Two-factor synaptic consolidation reconciles robust memory with pruning and homeostatic scaling

Georgios latropoulos, Wulfram Gerstner, Johanni Brea

24 October 2024

Maturation and plasticity in biological and artificial networks Cargèse, Corsica

Blue Brain Project

Memory consolidation and replay

ΞP

How to store memory patterns.

Wilc

How to store memory patterns.

Is cortical connectivity optimized for storing information?

N. Brunel, 2016: maximize number *M* of patterns such that $(2\xi_i^{\mu} - 1)(\boldsymbol{w}_i \cdot \boldsymbol{\xi}^{\mu} - \boldsymbol{I}_0) > \kappa_0$ and $W_{ij} \ge 0$.

> approximately the same as maximizing SNR₁ = $\frac{|\boldsymbol{w}_i \cdot \boldsymbol{\xi}^* - \boldsymbol{l}_i|}{\|\boldsymbol{w}\|_1}$ $\|\boldsymbol{w}\|_1 = \sum_i |W_{ij}|$

$$\frac{1}{N}\sum_{j}W_{ij}\xi_{j}^{\mu}\approx\frac{f}{N}\sum_{j}W_{ij}=\frac{f}{N}\|\boldsymbol{w}_{i}\|_{1}.$$

Is cortical connectivity optimized for storing information?

Is the synaptic connection strength a product of z factors?

 $W_{ij} \propto U_{ij1} \cdot U_{ij2} \cdot U_{ij3} \cdot U_{ij4} \cdots U_{ijz}$

- Awake: one-shot attractor formation with e.g. standard Hopfield learning rule
- Asleep: batch-perceptron (Krauth & Mézard, 1987)
 - replay patterns
 - tag "weakest pattern"
 - $\mu^* = \arg\min_{\mu} (2\xi_i^{\mu} 1) (\boldsymbol{w}_i \cdot \boldsymbol{\xi}^{\mu} \boldsymbol{I}_i)$
 - update factors
 - $\Delta u_{ijk} = \eta (2\xi_i^{\mu^*} 1)\xi_j^{\mu^*} \prod_{l \neq k} u_{ijl}$
 - multiplicative scaling of factors $u_{ijk} \rightarrow u_{ijk} / \sum_j u_{ijk}^2$
 - update of inhibition
 - $I_i \rightarrow I_i \eta_{inh}(2\xi_i^{\mu^*} 1)$

Results in maximization of SNR_1 for z = 2.

This learning rule maximizes

$$\mathsf{SNR}_{\underline{2}} = \frac{\|\boldsymbol{w}_i \cdot \boldsymbol{\xi}^* - \boldsymbol{I}_i\|}{\|\boldsymbol{w}_i\|_{\underline{2}}}$$

Peter D. Hoff, 2017

If (u_1, u_2, \dots, u_z) is a minimizer of $f(u_1 \circ u_2 \circ \dots \circ u_z) + \frac{\lambda}{z} \sum ||u_k||_2^2$ then $w = u_1 \circ u_2 \circ \dots \circ u_z$ is a minimizer of $f(w) + \lambda ||w||_q^q$ with $q = \frac{2}{z}$.

More evidence for z = 2

Coefficient of variation over time (CV) of $\|\boldsymbol{w}\|_q$ is smallest for $q = \frac{2}{z} \approx 1$.

Experimental data: proxy of synaptic strength (PSD-95:EGFP fluorescence) measured over days in cortical neurons grown in dishes.

EPFL

Multiplicative homeostatic scaling

G. Turrigiano et al., 1998 Homeostatic changes affect each synapse in proportion to its initial strength.

Multiplicative homeostatic scaling of factors u_{ijk} implies multiplicative scaling of weights w_{ij} .

Multiplicative homeostatic scaling

G. Turrigiano et al., 1998

consolidation without optimal neural noise robustness sparse connectivity neurons are excitatory or inhibitory simple learning rule multiplicative homeostatic scaling

Ηα

١g

Is synaptic noise driven by one volatile factor?

Consequences

 Neural input under this synaptic noise varies with

Assumptions

- Factors co-vary (in the long term).
- Fluctuations in synaptic strength are dominated by a single volatile factor.

for z = 2 we have $\frac{2}{z} = 2 - \frac{2}{z} = 1$ and noise matches optimized SNR₁.

Is synaptic noise driven by one volatile factor?

Is synaptic noise driven by one volatile factor?

Consequences

 Neural input under this synaptic noise varies with

Assumptions

- ► Factors co-vary (in the long term).
- Fluctuations in synaptic strength are dominated by a single volatile factor.

 $\sum_{j} W_{ij}^{2-\frac{2}{z}}$

- for z = 2 we have $\frac{2}{z} = 2 \frac{2}{z} = 1$ and noise matches optimized SNR₁.
- Fluctuations in individual synaptic strength are proportional to $W_{ij}^{1-\frac{1}{z}}$ for z = 2: $\sqrt{W_{ij}}$.

Data is consistent with synaptic noise driven by one volatile factor.

Other results

Conclusions

The model consists of

- two-factor excitatory synapses.
- updates during replay with the weakest patterns.
- multiplicative scaling of the synaptic factors.
- synaptic noise due to volatility of one factor.

It is consistent with

- maximization of signal-to-synaptic-noise ratio SNR₁.
- observed minimal coefficient of variation of $\|\boldsymbol{w}\|_1$.
- fluctuations $\propto \sqrt{W_{ij}}$ of individual synapses.
- multiplicative homeostatic scaling of synaptic strengths.
- qualitative recall rate behavior before and after sleep.
- connection density estimates.

Blue Brain Project