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Supervised	learning:	 	fit	of	input-output	relation	from	examples	
	 	 	 	 	 	(in	high	dimensions)	
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What	is	unsupervised	learning	about?	
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Plan	of	the	lectures	

1.   Bayesian	Inference	and	dimensional	reduction:		
	phase	transition	in	principal	component	analysis	

	

2.  Representations:	auto-encoders,	Restricted	Boltzmann		 	 																																												
	 	 	 	 	 	 	Machines	&	sparse	feature	learning	

	
	
3.  Restricted	Boltzmann	Machines:	connections	with	graphical	

	 	 	 	 	 	models,	phase	transitions	&	applications	



Bayesian	inference	
(in	a	few	slides	..)	
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Bayesian	
inference	

	Data	
(observations	σ)	

Model	
(parameters	τ)	

new	data	
(predictions)	

Probabilistic	description:		joint	distribution	of	σ	&	τ	

p(σ ,τ ) = p(σ τ )× p(τ )

= p(τ σ )× p(σ )

Prior	distribution	over	
model	parameters	

Posterior	distribution	over	model	
parameters		

(can	be	sampled,	maximized,	…)	

Likelihood	of	model	
parameters	

Proba.	data	are	
generated	by	models	τ		

Bayes	inference	formula:	 p(τ σ ) =
p(σ τ )× p(τ )

p(σ )



A	historical	example:	Laplace	birth	rate	problem	

Historical	example:		Laplace’s	«	proof	»	that	boys	and	girls	have	≠	birth	rates		

Data:	 Nbs.	of	girls	born	in	Paris	from	1745	to	1770	:	245,945	
…	boys	… 	 	 	 	 				 									:	251,527 		

Model:	 σ	=	nb.	of	female	births,	n	=	nb.	nirths,	τ	=	girl	birth	probability	

p(σ τ ) = n
σ

!

"
#

$

%
&τ σ (1−τ )n−σ•   likelihood:  

•   prior: uniform over τ in [0;1]  

•   Bayes:  p(τ σ ) = τ σ (1−τ )n−σ

dτ ' τ 'σ (1−τ ')n−σ
0

1
∫



Posterior	distribution:	
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Std	dev	τ	=	0.007117		

Probability	that	τ	exceeds	0.5		=	
	

	 	 	 	 	 	 	 	Very	rare	event!		

dτ  
0.5

1
∫ p(τ σ ) ≈10−42

A	historical	example:	Laplace	birth	rate	problem	
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Bayesian	inference:	High-dimensional	setting	

Complexity	of	model	
(nb.	parameters)	

Quality	of	data	
(accuracy,	number,	…)	

Laplace	birth	rate	problem	
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Impossible	…	(?)	



Configuration:    vectors of p  variables: 
   

σ = (σ1 ,σ 2 ,...,σ p )

Model:      Gaussian distribution 
 

  
 
 
Moments: 

  

ρ(σ τ ) = det τ
(2π )p/2

 exp −
1
2
σ T ⋅τ ⋅σ

#

$
%

&

'
(

precision	matrix	

Bayesian	inference:	High-dimensional	setting	

σ i = 0

σ iσ j ≡Cij = τ −1( )ij
correlation	matrix	



A	trivial	case:	independent	variables	(null	model)	

No interaction:   (			)	τ	=	
(infinite	sampling)	

1	
1	

1	

1	

…	
0	

0	
[p	x	p	Identity	matrix]	

Correlation	matrix:							C		=	τ	-1		
d1	

d3	

d2	

(λτ)-1/2	=	(λC)1/2	=	1	Standard	deviation	



Minimal	non	trivial	case	

One special direction:   τ		=		Id		-									|e>	<e|	
(infinite	sampling)	
Correlation	matrix:							C		=	τ	-1		=		Id		+		s	|e>	<e|	
	

d1	

d3	

d2	

(λτ)-1/2	=	(λC)1/2	=	(1+s)1/2	
Standard	deviation	
along	direction	e	

s	
1+s	

(s>0)	

1	

Principal		
Component		
Analysis	



Data:    n  samples of  p multivariate 
      Gaussian variables, 

            (assumed to be independent)   
σ (s) = (σ1

(s),σ 2
(s),...,σ p

(s) )

Likelihood: ρ(σ (s) τ )
s
∏ =

det τ
(2π ) p/2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

n

 exp −
1
2

σ i
(s)τ ijσ j

(s)

i , j
∑

s
∑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Bayesian	inference:	High-dimensional	setting	

Log-likelihood: L(τ ) = n
2

log det τ − n
2

Ĉijτ ij
i , j
∑ + cst

correlations	from	data	

Maximization: ∂
∂τ ij

L(τ )
τMLE

= 0 = n
2

 (τMLE
−1 ) ji −

n
2
Ĉij

correlations	from	model	



Log-likelihood 

τ 

L 

•  Hessian of L is negative semi-definite, hence L is concave (easy to show) 

•  L2-regularization removes zero modes if necessary: 

•  But empirical correlation matrix corrupted by sampling noise: inversion is unreliable 

τMLE 

Empirical correlations =   (   )  

nb. of data 

Cij ± n-1/2 p ⇒  Errors on inverse matrix  

      of the order of (p/n)1/2 … 

Bayesian	inference:	High-dimensional	setting	

^	

L(τ )→ L(τ )− γ
2

τ ij
2

i , j
∑



Minimal	non	trivial	case	

|e>	How	to	infer 	 			from	data	?	

