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Plan of the lectures

1. Bayesian Inference and dimensional reduction:
phase transition in principal component analysis

2. Representations: auto-encoders, Restricted Boltzmann
Machines & sparse feature learning

3. Restricted Boltzmann Machines: connections with graphical
models, phase transitions & applications



Restricted Boltzmann Machines

* Graphical model constituted by two sets of
random variables that are coupled together.

P(v,h)= %exp[—E(v,h)]

E(v,h)= —2 gV, + E U,(h,)- 2 w,vih,
i H i

Hidden layer

Visible layer (binary r.v.)

Smolensky 1986




Restricted Boltzmann Machines: Learning

* Graphical model constituted by two sets of
random variables that are coupled together. Hidden layer

P(v,h) = %exp[—E(v,h)]

E(v,h)=- EgyﬁEU (h,)- Ew,ﬂ vh,

 RBM learns a probability distribution over the
visible layer.

Visible layer (binary r.v.)

P = [ Hdh P(v.{h,}) exp[-E,;;(v)]

1
Z
* Wealsohave  P(h|v) extract (distribution of) representations from data

P(v|h) generate (distribution of) data given a representation

RBM are generative models, trained through unsupervised learning



Hidden-Unit potential

* Compute hidden units inputs I;I = Ewiﬂvi

l

« Sample hidden units P(hﬂ ‘If)oceXP[_Uy(hu)"'hﬂIf-l

Most likely value of h given input I ?
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Bernoulli or ReLU empirically known to give better results than linear hidden units ...



MNIST synthetic digits: Linear vs. ReLU RBMs

MNIST 60,000
image of digits of
size 28x28

—

Linear RBM
M =400
Loglikelihood : -0.15 bits/
pixel

RelLU RBM
M =400
LoglLikelihood : -0.11
bits/pixel

(digits are less noisy, more accurate, and MCMC are mixing faster)



RBM vs. BM: quadratic hidden potentials

2
Quadratic potential for hidden units: U(h)= h—
. Energy of visible and E(W,h) = V. + U h w.
hidden configurations: (v.h) = Egl l E ( ) E g ”
1
. Joint distribution: P(V,h)=EeXP[—E(V,h)]

. Marginal distribution over P(v)= fl_[dh P v,{h })

1
visible configurations Z

eXp [_ eff (V)]



RBM vs. BM: quadratic hidden potentials

E,(v)= _Zgivi t %;(ZWWV ) - _Eglvl Y E(EW’” ”‘)V

t
J.

J

Boltzmann machine, i.e. Ising model with interaction matrix of rank-M !
Also called Hopfield model
Non quadratic potentials generate multi-body interactions between v; ...

Ji;
U] U2 UN

Talk by B. Bravi
next Friday




Proc. Natl Acad. Sci. USA
Vol. 79, pp. 2554-2558, April 1982

Biophysics

Hopfield’s model (1982)

Neural networks and physical systems with emergent collective

computational abilities

(associative memory/parallel processing/categorization/content-addressable memory/fail-soft devices)

J. J. HOPFIELD

Division of Chemistry and Biology, California Institute of Technology, Pasadena, California 91125; and Bell Laboratories, Murray Hill, New Jersey 07974

Contributed by John | . Hopfield, January 15, 1982

ABSTRACT  Computational properties of use to biological or-
ganisms or to the construction of computers can emerge as col-

lective properties of systems having a large number of simple

equivalent eom#nts (or neuronsE The physical meaning of con-
tent-a € memory 1s by an appropriate phase

space flow of the state of a system. A model of such a system is
given, based on aspects of neurobiology but readily adapted to in-
tegrated circuits. The collective properties of this model produce
a content-addressable memory which correctly yields an entire
memory from any subpart of sufficient size. The algorithm for the
time evolution of the state of the system is based on asynchronous
parallel processing. Additional emergent collective properties in-
clude some capacity for generalization, familiarity recognition,
categorization, error correction, and time sequence retention.
The collective properties are only weakly sensitive to details of the
modeling or the failure of individual devices.

