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Plan	of	the	lectures	

1.  Bayesian	Inference	and	dimensional	reduction:		

	phase	transition	in	principal	component	analysis	

	

2.  Representations:	auto-encoders,	Restricted	Boltzmann		 	 																																												

	 	 	 	 	 	 	Machines	&	sparse	feature	learning	

	
	
3.   Restricted	Boltzmann	Machines:	connections	with	graphical	

	 	 	 	 	 	models,	phase	transitions	&	applications	



Restricted	Boltzmann	Machines	

Smolensky	1986	

Hidden	layer	

Visible	layer	(binary	r.v.)	

V1	 V3	V2	

h1	 h2	

•  Graphical	model	constituted	by	two	sets	of	
random	variables	that	are	coupled	together.	

	

	

	

	

	

P(v,h) = 1
Z
exp −E(v,h)[ ] wiµ

E(v,h) = − givi + Uµ(hµ)− wiµvihµ
i,µ
∑

µ
∑

i
∑



Hidden	layer	

Visible	layer	(binary	r.v.)	

V1	 V3	V2	

h1	 h2	

•  Graphical	model	constituted	by	two	sets	of	
random	variables	that	are	coupled	together.	

	

	

	

	

	

•  RBM	learns	a	probability	distribution	over	the	
visible	layer.		

•  We	also	have		

	

Restricted	Boltzmann	Machines:	Learning	

P(v,h) = 1
Z
exp −E(v,h)[ ]

E(v,h) = − givi + Uµ(hµ)− wiµvihµ
i,µ
∑

µ
∑

i
∑

wiµ

P(v) = dhµ
µ
∏∫ P v,{hµ}( ) ≡ 1

Zeff
exp −Eeff (v)%& '(

RBM	are	generative	models,	trained	through	unsupervised	learning	

P(h | v)
P(v | h)

extract	(distribution	of)	representations	from	data	

generate	(distribution	of)	data	given	a	representation	



Hidden-Unit	potential	

•  Compute	hidden	units	inputs		

•  Sample	hidden	units	

Iµ
H = wiµvi

i
∑

P(hµ Iµ
H )∝ exp −Uµ(hµ)+ hµIµ

H#$ %&

h(t)	

v(t)	

Most	likely	value	of		h	given	input	IH	?	

d
dh
U(h) = I H ⇒ h =Φ I H( )

H	

Bernoulli	or	ReLU	empirically	known	to	give	better	results	than	linear	hidden	units	…	



MNIST	synthetic	digits:	Linear	vs.	ReLU	RBMs	

ReLU	RBM		

M	=	400	

LogLikelihood	:	-0.11	

bits/pixel	

Linear	RBM	

M	=	400	

LogLikelihood	:	-0.15	bits/

pixel	

MNIST	60,000	

image	of	digits	of	

size	28x28	

(digits	are	less	noisy,	more	accurate,	and	MCMC	are	mixing	faster)	



RBM	vs.	BM:	quadratic	hidden	potentials	

U(h) = h
2

2

P(v,h) = 1
Z
exp −E(v,h)[ ]

E(v,h) = − givi + Uµ(hµ)− wiµvihµ
i,µ
∑

µ
∑

i
∑

P(v) = dhµ
µ
∏∫ P v,{hµ}( ) ≡ 1

Zeff
exp −Eeff (v)%& '(

Quadratic	potential	for	hidden	units:	

1.  Energy	of	visible	and	
hidden	configurations:	

2.  Joint	distribution:	
	

	

3.  Marginal	distribution	over	

visible	configurations	



RBM	vs.	BM:	quadratic	hidden	potentials	

Eeff (v) = − givi +
1
2
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∑ vivj

Boltzmann	machine,	i.e.	Ising	model	with	interaction	matrix	of	rank-M	!	

Also	called	Hopfield	model	

Non	quadratic	potentials	generate	multi-body	interactions	between	vi	...	

