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• Intelligence is active: emerges from animal actively engaging with the 
environment it’s brain, body, sensors and behaviours have evolved in

Perception is about how sensory 
systems put information at the 

service of behaviour.

JJ Gibson

Outlook

• Rapid visual learning enabled by innate behaviours shape incoming 
information to make it easier to learn and recall

• Embody models on robots to see how noisy real-world images from a 
moving robot interact with realistic neural models in real-time



Learning and return flights in bumblebees



Nest-centric learning loops and zigzag returns

Philippides et al JEB 2012

• Different maneouvers but same dynamics suggesting 

underlying innate behaviour

• Lovely system for studying the integration of 

egocentric and allocentric information



Drosophila ring attractor: Tying head direction to visual cues

                          

                                                                  

Fisher et al 
2022

Optic flow

Stentiford  et al., Plos comb Biol, 2024

Learning modulated 
by rotational speed

Anti-Hebbian learning rule



  Visual input to the spiking model

Optic flow
(drive bump around the ring)

(set learning rate)
Idiothetic

Ring neuron activation
(Learn mapping between 

visual features and heading)
Allothetic



Learning a mapping in complex natural scenes



Path Integration - 
Proprioceptive & 

Exteroceptive Cues 
for position 
estimation

Visual Homing + 
Visual Compass

Ants learn complex routes in a single trial with 1M neurons

• Specialist visual foragers: sole job is repeated food-nest trips

• Same toolkit (odometry+ visual learning) as all animals but small brains (1M 
neurons) + conserved regions (MB, CX)

• Learning scaffolded by innate behaviours: PI, learning walks scanning

https://www.insectbraindb.org/



Training: On route traversal:
• Acquire panoramic view from PI-

mediated path
• Behaviour ‘labels’ training data 

as correct
• train with infomax learning rule
• Discard view

Infomax Learning Rule: 
• Single layer
• Independent Component Analysis + 

Memorisation
(analogous to mushroom body?)

• Anti-Hebbian:
Familiar stimuli = depressed response
Novel stimuli = increased response

Path Integration (PI) scaffolds visual learning

Baddeley et al, 2012, PLOS

Use response to indicate familiar view

Sum over 
output = 
Novelty



Testing

• By scanning, present orientations of a 

view to the model

• Output: Orientation vs View Novelty

• Orient towards angle where novelty is minimal

• Move forward

• No matching of current view to a specifically remembered view!

Route traversal by scanning





Visual Projection 
Neurons: 320 

(40x8)

Kenyon cells: 
20000

Mushroom body 
output neuron

Giant 
inhibitory 
neuron: 1

Mushroom body model for visual route following

Novel image = 
High activity

Familiar image = 
Low activity

Jesusanmi et al, Front. Neurorob, 2024



How far can we robustly navigate with continual learning? 
When does Infomax break down? 

1 million 
images
(end of dataset)

Depends on size of images and size of the network



Eventual Profile of Failure?

Do we need to modulate learning?

After more training, more of the environment looks familiar 

Original minimum 
(correct direction)

New 
(wrong direction)

N
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[NOS expression in intact locust brain, technique after Ott and Elphick 2003, J Histochem Cytochem 51: 523–
32]



Neuromodulatory gases
• Classical neurotransmission: Point-to-point transmission at synapses 

• Analogy: electrical nodes connected by wires, short temporal-scale



• Picture complicated by neuromodulatory gases (NO,CO,H2S – all highly 
toxic!) give interactions between synaptically unconnected neurons

• Neuromodulation: “Any communication between neurons caused by the 
release of a chemical that is either not fast, or not point-to-point or not 
simply excitation or inhibition”      (Katz, 1999)



Inspiration for new form of ANN: 
GasNets

Positive and negative electrical 

connections + diffusing 

modulatory gas 

Node emits gas due to high 

electrical or chemical activity 

Gas modulates gain of 

neurons ie slope of 

(hyberbolic) sigmoid

Husbands et al., Conn Sci, 1998



NO–cGMP signalling pathway
1. NO highly diffusible, so

• no storage:
synthesis equals release

• no synaptic machinery:
release from entire surface

• act on a volume
surrounding the source

2. Short-lived (10 ms -
seconds)
3. NO-cGMP pathway 
implicated in many forms 
of associative memory 
formation

To understand function must know spatio-temporal dynamics

1+2  Spatial and temporal distribution of NO depends on the spatial 
arrangement of the sources



