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Plan	of	the	lectures	

1.  Bayesian	Inference	and	dimensional	reduction:		
	phase	transition	in	principal	component	analysis	

	

2.   Representations:	auto-encoders,	Restricted	Boltzmann	 	 	
																																												Machines	&	sparse	feature	learning	

	
	
3.  Restricted	Boltzmann	Machines:	connections	with	graphical	

	 	 	 	 	 	models,	phase	transitions	&	applications	



Autoencoders	

Goal:	 	dimensional	reduction	(similar	to	PCA)	
	 	extract	low-dimensional	representation	of	data	

V	

V’	=	G(M’.h)	

h	=	F(M.V)	

Cost	function:		 D = V (s) −G(M ' ⋅ F(M ⋅V (s) ))
s
∑

2

Learning	algorithm:	gradient	descent	of	D	…		

(dim.	p)	

(dim.	p)	

(dim.	p’<<p)	



Autoencoders:	linear	case	

V				(dim	p)	

V’	=	M’.h					(dim	p)	

h	=	M.V				(dim	p’<<p)	

•  Assume	V	of	dimension	p	with	covariance	matrix	C	
•  Output	V’	space	spanned	by	p’-dimensional	subspace	
•  What	happens	for	p’=1?	
•  Extension	to	p’>1	case	



Autoencoders:	linear	case	

V				(dim	p)	

V’	=	M’.h					(dim	p)	

h	=	M.V				(dim	p’<<p)	

•  Want	V’	=	V	–	noise,	assume	noise	=	multivar.	with	Cnoise	=	η2	Id	
•  Again	p’	top	components	of	C		
	
•  But:		

Interesting	application:	denoising	

Mµ = wµ, M 'µ =
λµ

λµ +η
2 wµ



Sparse	Autoencoders	

Problem:	trade-off	Efficiency	(p’<<p)	vs.	Accuracy	(p’=p)	
Idea:	 	Allow	p’	to	be	large	(large	pools	of	representations)		

	 	but	enforce	sparsity	in	hidden	layer	!!	

V	

V’	=	G(M’.h)	

h	=	F(M.V)	

Cost		
function:		

D = V (s) −G(M ' ⋅ h(s) )
2
+P(h(s) )#

$%
&
'(

s
∑

(dim.	p)	

(dim.	p)	

(dim.	p’	≈	p)	

h(s) = F(M ⋅V (s) )with	 penalty	



Images	

12,000	images	
=	6,000	natural		
+	6,000	man-
made	views	

	
256x256	pixels	

	
	

Torralba,	Oliva,	
2003	



Fourier	analysis	of	images	

•  Compute		correlation	matrix	C(r,r’),	where	r	is	2D	vector	

•  Diagonalize	and	find	top	components	

•  Similar	to	2D	Fourier	modes	(plane	waves)	
	
•  Due	to	statistical	properties	of	images:		
				translation	invariance		
				approximate	rotation	invariance	

power	
spectrum	



Sparse	auto-encoder	

100	(+1)	
input	units	

	
	

Images	=	
10x10	pixels	

100		
output	units	

100		
hidden	units	

Ng,	2001	
Transfer	function:	
	

σ µ =
1

1+ exp − wµixi
i
∑

#

$
%

&

'
(



Sparse	autoencoder	

wµi

wµj
2

j
∑

(trained	on	
100	natural	
images)	



Sparse	Dictionary	Learning	

D = V (s) −M ' ⋅ h(s)
2
+P(h(s) )#

$%
&
'(

s
∑

h(s) = F(M ⋅V (s) )with	

M,M’	define	sets	of	features	and	h	tells	us	which	ones	are	useful	to	build	
V		(a	small	number	due	to	sparsity!)	

Minimize	over	M,	M’	



Sparse	Dictionary	Learning	

Sparse	dictionary	learning:	go	for	features	directly!	