Autoassociative memory

Simple dynamics of components
(no clock)

Generalization, error correction, time
sequence storage, ...

Robustness to failure of individual
components



The model

* set of activity configurations (patterns) to be ‘stored’:

Si
Index of pattern=1, ..., P
u/
W, =+l
T Index of neuron=1, ..., N

. . . — 1 ‘Lt M
* synaptic interactions: J i N E W:W,;
u

joJ

« updatingrule: v, (f+1)=sign EJ..V (r)-0, 0. =-g)
J



Q: Is the final state close to one of the patterns?

A: Yes, if number P of patterns small enough ...

Dynamics is descending  E[v,,v,,...,vy | = _EEJUVZ'VJ + Eﬁivi
ij i
N ._ =
¢ — _. ;"/er.'u"
atractor energy
>
states

basin of attraction

Are the minima of E close to the patterns?



Reminder on the mean field-Ising model

Probability of a configuration of spins:

1 K
P 2 2°°°*) e p
(V1 V.. VN) 2K X (ZN;‘)V )
Order parameter: m(K) = E P(Vl,vz,...,vN) X%E v,

(v vy vy =£1} ]

characterizes the degree of order of a typical configuration:

m(K)

K (= inverse temperature)



From the Mattis model...
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Same phase transition!




... to the Hopfield model

v p « patterns »
. 1 wh
m3 (u=1...p)
—3
) -

u=l..p\ i

PHopﬁeld (vl,v2,...,vN)= Z({iv“}) exp % E Evl.wl.

Same phase transition as Ising model if p finite & N tends to infinity:

i.e., for large K, one overlap m" is positive, the others vanish (other
scenarios with multiple positive overlaps are exponentially unlikely...)



The Hopfield model in the double p,N =» oo limit

E[vl,vz,...,vN]=—§E

i,j

Ew.“w‘.‘)v.v.
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Gaussian RBM: The Phases (at low temperature)

Ferromagnetic Phase :

More Glassy Phase :
hidden
units

A

* One hidden unit is strongly

_ * All hidden units are weakly
activated and the others are

) activated
weakly actlvatgd. _ _ » All states have weak
* Number of regions with high probability

probability is linearin N




Hidden layer

Prototype vs. compositional
regimes in nonlinear RBM

Visible layer

16 hidden units (prototypes) 100 hidden units (sparse features)

Fischer & Igel. Training Restricted Boltzmann Machines: An Introduction, 2014.



Prototype regime

Strongly reminiscent of ferromagnetic
regime in Hopfield model :

* One hidden unit is strongly activated and the
others are weakly activated;

e Limited diversity of visible-layer configurations
given hidden-unit activation

 Number of high-probability configurations is
linear in nb. of hidden units



Compositional
regime




.
4

0.02

0.01

0.00

Compositional
regime

Each generated digit image is
composed by superposing about
L=20 elementary strokes, while
=250 units are silent.
Different combinations of strokes
produce different variants of the
same digit or different digits




- A « dictionary » of sparse
and strong features

-

e After learning of data, weights are sparse
A subset of
the features
learnt for a * And few, remaining weights are large!
RelLU RBM.
M = 400. e
Each image - - Conditional
represent a averages
weight Black: v=0,
vector White: v=1,

I Grey scale
JH
{Wi}” I
£ * No interference thanks to large RelLU

threshold ...




