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Combinatorial Patterns of Activated Glomeruli

(Odor map)
2MB-acid pentanal TMT
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Olfactory Map Formation
One neuron — one receptor rule

One glomerulus — one receptor rule

Mori & Sakano, Annu. Rev. Neurosci. (2011)



Olfactory Map Formation

I. Single gene choice (One neuron — one receptor rule)

1. Stochastic gene activation by cis-acting enhancer elements
(Serizawa et al., Nat. Neurosci., 2000; Science, 2003; Nishizumi et al., PNAS, 2008)

2. Negative-feedback regulation by functional ORs
(Serizawa et al., Science, 2003)

II. OR-instructed axonal projection (One glomerulus — one receptor rule)

1. A-P axis: Intrinsic receptor activity
(Imai et al., Science, 2006; 2009)

2. D-V axis: Positional information of OSNs
(Miyamichi et al., J. Neurosci., 2005; Takeuchi et al., Cell, 2010)

3. Glomerular segregation: Spontaneous neuronal activity
(Serizawa et al., Cell, 2006; Nakashima et al., Cell/, 2013)



Interpretation of Olfactory Maps

I. Pattern recognition of activated glomeruli

(for learned decisions)

I1. Stimulation of functional domains

(for innate decisions)



Innate Decision is Independently Made from Learned Decision
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Allergic to Christmas? [0/ ol [he lalest news NEWS
in the world of science telegraph.co.uk/science

s ___ Why mice that can’t smell
danger will cuddle up to cats

Fear of natural enemies is removed by genetic engineering, reports Roger Highfield

MI(JL have befriended their mortal when they smell cats, The mutant mice 1y i mice were not
cals, afler scientist d were still'able to deteet other smells but caten uhm lhcy fearlessly approached
l.hur abili u» smell di ‘approached the cats without a sign of cats, the scientists used specially chosen
inpoum m:nt cells in [tar." said Dr Ko Kobayakawa, who felines,
mnuse bnmu it trigger fear responses carried out the research with his wife, “For this purpase, we scleded meck
and were a!ple o tum m off using Reiko, at the Universily of Tokyo, Japan,  and ¢ Is from a
One mouse walked boldly up to a cat of cats kept h) smdcnls in Ihr drpanmcnl

when placed near to it, while I of " DrK
experiment is the stuﬂ' of nightmares for s up with a kitten, They also explained.
fans of the classic cat and mouse cartoon | happily sat inside a cat's collar. By removing the cals if they showed
television series Towe and Jerry - vodents The team also did tests with a “fear signs of preparing to attack, the
that show no sign of anxiety or panic chemical” secreted by foxes. researchers said they were able 1o ensure

o e Normal mice ran into the comer of their — “not a single mouse was sacrificed during
cage terrified when they smelled the scent,  the photo shoots™.

but those with their sense of fear i The experiment shows the ability to
were unconcermed. sniff out danger is hard-wired into the
However, the researchers found the mouse’s brain and not leamed, Dr

mice still froze in tesvor if they heard a cat - Kobayakawn said.

meow. It also has enormous potential for
“This observation may suggest that the | ing scientists” understanding of

delta-D | dltull\ altered) mice human nature.

: T _only lacked the innate fear Dr Kobayaka added: “We think of it as
- ; responses o cats’ odours, but  the power to clarify many unrevealed
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Kobayakawa et al., Daily Telegraph (2007)
Kobayakawa et al., Nature (2007)



Two Types of Olfactory Decisions
Made during Respiration

Innate Learned

Olfactory Functional Pattern of

signals domains odor map
Projection MCs TCs

neuron
Neural Direct Multi-synaptic

pathway (to Amygdala) (via AON)
Respiratory . .

