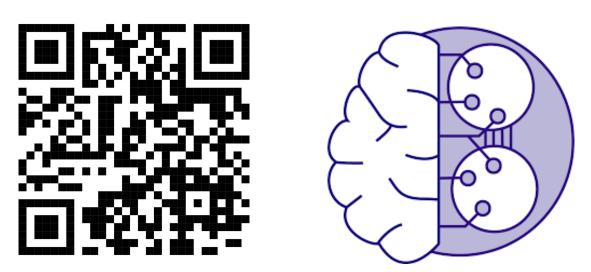
Supervised task learning via stimulation-induced plasticity in rate-based neural networks

Francesco Borra*, Simona Cocco, Rémi Monasson

*postdoc, Laboratoire de Physique de l'Ecole Normale Supèrieure, CNRS Paris



Neuchip project

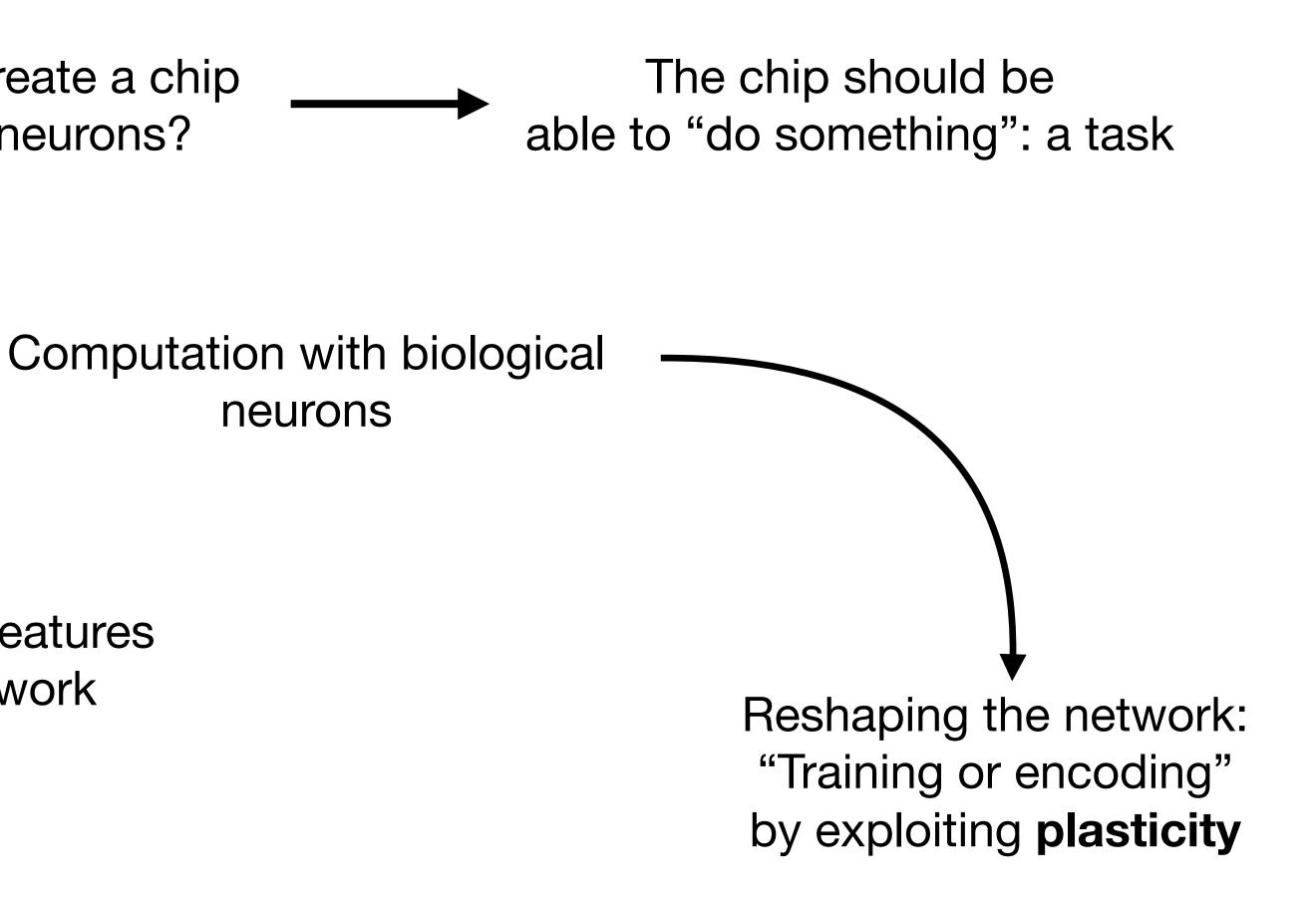
The NEU-ChiP project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No:964877

Département **de Physi**que École normale supérieure

Is it possible to create a chip with biological neurons?

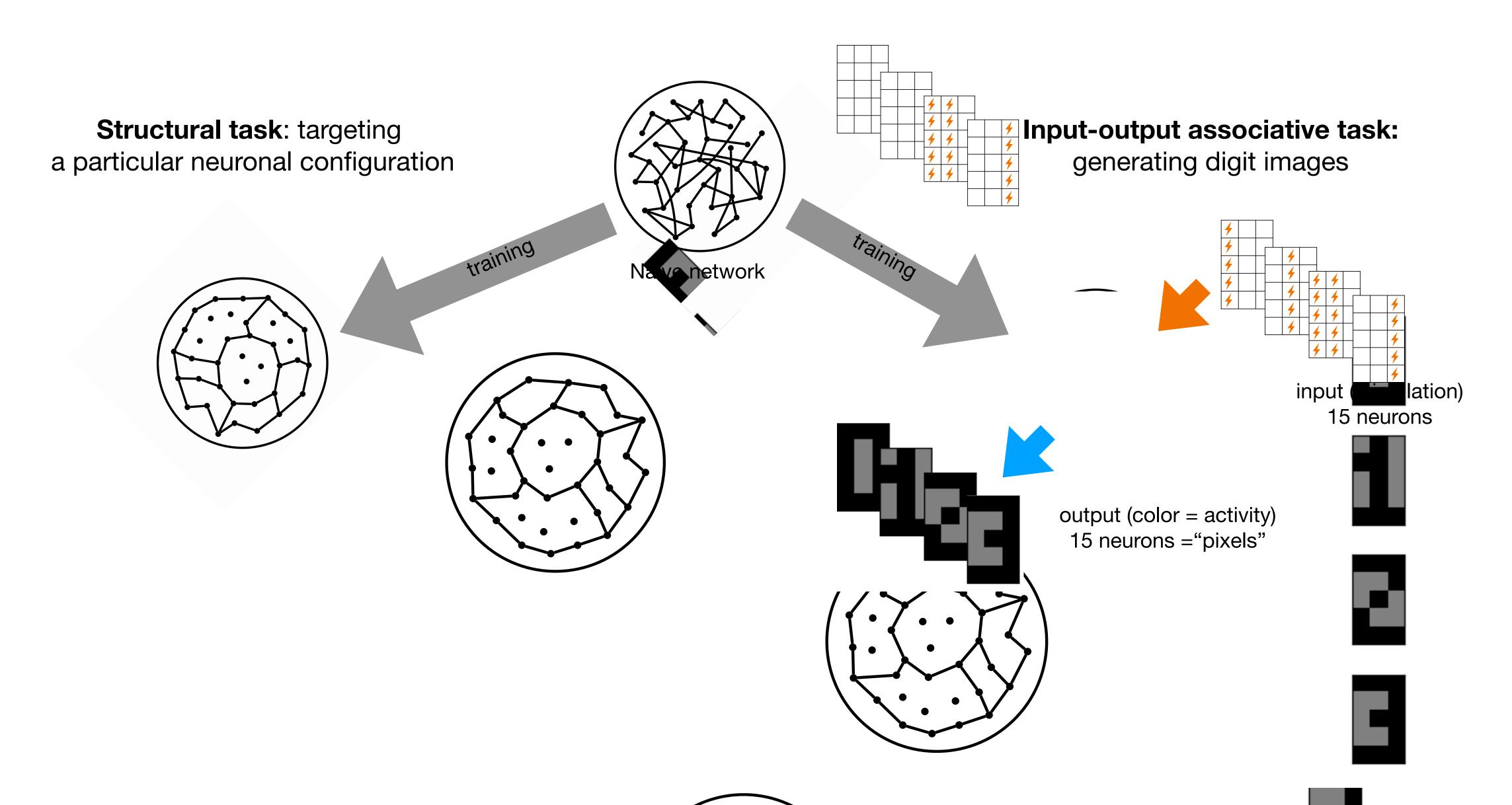
Exploit pre-existing dynamical features of a (possibly structured) network

