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Random RNN models

Random (asymmetric) synaptic 
connections:

·xi(t) = − xi(t) +
g

N ∑
j

Ji
j rj(t) + Hi(t)

ri(t) = ϕ(xi(t))

Sompolinsky, Crisanti, Sommers, 
PRL (1988)

fixed-point to chaos transition driven by 
the strength of  interactions

Jj
i ∼ 𝒩 (0,1)

Jj
i , Ji

j i.i.d

ϕ(x) : ϕ(0) = 0 ϕ′￼(0) = 1
 is a fixed pointx = 0

At  this fixed point is destabilized 
and the system becomes chaotic

g = 1

Ex: ϕ(x) = tanh(x)



Training RNN models

Hi(t) = hi(t) + z(t)w( f )
i

z(t) = w(i) ⋅ r(t)

z(t)

w(i)(t)

w( f )(t)

Two situations:


1. No feedback weights => easy (Gradient descent)


2. With feedback weights  => hardw(f)

·xi(t) = − xi(t) +
g

N ∑
j

Ji
j rj(t) + Hi(t)

ri(t) = ϕ(xi(t))

output: linear readout unit

TASK : We want to train the weights  such that the output  
(Sussillo & Abbott, Neuron, 2009)

w(i) z(t) = f(t)

hi(t)



Training Algorithms

1. Sussillo & Abbott: FORCE 


2. Node Perturbation, elegibility 
traces…


3. Miconi’s rule (2017)

z(t)

w(i)(t)

w( f )(t)

1) The current understanding the performance of 
algorithms is empirical: no control on 
timescales of learning, stability with the system 
size… this talk: theory of FORCE


2) How the network structure and external inputs 
shape learning dynamics


3) Biological plausibility

What we are interested in:



RNN models vs high-d chaotic systems

·xi(t) = − xi(t) +
g

N ∑
j

Ji
j rj(t) + Hi(t)

ri(t) = ϕ(xi(t))

The nonlinearity makes theory complicated and 
therefore if we want to study training we need 
to simply the model

Simple Idea: Replace the non-linear dynamical system with

·xi(t) = − μ(t)xi(t) +
g
N ∑

jk

Ji
jkxj(t)xk(t) + Hi(t)

The main difference is in the non-linear coupling between degrees of freedom.


In this case the coupling is still non-linear but multi-body.


Seems not good from biological point of view

We need to show that the new dynamical system has the 
same properties of the standard RNN.



Hebbian plasticity

2. Following Clark & Abbott (2023) we introduce an 
Hebbian plasticity term

·xi(t) = − μ(t)xi(t) +
g
N ∑

jk

Ji
jkxj(t)xk(t) + Hi(t)

Hi(t) = ∑
j

Aijxj(t)

p ·Aij(t) = − Aij +
k
N

xi(t)xj(t)

1. We know it has a “fixed_point-to-chaotic” transition 
for large non-linearity.

Run the dynamics with plasticity for a certain amount of time


At  stop the plasticity dynamics. The matrix  is fixed to the value it had at 


Characterize the resulting dynamics after synaptic freezing.

t = t⇤ A t⇤

Protocol (Clark, Abbott 2023 for standard RNN)

Hebbian plasticity:  is a control parameterk



Hebbian plasticity
Possible outcomes for the dynamics of the system after the freezing time t⇤

The system keeps exploring in a chaotic 
way all the phase space.

The system explores chaotically a phase 
space region around the point where 
the system was at freezing. Memory & 
chaos.

The system goes to a fixed point close 
to the point where it was at the freezing 
time. Memory & Fixed Point.

Chaos

Semi-Freezable 

Chaos

Freezable Chaos
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Hebbian plasticity can be used to tune the level of chaos



We get exactly the same results as for standard RNN models

C(t, t′￼) =
x(t) ⋅ x(t′￼)

N



FORCE Training

·xi(t) = − xi(t) +
g

N ∑
j

Ji
j rj(t) + Hi(t)

ri(t) = ϕ(xi(t))

z(t) = f(t)

TASK: find the linear readout weights 
such that the output of the readout 

neuron is a desired periodic function

Feedback loops make the dynamics unstable 
(exploding and/or vanishing gradients)!



FORCE Training

First Order Reduced and Controlled Error (FORCE) (Sussillo, Abbott, 2009)

Main Idea: 

If the readout weights can be time dependent, one can produce the desired output 
instantaneously

Try to damp out the dynamics of the readout weights while keeping small the error

Practically

The feedback loop on the dynamical system drives it towards an attractor.

The algorithms looks for configurations of the readout weights that keep close to 
the attractor while slowing down their dynamics

1. Can be adapted to perform many tasks and can be also implemented in spiking 
recurrent neural networks (Nicola, Clopath, 2017)


2. Studied numerically (simulations): no theory



FORCE Training
·xi(t) = − μ(t)xi(t) +

g
N ∑

jk

Ji
jkxj(t)xk(t) + Hi(t)

Hi(t) = z(t)

z(t) =
1
N

w(t) ⋅ x(t)

We adapt FORCE to this dynamical system



FORCE Training high-d chaotic system

Next: we can study the training dynamics via DMFT => Results for large N

Numerical simulations



DMFT of FORCE Training

Error during training stopping 
at different training epochs



Perspectives

Stability of the learned dynamical attractor: Lyapunov exponents


The space of synaptic weights? Geometry? Connectivity?
Statistics?


Is it possible to “pack” multiple attractors? Limit of capacity?


The level of chaos is essential for the performances. Can we mix 
Hebbian plasticity and FORCE training?


More biological plausibility


Everything is general here: “training”/control other chaotic 
systems (ecolo/econo/socio)?

We can track the dynamics, and have access to the 
statistics of the synaptic weights. 


