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Plan of the lectures

1. Bayesian Inference and dimensional reduction:
phase transition in principal component analysis

2. Representations: auto-encoders, Restricted Boltzmann
Machines & sparse feature learning

3. Restricted Boltzmann Machines: connections with graphical
models, phase transitions & applications



Autoencoders

Goal: dimensional reduction (similar to PCA)
extract low-dimensional representation of data

output -

hidden

input

V' = G(M'.h) (dim. p)

Tdecode
h =F(M.V) (dim. p’<<p)

Iencode
Vv (dim. p)

Cost function: D = E‘Vm -GM"- F(M - V(S)))‘z

Learning algorithm: gradient descent of D ...



Autoencoders: linear case

output - V'=M.h (dimp)
“decode . ,

hidden - h=M.V (dim p’<<p)
\encode

input - V (dim p)

Assume V of dimension p with covariance matrix C
Output V’ space spanned by p’-dimensional subspace
What happens for p’=17?

Extension to p’>1 case



Autoencoders: linear case

Interesting application: denoising

output -

hidden

input -

A

h

V'=M’".h (dimp)

decode

h=M.V (dim p’<<p)

encode

V (dim p)

 Want V' =V - noise, assume noise = multivar. with C"°s¢ = n?2 |d

e Again p’ top components of C
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Sparse Autoencoders

Problem: trade-off Efficiency (p’<<p) vs. Accuracy (p’=p)
Idea: Allow p’ to be large (large pools of representations)
but enforce sparsity in hidden layer !!

output - V' = G(M’.h) (dim. p)
decode
hidden I h = F(M.V) (dim. p’ = p)
Tencode
input Vv (dim. p)
Cost _ () _ TONG (s)
function: D= 2“‘/ GIM™ R + P )]

with  hY = F(M-V®) penalty



12,000 images
= 6,000 natural
+ 6,000 man-
made views

256x256 pixels

Torralba, Oliva,
2003



Fourier analysis of images
 Compute correlation matrix C(r,r’), where r is 2D vector

* Diagonalize and find top components

y IPC1 IPC 2 IPC 3 IPC 4 IPC 5 IPC 6 IPC 7 IPC 8
A
4 >
P O x
power
T spectrum

e Similar to 2D Fourier modes (plane waves)

* Due to statistical properties of images:
translation invariance
approximate rotation invariance




100 (+1)
input units

Images =
10x10 pixels

Ng, 2001

Sparse auto-encoder

100
hidden units

100

output units

Transfer function:

1

1+ exp(—z wm.xi)



Sparse autoencoder
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Sparse Dictionary Learning

OUtPUt D = EUV(S) -M'- h(S) 2 +P(h(S))]
Idecode S_ (s) (5)

hidden .- with h7'=FM-V*)
Iencode

input Minimize over M, M’

M, M’ define sets of features and h tells us which ones are useful to build
V (a small number due to sparsity!)



Sparse Dictionary Learning

output - D= EUV(S) _M'-h®

"y P(h(s))]

Idecode _ (s) (s)
hidden with  h7'=FWM-V*’)

Tencode
Minimize over M, M’

input

Sparse dictionary learning: go for features directly!



Sparse Dictionary Learning

hidden

input

Sparse dictionary learning: go for features directly!

Minimize D = EUV(S) -M'- hY 2 + P(h(s))] over M’ and h



Sparse Dictionary Learning

180 basis functions
12x12 pixel images
10,000 natural images

P(x)=log(1+x?)
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Olshausen, Field 1996




Connection with receptive fields in neuroscience

Hubel-Wiesel experiments (>=1959)

[Nobel Prize in Medicine 1981]

Electrical signal
from brain

Recording electrode ——»

Visual area —
Dl ;/ of brain -

\

7

0 Stimulus




Neural response (spikes/sec)

0 & 1 T T !
-40 -20 0 20 40

Stimulus orientation (deg)

Hubel & Wiesel, 1968

Simple orientation, position
Complex orientation, motion, direction
Hypercomplex orientation, motion, direction, length



Receptive Fields in
Macaque V1

Ringach, 2002
Zylberberg, Murphy, DeWeese 2011




Neural implementation of PCA

Journal of

Mathematical
Biology

© Springer-Verlag 1982

J. Math. Biology (1982) 15: 267 —273

A Simplified Neuron Model as a Principal Component
Analyzer

Erkki Oja

University of Kuopio, Institute of Mathematics, 70100 Kuopio 10, Finland

Abstract. A simple linear neuron model with constrained Hebbian-type synaptic
modification is analyzed and a new class of unconstrained learning rules is
derived. It is shown that the model neuron tends to extract the principal
component from a stationary input vector sequence.