Reservoir computing

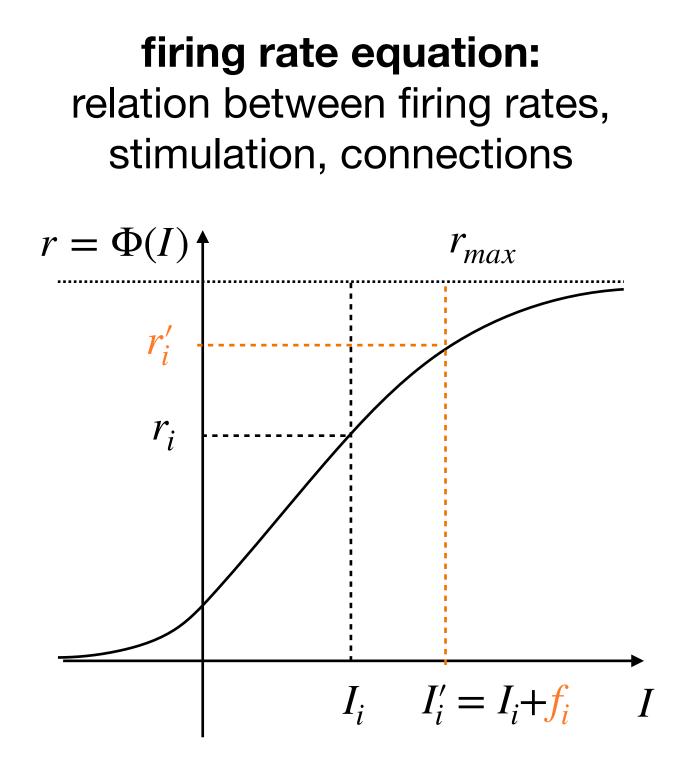


See e.g. KAGAN, Brett J., et al. *Neuron*, 2022, 110.23: 3952-3969. e8.

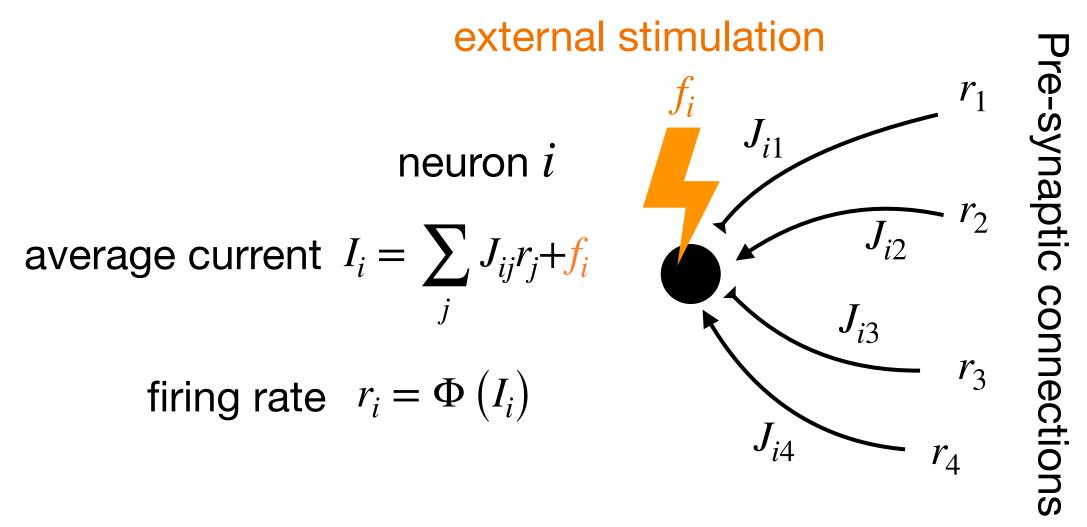
Task-oriented reshaping of a neural network



Two strategies



The model



By stimulating, we can change the activity of individual neurons. However, due to connections, effects of stimulation are non-local

Dynamical equation

$$\tau_n \frac{dr_i}{dt}(t) = -r_i(t) + \Phi\left(\sum_j J_{ij}(t) r_j(t) + \frac{f_i(t)}{f_i(t)}\right)$$

Modelling plasticty

Plasticity equation: how connectins change depending on the activity $\tau_{s} \quad \frac{dJ_{ij}}{dt}(t) = \eta(\epsilon_{j}) \left(r_{i} - \theta(\epsilon_{j})\right) r_{j} - \beta_{1} J_{ij} \left(r_{i}^{2} - \theta_{0}(\epsilon_{j})\right)$ hebbian homeostasis

Activity reverts Towards baseline

Timescale separation assumption $\tau_s \gg \tau_n$

Neural dynamics is faster than plasticity

$$\tau_n \frac{dr_i}{dt}(t) = -r_i(t) + \Phi\left(\sum_j J_{ij}(t) r_j(t) + \frac{f_i(t)}{f_i(t)}\right)$$

$$\beta^{2}) - \beta_{2} \operatorname{ReLU}(|J_{ij}| - \overline{J})^{2}$$

1 homeostasis 2
e Synaptic strength
Cannot increase
Indefinitely

- f = control/exernal input
- J = connection matrix
- r = neuron firing rate

$$\epsilon_i = E/I$$

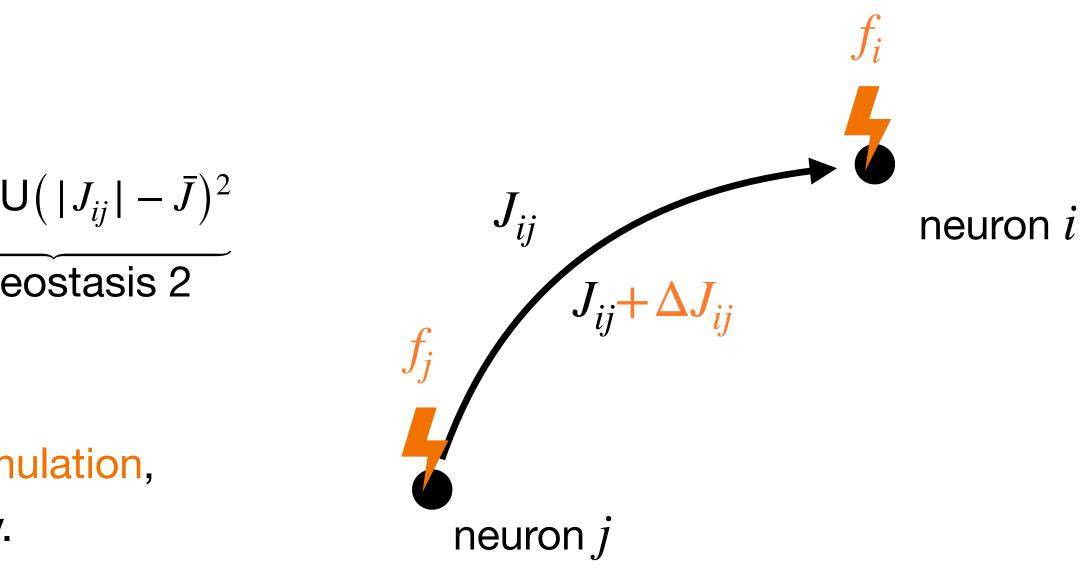
- activation function: $\Phi =$
 - soft ReLU with maximum rate

Modelling plasticty

$$\tau_{s} \quad \frac{dJ_{ij}}{dt}(t) = \eta(\epsilon_{j}) \left(r_{i} - \theta(\epsilon_{j})\right) r_{j} - \beta_{1} J_{ij} \left(r_{i}^{2} - \theta_{0}(\epsilon_{j})^{2}\right) - \beta_{2} \text{ ReLU}$$
hebbian homeostasis 1 home

By controlling the activities r_i and r_j via stimulation, we can in principle control plasticity.

