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To live and let die: How spontaneous activity controls
programmed cell death in the developing cortex

Heiko J. Luhmann
Institute of Physiology

Synchronized burst activity

Molnér et al. (2020) WM_




Questions

Q1: What type(s) of physiological spontaneous / ongoing
activity can we observe in the very immature (prenatal and
early postnatal) cortex?

Q2: What are the functional properties of this activity (local,
global, wave-like etc.) (in P0-P15 mice in vivo) ?

Q3: How is this early activity generated (in newborn rodents) ?
Q4: What is the physiological function of this early activity?

Q5: What are the long-term consequences of disturbances of
this activity during early development?



Prenatal development of the human cerebral cortex
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Q1: What type(s) of physiological spontaneous activity can we observe in the

very immature (prenatal and early postnatal) cortex?
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Cortical bursts in EEG are early biomarkers

‘ T St

BRAIN 2015: 138; 22062218 | 2206

Cortical burst dynamics predict clinical
outcome early in extremely preterm infants

Kartik K. Iyer,"2 James A. Roberts,' Lena Hellstrém-Westas,® Sverre Wikstrﬁm,"
Ingrid Hansen Pupp,’ David Ley,” Sampsa Vanhatalo®’ and Michael Breakspear'?®
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We examined electroencephalographic recordings from 43 extremely preterm infants (gestational age 22-28 weeks) and demon-
strated that their cortical bursts exhibit scale-free properties as early as 12h after birth. The scaling relationships of cortical bursts
correlate significantly with later mental development—particularly within the first 12h of life. These findings show that early
preterm brain activity is characterized by scale-free dynamics which carry developmental significance, hence offering novel means
for rapid and early clinical prediction of neurodevelopmental outcomes. over the next 2 years!
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Spontaneous and evoked EEG activity in preterm human baby (delta brush)
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Spontaneous and evoked EEG activity in newborn rodent (spindle burst)
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Take home messages

M1: During late prenatal and early postnatal development the cerebral cortex
shows spontaneous synchronized burst activity, both in humans (e.g. delta brush)
and rodents (spindle bursts).



Take home messages

MZ1: During late prenatal and early postnatal development the cerebral cortex
shows spontaneous synchronized burst activity, both in humans (e.g. delta brush)
and rodents (spindle bursts).

M2: With development spont activity shows increase in entropy and parcellation
and changes from correlated to decorrelated state. A functional somato-motor
subnetwork exists from birth and retrosplenical cortex may serve as hub region.
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Q3: How is this early activity generated (in newborn rodents) ?

The subplate: a transient layer
in the early cortical network

Progress in Neurobiology xxx (xxxx) XXxx

Contents lists available at ScienceDirect

Progress in Neurobiology

ELSEVIER journal homepage: www.elsevier.com/locate/pneurobio

Review article

The enigmatic fetal subplate compartment forms an early tangential cortical g pAS-Alcian blue-stained histochemical preparation of the 18-
nexus and provides the framework for construction of cortical connectivity \eek-old human fetal telencephalon demonstrating the high content
Ivica Kostovi¢ of acid sulphated glycoconjugates within the subplate zone (blue).

Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Salata 12,
10000 Zagreb, Croatia

Kostovic & Judas (2002)



The subplate: a transient hub station in the early cortical network
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Subplate Neurons Promote Spindle Bursts and
Thalamocortical Patterning in the Neonatal Rat
Somatosensory Cortex The Journal of Neuroscience, January 11,2012 - 32(2):692—702

Else A. Tolner,"2* Aminah Sheikh,™ Alexey Y. Yukin,' Kai Kaila,"? and Patrick 0. Kanold’
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Intracortical local field potential (LFP) recordings in urethane-anesthetized
and awake newborn rodents in vivo: On-going activity !

S1 ~10 Hz spindle bursts (s) and ~40 Hz gamma bursts (g)
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How is the spindle and gamma burst activity generated?

Patch-clamp recordings from identified, biocytin-filled neocortical
neurons in slices of newborn mice
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No evidence for intrinsic membrane resonance properties
in frequency range of spindle and gamma burst!




Voltage-sensitive dye imaging (VSDI with RH1691) and simultaneous 32-
channel LFP recording in PO rat barrel cortex in vivo: sensory evoked activity
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Simultaneous 32-channel recordings in VPM and barrel cortex
In PO-P1 rat barrel cortex in vivo
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Spontaneous activity in the in vivo PO-P1 rat barrel cortex
IS blocked by local electrolytic lesion in the thalamus
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Injection of lidocaine into the whisker pad reduces spontaneous
cortical spindle bursts and gamma oscillations by ca. 50%
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Where is the other 50% of spontaneous
activity coming from?

Role of the motor system?

Monitoring of spontaneous movements
in sensory periphery!