Jij	

Talk	by	B.	Bravi	

next	Friday	



Hopfield’s model (1982) 

	

•  Autoassociative	memory	

•  Simple	dynamics	of	components		

					(no	clock)	

•  Generalization,	error	correction,	time	

sequence	storage,	…	

•  Robustness	to	failure	of	individual	

components	



The model 

sj 

si 

Jij 

•  set of activity configurations (patterns) to be ‘stored’: 

i
µw = ±1

Index of pattern = 1, …, P 

Index of neuron = 1, …, N 

•  synaptic interactions: ijJ =
1
N i

µw
µ

∑ j
µw

•  updating rule: vi (t +1) = sign Jij
j
∑ vj (t)−θi
#

$
%%

&

'
(( (θi = −gi )



A: Yes, if number P of patterns small enough …   

E v1,v2,...,vN[ ] = − 1
2

Jij
i, j
∑ vivj + θivi

i
∑

Q: Is the final state close to one of the patterns? 

Dynamics	is	descending	

Are	the	minima	of	E	close	to	the	patterns?	



PK v1,v2 ,...,vN( ) = 1
Z(K )

 exp K
2N

viv j
i≠ j
∑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Reminder	on	the	mean	field-Ising	model	

Probability	of	a	configuration	of	spins:	

characterizes	the	degree	of	order	of	a	typical	configuration:		

Order	parameter:	 m(K ) = P v1,v2 ,...,vN( ) × 1
N{v1,v2 ,...,vN =±1}

∑ vi
i
∑

m(K )

Kc	
0	

K	(=	inverse	temperature)	

+1	

-1	

(=1)	



From	the	Mattis	model…	

PIsing v1,v2 ,...,vN( )∝ exp K
2N
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Same	phase	transition!	

!v



…	to	the	Hopfield	model	

m1	

PHopfield v1,v2 ,...,vN( ) = 1
Z wi

µ{ }( )
 exp K

2N
 viwi

µ

i
∑
⎛

⎝
⎜

⎞

⎠
⎟

2

µ=1... p
∑

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Same	phase	transition	as	Ising	model	if	p	finite	&	N	tends	to	infinity:	

m2	

m3	

!w2
p		«	patterns	»	

!wµ

µ =1...p( )

i.e.,	for	large	K,	one	overlap 							is	positive,	the	others	vanish	(other	

scenarios	with	multiple	positive	overlaps	are	exponentially	unlikely…)	

!w3

!w1

mµ

!v



p 
N 

Amit,	

Gutfreund,	

Sompolinsky	

(1985)	

The	Hopfield	model	in	the	double	p,N	!∞	limit	

(large	K)	

E v1,v2 ,...,vN⎡⎣ ⎤⎦= −
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2
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≈ 0.138



Gaussian	RBM:	The	Phases	(at	low	temperature)	

Glassy	Phase	:		

	

	

	

	

	

•  All	hidden	units	are	weakly	

activated	

•  All	states	have	weak	

probability	

Ferromagnetic	Phase	:		

	

	

	

	

	

•  One	hidden	unit	is	strongly	

activated	and	the	others	are	

weakly	activated.	

•  Number	of	regions	with	high	

probability	is	linear	in	N	

More	

hidden	

units	



Prototype	vs.	compositional		
regimes	in	nonlinear	RBM	

16	hidden	units	(prototypes)	 100	hidden	units	(sparse	features)	

Fischer	&	Igel.	Training	Restricted	Boltzmann	Machines:	An	Introduction,	2014.		

Hidden	layer	

Visible	layer	



Prototype	regime	

	

	

	

	

	

	

	

•  One	hidden	unit	is	strongly	activated	and	the	
others	are	weakly	activated;	

•  Limited	diversity	of	visible-layer	configurations	

given	hidden-unit	activation	

•  Number	of	high-probability	configurations	is	

linear	in	nb.	of	hidden	units	

Strongly	reminiscent	of	ferromagnetic	

regime	in	Hopfield	model	:		



Compositional	
regime	

??	