- 1) We do not have necessarily full control of the ne



BUT

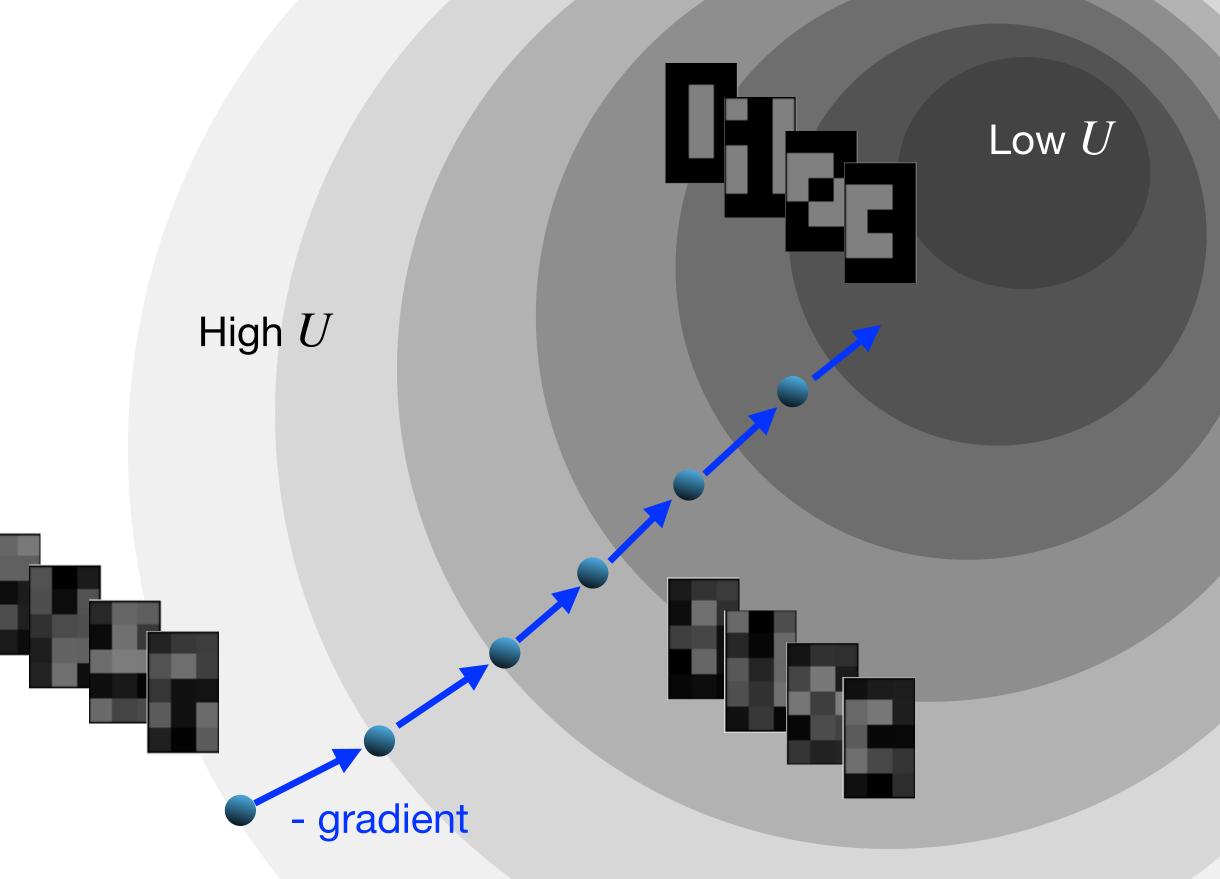
etwork: connected activity
$$r_i = \Phi\left(\sum_j J_{ij} r_j + f_i\right)$$

2) Even so, by changing activity of neuron i, in principle we affect all connections to and from neuron i:

If we have N neurons, we have $\approx N^2$ connection and we can only control N neurons: hard control problem

No direct control: implications

Cost function $U(\mathbf{J})$ = how well the connectivity performs a task: e.g. average square error lation) input 15 neurons output (color = activity) 15 neurons ="pixels"



Space of connections J

Local best synaptic modification: (minus) the gradient, i.e. direction along which the cost decreases the most

 $\Delta \mathbf{J} \approx -\eta \,\nabla U(\mathbf{J})$

We are not free to implement this!

Not all directions in the space of connections are allowed by the dynamics of the synapses

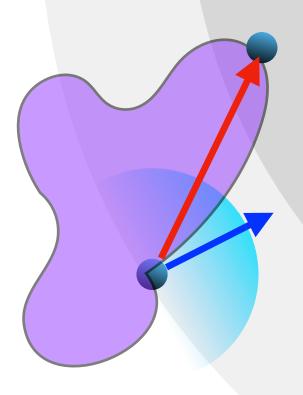
1) $\approx N^2$ connections, but $\approx N$ controllable units!

2) No vanishing leaerning rates: no infinitesimal updates

How do we find the control to implement the best possible direction?