Expression	of	precision	matrix:		 τ = Id − s
1+ s

e e

 n s
2(1+ s)

ei
ij
∑ Ĉije j + ...

Maximum	Likelihood	Estimator:		 	 	 	find	top	component	of	empirical	C		

Log-likelihood:	 L(τ ) = n
2

log det τ − n
2

Ĉijτ ij
i , j
∑ + cst

correlations	from	data	

Log-likelihood:	



Example	of	PCA	application	

MNIST	data	set:	60,000	handwritten	digits	(not	Gaussian!!)	



Example	of	PCA	application	

Top	components		
of	correlation	matrix:	
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Example	of	PCA	application	

Top	components		
of	correlation	matrix:	

Visualization	of		
0	and	1	digits:	

Many	applications,	in	particular	in	biology,	chemistry,	engineering,	…	

Negative	entries	
Positive	entries	

0	 1	



Minimal	non	trivial	case	

|e>	How	to	infer 	 			from	data	?	

Expression	of	precision	matrix:		 τ = Id − s
1+ s

e e

 n s
2(1+ s)

ei
ij
∑ Ĉije j + ...

Maximum	Likelihood	Estimator:		 	 	 	find	top	component	of	empirical	C		

How	close	are	the	top	components	of	empirical	and	«	true	»	correlation	matrices??		

Log-likelihood:	 L(τ ) = n
2

log det τ − n
2

Ĉijτ ij
i , j
∑ + cst

correlations	from	data	

Log-likelihood:	

^	



A	trivial	case:	independent	variables	(null	model)	

No interaction:   (			)	τ	=	
(infinite	sampling)	

1	
1	

1	

1	

…	
0	

0	
[p	x	p	Identity	matrix]	

Correlation	matrix:							C		=	τ	-1		

(n	samples)	

Empirical	correlation		
matrix:								 Ĉ = 1

n
σ (s) ⋅

s
∑ (σ (s) )T

spectrum	???		

1	

p-fold	degenerate	

1	



A	trivial	case:	independent	variables	(null	model)	

No interaction:   (			)	τ	=	
(infinite	sampling)	
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1	

p-fold	degenerate	

1	 1+s	
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A	trivial	case:	independent	variables	(null	model)	

Random	matrix	problem:	can	be	solved	in	many	different	ways	…		
	 	 	 		 	 	(asked	me	for	handwritten	notes	1)	



A	trivial	case:	independent	variables	(null	model)	

Random	matrix	problem:	can	be	solved	in	many	different	ways	…		
	 	 	 															 	(asked	me	for	handwritten	notes	1)	

Results:			n	=	nb.	samples,	p	=	nb.	Variables	
	
Double	limit 		 	 	 					at	fixed	noise	level	
	
	
Density	of	eigenvalues	is	self-averaging,	and	equal	to	
	
	
	

	 	 	 	 	 	 	 	 	 	with	

n, p→∞ r = p
n

ρ(λ) = (λ+ −λ)(λ −λ− )
2π  r  λ

λ± = 1± r( )
2

•  correct	for	r	<	1,	otherwise	Dirac	peak	in	0	of	height	1-1/r	
•  graphical	representation	



A	trivial	case:	independent	variables	(null	model)	
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Back	to	minimal	non-trivial	model	

(infinite	sampling)	
Correlation	matrix:							C		=	τ	-1		=		Id		+		s	|e>	<e|	
	

r > s2r < s2Weak	noise	 Strong	noise	

•  Phase	transition!						(Baik,	Ben	Arous,	Peche	2005;	
			Reimann,	Van	den	Broeck,	Bex	1996;	

	 	 	 	 				coined	as	Retarded	Learning	by	Watkin,	Nadal	1994)	

•  Same	phenomenon	for	any	finite	nb.	K	of	eigenvalues	>	1	



Back	to	minimal	non-trivial	model	

(infinite	sampling)	
Correlation	matrix:							C		=	τ	-1		=		Id		+		s	|e>	<e|	
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Unsupervised	learning	of		
symmetry-breaking	direction	from	examples	

Reimann,	Van	den	Broeck,	Bex	1996	

!
B, | B |2= N•  Direction	in	N-dimension	space:	

•  P	examples	(i.i.d.):	 P0 (
!
ξ µ )∝exp −

1
2

ξi
µ( )
2

i
∑

⎛

⎝
⎜

⎞

⎠
⎟    →  

!
ξ µ

2
≈ N

P(
!
ξ µ )∝ P0 (

!
ξ µ )exp −V 1

N
ξi
µBi

i
∑

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟   

V λ( ) = − s
2(1+ s)

λ 2

V λ( ) = aλ +bλ 2 + c |λ |+...
Potential?	