D = V (s) −M ' ⋅ h(s)
2
+P(h(s) )#

$%
&
'(

s
∑

h(s) = F(M ⋅V (s) )with	

Minimize	over	M,	M’	



Sparse	Dictionary	Learning	

D = V (s) −M ' ⋅ h(s)
2
+P(h(s) )#

$%
&
'(

s
∑Minimize	

Sparse	dictionary	learning:	go	for	features	directly!	

over		M’	and	h	



Sparse	Dictionary	Learning	

Olshausen,	Field	1996	
	

180	basis	functions	
	

12x12	pixel	images	
	

10,000	natural	images	
	

P(x)=log(1+x2)	
	



Hubel-Wiesel	experiments	(>=1959)	
[Nobel	Prize	in	Medicine	1981]	

Connection	with	receptive	fields	in	neuroscience	



Simple 	 	 	orientation,	position 		
Complex	 	 	orientation,	motion,	direction 		
Hypercomplex 	orientation,	motion,	direction,	length 	 		
	



Receptive	Fields	in	
Macaque	V1	

Ringach,	2002	
Zylberberg,	Murphy,	DeWeese	2011	
	



Neural	implementation	of	PCA	



Neural	implementation	of	PCA	

…
	

inputs	 xi

weights	
wi

y = wi
i
∑ xi

   = w
!"
. x
"

output	

y 



Neural	implementation	of	PCA	

“When	an	axon	of	cell	A	is	near	enough	to	excite	a	cell	B	and	repeatedly	
or	persistently	takes	part	in	firing	it,	some	growth	process	or	metabolic	
change	takes	place	in	one	or	both	cells	such	that	A's	efficiency,	as	one	
of	the	cells	firing	B,	is	increased.”	
	
i.e.			Cells	that	fire	together	wire	together	

Donald	Hebb	(The	organization	of	behavior,	1949):	

Experimental	evidence?			

Dynamics	over	the	weights?	
	

	 	 	 	 	Hebbian	learning	…	



Long term 
Potentiation 
(or depletion) 
(= minutes -> 
months)

T. Lomo, 
Recordings in rat 
hippocampus (1966)



Spike timing 
dependent plasticity

Protocol	:	
	
1.  Estimation	of	synaptic	efficacy	
2.  Repeated	stimulations	at	fixed	delay	

(<0	or	>0)	
3.  New	estimation	of	synaptic	efficacy	

Lasting effect over 10 msec to few minutes



Neural	implementation	of	PCA	

…
	

inputs	

xi

weights	
wi

y = w
!"
. x
"output	

Sequential	updating	of	weights	(as	more	and	more	input	vectors	are	presented):	

w
!"
(t +1) = w

!"
(t)+η y(t) x

!
(t)− y(t) w

!"
(t)( )

Learning	rate	 Hebbian	term	 Leak	term	

y 



Exercise:	Anti-hebbian	learning	

…
	

inputs	

xi

weights	
wi

y = w
!"
. x
"output	

Sequential	updating	of	weights	(as	more	and	more	input	vectors	are	presented):	

w
!"
(t +1) = w

!"
(t)−η  y(t) x

!
(t)

y 

?	



Non-linear	Hebbian	learning	&	sparse	features	

PCA	=	maximization	of		 w
!"
⋅ x
!

( )
2

!
x

Non-quadratic	extensions:	 V w
!"
⋅ x
!

( )
!
x

,   V (y) ≠ y2

e.g.	 	 	 	 	 	to	favor	large	projections	V (y) = y4

Easy	to	see	that	Oja’s	rule	becomes:	

!w(t +1) = !w(t)+η V ' y(t)( ) !x(t)− y(t) !w(t)( )



Examples	of	non-linear	Hebbian	learning	
of	sparse	features	

•  ~106	natural	images	

•  Patches	of	16x16	pixels	

•  Withening	procedure:	no	information	in	covariance	matrix	

Brito,	Gertsner,	2016	

!
x→C−1/2 ⋅

!
x



V’(y)	

i	{wi}	

y	

Examples	of	non-linear	Hebbian	learning	
of	sparse	features	

Brito,	Gerstner	(2016)	
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Examples	of	non-linear	Hebbian	learning	
of	sparse	features	

Brito,	Gerstner	(2016)	



Gray	level	increasing	with	<V>	 Brito,	Gerstner	(2016)	

Examples	of	non-linear	Hebbian	learning	
of	sparse	features	



Restricted	Boltzmann	Machines	



Restricted	Boltzmann	Machines	



Restricted	Boltzmann	Machines	

Smolensky	1986	

Hidden	layer	

Visible	layer	(binary	r.v.)	

V1	 V3	V2	

h1	 h2	

•  Graphical	model	constituted	by	two	sets	of	
random	variables	that	are	coupled	together.	

