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Models of the brain




Models should be simple

» Simple models often explain a
component of the system.

« Physical or functional

« The hope Is that when it is embedded
back into the system, functionality Is
retained.

Descartes, 1662



Let’s recognize a cow!




A cow IS made of lines




Impulses

V1 cells like lines!
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Hubel and Wiesel, 1959




Oriented lines build images

. i

dorsal stream I ventral stream
‘where' pathway I ‘what' pathway

Serre, Oliva, Poggio 2007



Is functionality retained?

« Simple models often explain a component of the
system.

« Physical or functional

» The hope is that when it is embedded back into the
system, functionality Is retained.
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Mixed selectivity

Sample saquence

/ T1: Recognition
\ T2: Recall

Delay tuning
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What is the other 85% of V1 doing!
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Complex data — complex models

- We would like simple models.
« The brain is not playing nice.
« S0 we use complex models.
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Machine learning as a model

Model Experiment

-/

Millions of parameters
Trained to match
Input-output pairs



Requirement for a model system

» Common features with target system
« Easier to manipulate / understand
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Common features
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Common teatures

Human IT (fMRI) HCNN model
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Requirement for a model system

\/ » Common features with target system
« Easier to manipulate / understand



Easier to manipulate/understand

. Fixed points N~/
Sussillo & Barak 2013 (9~ A\
Katz & Reggia 2017 il

- Graphs from trajectories <
Turner et al 2021 B Y T
Brennan et al 2023 /\ i |

« Low rank connectivity
Mastroguiseppe & Ostojic 2018
Schuessler et al 2020 |



Requirement for a model system

\f » Common features with target system

« Easier to manipulate / understand



Why does it work?

» Maybe the model is not as far from reality as we think

» Perhaps this similarity is because both are instances of
complex systems that adapt to their environment.

» Learning from learning systems



Why does it work?

» Maybe the model is not as far from reality as we think

» Perhaps this similarity is because both are instances of
complex systems that adapt to their environment.

» Learning from learning systems



Does 1t work?

» How to compare model and data?

« How to analyze models?

« What do we learn from this?

» Biological plausibility — should we care? How?



Three “short” stories

- Representational drift, learning and implicit
regularization

Ratzon et al. eLife 2024

« Explain vs. predict
Dabholkar et al. Arxiv 2024

« Most variance Is not task-related
Schuessler et al. eLife 2024






Drift vs learning

Aviv Ratzon Dori
Derdikman
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Rate maps change over time
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Learning vs. drift

Learning Drift

New behavior Fixed behavior

Transient Persistent

Directed Undirected

Useful Detrimental?
Hypothesis:

Manifestations of the same process



Framework

» Parameters: synapses, excitability, ... Qc)@,
» Loss: measure of performance. L A

. Loss is a function of parameters. L (9)
» Learning reduces loss by changing parameters.



Degeneracy

« Many parameter configurations
» Corresponding to neural representations
» Could lead to same behavior



Space of parameters




Space of parameters

Learning reduces loss
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What happens if we never stop learning?




Simple model
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Never stop learning
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Information Loss (log)

Three phases

Learning
Drift (directed)

Drift (undirected)
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Representational drift
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Directed drift




Directed drift




Why?




Contour lines



Zoom In
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Gradient w/ noise

L() =040+ L"(6)
L'(6) = (L"(6))

L(0) = 0

K\\
adVa

Blanc et al., COLT 2020
Li, Wang, and Arora, arXiv 2021



fraction active units

active fraction

Infer learning rules
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Does 1t work?

 How to compare model and data?
Qualitative phenomena
 How to analyze models?
Implicit regularization. Two phases
- What do we learn from this?
Link drift and learning
Infer learning rules
- Biological plausibility — should we care? How?









Quantitative comparisons

« Objective: Understand underlying dynamics
« Assume data is a projection from “true” dynamics

« Fit model to data.

» Hope that model dynamics similar to true dynamics
« Problem: no ground truth
« Solution: prediction.

| L

Kabir Dabholkar



Framework

« Assume data is a projection from “true” dynamics.
« Train model to have a projection which is the data.

Neural latents benchmark (Pei et al 2021)
LFADS (Sussillo et al 2016)

Neural transformers (Le et al 2022)

Low rank (Valente et al 2022)

RNN (Koppe et al 2019)



Framework
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The problem with prediction




The problem with prediction

Works!

Definition
of good model*

*observable



The problem with prediction

No guarantee Works!

Definition
of good model*

Could be
overly complex

*observable



Simple demonstration

« Student — teacher setting
» Hidden Markov Model (HMM)

Teacher
®
Students:
» 400 HMMs
- 4 — 15 states
« Gradient-based optimization °
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Why the discrepancy?

Good Bad
student - student

Teacher

-----.




A remedy: few-shot prediction

k trials test
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Measures something new
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Correlates with ground truth

Decoding error
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Why does it work?

» Data efficiency

« Information from observations is “spread” on fewer
States.

« Can prove this for HMMs



Beyond HMMSs

« State of the art models:
LFADS
Transformers (STNDT)
- MC _maze
Primary motor cortex, dorsal premotor cortex

Monkeys reaching in “maze” setting
Churchland et al 2010



No ground truth
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Cross decoding
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Few-shot
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Does 1t work?

» How to compare model and data?
Quantitative fit

» How to analyze models?
HMMs as a tractable tool

« What do we learn from this?
Improve latents without looking at them.
Understand the relation predict-explain.

- Biological plausibility — should we care? How?




Biological plausibility

In the eye of the beholder

SGD is not realistic, but GD with noise?

At what level should we compare?

Fitting models to data
Model mismatch (more/less realistic)

There’s still work to be done...

Stimulated Not

Electrode

Beer and Barak 2024 Chen Beer






Conclusions

« Complex neural signatures suggest complex models

« Surprisingly, a good model for adapting complex
systems (e.g. the brain) could be...

Adapting complex systems!
« Understanding these models requires theory.



Benefits of this approach

« Cross-field fertilization
Neuro: representational drift, task-irrelevant variance.
ML: Implicit regularization, rich/lazy regimes.
Evolution: Survival of the flattest
Genetics: scale free topology (Rivkind et al 2020)
Cancer: (Shomar et al 2022)

» Hypothesis generation

- And also many dangers and pitfalls
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