−1

j

)mj

(�jTj )mj

= exp

[ ∑
j

1

2

βj

j
�jTj

]

= exp

[
−

∑
λ �=0

Tr ln[Idn − βλ(q − f 2 1n)]

]
. (B15)

APPENDIX C: REPLICA SYMMETRIC CALCULATION OF
THE FREE ENERGY

We introduce parameters rab conjugated to the overlaps qab.
With this notation, we have (up to a multiplicative irrelevant
constant):

Zn
J =

∑

σ

∫ ∏
a<b

dqabdrab exp [G({qab,rab},
σ )], (C1)
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where

G({qab,rab},
σ ) = Nαβ2
∑
a<b

rab

(
1

N

∑
i

σ a
i σ b

i − qab

)

+ β

2N

∑
a

∑
|i−j |<wN/2

σa
i σ a

j

−αN
∑
λ �=0

Tr ln[Idn − βλ(q − f 2 1n)].

(C2)

We rewrite the sum over spin configurations as a path
integral over continuous-space average densities and over the
conjugated potentials,

∑

σ

exp

[
αβ2

∑
a<b

rab
∑

i

σ a
i σ b

i + β

2N

∑
a

∑
|i−j |<wN/2

σa
i σ a

j

]

=
∫ ∏

a

Dρa(x)Dμa(x)dλa exp
[
N

∫
dx lnZ({μa(x),rab})

+N
∑

a

[
βλa

(∫
dx ρa(x) − f )

)
−β

∫
dx ρa(x)μa(x)

+ β

2

∫
dx dy ρa(x)Jw(x − y)ρa(y)

]]
, (C3)

where we have defined

Z({μa(x),rab})

≡
∑
{σa}

exp

[
αβ2

∑
a<b

σ aσ brab + β
∑

a

μa(x)σa

]
. (C4)

In the replica symmetric (RS) ansatz, we assume

∀ a �= b, ∀ x,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

rab = r,

qab = q,

ρa(x) = ρ(x),

μa(x) = μ(x),

λa = λ.

(C5)

We obtain

Tj = (n − 1)(f − q)j + [f − f 2 + (n − 1)(q − f 2)]j ,

(C6)

and

Z(μ(x),r) = 1 + n

∫
Dzln(1 + eβz

√
αr+βμ(x)−αβ2r/2)

(C7)

up to O(n2) corrections. We now make the change of variable
μ(x) → μ(x) − αβr

2 . The averaged partition function is, for
small n,

Zn ∼
∫

dq dr dλ Dμ(x)Dρ(x)e−nNβF[μ(x),ρ(x),q,r,λ],

(C8)

where

F = αβ

2
r(f − q) − α

β
ψ(q,β) − λ

(∫
dxρ(x) − f

)

+
∫

dxρ(x)μ(x) − 1

2

∫
dxdy ρ(x)Jw(x − y)ρ(y)

− 1

β

∫
dxDzln(1 + eβ

√
αrz+βμ(x)) (C9)

with

ψ(q,β) ≡
∑

j

1

2

βj

j
�j [j (q − f )2(f − q)j−1 + (f − q)j ].

(C10)

When N → ∞ the integral is calculated through the saddle-
point method, and we look for the extremum of F over its
arguments. We now give the expression of ψ and of the order
parameter r = − 2

β2
∂ψ

∂q
in dimensions D = 1 and D = 2.

Case D = 1. We define Ak ≡ πk
sin(πkw) and write

�1D
j = 2

∑
k�1

(Ak)−j . (C11)

We immediately obtain

ψ1D(q,β) =
∑
k�1

β(q − f 2)

Ak − β(f − q)
− ln

(
1 − β(f − q)

Ak

)

(C12)

and

r1D = 2(q − f 2)
∑
k�1

[Ak − β(f − q)]−2. (C13)

Case D = 2: see Appendix A.

APPENDIX D: SILENT CELLS CASE: CALCULATION OF
THE FREE ENERGY

We now consider the hypothesis that a fraction c < 1 of the
cells are involved in each environment’s representation. Two
types of disorder are present: the random permutations of the
place field centers as before, and the choices of the subsets of
cells taking part to each map �, i.e., the dilution variables τ �

i .
The nth moment of the partition function reads

Zn
J =

∑

σ

exp

⎡
⎣β

∑
a

∑
i<j

J 0
ij τ

0
i τ 0

j σ a
i σ a

j

⎤
⎦

×
〈

exp

[
β

L∑
�=1

∑
a

∑
i<j

J 0
ij τ

�
π�(i)τ

�
π�(j )σ

a
π�(i)σ

a
π�(j )

]〉
π ,τ

,

(D1)
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where τ denotes one realization of the L × N random variables
τ �
i , and the τ 0

i are 1 if i is a multiple of 1/c, 0 otherwise.
The sum is now taken over spin configurations satisfying (6)
and (39) for each replica index a.