Random-Weight RBM ensemble

h, e Ry, ReLU+ alN
Threshold 3

Sparse Random Weights

(0 1—p
< Wi 1 L
1 p
\ 2
UZ'E{O,l}
field g

N — oo



Statistical Mechanics of Random-Weight RBMs

* Replica theory computation is performed to estimate the average free

energy F in the zero-temperature limit :

Number of hidden units Fields on visible

Number of visible units units

F ,p,g,H) lim ——longl_[dh exp E(v h;W g,H)/T]
/' '\ Ve N I
?,;Z'z% Hidden unit Averaged out

threshold



The three representational regimes of RBM

“Ferromagnetic” regime “Glassy” reqgime

More

hidden

units

I

One hidden unit very active * All hidden units active
Corresponding weights * Visible configurations
define local prototype are complex mixtures
Unable to extract invariances * Not Interpretable

Non quadratic
hidden-unit
potentials

e Multiple hidden units very active
e Corresponding weights define
features composing visible

Increasing sparsity
configurations

Compositional regime « Extract invariances; interpretable
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Proteins: structure & function

(with S. Cocco, J. Tubiana)

WW protein domain

Amino-acid Sequence

ALPPGWEERIHLDGRTFYIDHNSKITQWEDPRLQ

!
0
Function

’ " Structure

» Sequence fully defines 3D structure and function of the corresponding protein:
Genotype-phenotype mapping?



Proteins: structure & function

WW protein domain
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Amino-acid Sequence | 8 5
l\-\ﬂ ,
{

ALPPGWEERIHLDGRTFYIDHNSKITQWEDPRLQ

",
? W
0
Funct

gy . " Structure
ion X

» Sequence fully defines 3D structure and function of the corresponding protein:
Genotype-phenotype mapping?

Mutation: L =» A

 neutral: no effect
e detrimental
* beneficial

» Mapping is complex:
Mutations may largely affect stability, activity, specificity, ... of protein

(directed evolution for protein design)
No additivity a priori: epistasis



Proteins: Evolutionary Families

Eukarya
Animals
Archaea
Fungi
Bacteria Slime molds Plants
—TCiliates
Halophiles Flagellates
Purple bacteria T pOmtiyae . =
Methanococcus Microsporidiae

: Thermoproteus
Cyanobacteria

Flavobacteria

[Biologicalphysics.iop.org]

* Many realizations of sequences of proteins with similar function & structure
* Characterization of underlying distribution??
* May help to Infer structure, function; Predict effect of mutations; Design new proteins; ...



Multi-sequence alighments

Q9U3M7_CAEEL/420-758
062481_CAEEL/42-406
Q9I1GO_PSEAE/16-386

ESTB_BURGA/22-391

LOVD_ASPTE/17-406
Q9wXD6_BRELN/11-387
Q9L8D3_SORCE/35-419
Q9A2D7_CAUCR/97-472
Q9A800_CAUCR/77-466
Q9A7Z9_CAUCR/50-429
088012_STRC0/23-405
Q9A3L3_CAUCR/99-483
P72041_MYCTU/40-404
Q9X5Q0_STRLA/21-361
Q18384_CAEEL/50-416
Q9XU43_CAEEL/52-422

Sequence number

(1 [
YLPEF————— ———————— PA
WLPAF————= ———eeeem RP
WLPEF————— ————m——— RP
RLLPDLSAMP VLEGFDDAGN
YAPGLADVQV I-EGFDVDGS
WLPELANRKV --LARIDGPI
YLPEFADM—— ———- KVSDGQ
HIPEFANLRV A-KGVDETGQ
FIPEFANLRV L-KGVNADGS
YLPAFAEPRV --YVGGTGEN
FIPAWRDIGV —-FQAGVAGA
(1 ———
YWP—— e e
1| T —
YWP——— e e

Amino-acid content

-YPRYVTE-I
KKFKNEDVKI
RLADGREARI
RLADGSEPLV
ARLRERRGKI
PILRAPASEP
DETVPAERPI
GGVRPAARPI
PILTPVSRSP
FDTVPAERPP
VVTRPATGPV
FQTTRTKEPM
SYTSHGKHRT
QFARHGKGDV
EFGQNGKQDI
EYGRYGKNAT

TVRHLLEHTA
TMRQLLSHSA
TPRQLLSHSA
TIHHLLTHTS
TLRHLLTHTS
TTKQLLLHTA
TVRDLMTFTM
LVRDILRHTA
TMRELMTHTA
TMRELMSHSA
RVRHLMTHTA
RTIDLLRHTS
TIRHVLTHSA
TVRHVLQHRA
TIEMVLSHTA
TIEDVLSHKA