Key words: Neuron models — Synaptic plasticity — Stochastic approximation



inputs X.

I O y y=zwixi

Neural implementation of PCA

weights
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Neural implementation of PCA

Dynamics over the weights?

Hebbian learning ...

Donald Hebb (The organization of behavior, 1949):
“When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A's efficiency, as one

of the cells firing B, is increased.”

i.e. Cells that fire together wire together

Experimental evidence?



Long term
Potentiation
(or depletion)
(= minutes ->
months)

T. Lomo,
Recordings in rat
hippocampus (1966)
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synapse

Splke tlmlng < Presynaptic ‘ Postsynaptic
dependent plasticity neuron 5 ) feuron =
Protocol : ety Q - l >
- . :
1. Estimation of synaptic efficacy ]I::_‘l'j::;\l',mpm Lo
2. Repeated stimulations at fixed delay = ool . g
(<0 or >0) 5 2 o
. . . . ool o 3
3. New estimation of synaptic efficacy §w = Fo
82 logeRal oo
< & ¥
» 05 X
Q0 (3 10

tpre — tpost [ms])

Lasting effect over 10 msec to few minutes



Neural implementation of PCA

weights

inputs )
_--_-~"““~——-.__ output

<
||
g
o

Sequential updating of weights (as more and more input vectors are presented):

Wi+ 1) =w(e)+17 ¥(0) (x(1) = (0) w(o))
/

Learning rate Hebbian term Leak term



Exercise: Anti-hebbian learning

weights

inputs )
----“""“‘--—___ output
X, O- y Ut
y=Ww. X
— _/

Sequential updating of weights (as more and more input vectors are presented):

w(t+1)=w(t)—n y(t) x()
?



Non-linear Hebbian learning & sparse features

— =\ 2
PCA = maximization of <(w-x) >

Non-quadratic extensions: <V(7v;c) > , V(y)=y’

X

e.g. V(y)=y* tofavor large projections

Easy to see that Oja’s rule becomes:

Wt +1) = w(@)+n V' (3(0)) (¥(0) - y(2) w(0))




Examples of non-linear Hebbian learning
of sparse features

e ~10° natural images
* Patches of 16x16 pixels

* Withening procedure: no information in covariance matrix

—

— -1/2
x—=C " -Xx



Vi(y)

Examples of non-linear Hebbian learning

of sparse features
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Brito, Gerstner (2016)



Weight change

o
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Examples of non-linear Hebbian learning
of sparse features

<V(w.X)>

1

L

¥ ¥ DB

Receptive field shape

Brito, Gerstner (2016)



Examples of non-linear Hebbian learning
of sparse features

/s

50 neurons 50 neurons
20.0

Length

0.5 Width 5.0 0.5 . 0.5 Width 5.0

Gray level increasing with <V> Brito, Gerstner (2016)
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Restricted Boltzmann Machines

Reducing the Dimensionality of
Data with Neural Networks

G. E. Hinton* and R. R. Salakhutdinov

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural
network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent
can be used for fine-tuning the weights in such “autoencoder” networks, but this works well only if
the initial weights are close to a good solution. We describe an effective way of initializing the
weights that allows deep autoencoder networks to learn low-dimensional codes that work much
better than principal components analysis as a tool to reduce the dimensionality of data.

imensionality reduction facilitates the
classification, visualization, communi-
cation, and storage of high-dimensional

data. A simple and widely used method is
principal components analysis (PCA), which

finds the directions of greatest variance in the
data set and represents each data point by its
coordinates along each of these directions. We
describe a nonlinear generalization of PCA that
uses an adaptive, multilayer “encoder” network

28 JULY 2006 VOL 313 SCIENCE www.sciencemag.org



Restricted Boltzmann Machines

Pretraining Unrolling Fine-tuning

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the “data” for training the next RBM in the stack. After the pretraining, the RBMs are
“unrolled” to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.