Low U

High U

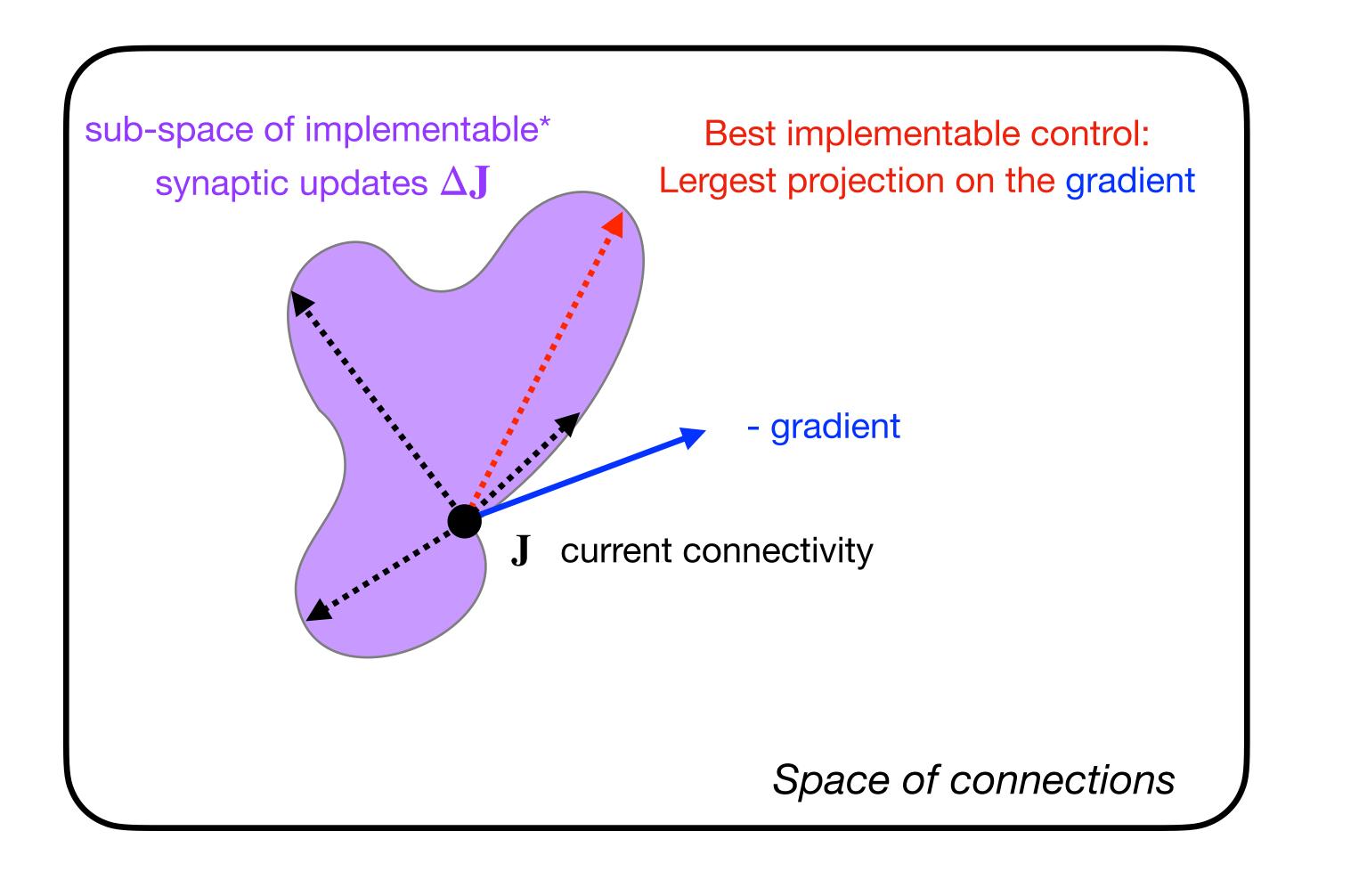


Space of connections J

Favorable directions (U decreases)



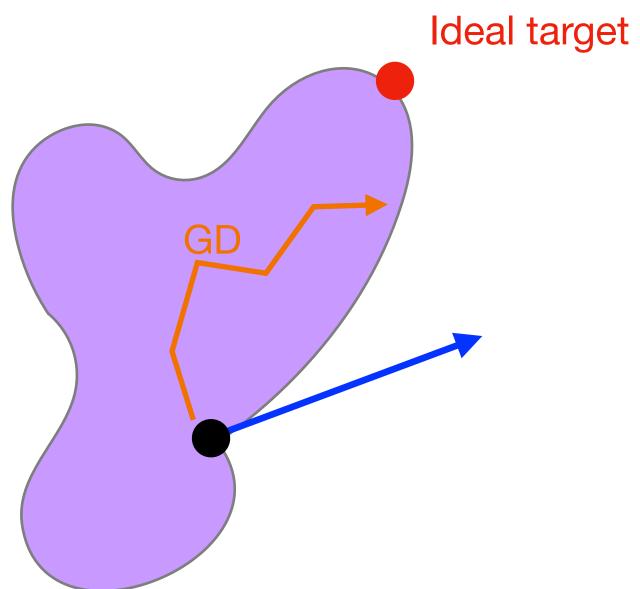
Variations allowed by plasticity constraints



A control ΔJ_{ij} ($N \times N$ matrix) is implementable if there is a control f_i (N-dimensional array) which induces it

How do we find the best control? A gradient descent in the space of controls

 $\mathbf{f} \to \mathbf{f} - \eta \, \nabla_{\mathbf{f}}(\Delta U)$



Inferring connectivity with a model: Many possibilities*: here we use an idealized but consistent procedure

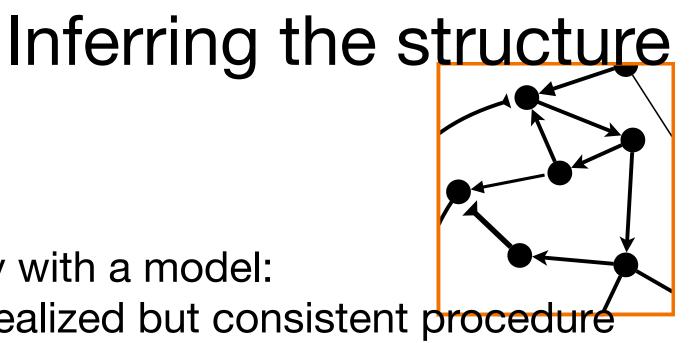
$$\Phi^{-1}(r) = Jr + f$$

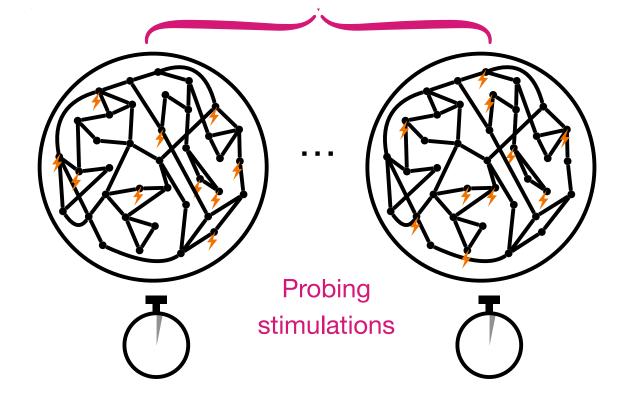
N (=number of neuron) equations

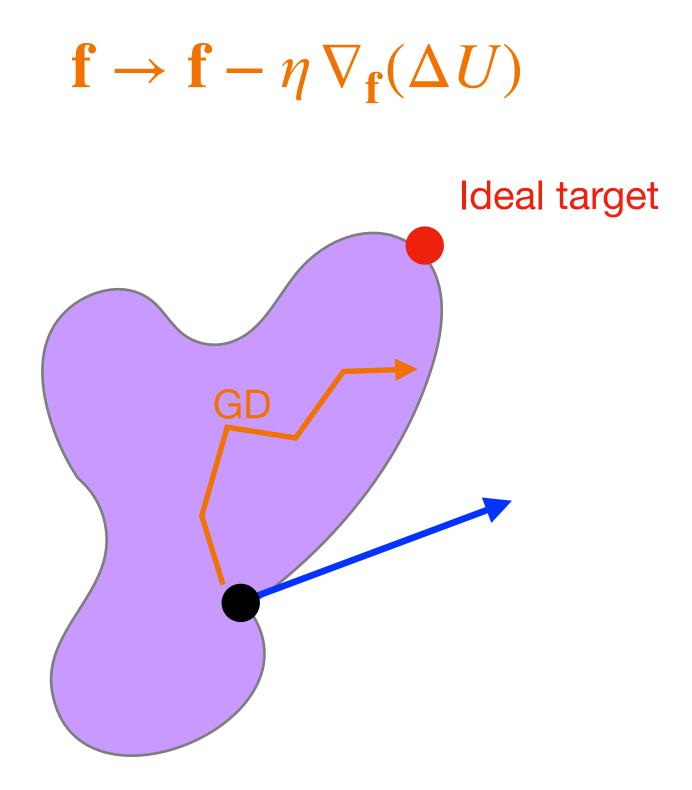
With *n* different stimulations f_{μ} we have *Nm* equations

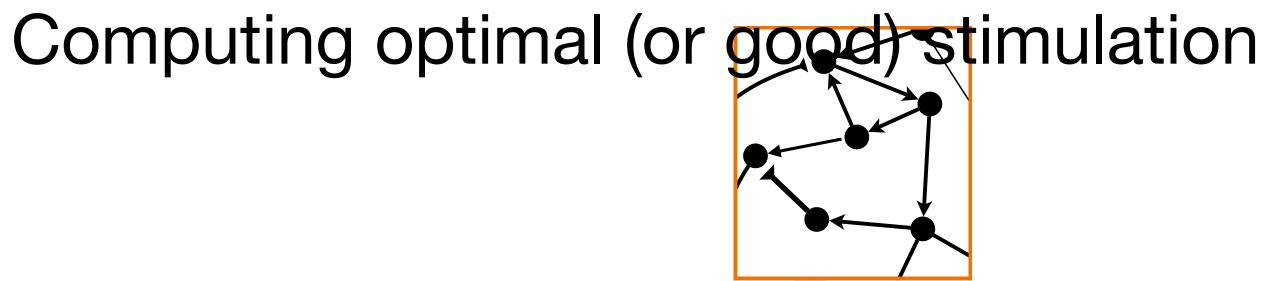
$$\Phi^{-1}(r_{\mu}) = Jr_{\mu} + f_{\mu}$$