[ - = gap, same format for all sequences]

GGWDNLQSDA
GIRHYATEKK
GLGYRFLEAD
GLGYW-LLEG
GLSYVFLHPL
GFGYDFFNEK
GFGISFDASS
GFSYGWGEGP
GFAYGLANDP
GFAYGLTPDN
GLTFGFYRTH
GLTYGFQQRT
GVPFPTGPRP
GVPVGRGIVR
GLPYFPGVKF
GLPYL-SEDI



High-dimensional representations of protein sequences

Sequence space Representation space
AL A P(h|A) h, (activity)
®
o
o

> h 1
(type 1) (specificity)

RBM extract high-D representations of (common inputs to) sequences
* Representations are useful (to design « good » sequences) ...
... and, hopefully, biologically meaningful (structure, function, history)

=» Practical implementation of genotype-to-phenotype relation



Applications of RBM to protein sequence data

WW domain (PFAM PF00397)

Proline-rich

Hidden layer (100-400 dRelLU)

Visible layer (21-state units)

Tubiana, Cocco, R.M., eLife 2019

ATP-bound ADP-bound



Example 1: the WW domain

* Binding domain involved in eukaryotic signalling proteins
* N=30-40 amino-acids (very small)
* Folds into 3-stranded antiparallel beta strands

* Recognizes Proline-rich Linear Motifs with 4 types of ligand specificities

Type I: PPXY, Y = Tyrosine (aromatic) , X = any residue
Type Il: PPLP, L = Leucine
Type lll:  PRrich peptide, R = arginine

Type IV:  p(S/T)P, phosphorylated serine/threonine



Example 2: HSP70 chaperone protein

* N>600 amino-acids Function:
* Traps substrate proteins between

* Nucleotide Binding Domain (NBD)  LID/SBD cavity is either open or close

* Substrate Binding Domain (SBD) Roles:
e LID Domain * Assist protein folding

* Transport proteins for degradation

ATP bound conformation (open) ADP bound conformation (closed)
PDB: 2kho PDB: 4jne



Hidden-unit potentials

120 Potential U/

1
— Quadratic i
— dRelLUl
— dRelLU2

1-20

Generalization of Rectified Linear Units:

Positive slopes at origin favors h=0 (as L1 regularization)
Negative slopes favors bimodal distribution for h

Confining potential at large h

Four parameters to be learned from data for each hidden unit



Weights #1

Weights reflect structural features
WW domain

g F
I - . —E e Eoomre g
E EK 3
) R

100

Weights #2

T :

g - e
|

N

5 10 15 20 25 30



1.0

0.5+

-0.5 1

-1.0-

Weights reflect structural features
HSP/0

» L : EKﬁKKBKg KKKEKﬁKKKKK
w“ﬁ?:M%4M%$%"F%%ﬁ%%%%%%%w%ﬂ%%ﬁ
= A a8
L e | GGG‘G‘E@GAGGK"AGéEgGAGﬁgéGAA .

Collective mode located on the unstructured C- terminal tail
Known to be crucial for interactions with co-chaperones
Either charged hydrophilic or tiny hydrophobic residues
Analogous to IDP



Interdomain weights control allostery

Intra-domain
SBD/LID covariation

Nucleotide Binding Domain (NBD) Substrate Binding Domain (SBD)
LID Domain



Interdomain features control allostery

ATP-bound ADP-bound

Intra-domain
SBD/LID covariation

UniprotkKB

' Allosteric
Non-allosteric

' A
a
A %
" \ L 8
0
i
i By
&% )
; ( l
T T T

0 20 40
HSP110

Non-allosteric specific



Weights #2

Loop motifs control ATP/ADP regulation

266 271 290 296 301 306 311

I> (Very short loop)

Weights #1
o
o

E E‘EEEHéM -

UniprotkKB

[~ mmm DnaK (P)

