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Is it possible to create a chip 

with biological neurons?

The chip should be 

able to “do something”: a task

Computation with biological 
neurons

Reservoir computing

See e.g. KAGAN, Brett J., et al. Neuron, 2022, 110.23: 3952-3969. e8.

Exploit pre-existing dynamical features 

of a (possibly structured) network Reshaping the network:


“Training or encoding”

by exploiting plasticity
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Structural task: targeting

 a particular neuronal configuration

output (color = activity)

15 neurons =“pixels”

input (stimulation)

15 neurons

Input-output associative task:  
generating digit images

training training

Task-oriented reshaping of a neural network
Two strategies



The model

neuron i Ji1

Ji2

Ji3

Ji4

r1

r2

r3

r4

Ii = ∑
j

Jijrj+fi

fi
external stimulation

ri = Φ (Ii)

firing rate equation: 
relation between firing rates,


stimulation, connections

I

r = Φ(I) rmax

Pre-synaptic connections
average current

firing rate

Ii

ri

I′￼i = Ii+fi

r′￼i

τn
dri

dt
(t) = − ri(t) + Φ ∑

j

Jij(t) rj(t)+fi(t)

Dynamical equation 

By stimulating, we can change the activity of individual neurons.

However, due to connections, effects of stimulation are non-local



Modelling plasticty

τs
dJij

dt
(t) = η(ϵj) (ri − θ(ϵj)) rj

hebbian

− β1 Jij (r2
i − θ0(ϵj)2)

homeostasis 1

− β2 ReLU( |Jij | − J̄)2

homeostasis 2

Plasticity equation: how connectins change depending on the activity

J =

ϵi = E/I

r =
connection matrix
neuron firing rate

Φ = activation function:

soft ReLU with maximum rate

f = control/exernal input

Activity reverts 

Towards baseline

Synaptic strength 

Cannot increase


Indefinitely

ri = Φ ∑
j

Jij rj+fi

Timescale separation assumption τs ≫ τn
Neural dynamics is faster than plasticity

τn
dri

dt
(t) = − ri(t) + Φ ∑

j

Jij(t) rj(t)+fi(t)



Modelling plasticty

τs
dJij

dt
(t) = η(ϵj) (ri − θ(ϵj)) rj

hebbian

− β1 Jij (r2
i − θ0(ϵj)2)

homeostasis 1

− β2 ReLU( |Jij | − J̄)2

homeostasis 2

neuron j

neuron iJij

Jij+ΔJij

fi

fj

By controlling the activities  and  via stimulation,

we can in principle control plasticity. 

ri rj

BUT


1) We do not have necessariliy full control of the network: connected activity


2) Even so, by changing activity of neuron , in principle we affect all connections to and from neuron :

    If we have  neurons, we have  connection and we can only control  neurons: hard control problem

i i
N ≈ N2 N

ri = Φ ∑
j

Jij rj+fi
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 Space of connections J

 Low U

 High U
Cost function  = how well the connectivity performs a 

task: e.g. average square error

U(J)

No direct control: implications

Local best synaptic modification: (minus) the gradient, i.e. 
direction along which the cost decreases the most


ΔJ ≈ − η ∇U(J)

- gradient

We are not free to implement this!




Favorable directions

(  decreases)U

 Space of connections J

 Low U

 High U

Not all directions in the space of connections 

are allowed by the dynamics of the synapses

1)  connections, but  controllable units! 

2) No vanishing leaerning rates: no infinitesimal updates

≈ N2 ≈ N

 How do we find the control to 
implement the best possible direction?

 Variations allowed by

plasticity constraints



Space of connections

- gradient

sub-space of implementable*

 synaptic updates ΔJ

J current connectivity


Best implementable control: 

Lergest projection on the gradient

A control  (  matrix) is implementable if there is 

a control  ( -dimensional array) which induces it

ΔJij N × N
fi N

How do we find the best control?

A gradient descent in the space of controls


Ideal target

f → f − η∇f(ΔU)

GD
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Inferring the structure


Inferring connectivity with a model: 

Many possibilities*: here  we use an idealized but consistent procedure

Φ−1(r) = Jr + f

N (=number of neuron) equations

With  different stimulations  we have  equationsn fμ Nm

Φ−1(rμ) = Jrμ + fμ

With  different stimulations  we have  equations. If  (connectivity), we can infer n fμ Nm m > c J



Recordings

Estimate connectivity

Plan control
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…

Connections

Excitatory
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Control stimulations

Probing 

stimulations

Computing optimal (or good) stimulation


Ideal target

f → f − η∇f(ΔU)

GD

We compute an array  which describes 

the stimulation we should apply in each site

f
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Computing


Stimulating = “training”

LOOP
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U = Utask + UregCost function

Cost function: (smoothed) softmax quadratic error of the 
most ambiguous pair of pixels:

Utask(J) ∝ ∑
(i μ)( j ν)|σiμ=0,σjν=0

Δ(iμ, jν) exp(γΔ(iμ, jν))

 
where  is Heaviside theta function and .

Δ(iμ, jν) = (ri(fμ) − rj(fν) − δr)2 Θ(ri(fμ) − rj(fν) − δr)
Θ δr = .14 rmax
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Input-output associative task: 

generating digit images



Input-output associative task: 

generating digit images

The protocol
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A non-linear task
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Specifically, we try to build a continuous attractor

receptive fieldsconnection map J*

Structural task: creating a specific connectivity  structure

Cost function

target connectivityJ*ij =

balancing weightswij =

U = ∑
ij

wij(Jij − J*ij )2

Target connectivity
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Training



f/rmax

Structural task: an interpretable protocol



Technique features
1) General and flexible: different learning/plasticity rules, activation functions, tasks can be implemented. We 

tried Hebbian, anti-Hebbian rules and different parameters settings


2) Some robustness with respect to parameter error (though this would require a more complete investigation)


3) While our implementation assumes neuron wise control, there is no algorithmic difference between working 
with individual neurons and groups of neurons


1) Strog noise and uncertainty might require some modifications


2) Certain steps of the algorithm are sensitive to implementation


3) Very large network might be difficult to handle


4) A good knowledge of the system properties is required


5) Is control always possible? Let’s see…


Delicate points



Thank you for your attention

NEU-Chip project

Borra, Francesco, Simona Cocco, and Rémi Monasson.  
“Supervised task learning via stimulation-induced plasticity in rate-based neural networks." (2023).


