

The Ruth and Bruce Rappaport Faculty of Medicine

NETWORK BIOLOGY RESEARCH LABORATORIES

Learning from learning systems

Omri Barak

October, 2024

Models of the brain

Models should be simple

- Simple models often explain a component of the system.
- Physical or functional
- The hope is that when it is embedded back into the system, functionality is retained.

INTERIOR OF VAUCANSON'S AUTOMATIC DUCK. A, clockwork; B, pump; C, mill for grinsing grain; F, intestinal tube; J, bill; H, head; M, feet.

Let's recognize a cow!

A cow is made of lines

V1 cells like lines!

Primary visual cortex Hubel and Wiesel, 1959

Oriented lines build images

Serre, Oliva, Poggio 2007

Is functionality retained?

- Simple models often explain a component of the system.
- Physical or functional
- The hope is that when it is embedded back into the system, functionality is retained.

No

Complex data – complex models

- We would like simple models.
- The brain is not playing nice.
- So we use complex models.

Machine learning as a model

<u>Model</u>

Millions of parameters Trained to match input-output pairs

Experiment

Requirement for a model system

- Common features with target system
- Easier to manipulate / understand

Common features

$$\frac{dx_i}{dt} = -x_i + \sum_{j=1}^N W_{ij}\phi(x_j) + V_iu(t)$$

$$\frac{dW}{dt} = -\nabla_W L(W)$$

Otor et al. Science 2022

Magee et al. Ann rev neuro 2020

Common features

Requirement for a model system

- Common features with target system
- Easier to manipulate / understand

Easier to manipulate/understand

- Fixed points
 - Sussillo & Barak 2013
 - Katz & Reggia 2017
- Graphs from trajectories
 - Turner et al 2021
 - Brennan et al 2023
- Low rank connectivity
 - Mastroguiseppe & Ostojic 2018
 - Schuessler et al 2020

Requirement for a model system

Common features with target system
Easier to manipulate / understand

Why does it work?

- Maybe the model is not as far from reality as we think
- Perhaps this similarity is because both are instances of complex systems that adapt to their environment.
- Learning from learning systems

Why does it work?

- Maybe the model is not as far from reality as we think
- Perhaps this similarity is because both are instances of complex systems that adapt to their environment.
- Learning from learning systems

Does it work?

- How to compare model and data?
- How to analyze models?
- What do we learn from this?
- Biological plausibility should we care? How?

Three "short" stories

- Representational drift, learning and implicit regularization
 - Ratzon et al. eLife 2024
- Explain vs. predict
 - Dabholkar et al. Arxiv 2024
- Most variance is not task-related
 - Schuessler et al. eLife 2024

Drift vs learning

Aviv Ratzon

Dori Derdikman

Place Cells Are Spatially O'keefe & Dostrovsky (1971) Tuned Neurons

Population Vector

Location in arena

Normalized

Rate maps change over time

- Visual Cortex Deitch et al. (2020)
- Olfactory Cortex Schoonover et al. (2021)
- Parietal Cortex Driscoll et al. (2017)

Learning vs. drift

Learning	<u>Drift</u>
New behavior	Fixed behavior
Transient	Persistent
Directed	Undirected
Useful	Detrimental?

Hypothesis:

Manifestations of the same process

Framework

- Parameters: synapses, excitability, ...
- Loss: measure of performance.

- Loss is a function of parameters. L(9)
- Learning reduces loss by changing parameters.

Degeneracy

- Many parameter configurations
- Corresponding to neural representations
- Could lead to same behavior

Space of parameters

Space of parameters

Learning reduces loss

What happens if we never stop learning?

Simple model

Representational drift

Data

Directed drift

Directed drift

Contour lines

Gradient w/ noise

Infer learning rules

Does it work?

- How to compare model and data?
 - Qualitative phenomena
- How to analyze models?
 - Implicit regularization. Two phases
- What do we learn from this?
 - Link drift and learning
 - Infer learning rules
- Biological plausibility should we care? How?

Quantitative comparisons

- Objective: Understand underlying dynamics
- Assume data is a projection from "true" dynamics
- Fit model to data.
- Hope that model dynamics similar to true dynamics
- Problem: no ground truth
- Solution: prediction.

Kabir Dabholkar

Framework

- Assume data is a projection from "true" dynamics.
- Train model to have a projection which is the data.

- Neural latents benchmark (Pei et al 2021)
- LFADS (Sussillo et al 2016)
- Neural transformers (Le et al 2022)
- Low rank (Valente et al 2022)
- RNN (Koppe et al 2019)

Framework

Framework

The problem with prediction

The problem with prediction

*observable

The problem with prediction

*observable

Simple demonstration

- Student teacher setting
- Hidden Markov Model (HMM)

Students:

- 400 HMMs
- 4 15 states
- Gradient-based optimization

Asymmetric decoding

Why the discrepancy?

A remedy: few-shot prediction

Measures something new

Correlates with ground truth

Why does it work?

- Data efficiency
- Information from observations is "spread" on fewer states.
- Can prove this for HMMs

Beyond HMMs

- State of the art models:
 - LFADS
 - Transformers (STNDT)
- MC_maze
 - Primary motor cortex, dorsal premotor cortex
 - Monkeys reaching in "maze" setting
 - Churchland et al 2010

No ground truth

Figure 9: For HMM students with high co-smoothing $Q_S > Q_T - 10^{-3}$ (and therefore low $\mathcal{D}_{S \to T}$ 1D), the cross-decoding metric $\langle \mathcal{D}_{u \to v} \rangle_{u \in \text{students}}$ is correlated to ground truth distance $\mathcal{D}_{T \to S}$.

Few-shot

Co-smoothing

Does it work?

- How to compare model and data?
 - Quantitative fit
- How to analyze models?
 - HMMs as a tractable tool
- What do we learn from this?
 - Improve latents without looking at them.
 - Understand the relation predict-explain.
- Biological plausibility should we care? How?

Biological plausibility

- In the eye of the beholder
- SGD is not realistic, but GD with noise?
- At what level should we compare?
- Fitting models to data
 - Model mismatch (more/less realistic)
- There's still work to be done...

Conclusions

- Complex neural signatures suggest complex models
- Surprisingly, a good model for adapting complex systems (e.g. the brain) could be...
 - Adapting complex systems!
- Understanding these models requires theory.
Benefits of this approach

- Cross-field fertilization
 - Neuro: representational drift, task-irrelevant variance.
 - ML: Implicit regularization, rich/lazy regimes.
 - Evolution: Survival of the flattest
 - Genetics: scale free topology (Rivkind et al 2020)
 - Cancer: (Shomar et al 2022)
- Hypothesis generation
- And also many dangers and pitfalls

Lab members: Chen Beer Elia Turner Kabir Dabholkar Aviv Ratzon

Matthijs Pals Nathan Cloos

Alumni Oded Barzelay Alexander Rivkind Xu Tie Lee Susman Friedrich Schuessler Aseel Shomar

<u>Collaborators:</u> Naama Brenner Srdjan Ostojic Dori Derdikman

Jackie Schiller Shimon Marom Jakob Macke