Simultaneous recordings of spontaneous activity in the forepaw
representation in motor cortex (M1) and somatosensory cortex (S1)

v 2 Vv
S1 ) M1
MZ & __ = - =

forepaw




M1 activity in spindle and gamma range elicits movements
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More than one central pattern generator

spontaneous forepaw movement
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Functional connectivity in the immature sensory-motor system

newborn rodent, preterm infant?
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Anatomical M1-S1Bf connectivity in PO mouse
using Dil injections
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Functional M1-S1Bf connectivity in PO mouse
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Functional connectivity in immature sensory systems
(newborn rodent, preterm infant?)
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Take home messages

M1: During late prenatal and early postnatal development the cerebral cortex
shows spontaneous synchronized burst activity, both in humans (e.g. delta brush)
and rodents (spindle bursts).

M2: With development spont activity shows increase in entropy and parcellation
and changes from correlated to decorrelated state. A functional somato-motor
subnetwork exists from birth and retrosplenical cortex may serve as hub region.

M3: Subplate receives early thalamic input and plays key role in generation of
cortical network activity (which is driven by sensory periphery).



Q4: What is the physiological function of this early activity?

Dynamic interplay between thalamic
activity and Cajal-Retzius cells
regulates the wiring of cortical layer 1 2022, Cell Reports 39

loana Genescu,' Mar Anibal-Martinez,” Vladimir Kouskoff,® Nicolas Chenouard,” Caroling Mailhes-Hamon,”
Hugues Cartonnet,’ Ludmilla Lokmane,’ Filippo M. Rijli,** Guillermina Lopez-Bendito,” Frédéric Gambino,?
and Sonia Garel™-"-&"
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GABAergic projections from the subplate to Cajal-Retzius
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Embryonic Early postnatal life Olga Myakhar®, Petr Unichenko® and Sergei Kirischuk®



Q4: What is the physiological function of this early activity?

Activity-dependent control of neuronal apoptosis

Caspase-9 ko mice
Erom: Kuida et al (1998) Cell



Cortical developmental death: selected to survive or
fated to die

Frédéric Causeret’>*, Eva Coppola'*°*

and Alessandra Pierani
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Programmed neuronal cell death (apoptosis) in
newborn mouse cerebral cortex in vivo estimated with aCasp3
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Analysis of Casp-3 dependent apoptosis in organotypic neocortical slice cultures
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Apoptosis in dissociated neocortical cell cultures on 120-MEA
transfected with Channelrhodopsin
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Optogenetically evoked burst firing, but not tonic firing, reduces apoptosis
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Burst firing, but not tonic firing, (i) causes intracellular calcium rise,
(if) activation of immediate early genes, (iii) increased BDNF expression,
and (iv) decreased Bax/BCL-2 ratio.
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Take home messages

M1: During late prenatal and early postnatal development the cerebral cortex
shows spontaneous synchronized burst activity, both in humans (e.g. delta brush)
and rodents (spindle bursts).

M2: With development spont activity shows increase in entropy and parcellation
and changes from correlated to decorrelated state. A functional somato-motor
subnetwork exists from birth and retrosplenical cortex may serve as hub region.

M3: Subplate receives early thalamic input and plays key role in generation of
cortical network activity (which is driven by sensory periphery).

M4: Spontaneous synchronized burst activity controls progressive events (e.g.
columnar organization, topographic maps) and regressive events (e.g. apoptosis).
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P3 rat, 3 h after PBS or LPS injection
A (i) (i) = ik

LPS-induced inflammation in the newborn rat
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Q5: What are the long-term consequences of disturbances of this activity
during early development?

Prefrontal cortex
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A transient developmental increase

Increasing neonatal coordinated activity causes transient
dendritic surge in mPFC

Increasing neonatal activity disrupts gamma synchrony in
adult prefrontal circuits

Increasing neonatal activity causes excitation/inhibition
imbalance in adult mPFC

Increasing neonatal prefrontal activity disrupts adult
coghnitive abilities

Neuron 109, 1350-1364, April 21, 2021

in prefrontal activity alters network maturation
and causes cognitive dysfunction in adult mice

Sebastian H. Bitzenhofer,->%* Jastyn A. P6pplau,’-?> Mattia Chini,’ Annette Marquardt,’ and lleana L. Hanganu-Opatz'-4*



Take home messages

M1: During late prenatal and early postnatal development the cerebral cortex
shows spontaneous synchronized burst activity, both in humans (e.g. delta brush)
and rodents (spindle bursts).

M2: With development spont activity shows increase in entropy and parcellation
and changes from correlated to decorrelated state. A functional somato-motor
subnetwork exists from birth and retrosplenical cortex may serve as hub region.

M3: Subplate receives early thalamic input and plays key role in generation of
cortical network activity (which is driven by sensory periphery).

M4: Spontaneous synchronized burst activity controls progressive events (e.g.
columnar organization, topographic maps) and regressive events (e.g. apoptosis).

M5: Any disturbances in early cortical activity, induced by hypoxia, inflammation
or infection in utero, drugs (e.g. antiepileptics, alcohol) may have an immediate
impact on electrical activity patterns thereby causing long-term neuronal
dysfunction.