HscA (P)
Nucleus/Cyto (E)
Mitochondria (E)
Chloroplasta (E)
ER (E)
Non-allosteric (E)

75 -50 -25 00 25 50 75 100
I, (Short Loop)

256 261

266 294 296 301 306



RBM features reflect function
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WW Domain: Weights Determine Motif
Recognition Specificity

Motif recognized

PPXY
Typell :  PPLP
Type lll: PR

Type IV:  [p(S/T)P]

Type | . .
Experimental data from: m Type Il A T
Russ et al. Nature 2005 = Type Il ‘ L e
Espanel and Sudol J. Biol. Chem. 1999 -31 @ Type IV tiag ;i’if"?o
Otte et al. Protein Science 2003 m Unknown e A
-4 -2 0



Why are RBM extracting useful/interpretable

representations?

The problem: ® ® ® O
Find probability o
distribution
from very few P O
samples

®

®

K ® @9 /
Sequence

space




Why are RBM extracting useful/interpretable
representations?

Mixture of @ O

local models :

Each hidden

unit sees and

codes for a

patch in

sequence space

K @ / Sequence

space




Why are RBM extracting useful/interpretable
representations?

Entangled model:

All or almost all
hidden

units active at any
position in
sequence space

Non interpretable
representations ...

Sequence
space




Why are RBM extracting useful/interpretable

Decomposition
into
constitutive
features:

Each hidden
codes for an
invariant
feature;
seguences are
obtained by
combinatorial
composition of
features

representations?

4,//// Sequence

space



The three representational regimes of RBM

“Ferromagnetic” regime “Glassy” reqgime

More

hidden

units

I

One hidden unit very active * All hidden units active
Corresponding weights * Visible configurations
define local prototype are complex mixtures
Unable to extract invariances * Not Interpretable

Non quadratic
hidden-unit
potentials

e Multiple hidden units very active
e Corresponding weights define
features composing visible

Increasing sparsity
configurations

Compositional regime « Extract invariances; interpretable




Driving RBM to the compositional phase

Likelihood: Train set
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Weight Sparsity p
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Likelihood: Test set

Site

25

20

Driving RBM to the compositional phase

Likelihood: Train set
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WW Domain: Weights Determine Motif
Recognition Specificity

Motif recognized

PPXY
Typell :  PPLP
Type lll: PR

Type IV:  [p(S/T)P]

Type | . .
Experimental data from: m Type Il A T
Russ et al. Nature 2005 = Type Il ‘ L e
Espanel and Sudol J. Biol. Chem. 1999 -31 @ Type IV tiag ;i’if"?o
Otte et al. Protein Science 2003 m Unknown e A
-4 -2 0



Artificial Sequence Generation with RBM

MSA
RBM generated

4 2 0
Input /3

Artificial Sequences



Artificial Sequence Generation with RBM

Type lI-like
binding pocket +
Short loop
14
=1
5
Q
c
2 BRI G512t Ui SE A
RBM Type I-like .
- RBM Type II/lll-like Type Lk
- RBM Type IV-like ) .
: : binding pocket +
-4 2 0
Input /5 Short loop

Artificial Sequences




Artificial Sequence Generation with RBM

Type I-like
binding pocket +
Short loop 2 Unknown

pe I-li IR RN - e S
RBM Type I-like - R X
- RBM Type Il/llI-like
- RBM Type IV-like
- RBM hybrid type

2 3
Input /3

Artificial Sequences

Type [I/11/1V-like
binding pocket +
Short loop = Type I/l

Type lI/111/1V-like
binding pocket +
Short loop = Type IV




Perspectives

Data-driven models are getting increasingly important; need for
controlled approaches to infer and interpret models.

If you have questions about lectures or notes, please contact me!
( remi.monasson at ens.fr)

Fascinating issues from statistical, computational, conceptual
points of views. Lots of things to do in future!!

Postdoc positions available from January 2020 ...