Compositional	
regime	

Each	generated	digit	image	is	

composed	by	superposing	about	

L≈20	elementary	strokes,	while	

S≈250	units	are	silent.		

Different	combinations	of	strokes	

produce	different	variants	of	the	

same	digit	or	different	digits	



A	«	dictionary	»	of	sparse	
and	strong	features	

A	subset	of	

the	features	

learnt	for	a		

ReLU	RBM.	

	M	=	400.		

	

Each	image	

represent	a	

weight	

vector		

wi{ }µ

•  After	learning	of	data,	weights	are	sparse	

•  And	few,	remaining	weights	are	large!	

•  No	interference	thanks	to	large	ReLU	
threshold	…		

Conditional	

averages	

Black:	v=0,	

White:	v=1,	

Grey	scale	



Random-Weight	RBM	ensemble	

N ! 1
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Statistical	Mechanics	of	Random-Weight	RBMs	

•  Replica	theory	computation	is	performed	to	estimate	the	average	free	

energy	F	in	the	zero-temperature	limit	:	

	

Hidden	unit	

	threshold	

Fields	on	visible	

units	

Number of hidden units

Number of visible units

Weight	

sparsity	

F α, p,g,θ( ) = lim
N→∞
T→0

−
T
N
log dhµ

µ
∏∫ exp −E(v,h;W,g,θ ) /T[ ]

{vi}
∑

Averaged	out	



The	three	representational	regimes	of	RBM	

“Glassy”	regime		

	

	

	

	

Compositional		regime	

“Ferromagnetic”	regime		

	

	

	

	

	

More	

hidden	

units	

Non	quadratic		

hidden-unit		

potentials	

Increasing	sparsity	

•  All	hidden	units	active	

•  Visible	configurations	

are	complex	mixtures	

•  Not	Interpretable	

•  One	hidden	unit	very	active	

•  Corresponding	weights	

define	local	prototype	

•  Unable	to	extract	invariances	

•  Multiple	hidden	units	very	active	

•  Corresponding	weights	define	

features	composing	visible	

configurations	

•  Extract	invariances;	interpretable	



Transition	paths	

Example	of	

Transition	

Path	

(diffusive	motion)	

	transition	path	

sliding	



Proteins:	structure	&	function	

	Amino-acid	Sequence					

	Structure		

	Function		

	WW	protein	domain					

ALPPGWEERIHLDGRTFYIDHNSKITQWEDPRLQ	

Ø  Sequence	fully	defines	3D	structure	and	function	of	the	corresponding	protein:	
						Genotype-phenotype	mapping?	

	

	

	

(with	S.	Cocco,	J.	Tubiana)	



Proteins:	structure	&	function	

	Structure		

	Function		

?	

	WW	protein	domain					

•  neutral:	no	effect		
•  detrimental	
•  beneficial	

Mutation:	L	è	A	

ALPPGWEERIHLDGRTFYIDHNSKITQWEDPRLQ	

	Amino-acid	Sequence					

Ø  Sequence	fully	defines	3D	structure	and	function	of	the	corresponding	protein:	
						Genotype-phenotype	mapping?	

	

Ø  Mapping	is	complex:		

						Mutations	may	largely	affect	stability,	activity,	specificity,	…	of	protein							

																																																																													(directed	evolution	for	protein	design)	

						No	additivity	a	priori:	epistasis	

	

	



[Biologicalphysics.iop.org]	

Proteins:	Evolutionary	Families	

•  Many	realizations	of	sequences	of	proteins	with	similar	function	&	structure	

•  Characterization	of	underlying	distribution??	