	
	
	
	
	

P(v,h) = 1
Z
exp −E(v,h)[ ] wiµ

E(v,h) = − givi + Uµ(hµ)− wiµvihµ
i,µ
∑

µ
∑

i
∑



Restricted	Boltzmann	Machines:	Sampling	

V(0)
	

h(0)	

V(1)
	 V(2)

	

h(1)	

•  Compute	Hidden	units	Inputs		

•  Sample	each	hidden	unit	independently	

•  Compute	the	visible	layer	inputs	

•  Sample	each	visible	unit	independently	

Input	layer		

Hidden	layer									

Sampling	steps	

Iµ
H = wiµvi

i
∑

P(hµ Iµ
H )∝ exp −Uµ(hµ)+ hµIµ

H#$ %&

Ii
V = wiµhµ

µ
∑

P(vi Ii
V )∝ exp (gi + Ii

V )vi"# $%

All	visible	
units	

All	hidden	units	



Hidden-Unit	Potentials	

•  Compute	hidden	units	inputs		

•  Sample	hidden	units	

Iµ
H = wiµvi

i
∑

P(hµ Iµ
H )∝ exp −Uµ(hµ)+ hµIµ

H#$ %&

h(t)	

v(t)	

Most	likely	value	of		h	given	input	IH	?	

d
dh
U(h) = I H ⇒ h =Φ I H( )

H	

Bernoulli	or	ReLU	empirically	known	to	give	better	results	than	linear	hidden	units	…	



Extract	
features	from	

data	

•  Compute	Hidden	units	Inputs		

•  Sample	each	hidden	unit	independently	

•  Compute	the	visible	layer	inputs	

•  Sample	each	visible	unit	independently	

Input	layer	(data)	

Hidden	layer	(features)	

Reconstruct	data	
from	features	

Sampling	steps	

Iµ
H = wiµvi

i
∑

P(hµ Iµ
H )∝ exp −Uµ(hµ)+ hµIµ

H#$ %&

Ii
V = wiµhµ

µ
∑

P(vi Ii
V )∝ exp (gi + Ii

V )vi"# $%

Restricted	Boltzmann	Machines:	Sampling	

V(0)
	

h(0)	

V(1)
	 V(2)

	

h(1)	



Hidden	layer	

Visible	layer	(binary	r.v.)	

V1	 V3	V2	

h1	 h2	

•  Graphical	model	constituted	by	two	sets	of	
random	variables	that	are	coupled	together.	

	
	
	
	
	
•  RBM	learns	a	probability	distribution	over	the	

visible	layer.		

•  We	also	have		

	

Restricted	Boltzmann	Machines:	Learning	

P(v,h) = 1
Z
exp −E(v,h)[ ]

E(v,h) = − givi + Uµ(hµ)− wiµvihµ
i,µ
∑

µ
∑

i
∑

wiµ

P(v) = dhµ
µ
∏∫ P v,{hµ}( ) ≡ 1

Zeff
exp −Eeff (v)%& '(

RBM	are	generative	models,	trained	through	unsupervised	learning	

P(h | v)
P(v | h)

extract	(distribution	of)	representations	from	data	

generate	(distribution	of)	data	given	a	representation	



				 	 	 	 	 	 	 	 	 	 	 	 		

Contrastive	divergence	(CD),	Hinton	2002	

vvdata

P(v)

Training	algorithm	for	RBM	

Data	set:	
	
Want	to	maximize	log-likelihood	
	

logP vb {wiµ},{gi}( )
b
∑

V = vi
b, i =1…N,b =1…B{ }

parameters	Θ



Training	algorithm	for	RBM	

Data	set:	
	
Want	to	maximize	log-likelihood	
	
Stochastic	gradient	ascent:		

logP vb {wiµ},{gi}( )
b
∑

V = vi
b, i =1…N,b =1…B{ }

∂ logP vb Θ( )
∂wiµ

∝
∂E v,h Θ( )

∂wiµ v,h

−
∂E vb,h Θ( )

∂wiµ
h

parameters	Θ

Easier	to	compute	Hard	to	compute	

=      hµvj RBM
    −         hµ (vj ) RBM

vj"
#

$
%data

Computed	directly	
from	data	

Requires	MCMC	
sampling	



Example	:	Unsupervised	learning	of	
MNIST	synthetic	digits	

60,000	
images	of	
digits	with	
28x28	pixels	

(with	J.	Tubiana)	



Example	:	Unsupervised	learning	of	
MNIST	synthetic	digits	

ReLU	RBM		
M	=	400	

hidden	units	

60,000	
images	of	
digits	with	
28x28	pixels	

Learning	algorithm	:	PCD,	PT	(Tieleman	2008,	Desjardins	2010)	

10	independent	
MCMC	

simulations	with	
different	initial	

visible	
configurations	



Learning	regimes	in	RBM	

16	hidden	units	 100	hidden	units	

Fischer	&	Igel.	Training	Restricted	Boltzmann	Machines:	An	Introduction,	2014.		

