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Memory consolidation and replay
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How to store memory patterns.

patterns x;, € € {0,1} G=1eg :‘O
activity xi(t+1)=H (Zj Wiixi(t) = I,-)
= H(w; - x(t) - 1I;)

pattern ¢ is stored  if & = H(w; - &€F - 1) -
neural noise random bit flip %
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o

p a
Amari, Hopfield Wy = § 3 (26F = 1)(2¢k -1)
max margin maximizeL such that
Iwill2
(267 =T)(w; - €= 1}) > & projection 2
lw;-& -] signal

maximize SNRy

[wil, ~ neural noise lwilly = /3, W2
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How to store memory patterns.

patterns x;, € € {0,1} G=1eg :‘O
a(‘,ti"ih’ v+ 1 AN — o {Y‘ V. VARV A l.\ ’ [ ) N
Dé Hopfield — max SNR, L
N4 , . . . . T
consolidation with optimal neural noise robustness 2
dense connectivity
Al neurons are neither excitatory nor inhibitory
m
N M . /
(28 =N(w;-&" =) > w projection 2
. |w;- & -1 signal
maximize SNR = .
2 [willo neural noise lwilly = /3, W2
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Is cortical connectivity optimized for storing information?

N. Brunel, 2016:
maximize number M of patterns such that
(25#_1)(Wi &~ lp) > kg and Wj; > 0.

approximately the same as

maximizing SNR; = %

[Iwlly = 25 (Wil

projection 1
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m Z Wigi' ~ & Z Wi = yliwilk. projection 2
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Is cortical connectivity optimized for storing information?

N Rrinal 201R-

( I
ma i
(24 Hopfield — max SNR;

consolidation without optimal neural noise robustness
sSparse connectivity
neurons are excitatory or inhibitory
Which synaptic plasticity rule achieves this result?
. J—
NZ=77T N Z== 7 N
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Is the synaptic connection strength a product of -z factors?

» Awake: one-shot attractor formation
Bouton with e.g. standard Hopfield learning rule

Ujj1 @) () » Asleep: batch-perceptron
008 G5 (Krauth & Mézard, 1987)
» replay patterns
» tag “weakest pattern”
OU 0 w* = arg minu(2§# -N(w;-&*-1)
W Yiz & $3° 3% » update factors
_ w* w
. AUijk = 77(25,' _1)51' H/;ﬁk Uij
@ Spine head » multiplicative scaling of factors
Ujjic — u,-J-k/ ZJ- ”izjk
Wjj O Uy Uy Uy o+ Uy, » update ofinhibitign
li = li=nminn (268 -1)

U/'/Z
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Results in maximization of SNR; for z = 2.

This learning rule maximizes
*
|Wi ’ 5 - Ii‘

Iwill2
z

SNR, =

Peter D. Hoff, 2017
If (uy,up, ..., uz) is a minimizer of
flurouyo---ouz)+ 3 3 llukll3
thenw = uyouy o - - o uz is a minimizer of
f(w) + A|w||g with g = 2.
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More evidence forz =2

2

Coefficient of variation over time (CV) of ||w||4 is smallest for g =
e

O Simulation
— Kaufman et al., 2012

CV rank

04 08 12 16 20 24
Scaling exponent g

Experimental data: proxy of synaptic strength (PSD-95:EGFP fluorescence) measured over
days in cortical neurons grown in dishes.
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Multiplicative homeostatic scaling

G. Turrigiano et al., 1998

Homeostatic changes affect each synapse
in proportion to its initial strength.
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factors ;. implies multiplicative scaling
S % 4w 4 of weights w;;.
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Multiplicative homeostatic scaling

G. Turrigiano et al., 1998
Ha” p

Hopfield — max SNR; with two-factor synapses

consolidation without optimal neural noise robustness
sparse connectivity
neurons are excitatory or inhibitory 9
simple learning rule
multiplicative homeostatic scaling
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Is synaptic noise driven by one volatile factor?

Consequences
» Neural input under this synaptic
noise varies with
. 2-2
Assumptions Z w;
» Factors co-vary (in the long term). J
> Fluct.uatlons in synaptic strepgth are forz—2wehave 2 —2-2 —1and
dominated by a single volatile factor. z 3

noise matches optimized SNR.

Neural noise

Synaptic noise
L L
- AR
4 Y.
Noist
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Is synaptic noise driven by one volatile factor?

=PrL

Conseguences

Hopfield — max SNR; with two-factor synapses

consolidation with optimal synaptic noise robustness
sparse connectivity
neurons are excitatory or inhibitory
simple learning rule
multiplicative homeostatic scaling

nd



Is synaptic noise driven by one volatile factor?

Consequences

» Neural input under this synaptic
noise varies with

2—
Assumptions Z w
» Factors co-vary (in the long term). '

» Fluctuations in synaptic strength are

. . , forz_2wehave =2- 2_1and
dominated by a single volatile factor.

noise matches optlmlzed SNR1
» Fluctuations in individual synaptlc

strength are proportional to W .z

forz =2:/Wj.
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Data is consistent with synaptic noise driven by one volatile fact

Simulation (z=2) Hazan & Ziv. 2020 (silenced) Kaufman etal., 2012
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Other results

Probability density
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Conclusions

The model consists of Itis consistentwith o
» two-factor excitatory » maximization of signal-to-synaptic-noise ratio SNR;.
SYNapses. » observed minimal coefficient of variation of ||w|};.
» updates during replay . — e
with the weakest patterns. » fluctuations o< /Wj; of individual synapses.
» multiplicative homeostatic scaling of synaptic

» multiplicative scaling of

the synaptic factors. strengths.

. . » qualitative recall rate behavior before and after sleep.
» synaptic noise due to
volatility of one factor. » connection density estimates. pr -
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