•  May	help	to	Infer	structure,	function;	Predict	effect	of	mutations;	Design	new	proteins;	…	



Multi-sequence	alignments	

[	-	=	gap,	same	format	for	all	sequences]	

	

Sequence	number	 Amino-acid	content	



High-dimensional	representations	of	protein	sequences	

•  RBM	extract	high-D	representations	of	(common	inputs	to)	sequences	

•  Representations	are	useful	(to	design	«	good	»	sequences)	…	
•  …	and,	hopefully,		biologically	meaningful	(structure,	function,	history)	

																	

											è		Practical	implementation	of	genotype-to-phenotype	relation				

AL	

A2	A1	

P(	h	|	A)	

P(	A	|	h)	



WW	domain	(PFAM	PF00397)	

	

	

	

	

	

	

	

	

HSP70	chaperone	protein	(PFAM	PF00012)	

	

Hidden	layer	(100-400	dReLU)	

Visible	layer	(21-state	units)	

A1	 A3	A2	

h1	 h2	

Tubiana,	Cocco,	R.M.,	eLife	2019	

Applications	of	RBM	to	protein	sequence	data	

ATP-bound	 ADP-bound	

Proline-rich	

ligand	



Example	1:	the	WW	domain	
•  Binding	domain	involved	in	eukaryotic	signalling	proteins	

•  N=30-40	amino-acids	(very	small)	

•  Folds	into	3-stranded	antiparallel	beta	strands	

	

	

	

•  Recognizes	Proline-rich	Linear	Motifs	with	4	types	of	ligand	specificities	
	

	
Type	I: 	PPXY,	Y	=	Tyrosine	(aromatic)	,	X	=	any	residue		

Type	II: 	PPLP,	L	=	Leucine	

Type	III: 	PR	rich	peptide,	R	=	arginine	

Type	IV:					p(S/T)P,	phosphorylated	serine/threonine	



•  N>600	amino-acids	

	

•  Multidomain.	

•  Nucleotide	Binding	Domain	(NBD)	

•  Substrate	Binding	Domain	(SBD)	

•  LID	Domain	

•  Linker	

Function:	

•  Traps	substrate	proteins	between		
the	LID	and	the	SBD	

•  LID/SBD	cavity	is	either	open	or	close	
Roles:	

•  Assist	protein	folding		
•  Transport	proteins	for	degradation	

	

ADP	bound	conformation	(closed)	

PDB:	4jne	

ATP	bound	conformation	(open)	

PDB:	2kho	

Example	2:	HSP70	chaperone	protein	



Hidden-unit	potentials	

Generalization	of	Rectified	Linear	Units:	
•  Positive	slopes	at	origin	favors	h=0	(as	L1	regularization)	
•  Negative	slopes	favors	bimodal	distribution	for	h	

•  Confining	potential	at	large	h	
•  Four	parameters	to	be	learned	from	data	for	each	hidden	unit	



WW	domain	

Weights	reflect	structural	features	



Weights	reflect	structural	features	
HSP70	

•  Collective	mode	located	on	the	unstructured	C-	terminal	tail	

•  Known	to	be	crucial	for	interactions	with	co-chaperones	
•  Either	charged	hydrophilic	or	tiny	hydrophobic	residues	
•  Analogous	to	IDP	



Interdomain	weights	control	allostery	

Intra-domain		

SBD/LID	covariation	

ATP-bound	 ADP-bound	

Nucleotide	Binding	Domain	(NBD)	 	 	Substrate	Binding	Domain	(SBD)	

LID	Domain 	 	 	 	 	 	 	Linker	



Interdomain	features	control	allostery	

HSP110	

Intra-domain		

SBD/LID	covariation	

Non-allosteric	specific	

ATP-bound	 ADP-bound	



Loop	motifs	control	ATP/ADP	regulation	

(NBD)	



RBM	features	reflect	function	



WW	Domain:	Weights	Determine	Motif	
Recognition	Specificity	

Type	I		:	 	PPXY	

Type	II	: 		PPLP		

Type	III: 		PR	

Type	IV: 		[p(S/T)P]	

Experimental	data	from:	
Russ	et	al.	Nature	2005	

Espanel	and	Sudol	J.	Biol.	Chem.	1999	

Otte	et	al.	Protein	Science	2003	

Motif	recognized		



Why	are	RBM	extracting	useful/interpretable	
representations?	