With *n* different stimulations f_{μ} we have Nm equations. If m > c (connectivity), we can infer J

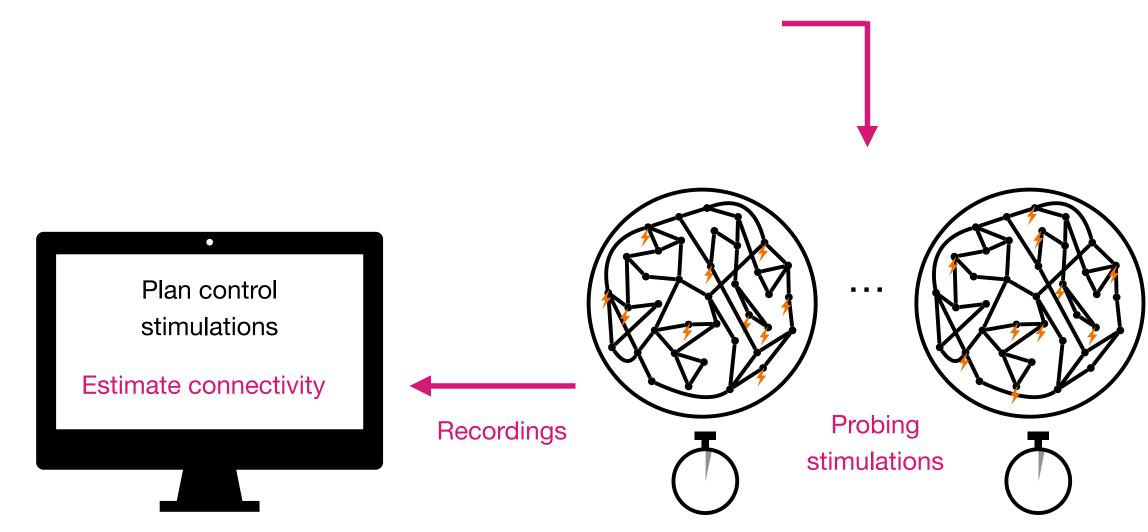








We compute an **array f** which describes the stimulation we should apply in each site