Exhalation Inhalation

phase

Mori &Sakano, Front. Neural Circuits (2022)



Innate Olfactory Circuits

Odor inputs '\ Behavioral
(Averm% — outputs
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Takeuchi et al., Cell (2016)
Inokuchi et al., Nat. Commun. (2017)
Nishizumi et al., Commun. Biol. (2019)



Coregulation of OSN Projection and
Migration of Projection Neurons by Nrp2

GL MCL GL MCL GL MCL

Nm2 protein (OSNs)  Nrp2  Nrp2  merge
Nrp2 mRNA (MCs)

Both OSN axons and MCs are Nrp2+ in the ventral OB

Inokuchi et al., Nat. Commun. (2017)



MC-Specific Nrp2 cKO Affects Attractive Social Behaviors
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Inokuchi et al., Nat. Commun. (2017)



In Utero Electroporation of hNrp2 into the Embryonic OB

(Nrp2 changes the fate of Nrp2™ projection neurons)
MeA
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Cell migration Axonal projection

Inokuchi et al., Nat. Commun. (2017)



How is the Odor Map Interpreted
for Innate Responses?

Is a pattern of activated glomeruli recognized

as a whole?

Or, does a single glomerulus induce a specific

odor response?
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Saito et al., Nat. Commun. (2017)



Immobility but not Aversion is Induced
by Photo-Activation of Olfr1019

WT KI

Saito et al., Nat. Commun. (2017)



Time Course Analysis of Various Behaviors
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Saito et al., Nat. Commun. (2017)



Olfr1019 KO Affects Immobility, but not Aversion

(Responses to TMT)
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Innate Olfactory Behaviors
can be Changed by Imprinting

1. Sema7A/PlxnCi signaling triggers
‘activity-dependent olfactory imprinting

2. Oxytocin 1s needed to impose the
attractive quality on imprinted memory




Imprinting Discovered by Dr. Konrad Lorenz




How is the Olfactory Imprinting
Induced ?

~Synaptic reinforcement ?

Re-wiring of axonal projection ?

Learning during the critical period?




Olfactory Critical Period in Mice

Naris occlusion/reopen
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Inoue et al., eLife (2021)



Sema7A Signaling Promotes Synapse Formation
within Glomeruli
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Inoue et al., Nat. Commun. (2018)



Imprinting is Activity-Dependent
(Sema7A expression is odor-evoked)

Sema7A Naris occlusion
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Inoue et al., Nat. Commun. (2018)



PIxnC1 Determines the Time Frame of Critical Period
(PIxnC1 is localized to M/T-cell dendrites
only during the first week after birth)

PIxnC1 in dendrites
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Inoue et al., Nat. Commun. (2018)
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KO of Sema7A/PIxnC1 Affects
Synapse Formation and Dendrite Selection
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Inoue et al., Nat. Commun. (2018)



Three Chamber Test
(Olfactory inputs in neonates are essential for
establishing sociality as adults)
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Inoue et al., eLife (2021)



Synaptic Reinforcement in Olfactory Imprinting
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Olfactory Imprinting Increases Odor Responsiveness
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Odor Preference is Changed by Imprinting

Odor preference
(4MT)
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Katori et al. (unpublished)



Imprinted Memory Changes Odor Responses

(Aversive odorant 4MT)

4AMT-conditioned (P2~4)

Inoue et al., eLife (2021)



Imprinted Olfactory Memory Reduces Stress Reactions

Suppression of ACTH rise
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Odor Preference Test

(Oxytocin is needed to impose the positive quality on imprinted memory)
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Odor Responsiveness is Increased Even in the Oxt KO

Habituation/dishabituation test
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total sniffing time

Social Memory Test
(Social-memory formation is restored in the Oxt KO
by Oxt administration in neonates)

Intra-peritoneal injection
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Inoue et al., eLife (2021)



Adaptive Changes in Odor Preference

Fertilization Birth Weaning Sex maturation
Embryo Lactation Post-lactation Adult
(Week) -3 0 1 4

Rewards:

Critical period Suckling period

Olfactory imprinting

Dams

Olfactory adaptation

Siblings
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Two Conflicting Decisions for 4MT
(innate vs. memory-based)

O Oxytocin
bottom up happy memory top down
input / in neonates \output
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Mori & Sakano, Annu. Rev. Physiol. (2021)
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OR gene choice
A-P positioning
D-V positioning
Local segregation
Stepwise regulation
Innate behaviours

Mitral/Tufted cells
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