The	problem:	
	
Find	probability	

distribution	

from	very	few	

samples	

Sequence	

space	



Why	are	RBM	extracting	useful/interpretable	
representations?	

Mixture	of	
local	models	:	
	

Each	hidden	

unit	sees	and	

codes	for	a	

patch	in	

sequence	space	

Sequence	

space	



Why	are	RBM	extracting	useful/interpretable	
representations?	

Entangled	model:	
	

All	or	almost	all	

hidden	

units	active	at	any	

position	in	

sequence	space	

	

	

Non	interpretable	

representations	…	

	

	 Sequence	

space	



Why	are	RBM	extracting	useful/interpretable	
representations?	

Decomposition	
into	
constitutive	
features:	
	

	

Each	hidden	

codes	for	an	

invariant	

feature;	

sequences	are	

obtained	by	

combinatorial	

composition	of	

features	 Sequence	

space	



The	three	representational	regimes	of	RBM	

“Glassy”	regime		

	

	

	

	

Compositional		regime	

“Ferromagnetic”	regime		

	

	

	

	

	

More	

hidden	

units	

Non	quadratic		

hidden-unit		

potentials	

Increasing	sparsity	

•  All	hidden	units	active	

•  Visible	configurations	

are	complex	mixtures	

•  Not	Interpretable	

•  One	hidden	unit	very	active	

•  Corresponding	weights	

define	local	prototype	

•  Unable	to	extract	invariances	

•  Multiple	hidden	units	very	active	

•  Corresponding	weights	define	

features	composing	visible	

configurations	

•  Extract	invariances;	interpretable	



Driving	RBM	to	the	compositional	phase	

Very		
sparse	

Not		
sparse	

Very		
sparse	

Not		
sparse	



Driving	RBM	to	the	compositional	phase	



WW	Domain:	Weights	Determine	Motif	
Recognition	Specificity	

Type	I		:	 	PPXY	

Type	II	: 		PPLP		

Type	III: 		PR	

Type	IV: 		[p(S/T)P]	

Experimental	data	from:	
Russ	et	al.	Nature	2005	

Espanel	and	Sudol	J.	Biol.	Chem.	1999	

Otte	et	al.	Protein	Science	2003	

Motif	recognized		



Artificial	Sequence	Generation	with	RBM	

Artificial	Sequences	



Artificial	Sequence	Generation	with	RBM	

Artificial	Sequences	

Type	I-like		

binding	pocket	+	

Short	loop	

L	 P	 P	 G	 W	

h4	h3	

Type	II-like		

binding	pocket	+	

Short	loop	

h3	

L	 P	 P	 G	 W	

h4	

Type	II-like		

binding	pocket	+	

Short	loop	

h3	

L	 P	 P	 G	 W	

h4	



Artificial	Sequence	Generation	with	RBM	

Artificial	Sequences	

Type	I-like		

binding	pocket	+	

Short	loop	à	Type	I	

L	 P	 P	 G	 W	

h4	h3	

Type	II/III/IV-like		

binding	pocket	+	

Short	loop	à	Type	II/III	

h3	

L	 P	 P	 G	 W	

h4	

Type	II/III/IV-like		

binding	pocket	+	

Short	loop	à	Type	IV	

h3	

L	 P	 P	 G	 W	

h4	

Type	I-like		

binding	pocket	+	

Short	loop	à	Unknown	

L	 P	 P	 G	 W	

h3	 h4	



•  Data-driven	models	are	getting	increasingly	important;	need	for	

controlled	approaches	to	infer	and	interpret	models.	

•  If	you	have	questions	about	lectures	or	notes,	please	contact	me!	

				(	remi.monasson	at	ens.fr)	

•  Fascinating	issues	from	statistical,	computational,	conceptual	

points	of	views.	Lots	of	things	to	do	in	future!!	

	

•  Postdoc	positions	available	from	January	2020	…	

Perspectives	