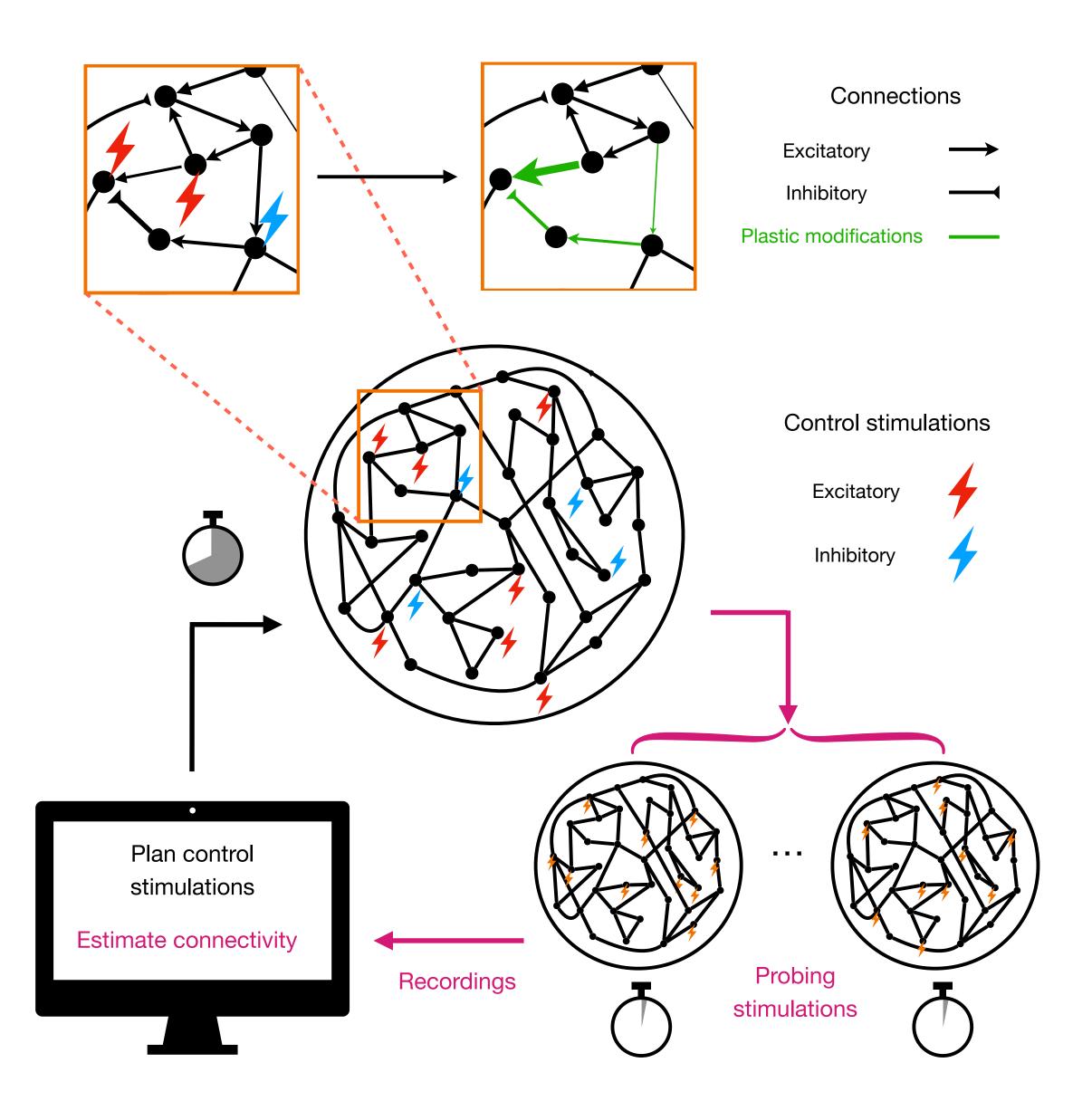


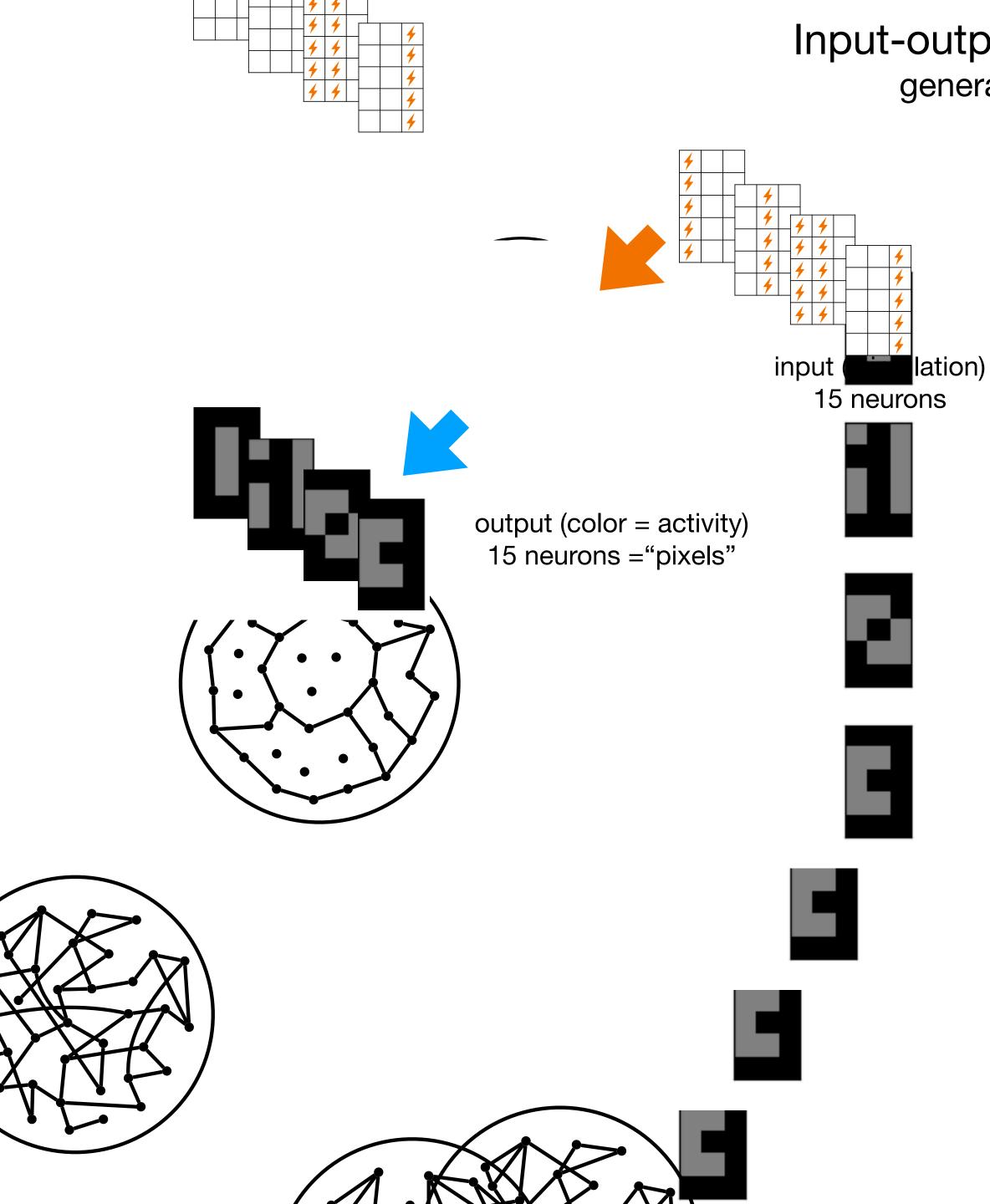
LOOP

Inferring

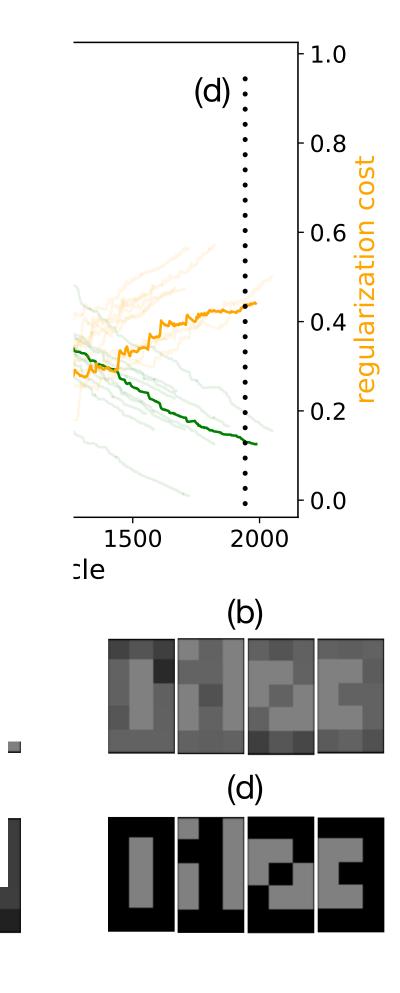
Computing

Stimulating = "training"