Restricted Boltzmann Machines

* Graphical model constituted by two sets of
random variables that are coupled together.

P(v,h)= %exp[—E(v,h)]

E(v,h)= —2 gV, + E U,(h,)- 2 w,vih,
i H i

Hidden layer

Visible layer (binary r.v.)

Smolensky 1986




Restricted Boltzmann Machines: Sampling

* Compute Hidden units Inputs ]5 = Ewiﬂvi -
R . N H _ H
Sample each hidden unit independently  P(h, ‘Iﬂ ) eXp[ U,(h)+hl, ] B
* Compute the visible layer inputs Il.V = Ewwhﬂ N
p
% %
- Sample each visible unit independently P (V; ‘I,- ) X exp[(gi +1, )Vi] ]

All hidden units

All visible
units

________________ >
Sampling steps



Hidden-Unit Potentials

* Compute hidden units inputs I;I = Ewiﬂvi

l

« Sample hidden units P(hﬂ ‘If)oceXP[_Uy(hu)"'hﬂIf-l

Most likely value of h given input I ?

d
U= 1" = h=o(1")

Ber

Lin

/
/
7
7
/
——————————————— /
B ——————————————————
4
7
7
4
7/
4
7

Bernoulli or ReLU empirically known to give better results than linear hidden units ...



Restricted Boltzmann Machines: Sampling

Compute Hidden units Inputs ]5 = Ewiﬂvi -
. L H H
Sample each hidden unit independently  P(h, ‘Iﬂ ) < eXp[—Uﬂ (h)+h,l, ]

Compute the visible layer inputs Il.V = Ewwhﬂ N

H
Sample each visible unit independently  P(V; ‘I,-V) X exp[(gi + I,-V )Vi]

Extract
features from
data

Reconstruct data
from features

Input layer (data)

________________ >
Sampling steps



Restricted Boltzmann Machines: Learning

* Graphical model constituted by two sets of
random variables that are coupled together. Hidden layer

P(v,h) = %exp[—E(v,h)]

E(v,h)=- EgyﬁEU (h,)- Ew,ﬂ vh,

 RBM learns a probability distribution over the
visible layer.

Visible layer (binary r.v.)

P = [ Hdh P(v.{h,}) exp[-E,;;(v)]

1
Z
* Wealsohave  P(h|v) extract (distribution of) representations from data

P(v|h) generate (distribution of) data given a representation

RBM are generative models, trained through unsupervised learning



Training algorithm for RBM

Dataset: V={v/,i=1..N,b=1...B}

Want to maximize log-likelihood ElogP(vb ‘{ww},{gi})
b

parameters

Contrastive divergence (CD), Hinton 2002

P(v)




Training algorithm for RBM

Dataset: V={v/,i=1..N,b=1...B}

Want to maximize log-likelihood ElogP(vb ‘{ww},{gi})
b

Stochastic gradient ascent: parameters ©
dlogP(v"|©) <aE(v,h @)> OE(v",h|@)
o —
aww aww A aww )
- < mo >RBM B [<hﬂ (VJ )>RBM VJ ]da,a
Hard to compute Easier to compute
Requires MCMC Computed directly

sampling from data



Example : Unsupervised learning of
MNIST synthetic digits

(with J. Tubiana)

EEEIENEA
272|232
60,000 E /
images of
digits with
28x28 pixels

ol on]~ (03] [ ] o[~

Clofo]=[oo



Example : Unsupervised learning of
MNIST synthetic digits

EEEE
2|7]z|2

|
)
N0 |
N

60,000 ReLU RBM
images of M =400
digits with hidden units
28x28 pixels

10 independent
MCMC
simulations with
different initial
visible
configurations

ol an|~ (03] [La] 2o~

6
A
5
4
9

‘ci-’.