Mammalian cortical plexus

neuron

Blood 

vessel

• NO links neural activity and increased blood 

flow. Dogma was direct targeting of each 

vessel by a fibre

• However NOS positive fibres are sub-micron

• To understand why must model networks of 

fine fibres

Philippides, Ott, Husbands, Lovick, O’Shea;  J Neurosci. 05 
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Modelling NO diffusion
100 sources (parallel fibres)

20 µm ———— spacing ————10 µm

t=5 ms
5 ms 

synthesis

t=15 ms
10 ms after 

synthesis

 neuroanatomy counts

• Multiple fine fibres leads to uniform signal and finer = more uniform

• Rather than target individual blood vessels, fibres target volume

• Delay in rise means only persistent activity signalled: noise-resistance

After Philippides et al. 2005, J Neurosci



Insect mushroom bodies (MB)
Highly ordered centre

• Higher olfactory and multimodal 

integration

• Associative learning and memory

Structure:
• Backbone of 50,000 parallel 

neurons: intrinsic Kenyon Cells 
(KC)

• Input region: calyx
from afferent Projection 
Neurons

• Output region: lobes
intersected by extrinsic neurons



Locust Mushroom Bodies

• Made up of ~ 50,000 Kenyon cells (KCs) 
• Sparse noisy signalling for odour recognition
• KCs are parallel fibres ~ 200nm diameter
• NOS positive KCs in outer core

5 msNOS on:NOS off: 15 msNOS off: 40 ms

Ott, Philippides, Elphick, O’Shea;  Eur. J Neuro. 07 



NOS and sGC segregated

1 sub-population of KCs 
are NOS+

Surrounding 2nd sub-
population of cGMP+ 
KCS



Number of active KCs determines 
central [NO]

• Spatial segregation of targets and receptors means NO 
reliably integrates KC firing over space and time

• Variability reduced by segregated organisation



Effect of Segregated Morphology
• Segregated morphology 

reduces the noise level 

     (15nM vs 9nM)

• Fewer active KCs needed 
to discriminate signal from 
noise 

     (0.6% vs 0.25%)

• Clearer discrimination of 
number of active KCs

• More ambiguity of identity 
of source



Noise filtering also seen in GasNets as 
robot controllers

4 nodes specified as motors and set in corners 

Evolution specifies some other neurons as sensors and 

specifies pixels to take input from



Noise filtering seen in GasNets used as robot controllers

•  Triangle-square discrimination in noisy lighting

•  Network structure and minimal vision system 

generated by artificial evolution



Evolutionary Robotics



‘timer’
‘bright object 

finder’inhibit

• Timer sub-circuit inhibits object finding if object is thin at the 

top: timer needs to be tuned to robot speed and object width

• Triangles are thinner at top than squares: timer measures width as 

robot rotates and scans across objects

• Gas acts as noise filter as in cortex

Triangle-square discrimination mediated by 2 visual circuits, timer + 

bright object finder. 

Timing in triangle-square task



GasNet and NoGas “Timers”

Smith, Husbands, Philippides, O’Shea;  Adaptive Behaviour  2002 



GasNet and NoGas “Timers”

GasNet timer = build-up of 

gas concentration

Simple architecture, more 

easily tuned

NoGas timer = 3 fully 

connected nodes.

Convoluted architecture, 

difficult to tune



Summary
• Behaviour scaffolds learning allowing simpler 

development
• Neuromodulation via NO: morphology matters
• Volume signals can act as spatio-temporal integrators
• Can implement noise filter: Other roles for an integrative 

signal in NNs?
• Can we make visual route learning more efficient through 

neuromodulation? 
• Learn when there is a ‘big’ signal: Maybe useful if KCs are 

sensitive to changes in views (but not during rotation)
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