Using the function 1(x) = 1 if x = 0 and 0 elsewhere, we
write

Zn
J = C

∑
all 
σ

1

(
1

N

∑
i

σ a
i − f

)
eβ

∑
a

∑
i<j J 0

ij τ
0
i τ 0

j σ a
i σ a

j χ (
σ )L,

(D2)

where C is a constant and

χ (
σ ) ≡
〈
1

(
1

cN

∑
i

τ �
i σ a

i − f

)

× 〈
eβ

∑
a

∑
i<j J 0

ij τ
�
π(i)τ

�
π(j )(σ

a
π(i)−f )(σa

π(j )−f )〉
π

〉
τ

. (D3)

The average over π follows exactly the steps described in
Appendix B. Defining

�(q̃) ≡ −
∑
λ �=0

Tr ln[Idn − βλ
(
q̃ − cf 2 1n

)
], (D4)

where q̃ is now the n × n matrix of elements

q̃ab ≡ 1

N

∑
i

τiσ
a
i σ b

i , (D5)

we end up with χ (
σ ) = ∫
dq̃ab exp[�(q̃)] χ̃ (q̃,
σ ) with

χ̃(q̃,
σ ) = C ′
∫

iR
dλadRabe

√
N(cf

∑
a λa+

∑
a�b Rabq̃ab)

×
∏

i

〈
exp

[
− τi

( ∑
a

λa√
N

σa
i + Rab√

N
σa

i σ b
i

)]〉
τi

,

(D6)

where we have introduced parameters Rab conjugated to q̃ab

and Lagrange multipliers λa to enforce the constraint on 
σ .
We now perform the average over the decoupled variables

τi . Introducing the order parameters

Tabc ≡ 1

N

∑
i

σ a
i σ b

i σ c
i , Sabcd ≡ 1

N

∑
i

σ a
i σ b

i σ c
i σ d

i , (D7)

and carrying out the Gaussian integration over the leading
terms (when N � 1) in λa and Rab, we have (up to a
multiplicative constant)

χ̃(q̃,
σ ) = C ′′e−(N/2)
∑

a,b,c,d [A−1]abcd (q̃ab−cqab)(q̃cd−cqcd ), (D8)

where

Aabcd ≡ c(1 − c)

⎛
⎝Sabcd + 2

∑
e,f

[Q−1]ef TabeTcdf

⎞
⎠ . (D9)

Hence, in the large N limit, the integral over q̃ab is dominated
by q̃ab = c qab.

The replica symmetric calculation of the free energy
proceeds along the steps of Appendix C. The only difference is
that, here, μ(x) and ρ(x) describe the activity of the cN cells
involved in the reference environment, while the (1 − c)N
remaining cells have uniform activities = f . We obtain the
expression of the energy functional

Fc = αβ

2
r(f − q) − α

β
ψc(q,β)

+ c

∫
dx μ(x)ρ(x) + (1 − c)μ2f

− c2

2

∫
dx dy ρ(x)Jw(x − y)ρ(y)

− λc

(∫
dx ρ(x) − f

)

− c

β

∫
dx

∫
Dzln

(
1 + eβz

√
αr+βμ(x)

)

− (1 − c)

β

∫
Dzln

(
1 + eβz

√
αr+βμ2

)
, (D10)

where q is defined as before and

ψc(q,β) =
∑
k�1

[
βc(q − f 2) sin(kπw)

kπ − βc(f − q) sin(kπw)

− ln

(
1 − βc(f − q) sin(kπw)

kπ

)]
. (D11)

APPENDIX E: STABILITY OF THE REPLICA SYMMETRIC
SOLUTION

The extremization of the free energy functional under
the fixed-activity constraint and under the replica symmetric
assumption leads to three solutions corresponding to three
different phases. We want to study the stability of those
solutions in the (α,T ) space. We will limit ourselves to the
one-dimensional case. A small perturbation of the solution

ρa(x) → ρa(x) + δρa(x),

μa(x) → μa(x) + δμa(x),
(E1)

rab → rab + δrab,

qab → qab + δqab

results in F → F + 1
2δ2F, where

δ2F =
∫

dxdy

⎡
⎢⎢⎢⎣

δρa(x)