Learning algorithm : PCD, PT (Tieleman 2008, Desjardins 2010)




Hidden layer

Learning regimes in RBM

Visible layer

16 hidden units 100 hidden units

Fischer & Igel. Training Restricted Boltzmann Machines: An Introduction, 2014.



Learning with RBM and receptive fields

(with M. Harsh)

* Features reflect the data distribution in a non-trivial way ...

* What happens for particularly well controled data?

Goal: try to learn invariant distribution with simple (few hidden units) RBM

Here, 1D Ising model configurations over 100 sites:

DYZN

P(al,oz,...,aN)=%exp

<O’i> =0, <aiai+d> = (tanh B)" = exp(—d / L(ﬁ))



Learning with RBM and receptive fields

10,000 configurations over 100-site rings; B=1




Learning with RBM: RBM ising 10 1 hidden unit beta=1

dynamical symmetry j:j
breaking - )
;_03- .: ..
;s
o ‘\n
Site index i
%h T
= 3
g
3

L(B)



Learning with RBM: Mechanism for bump formation
7=’78—W=’7(<h 7 e~

small B
expansion
{8, 5 o S 007" )
k

W%W°/))1/2
t—t-fn
aw
“iew
dt

A —2m+m(2—2%2)+m3
k

Discrete-like variant of Fisher-Kolmogorov-
Petrovsky-Pistunov equation

ou 0O*u

0.6 \
(8

_o 1_ q z'().z \"\
o o R v)

0
But growth stops due to long-range « inhibitory » term

10 50



locaion

Learning with RBM:
dynamical symmetry

200 1

100 1

-100 1

-200 1

restoration

time

1000




Learning with RBM: [

] ® ® o ’.
Multiple hidden units 06 ;5
0.4 %

. . f N\
\ p\ .
-0.4 -
?\ -0.6 1
-0.8 1
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Locking of bumps (relative phases are maintained through time)



Representation of space in the brain

* necessary to form and
retain new memories

* deeply intra-connected
and connected to
neighboring cortical
regions, e.g. EC

— TR  Hippocampus and EC
VEQ":- e W A fundamentally involved in

% the representation of
ﬂ‘l & space
‘. .//‘lh h
il b 70 s ‘
EC2 pD6— A\ S, ’ ,
EC3 38 2 R AR, ; O’Keefe, Dostrovsky (1971)

EC dew ~ Prix Nobel 2014




Place cells

Movie




Grid cells

Hafting, Fyhn, Molden, Moser & Moser(2005); Nobel Prize 2014

Trajectory of a rat through a square environment is
shown in black. Red dots indicate locations at which a
particular entorhinal grid cell fired.

Grid cell properties:

e fire on triangular lattice

e neighbouring cells differ by
translation of their grids

e ‘far away’ cells also differ
by grid rotation

e mesh sizes vary with
recording depth in MEC

e geometric organization of
grids (5 sizes, ratio 1.4)

e establish very fast in a new
environment and stabilize
over days

e found in rodents, monkeys,
bats

e 2D continuous attractor
models (with local inhibition)



Grid cells and phase locking

" variance of  fitted Yoon et al., Nature Neuroscience (2013)
SPIKES firing rate lattices Oh
A
- Y @ Y\0"O o
e 2.0 A ~0
v ho e ‘ o Loy
T £ 0. * L cmme ‘-'-.--"
8 ® e o o g @ | . )
A
$ o 4 .§ bt - - - -
I =
e g 2
N O ege @ a 4
2" :.Q':‘_: 0.8 )
O * e (223 cell pairs)
) @ ..@Oﬁ 0 .' .l  J "
/.' /.2 ' LL/

e neighbouring cells define identical 2D lattices, up to a 2D translation
e relative values of translation parameters are more stable over long periods of time

than parameters themselves
(0.5,0.5) (0.5,0.5)

Var/atlons of: / ./ / / /
re lative = Variations
phases / / / / of phases

(-0.5-0.5) a5 (0.5-05)  Af6D

e stability against moderate pertubations e.g. environment reshaping ...