(PCA)	



Unsupervised	learning	of		
symmetry-breaking	direction	from	examples	

Reimann,	Van	den	Broeck,	Bex	1996	

!
J , | J |2= N•  Inference	in	N-dimension	space:	

•  Bayes:	 P(
!
J )∝exp − V 1

N
ξi
µJi

i
∑

⎛

⎝
⎜

⎞

⎠
⎟

µ

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟   δ

!
J 2 − N( )



Unsupervised	learning	of		
symmetry-breaking	direction	from	examples	

Reimann,	Van	den	Broeck,	Bex	1996	

!
J , | J |2= N•  Inference	in	N-dimension	space:	

•  Bayes:	

•  Crucial	quantity:	

P(
!
J )∝exp −β V 1

N
ξi
µJi

i
∑

⎛

⎝
⎜

⎞

⎠
⎟

µ

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟   δ

!
J 2 − N( )

β	=	1					 	 	Bayes	decoding	
				=	infinite		 		ML,	MAP	

(ask	me	for	handwritten	notes	2)	

R =
!
J ⋅
!
B

P (
!
J )

⎡
⎣⎢

⎤
⎦⎥ !ξ µ{ }



Application	of	PCA	&	of	the	Marcenko-Pastur	
null	model	to	memory	consolidation	

Peyrache,	Battaglia	et	al.:	37	neural	cells	
recorded	in	prefrontal	cortex	
	
Task:	learn	correct	arm	in	Y-shaped	maze,	
changed	if	success	rate	high	enough	
	
Rat	perform	a	rule	shift	task,	with	four	
possible	rules	
	

Replay	of	rule-learning	related	neural	patterns	in	the	prefrontal	cortex	during	sleep	A.	Peyrache..	
F.	Battaglia			Nature	Neuroscience	2009	

Principal	component	analysis	of	ensemble	recordings	reveals	cell	assemblies	at	high	temporal	
resolution	A.Peyrache	…	F.	Battaglia	J.	Comput	Neurosci.	2009	



PCA	and	analysis	of	cortical	recordings	
	

 
Activity of prefrontal cortex is recorded during:  
•  sleep period before the task (PRE) 
•  task performance 
•  sleep period after the task (POST) 
 
 
 Replay and memory consolidation: 
 
 replay of the  pattern of activity during the SWS (slow wawe sleep) in period 
 corresponding to coordinated bursts of activity of the hippocampus (sharp waves),  
Allowing memories to be transferred to prefrontal cortex  



	

Time	is	discretized	in	time	windows	
	of	size	Δt=100	ms			

siτ	=	{	 	1	if	at	least	one	spike	in	time	window	k	
	0	if	no	spike	in	time	windows	k	

n
e
u
r
o
n

Time(s)	

Γij			=	
pij	-	pi	pj	

1.  Spike	trains	from	the	awake	epoch	are	binned	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

2.	Correlation	matrix	computed	and	diagonalized	
	
	

pi	(1-	pi)pj(1-	pj)	



3.	Only	eigenvectors	associated	to	the	largest	eigenvalues	are	
	retained,	threshold	value	from	the	upper	bound	of	eigenvalues	
of	correlation	matrix	of	independent,	normally	distributed	spike	trains	
	

Marcenko-Pastur	distribution	



R1	

4.	Spike	trains	from	the	sleep	epochs	are	binned	
5.	The	instantaneous	similarity	of	the	sleep	multi-unit	activity	with	the	awake	activity	is	computed	

through	the	reactivation	strength	
	

	

	
	
	

•  Instantaneous	similarity	high	in	Slow	Wave	Sleep	(SWS)	(shaded	areas)	after	learning	of	the	
task	related	to	hippocampal		sharp	waves	

	

R	q (τ)=(Σi	vqi	sτi	)2		



How	to	cope	with	too	few	data/many	parameters?	

	Data	
(observations	σ)	

Model	
(parameters	τ)	

Prior	knowledge		
over	model	
parameters	p(τ σ ) =

p(σ τ )× p(τ )
p(σ )



How	to	beat	the	phase	transition	threshold	
|e>	i.e.	to	infer	 				when	r	>	s2	?	

•  Log-likelihood:		
 n s
2(1+ s)

ei  Ĉij  e j
i , j
∑

•  Log-Prior	over	vector	e:		 − V (ei )
i
∑ Prior	potential	over	components	

Sparse	(L1)	

V	

e	V0 e

Nonnegative	

V	

e	

0	

V0=+∞	

r < 2 s2

Montanari,	Richard	(2014)	

Large	entries	

V	
e	

−V0e
4

(for	a	normalized	vector	e)	

Villaimana,	R.M.	(2015-16)	



Can	we	beat	the	phase		
transition	threshold?	

Large	entries	

V	
e	

−V0e
4

s	=	0.5	

V0	 V+	

V-	
Too	weak	prior	

Too	strong	prior	

•  Strength	of	prior	to	be	chosen	carefully	…	
•  Beyond	PCA:	non	quadratic	potentials	in	the	dot	product	between	data	and	direction	