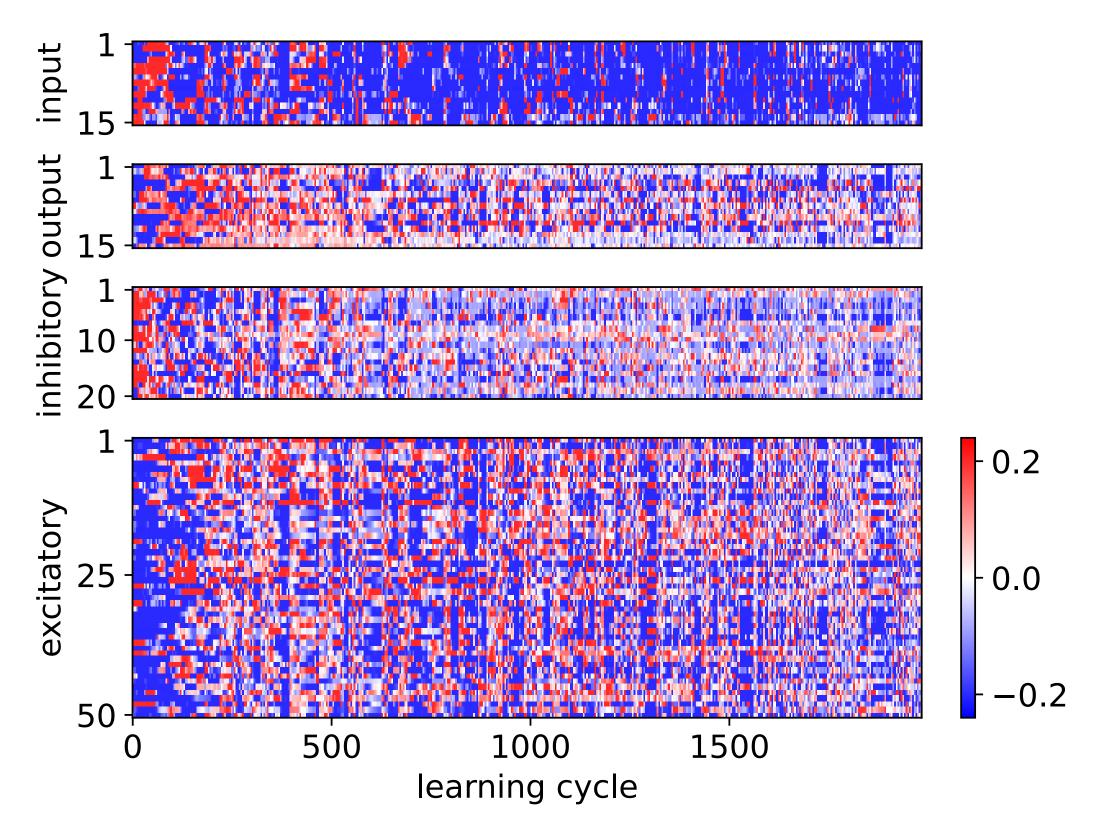


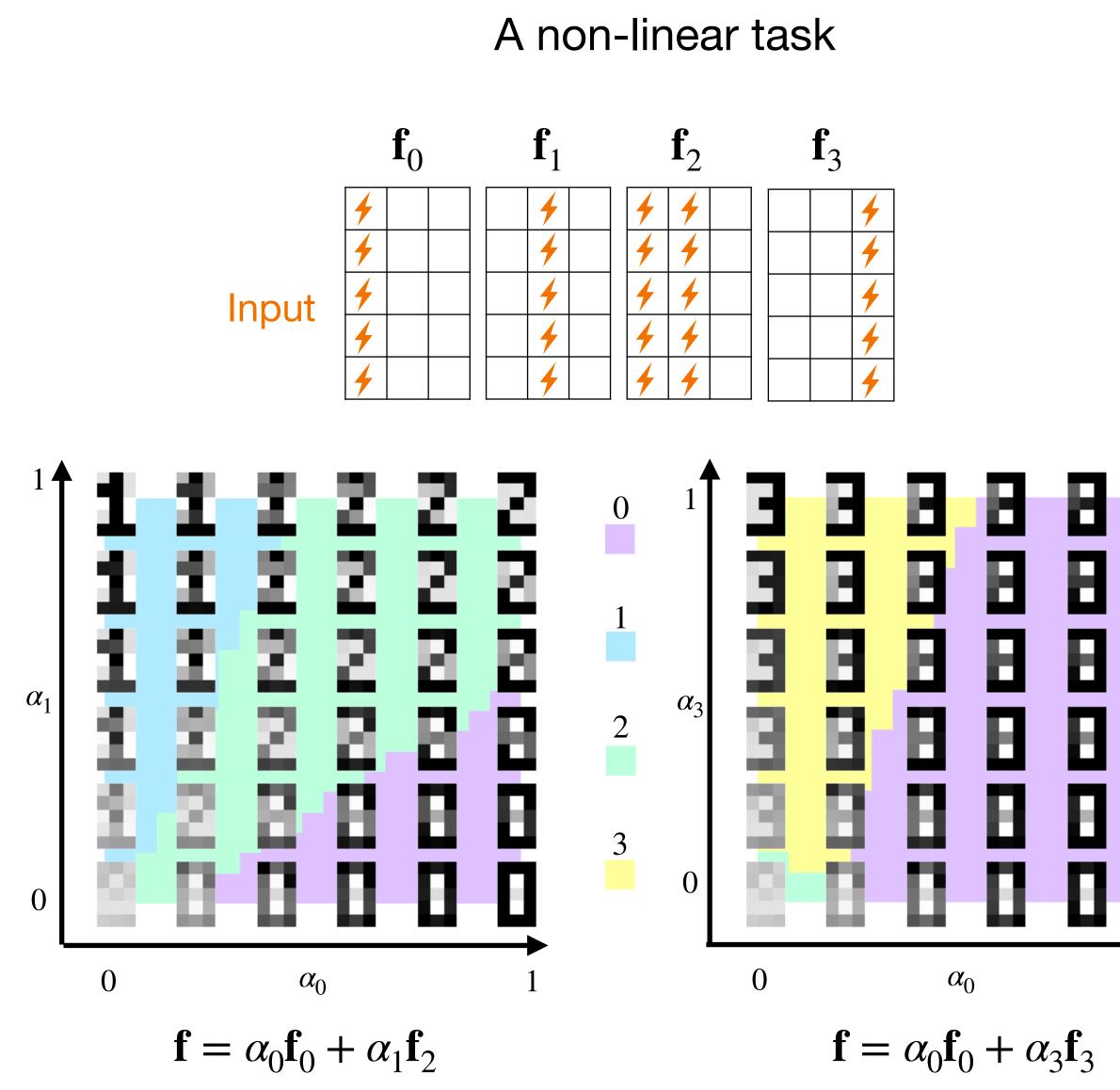
Input-output associative task: generating digit images

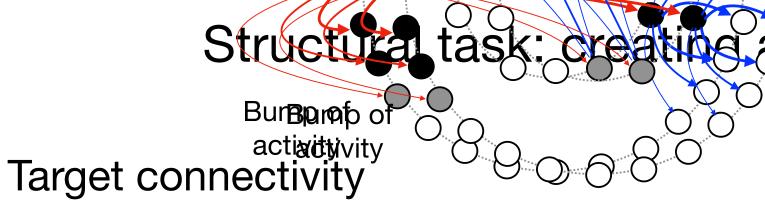


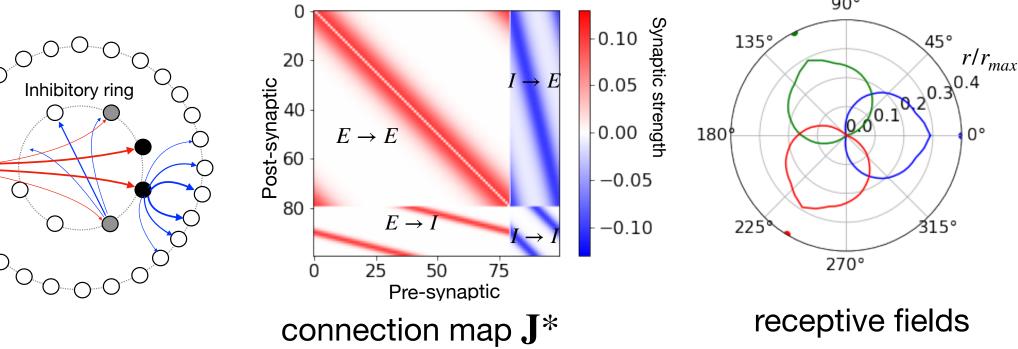
Input-output associative task: generating digit images