Hidden	layer	

Visible	layer	



Learning	with	RBM	and	receptive	fields	
(with	M.	Harsh)	

•  Features	reflect	the	data	distribution	in	a	non-trivial	way	…	
	
•  What	happens	for	particularly	well	controled	data?	

Goal:	try	to	learn	invariant	distribution	with	simple	(few	hidden	units)	RBM	
	
Here,	1D	Ising	model	configurations	over	100	sites:	

P σ1,σ 2 ,...,σ N( ) = 1Z exp β σ iσ i+1
i
∑

⎛

⎝
⎜

⎞

⎠
⎟

σ i = 0, σ iσ i+d = (tanhβ)d = exp −d / L(β)( )



10,000	configurations	over	100-site	rings;	β=1	

Learning	with	RBM	and	receptive	fields	



Learning	with	RBM:		
dynamical	symmetry	

breaking	

L(β)	

Bu
m
p	
w
id
th
	

W
i	

Site	index	i	



Learning	with	RBM:	Mechanism	for	bump	formation	

dWi

dt
=η

∂L
∂Wi

=η h Wi RBM
− h Wi data( )

        =η βWi+1 +βWi−1 +Wi
3 −Wi Wk

2 +O(W 5,βW 3)
k
∑

⎛

⎝
⎜

⎞

⎠
⎟

small	β	
expansion	

dWi

dt
=Wi+1 +Wi−1 − 2Wi +Wi 2− Wk

2

k
∑

⎛

⎝
⎜

⎞

⎠
⎟+Wi

3

W →W ⋅β1/2

t→ t ⋅βη

•  Discrete-like	variant	of	Fisher-Kolmogorov-	
	 	 	 	Petrovsky-Pistunov	equation	

	
•  But	growth	stops	due	to	long-range	«	inhibitory	»	term!	



Learning	with	RBM:		
dynamical	symmetry	

restoration	

time	

lo
ca
io
n	



Learning	with	RBM:		
Multiple	hidden	units	

W
i	

Site	index	i	

time	

lo
ca
io
n	

Locking	of	bumps	(relative	phases	are	maintained	through	time)	



Representation	of	space	in	the	brain	

•  necessary to form and       
retain new memories

•  deeply intra-connected 
and connected to 
neighboring cortical 
regions, e.g. EC

•  Hippocampus and EC 
fundamentally involved in 
the representation of 
space

O’Keefe, Dostrovsky (1971)
Prix Nobel 2014



Movie

Place	cells	



Hafting,	Fyhn,	Molden,	Moser	&	Moser(2005);	Nobel	Prize	2014	

Grid	cell	properties:	
	
• 	fire	on	triangular	lattice	
• 	neighbouring	cells	differ	by	
			translation	of	their	grids	
• 	‘far	away’	cells	also	differ	
			by	grid	rotation	
• 	mesh	sizes	vary	with		
			recording	depth	in	MEC	
• 	geometric	organization	of	
		grids	(5	sizes,	ratio	1.4)	
• 	establish	very	fast	in	a	new	
		environment	and	stabilize		
		over	days	
• 	found	in	rodents,	monkeys,	
			bats	
• 	2D	continuous	attractor	
		models	(with	local	inhibition)		

Trajectory	 of	 a	 rat	 through	 a	 square	 environment	 is	
shown	in	black.	Red	dots	indicate	locations	at	which	a	
particular	entorhinal	grid	cell	fired.	

Grid	cells	



Grid cells and phase locking 
spikes	

variance	of	
firing	rate	

fitted	
lattices	

• 	neighbouring	cells	define	identical	2D	lattices,	up	to	a	2D	translation	
• 	relative	values	of	translation	parameters	are	more	stable	over	long	periods	of	time					
																																																																																										than	parameters	themselves	
	
	
	
	
	
	
• 	stability	against	moderate	pertubations	e.g.	environment	reshaping	…	

Yoon	et	al.,	Nature	Neuroscience	(2013)	

Variations	
of	phases	

Variations	of	
relative	
phases	


