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Learning from learning systems



Models of the brain

𝑑

𝑑𝑡 
= 𝑓 ( ) 



Models should be simple

▪ Simple models often explain a 

component of the system.

▪ Physical or functional

▪ The hope is that when it is embedded 

back into the system, functionality is 

retained. 

Descartes, 1662



Let’s recognize a cow!



A cow is made of lines



V1 cells like lines!

Primary visual cortex

Hubel and Wiesel, 1959
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Oriented lines build images

Serre, Oliva, Poggio 2007



Is functionality retained?

▪ Simple models often explain a component of the 

system.

▪ Physical or functional

▪ The hope is that when it is embedded back into the 

system, functionality is retained. 



No



No



Complex data – complex models

▪ We would like simple models.

▪ The brain is not playing nice.

▪ So we use complex models.



Machine learning as a model

ExperimentModel

Millions of parameters

Trained to match

input-output pairs



Requirement for a model system

▪ Common features with target system

▪ Easier to manipulate / understand



Common features
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Common features

Yamins, DiCarlo 2016

Sussillo et al 2015

Barak et al 2013 Pagan et al 2022



Requirement for a model system

▪ Common features with target system

▪ Easier to manipulate / understand



Easier to manipulate/understand

▪ Fixed points

▪ Sussillo & Barak 2013

▪ Katz & Reggia 2017

▪ Graphs from trajectories

▪ Turner et al 2021

▪ Brennan et al 2023

▪ Low rank connectivity

▪ Mastroguiseppe & Ostojic 2018

▪ Schuessler et al 2020



Requirement for a model system

▪ Common features with target system

▪ Easier to manipulate / understand



Why does it work?

▪ Maybe the model is not as far from reality as we think

▪ Perhaps this similarity is because both are instances of 

complex systems that adapt to their environment.

▪ Learning from learning systems



Why does it work?

▪ Maybe the model is not as far from reality as we think

▪ Perhaps this similarity is because both are instances of 

complex systems that adapt to their environment.

▪ Learning from learning systems



Does it work?

▪ How to compare model and data?

▪ How to analyze models?

▪ What do we learn from this?

▪ Biological plausibility – should we care? How?



Three “short” stories

▪ Representational drift, learning and implicit 

regularization

▪ Ratzon et al. eLife 2024

▪ Explain vs. predict 

▪ Dabholkar et al. Arxiv 2024

▪ Most variance is not task-related

▪ Schuessler et al. eLife 2024





Drift vs learning

Aviv Ratzon Dori 

Derdikman
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Population Vector



Rate maps change over time

• Visual Cortex - Deitch et al. (2020)
• Olfactory Cortex - Schoonover et al. (2021)
• Parietal Cortex - Driscoll et al. (2017)

Hippocampus CA1Ziv et al. (2013)



Learning vs. drift

Learning

New behavior

Transient

Directed

Useful

Drift

Fixed behavior

Persistent

Undirected

Detrimental?

Hypothesis: 

 Manifestations of the same process



Framework

▪ Parameters: synapses, excitability, …

▪ Loss: measure of performance.

▪ Loss is a function of parameters.

▪ Learning reduces loss by changing parameters.



Degeneracy

▪ Many parameter configurations

▪ Corresponding to neural representations

▪ Could lead to same behavior



Space of parameters



Space of parameters

Learning reduces loss



What happens if we never stop learning?



Simple model



Never stop learning

Training time
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Three phases

Training time
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Representational drift



Data



Directed drift



Directed drift



Why?



Contour lines



Zoom in



Gradient w/ noise

𝐿 𝜃 = 0 + 0 + 𝐿′′(𝜃)

𝐿 0 = 0

𝐿′ 𝜃 = 𝐿′′ 𝜃 ′



Infer learning rules



Does it work?

▪ How to compare model and data?

▪ Qualitative phenomena

▪ How to analyze models?

▪ Implicit regularization. Two phases

▪ What do we learn from this?

▪ Link drift and learning

▪ Infer learning rules

▪ Biological plausibility – should we care? How?







Quantitative comparisons

▪ Objective: Understand underlying dynamics

▪ Assume data is a projection from “true” dynamics 

▪ Fit model to data.

▪ Hope that model dynamics similar to true dynamics

▪ Problem: no ground truth

▪ Solution: prediction. 

Kabir Dabholkar



Framework

▪ Assume data is a projection from “true” dynamics.

▪ Train model to have a projection which is the data.

▪ Neural latents benchmark (Pei et al 2021)

▪ LFADS (Sussillo et al 2016)

▪ Neural transformers (Le et al 2022)

▪ Low rank (Valente et al 2022)

▪ RNN (Koppe et al 2019)



Framework

Data 𝑥



Framework



Framework



Framework



The problem with prediction



The problem with prediction

Works!

Definition

 of good model*

*observable



The problem with prediction

Works!

Definition

 of good model*

*observable

No guarantee

Could be 

overly complex



Simple demonstration

▪ Student – teacher setting

▪ Hidden Markov Model (HMM)

Teacher

Students:

▪ 400 HMMs 

▪ 4 – 15 states

▪ Gradient-based optimization



Asymmetric decoding
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Why the discrepancy?

Teacher Good 

student

Bad 

student



A remedy: few-shot prediction



Measures something new

Co-smoothing
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Correlates with ground truth
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Why does it work?

▪ Data efficiency

▪ Information from observations is “spread” on fewer 

states.

▪ Can prove this for HMMs



Beyond HMMs

▪ State of the art models:

▪ LFADS

▪ Transformers (STNDT)

▪ MC_maze

▪ Primary motor cortex, dorsal premotor cortex

▪ Monkeys reaching in “maze” setting

▪ Churchland et al 2010



No ground truth

True latent
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Model latent
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Cross decoding

< 𝒟𝑢→𝑣 >𝑢



Few-shot works
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Does it work?

▪ How to compare model and data?

▪ Quantitative fit

▪ How to analyze models?

▪ HMMs as a tractable tool

▪ What do we learn from this?

▪ Improve latents without looking at them.

▪ Understand the relation predict-explain.

▪ Biological plausibility – should we care? How?



Biological plausibility

▪ In the eye of the beholder

▪ SGD is not realistic, but GD with noise?

▪ At what level should we compare?

▪ Fitting models to data

▪ Model mismatch (more/less realistic)

▪ There’s still work to be done…

Beer and Barak 2024 Chen Beer





Conclusions

▪ Complex neural signatures suggest complex models

▪ Surprisingly, a good model for adapting complex 

systems (e.g. the brain) could be…

▪ Adapting complex systems!

▪ Understanding these models requires theory.



Benefits of this approach

▪ Cross-field fertilization

▪ Neuro: representational drift, task-irrelevant variance.

▪ ML: Implicit regularization, rich/lazy regimes.

▪ Evolution: Survival of the flattest

▪ Genetics: scale free topology (Rivkind et al 2020)

▪ Cancer: (Shomar et al 2022)

▪ Hypothesis generation

▪ And also many dangers and pitfalls
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