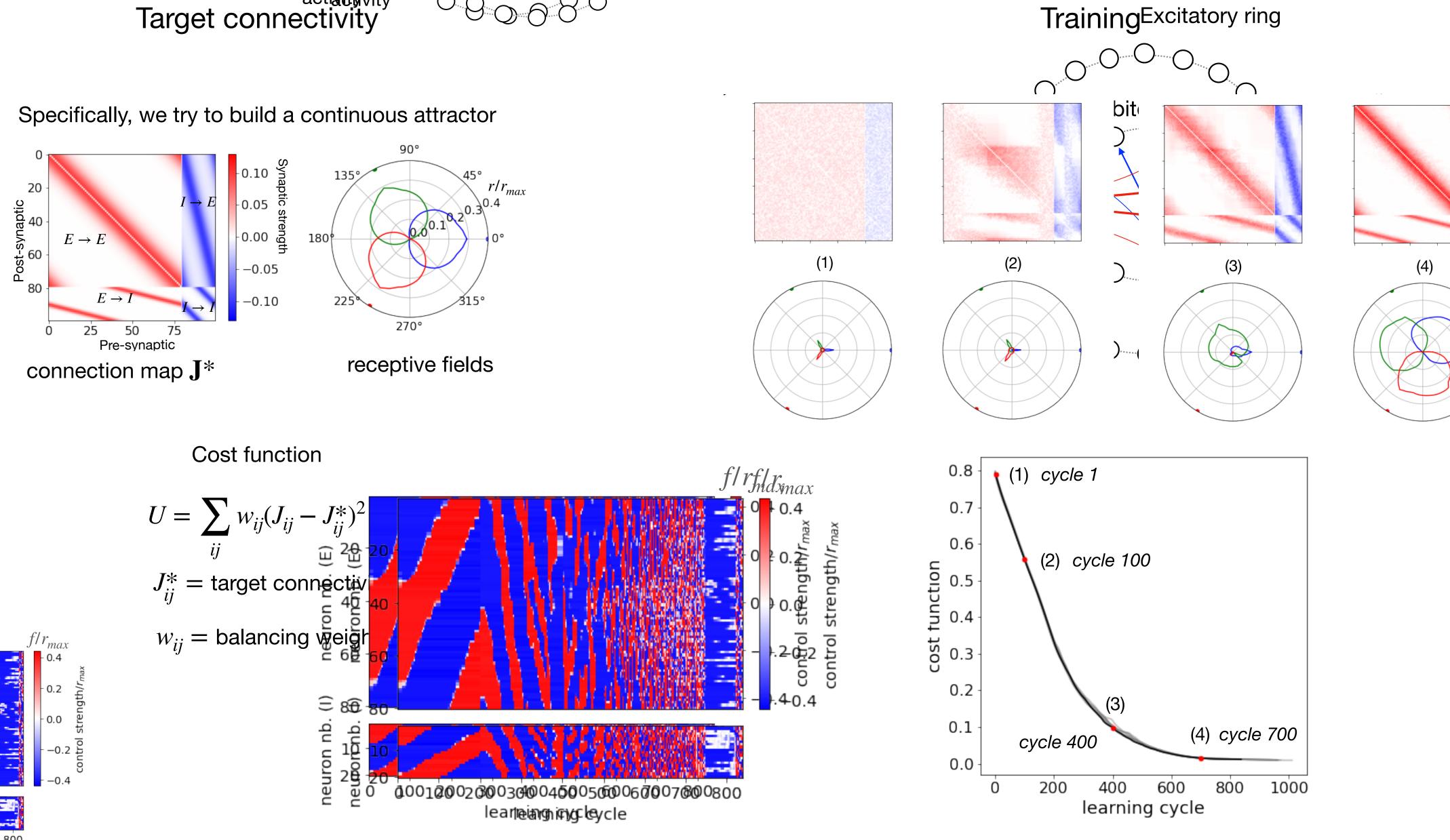
The protocol

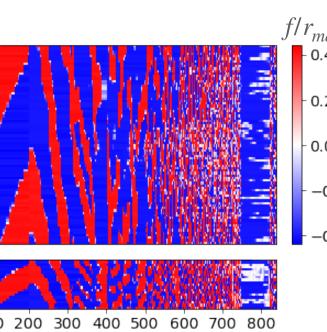








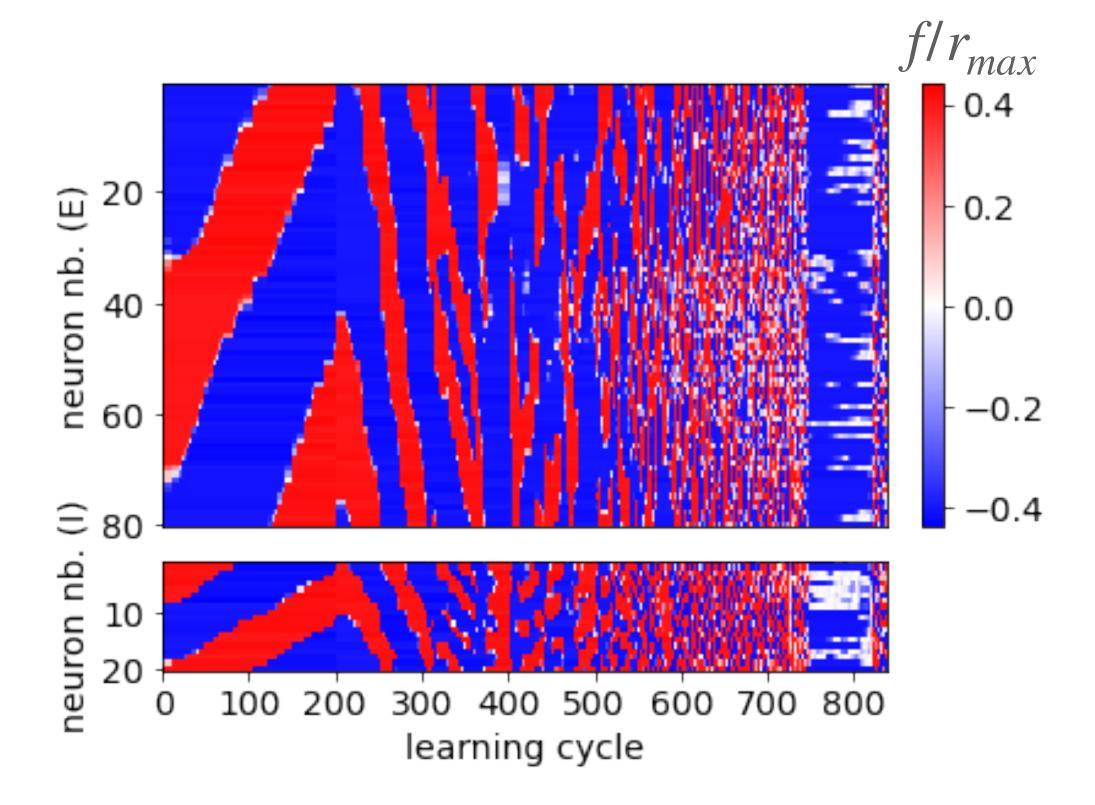


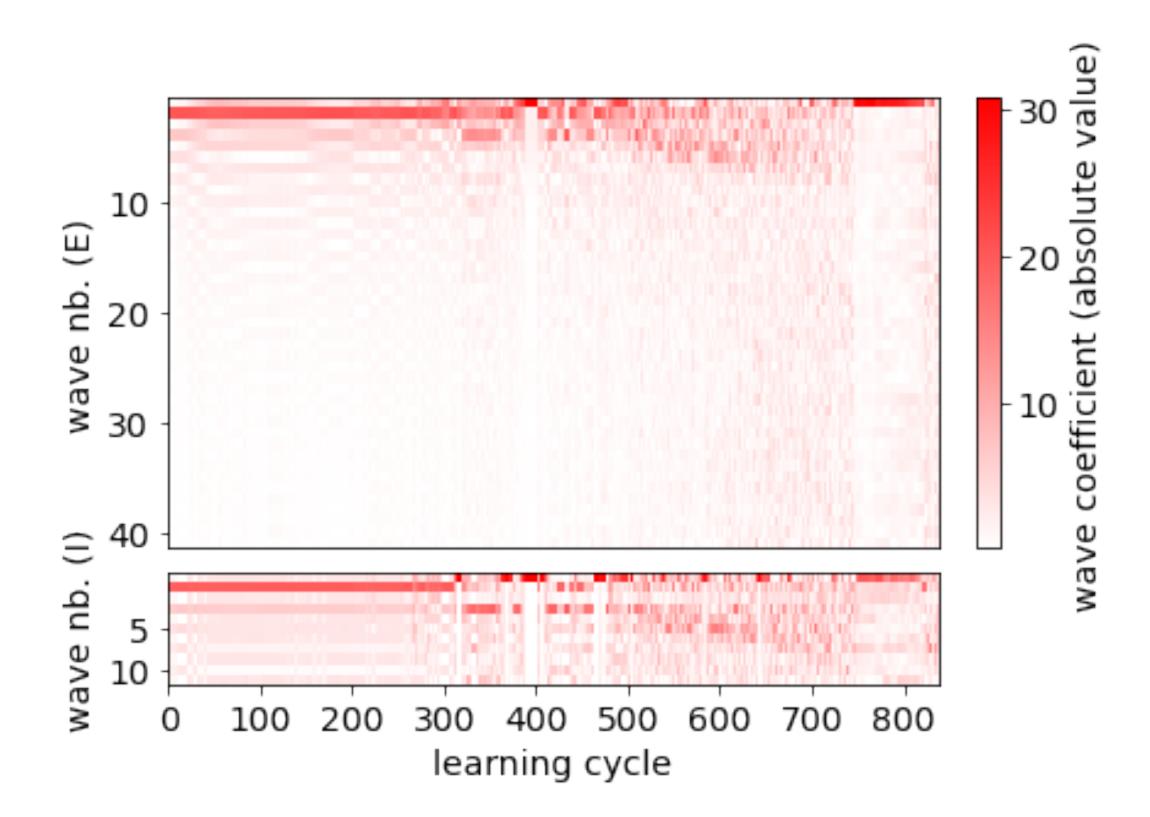


learning cycle

Structura task: creating a specific connectivity structure

Structural task: an interpretable protocol





Technique features

- tried Hebbian, anti-Hebbian rules and different parameters settings
- 2)
- with individual neurons and groups of neurons

Delicate points

- Strog noise and uncertainty might require some modifications 1)
- Certain steps of the algorithm are sensitive to implementation 2)
- Very large network might be difficult to handle 3)
- A good knowledge of the system properties is required 4)
- 5) <u>Is control always possible? Let's see...</u>

1) General and flexible: different learning/plasticity rules, activation functions, tasks can be implemented. We

Some robustness with respect to parameter error (though this would require a more complete investigation)

3) While our implementation assumes neuron wise control, there is no algorithmic difference between working

Thank you for your attention

Borra, Francesco, Simona Cocco, and Rémi Monasson. "Supervised task learning via stimulation-induced plasticity in rate-based neural networks." (2023).

The NEU-ChiP project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No:964877

NEU-Chip project