δμa(x)

δrab

δqab

⎤
⎥⎥⎥⎦

†

M(x,y)

⎡
⎢⎢⎢⎣

δρc(y)

δμc(y)

δrcd

δqcd

⎤
⎥⎥⎥⎦ . (E2)
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The Hessian matrix M(x,y) reads, in the
{δρa(x),δμa(x),δrab,δqab} basis,

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2F
∂ρa (x)∂ρc(y)

∂2F
∂ρa (x)∂μc(y) 0 0

∂2F
∂μa (x)∂ρc(y)

∂2F
∂μa (x)∂μc(y)

∂2F
∂μa (x)∂rcd 0

0 ∂2F
∂rab∂μc(y)

∂2F
∂rab∂rcd

∂2F
∂rab∂qcd

0 0 ∂2F
∂qab∂rcd

∂2F
∂qab∂qcd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (E3)

Using the notations

t(x) ≡ 〈σ 〉3
(x) =

∫
Dz[1 + e−βz

√
αr−βμ(x)]−3,

s(x) ≡ 〈σ 〉4
(x) =

∫
Dz[1 + e−βz

√
αr−βμ(x)]−4,

(E4)
t ≡

∫
dx t(x); s ≡

∫
dx s(x);

q2 ≡
∫

dx q2(x),

we have

∂2F

∂ρa(x)∂ρc(y)
= −Jw(x − y)δac, (E5)

∂2F

∂ρa(x)∂μc(y)
= δ(x − y)δac, (E6)

∂2F

∂μa(x)∂μc(y)
=

{
δ(x − y)β[ρ2(x) − ρ(x)] if a = c,

δ(x − y)β[ρ2(x) − q(x)] otherwise,

(E7)

∂2F

∂μa(x)∂rcd
=

{
αβ2[q(x)ρ(x) − t(x)] if a �= c �= d,

αβ2[q(x)ρ(x) − q(x)] otherwise,

(E8)

∂2F

∂rab∂rcd
=

⎧⎪⎨
⎪⎩

α2β3
( ∫

q2 − q
)

if a = c and b = d,

α2β3
( ∫

q2 − s
)

if a �= b �= c �= d,

α2β3
( ∫

q2 − t
)

otherwise,

(E9)

and, letting

Bk ≡ kπ

sin(kπw)
− β(f − q), C1 ≡

∑
k�1

β

B2
k

,

C2 ≡
∑
k�1

β2(q − f 2)

B3
k

, C3 ≡
∑
k�1

β3(q − f 2)2

B4
k

,

∂2F

∂qab∂qcb

=

⎧⎪⎨
⎪⎩

−2α(C1 + 2C2 + 2C3) if a = c and b = d,

−4αC3 if a �= b �= c �= d,

−2α(C2 + 2C3) otherwise.

(E10)

The eigenvector equation writes

M · 
v = λ · 
v, (E11)

where 
v is the vector of fluctuations around the saddle point:


v(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δρa(x)
...

δμa(x)
...

δrab

...

δqab

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (E12)

According to [29] the symmetry of the matrix elements under
permutation of the indices imposes to look for an orthogonal
set of eigenvectors with the particular forms:


v1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δρa(x) = δρ(x) ∀a,

δμa(x) = δμ(x) ∀a,

δrab = δr ∀a,b,

δqab = δq ∀a,b,

(E13)


v2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δρa(x) = δρ̂(x) if a = θ,

= δρ̌(x) otherwise,

δμa(x) = δμ̂(x) if a = θ,

= δμ̌(x) otherwise,

δrab = δr̂ if a or b = θ,

= δř if a and b �= θ,

δqab = δq̂ if a or b = θ,

= δq̌ if a and b �= θ,

(E14)


v3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δρa(x) = δρ̃(x) if a = θ or θ ′,
= δρ∗(x) otherwise,

δμa(x) = δμ̃(x) if a = θ or θ ′,
= δμ∗(x) otherwise,

δrab = δr̃ if a = θ and b = θ ′,
= δ ˜̃r if a or b = θ or θ ′,
= δr∗ if a and b �= θ,θ ′,

δqab = δq̃ if a = θ and b = θ ′,
= δ ˜̃q if a or b = θ or θ ′,
= δq∗ if a and b �= θ,θ ′,

