Plasticity in the developing auditory system

Tania Rinaldi Barkat

Brain and Sound Lab Department of Biomedicine Basel University Switzerland

Outline

- 1. Critical periods for plasticity
- 2. Deviance detection and predictive processing

Outline

- 1. Critical periods for plasticity
- 2. Deviance detection and predictive processing

Waveform of a pure frequency tone

Waveform and spectrogram of human voice

Tonotopy

		Frequency resolution Intensity discrimination Duration discrimination Frequency Modulation detection Amplitude Modulation detection		
0 4	8	12	16+	,

/la/ and /ra/ distinction

媽 and 馬 distinction

Word with tone	English meaning	Description of tone	Name of tone
mā	Mother	High and level	1st tone
má	To bother	Rising from middle to high	2nd tone
mă	Horse	First falling then rising	3rd tone
mà	To scold	Falling from high	4th tone
ma	An interrogative particle	Brief and soft	Neutral

- 1. Are there distinct critical periods for plasticity in the auditory system?
- 2. What are the underlying neuronal circuits?
- 3. How dependent are the different critical periods on each other?

Stitipragyan Bhumika

Spectrogram of mouse calls

Is there a critical period for FMS?

The critical period for FMS direction is P31-P38

What are the underlying neuronal circuits?

Does accelerating the critical period for pure tone affect the critical period for FMS?

[Hensch, Nat Rev Neurosci, 2005]

Does delaying the critical period for pure tone affect the critical period for FMS?

Development

The auditory system has distinct critical periods.

Critical periods are linked to a E/I imbalance of the neuronal circuits encoding the related sound features.

Critical periods are timed by an independent, temporally precise development program.

Outline

- 1. Critical periods for plasticity
- 2. Deviance detection and predictive processing

Repetition suppression (or stimulus specific adaptation):

- decrease response to the standard sound upon repetition (adaptation)
- The decrease does not generalize to the deviant sound

Prediction error (or 'true' deviance detection):

• Increase in response to the deviant sound independently of the adaptation to the standard

- Deviance detection was described in the **auditory cortex, medial geniculate body** (MGB) and inferior colliculus (IC). It has not been found in the cochlear nucleus.
- Studies have characterized deviance detection in adult mice, gerbils, guinea pigs, cats, songbirds, big brown bats, and macaques under an **anesthetized or awake state**.
- Deviance response depends on **tuning field properties** of the neurons.
- Deviance responses changes with oddball **protocol parameters**. It has been observed as a response to **pure tones**, but also to **white noise**, **tone clouds** and **vocalization**.

- 1. How is deviance response changing during juvenile development?
- 2. How does experience influence this development?
- 3. What neuronal circuits underlie the changes in deviance response?

Patricia Valerio

1. How is deviance response changing during juvenile development?

- 2. How does experience influence this development?
- 3. What neuronal circuits underlie the changes in deviance response?

Patricia Valerio

Electrophysiological recordings in awake mice

10 sequences - 1 to 10 standards (ST) preceding 1 deviant (DT) 15 repetition of each sequence in randomized order

43

DT, ST: evoked spike rate in 0-60 ms

We showed that deviance detection maturation is independent of:

- Changes in adaptation to the tones across adolescence

- Changes in responses to the standard tone across adolescence

- Functional properties of neurons in response to pure tones (i.e. BW, threshold etc)

- 1. How is deviance response changing during juvenile development?
- 2. How does experience influence this development?
- 3. What neuronal circuits underlie the changes in deviance response?

Masking sensory inputs

In the visual system: Dark Rearing In the auditory system: White Noise Exposure

[Speechley et al., 2007] [Nakamura et al., 2020]

- 1. How is deviance response changing during juvenile development?
- 2. How does experience influence this development?
- 3. What neuronal circuits underlie the changes in deviance response?

A1 deviance detection maturation is specific to deep layers

A1 deviance detection maturation is similar in regular and fast spiking neurons

Implication of corticofugal projections in deviance detection

Adapted from [Malmierca, M.S. et al., 2015]

Corticofugal connections

Deviance detection across juvenile development

Maturation of deviance detection across the central auditory system is sequential.

Maturation of deviance detection is experience-dependent in A1, but not in MGB.

The developmental approach allows dissecting the many circuits involved in deviance detection.

Patricia Valerio

Florian Studer Sebastian Reinartz James Taylor Maria Shujah Tommaso Zeppillo Irenäus Stec Mari Nakamura Nicole Schütz

We are hiring!

www.brainsoundlab.com tania.barkat@unibas.ch

European Research Council

Horizon 2020 European Union funding for Research & Innovation