(E15)

where θ and θ ′ are two fixed replica indices. 
v1(x) and 
v2(x)
are called longitudinal modes; 
v3(x) are called transverse or
“replicon” modes. Imposing the orthogonality conditions


v1(x) · 
v2(x) = 
v1(x) · 
v3(x) = 
v2(x) · 
v3(x) = 0, (E16)
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and taking the n → 0 limit in Eq. (E11), we end up with the
eigensystem in the longitudinal sector,

−
∫

dy Jw(x − y)δρ(y) + δμ(x) = λ δρ(x),

δρ(x) + β(q − ρ)(x)δμ(x) + αβ2(q − t)(x)δr = λ δμ(x),

2αβ2
∫

(t − q)δμ + α2β3(−q + 4t − 3s)δr + αβδq

= λ δr,

αβδr − 2α(C1 − 2C2)δq = λ δq, (E17)

and in the replicon sector,

α2β3[−q + 2t − s]δr∗ + αβδq∗ = λ δr∗,
(E18)

αβδr∗ − 2αC1δq
∗ = λ δq∗.

For each one of the three phases (PM, CL, SG) the stability
region in the (α,T ) plane is delimited by lines where one of
the eigenvalues vanishes.

Note that the matrix of system (E17) is not symmetric
while the hessian matrix M(x,y) is: a − 1

2 factor appears when
taking the n → 0 limit since there are n(n−1)

2 two-replica-indice
components. This multiplicative factor does not change the
points where a given eigenvalue changes signs. Nevertheless,
it has the effect of giving nonreal eigenvalues.

1. Paramagnetic phase stability region

Taking ρ(x) = f , q(x) = f 2, t(x) = f 3, and s(x) = f 4 for
all x in (E17) leads to a very simple system, invariant under
translation in the x space. The eigenmodes in the (δρ(x),δμ(x))
sector are plane waves, e2iπkx , with integer wave vectors k. The
eigensystem (E17) decomposed on each Fourier mode gives
the following:

(i) k > 0 components of the longitudinal matrix. The
corresponding determinant is∣∣∣∣∣ −

sin(πkw)
πk

1

1 β(f 2 − f )

∣∣∣∣∣ . (E19)

It vanishes for β(k) = πk
sin(πkw)(f −f 2) which is minimal for

k = 1. For f = 0.1 and w = 0.05, T1 ≈ 0.0045.
(ii) k = 0 component of the longitudinal matrix. We get a

system with determinant∣∣∣∣∣∣∣
f 2 − f β(f 2 − f 3) 0

2αβ(f 3 − f 2) αβ2(−f 2 + 4f 3 − 3f 4) 1

0 1 −2C1
β

∣∣∣∣∣∣∣ .

(E20)

These modes appear for (α,T0(α)) at which this determinant
vanishes, i.e.,

∑
k�1

[
T0(α) kπ

f (1 − f ) sin(kπw)
− 1

]−2

= 1

2α
. (E21)

(iii) Replicon modes. These modes solve a system with
determinant ∣∣∣∣∣ αβ2(−f 2 + 2f 3 − f 4) 1

1 −2C1
β

∣∣∣∣∣ . (E22)

This defines the same stability line (E21) as found above.
To sum up, the paramagnetic phase is stable at high

temperatures; when T decreases at fixed α, it becomes instable
at TPM(α) = max {T0(α),T1} as depicted in Fig. 3.

2. Glassy phase stability region

We find a uniform solution to the saddle point equations (28)
with q > f 2 only for T < TPM(α): the region of existence of
the glassy phase hence corresponds to the region where the
PM solution is unstable. In this region we find that the RS
solution is always stable against longitudinal modes (E17) and
always unstable against transverse modes (E18). The replica
symmetric ansatz is therefore not correct in the case of the
glassy phase.

3. Clump phase stability region

(i) Longitudinal modes. Due to the x dependence in this
phase, we must use a numerical approach in a discretized
space to study the eigenvalues of the longitudinal matrix.
Since computation time for the matrix diagonalization limits
dramatically the number of points in the discretization, we
chose to study the longitudinal stability with a different
method. Scanning the (α,T ) plane, ρ(x) is computed by
solving iteratively the saddle-point equations (28) starting
from an initial clump; the line of stability corresponds to the
points where the clump collapses, i.e., the iteration converges
to a uniform activity ρ(x) = f ∀x. The result is shown in Fig. 7
in the main text.

(ii) Replicon modes. For all α,T , we compute numerically q,
t , s by solving iteratively the saddle-point equations as before,
allowing us to calculate the determinant of system (E18). We
looked for the line where this determinant vanishes. We found
that replica symmetry breaking is limited to a small region in
the low T –high α edge of the region of longitudinal stability;
see Fig. 7.
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